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Abstract—In the last decade, Tor proved to be a very suc-
cessful and widely popular system to protect users’ anonymity.
However, Tor remains a practical system with a variety of
limitations, some of which were indeed exploited in the recent
past. In particular, Tor’s security relies on the fact that a
substantial number of its nodes do not misbehave. In this work we
introduce, the concept of honey onions, a framework to detect
misbehaving Tor relays with HSDir capability. This allows to
obtain lower bounds on misbehavior among relays. We propose
algorithms to both estimate the number of snooping HSDirs
and identify the most likely snoopers. Our experimental results
indicate that during the period of the study (72 days) at least 110
such nodes were snooping information about hidden services they
host. We reveal that more than half of them were hosted on cloud
infrastructure and delayed the use of the learned information to
prevent easy traceback.

I. INTRODUCTION

Over the last decade, Tor emerged as a popular tool
and infrastructure that protects users’ anonymity and defends
against tracking and censorship. It is used today by millions
of ordinary users to protect their privacy against corporations
and governmental agencies, but also by activists, journalists,
businesses, law enforcements and military [1].

The success and popularity of Tor makes it a prime target
for adversaries as indicated by recent revelations [2]. Despite
its careful design, that significantly improved users privacy
against typical adversaries, Tor remains a practical system
with a variety of limitations and design vulnerabilities, some
of which were indeed exploited in the past [3], [4]. Due to
the perceived security that Tor provides, its popularity, and
potential implication on its users, it is important that the
research community continues analyzing and strengthening its
security.

This is specially important since users typically have a poor
understanding of the privacy protection that Tor really provides
as evidenced by past events. For instance, in a highly publi-
cized case, security researchers collected thousands of sensitive
e-mails and passwords from the embassies of countries includ-
ing India and Russia [5]. These embassies used Tor believing it
provides end-to-end encryption, sending sensitive un-encrypted
data through malicious exit nodes. Other research revealed
that many users run BitTorrent over Tor, which is insecure
and resulted in deanonymization [6]. Finally, recent incidents
revealed that the Tor network is continuously being attacked
by a variety of organizations from universities to governmental
agencies, with difficult to predict ramifications [3], [7]. Even
more recently, the still unexplained sudden surge in the number

Fig. 1: Recent unexplained surge in the number of Hidden
Services. The number of hidden services (.onion) suddenly
tripled, before settling at twice the number before the surge.

of hidden services (.onion), more than tripling their number
before returning to relatively smaller numbers (See Figure 1),
indicates that the Tor network is not well understood, in part
due to its peer-to-peer nature, the privacy services it provides
that limit measurements, and the attacks that it attracts [8].

Tor’s security, by design, relies on the fact that a substantial
number of its relays should not be malicious. It is however
difficult to assess to what extent this condition holds true.
The fact that many attacks are passive, makes it even harder
to assess the significance of this threat. In this work, we
developed a framework, techniques, and a system to provide
some elements of the answer to this challenging problem.

We introduce the concept of honey onions (honions),
to expose when a Tor relay with Hidden Service Directory
(HSDir) capability has been modified to snoop into the hidden
services that it currently hosts. We believe that such a behavior
is a clear indicator of sophisticated malicious activity, for it
not only is explicitly undesired by the Tor Project [9] but also
requires a modification to the Tor software, indicating some
level of sophistication of the perpetrator. Honions are hidden
services that are created for the sole purpose of detecting
snooping, and are not shared or publicized in any other form.
Therefore, any visits on the server side of the honion is a clear
indication that one of the HSDir that hosted it is snooping.
Since hidden services are hosted on multiple HSDirs and
change location on a daily basis, it is not easy to infer which



HSDir is the malicious1 one. The visits information leads
to a bipartite graph connecting honions and HSDirs. Finding
the smallest subset of HSDirs that can explain honion visits
provides a lower-bound on the number of malicious HSDirs.
This has the benefit of giving a sense of the scale of malicious
behavior among Tor relays. We show that this problem can
be formulated as a Set Cover, an NP-Complete problem. We
develop an approximation algorithm to this specific problem
as well as an Integer Linear Program (ILP) formulation. We
build a system to deploy the honions along with a schedule
for the lifetime of each one of them to maximize the collected
information without generating an excessive number of hidden
services. The generated honions have a lifetime of one day, one
week, or one month. Throughout the experiment, which lasted
72 days so far, the maximum number of generated honions
did not exceed 4500 hidden services (which is significantly
lower than the anomaly that hidden services are experiencing).
Based on the experimental data, we are able to infer that
there are at least 110 snooping HSDirs. A careful analysis
of the experimental data and results from the ILP solution,
allows us to infer most of the misbehaving HSDirs and their
most likely geographical origin. Based on these results we are
able to classify misbehaving HSDirs in two main categories,
immediate snoopers, and delayed snoopers. Immediately and
deterministically visiting a honion results in a higher detec-
tion and identification. However, delaying and randomization
reduces the traceability (as other HSDir who hosted the honion
could also be blamed) at the expenses of potentially missing
key information that the hidden service creator might put for
only a short period of time. Therefore, a smart HSDir snooper
has to trade-off delay (and risk of missing information) with
risk of detection. In this paper, we discuss the behavior and
characteristics of the malicious HSDirs. We found out that
more than half the malicious HSDirs are of the delayed type,
and are hosted on cloud infrastructure. Our contributions can
be summarized as follows:

• The honey onion framework for detecting snooping
HSDirs.

• An approximation algorithm and Integer Linear Pro-
gram for estimating and identifying the most likely
snooping HSDirs.

• An experimental study leading to the discovery of
at least 110 snooping HSDirs and a peek into their
behavior.

The rest of the paper is structured as follows. In Sec-
tion II we overview the architecture of Tor hidden services
and HSDirs. Section III outlines our approach, and system
architecture. Section IV provides the formalization of the
detection and identification problem, shows the reduction to
the set cover problem, and the approximation algorithm as
well as the Integer Linear Programming formulation. In Sec-
tion V, we discuss our implementation of the system, report on
the experimental results when processed by the identification
algorithms. In Section VI we discuss the experimental results
and the characteristics and behavior of malicious HSDirs. In
Section VII we summarize the prior and related work. We
conclude the paper in Section VIII.

1In this paper, we use the terms malicious and snooping interchangeably.
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Fig. 2: Tor hidden service architecture and connection setup.

II. HIDDEN SERVICES & HIDDEN SERVICE DIRECTORIES

Tor [10] is an anonymity network that allows users to
circumvent censorship and protect their privacy, activities
and location from government agencies and corporations.
Tor also provides anonymity for the service provided with
hidden services, which enables them to protect their location
(IP address), yet allowing users to connect to them. Hidden
services have been used to protect both legitimate and legal
services for privacy conscious users (e.g., Facebook), and for
illicit purposes such as drug and contraband market [11], [12],
and extortion. This attracts attacks from a variety of actors. In
order to understand the specific HSDirs snooping misbehavior
we are interested and the honion system setup and algorithms,
we first summarize some key mechanisms of Tor. In particular,
we focus on the architecture of hidden services, both from the
client and the service provider perspective.

The Tor hidden services architecture is composed of the
following components:

• Server, that runs a service (e.g., a web server).

• Client, that wishes to access the server.

• Introduction Points (IP), a set of Tor relays, chosen by
the hidden service, that forward the initial messages
between the server and the client’s Rendezvous Point.

• Rendezvous Point (RP), a Tor relay randomly chosen
by the client that forwards the data between the client
and the hidden service.

• Hidden Service Directories (HSDir), a set of Tor relays
chosen by the server to store its descriptors.

Server. To enable access to a server, the service provider,
generates an RSA key pair. Then he calculates the SHA-1
digest of the generated public key, known as the Identifier
of the hidden service. The .onion hostname is the base-
32 encoding of the identifier. To connect to a hidden service,
the aforementioned identifier needs to be communicated to the
clients through an external out-of-band channel. As depicted
in Figure 2, the hidden service, chooses a set of relays,
called Introduction Points (IP), and establishes Tor circuits
with them (step 1). After setting up the circuits, the hidden
service calculates two service descriptors to determine which
relays are the responsible HSDirs, using the below formula
and uploads the descriptors to them (step 2).



Fig. 3: Fingerprints circle or Hidden Service Directories (HS-
Dir) and placement of a hidden service descriptor.

descriptor-id = H(Identifier||secret-id-part)

secret-id-part = H(time-period||descriptor-cookie

||replica)

time-period = (current-time+

permanent-id-byte ∗ 86400/256)

/86400

In the above equations, H is the SHA-1 hash digest.
Identifier is the 80 bit truncated SHA-1 digest of the
public key of the hidden service. Descriptor-cookie is
an optional 128 bit field which could be used for authorization.
The hidden services periodically change their HSDir. The
time-period determines when each descriptor expires and
the hidden services need to calculate the new descriptors and
upload them to the new corresponding HSDirs. To prevent
the descriptors from changing all at the same time, the
permanent-id-byte is also included in the calculations.
The Replica index, takes values of 0 or 1, and results in
two descriptors. Each descriptor is uploaded to 3 consecutive
HSDirs, a total of 6. Consider that the circle of HSDirs is
sorted based on their fingerprint (SHA-1 hash of their public
key) as shown in Figure 3. If the descriptor of a hidden service
falls between the fingerprint of HSDirk−1 and HSDirk, then it
will be stored on HSDirk, HSDirk+1 and HSDirk+2.

Client. When a client wishes to contact a hidden service, he
first needs to compute the descriptor-id using the above
formula, and contact the corresponding HSDirs (step 3). To
communicate with a connection with the hidden services, the
client first needs to choose a set of random relays as his
Rendezvous Point (RP), and establish a circuit with them (step
4). Then he contacts the hidden service’s IPs to indicate his
desire to contact the hidden service, and announcing his RPs
(step 5). Then, the IP will forward this information to the
hidden services (step 6). At last, the hidden service establishes
a circuit to the RPs, and the two can start communicating.

III. APPROACH

In the following we overview the approach and the ar-
chitecture of our detection platform. The steps of flow of
actions is depicted in Figure 4. It consists of the following
main components.

A. HOnions Generation

In order to automate the process of generating and deploy-
ing honions in a way that they cover a significant fraction
of HSDirs, we developed several scripts. The scripts create
configuration files for Tor relays, called torrc. In particular,
the torrc files specifies the SOCKS port, the hidden service
directory to store and read the private key, the advertised port
of hidden service, and the port where a server is running on
the localhost as described in the next subsection.

A key constraint in this process was to minimize the
number of deployed honions. This derives primarily from our
desire to not impact the Tor statistics about hidden services
(specially given the recent surge anomaly). Secondarily, given
that behind each honion there should be a running process
to serve the pages and to log the visits, we are practically
limited by our infrastructure hardware/server capabilities. We
now discuss the process that allowed us to determine how
many honions should be generated to cover at least 95% of
the HSDir for every batch.

If each honion was only placed on a single random
HSDir, the probability for each HSDir to host an honion
is p0 = 1

Nhsdirs
, where Nhsdirs is the number of HSDirs.

Since there are two descriptors, derived independently, this
is equivalent to doubling the number of honions (m). Since
each descriptor is placed on a set of three adjacent HSDirs,
the probability of a descriptor being hosted on a HSDir is
approximated by p ⇡ 3p0 = 3

Nhsdirs
. After generating m

honions, the probability that an HSDir is not covered by the
2m descriptors is approximated (1−p)2m. To cover a fraction
f of HSDir, we need:

f = 1− (1−
3

Nhsdirs

)2m

This implies that the necessary honions to be generated
should be as follows:

m =
log(1− f)

log(1− (1− 3
Nhsdirs

))

Using this formula and considering that the number of
HSDirs Nhsdirs is approximately 3000, we could infer that
we need to generate 1497 (rounded to 1500) honions to cover
all HSDirs with 0.95 probability. We used 1500 honions per
batch (daily, weekly, or monthly) and could verify that 95%
of the HSDirs were systematically covered therefore validating
our approximation.

An alternative approach would have been to generate a
very large number of honions or interactively generating them
until all HSDirs are covered. However, both approaches have
drawbacks and limitations. For instance, to iteratively cover the
HSDirs, one needs to have a perfect synchronization between
the generation process and Tor consensus documents. As for
generating a large number of honions, it can overload the Tor
network, disturb its statistics primitives, and also requires us
to run an excessive number of server processes.



B. HOnion back end servers

Each honion corresponds to a server process/program that
is running locally. The server behind hidden services, should
not be running on a public IP address. Otherwise it can be
detected and deanonymized by exploiting its unique strings
and other leakages. This has become relatively easy given the
availability of databases of the whole Internet scans [13]. To
avoid leaking information we return an empty page for all the
services. It does not allow an adversary to draw any conclu-
sion about the hosting server. We initially considered using
fake pages mimicking real typical hidden services websites.
However, similarities between pages might alert an adversary
about the existence of a honeypot/honey onion.

C. HOnions generation and deployment schedule

To keep the total number of honions small, we decided
on three schedules for the generation and placement of the
honions, daily, weekly, and monthly. The three schedules allow
us to detect the malicious HSDirs who visit the honions shortly
(less than 24 hours) after hosting them. Since the HSDirs
for hidden services change periodically, more sophisticated
snoopers may wait for a longer duration of time, so they can
evade detection and frame other HSDirs. The daily schedule
would miss such snoopers, therefore we defer to the weekly
and monthly honions to spot such adversaries. Imagine there
is a visit on weekly or monthly honions, while there is no
visits to the daily honions. Since all honions are running
simultaneously, and all HSDirs are hosting honions in all
three schedules, this indicates that some malicious HSDirs
are delaying their snooping. For the adversary, this a trade-off
between accuracy and stealthiness, since some hidden services
may have a short life span and will be missed by the snooping
HSDir if he waits too long.

D. Logging HOnions visits

We log all the requests that are made to the server programs
and the time of each visit. The time of a visit allows us to
determine the HSDirs that have hosted any specific honion.
Recording the content of the requests allows us to investigate
the behavior of the snoopers. Since we advertise our servers on
port 80, we can investigate the request types and content that
are made by snoopers. Furthermore, we can detect automated
headless crawls as opposed to the requests made by browsers
(e.g., Tor browser), since they make request for extra elements
such as the small icon that is shown in the browser near the
URL address bar (i.e., favicon.ico).

E. Identifying snooping HSDirs

Based on the visited hidden server, the time of the visit, and
the HSDir that have been hosting the specific onion address
prior to the visit, we can mark the potential malicious and
misbehaving HSDirs. Then we add the candidates to a bipartite
graph, which consists of edges between HSDirs and the visited
honions, as further described in section IV. The analysis of
this graph allows us to infer a lower bound on the number of
malicious HSDirs as well as the most likely snoopers.

IV. ESTIMATION & IDENTIFICATION OF SNOOPING

HSDIRS

In order to formally reason about the problem of identifying
malicious HSDirs, we first introduce a formal model and
notation for the Honey Onions system. First, HO denotes the
set of honey onions generated by the system that were visited,
and HSD the set of Tor relays with the HSDir flag (so far
referred to as HSDir relays). The visits of honions allow us
to build a graph G = (V,E) whose vertices are the union of
HO and HSD and edges connect a honion hoj and HSDir
di iff hoj was placed on di and subsequently experienced a
visit. G is by construction a bipartite graph.

HSD = {di : Tor relays with HSDir flag}

HO = {hoj : Honey Onion that was visited}

V = HSD [HO

E = {(hoj , di) 2 HO ⇥HSD|hoj was placed on di

and subsequently visited}

We also note that each honion periodically changes de-
scriptors and therefore HSDirs (approximately once a day).
However, a HSDir currently a honion ho cannot explain visits
during past days. Therefore, each time a honion changes
HSDirs we clone its vertex ho to ho0 and only add edges
between ho0 and the HSDirs who know about its existence
when the visit happened.

A. Estimating the number of snooping HSDirs

Since each honion is simultaneously placed on multiple
HSDirs, the problem of identifying which ones are malicious
is not trivial. We first formulate the problem of deriving a
lower-bound on their number by finding the smallest subset
S of HSD that can explain all the visits (meaning that for
each visited honion, there is a member of S who knew about
its existence and could therefore explain the visit). The S is
therefore a solution to the following problem:

argmin
S✓HSD

|S : 8(hoj , di) 2 E9d0i 2 S ^ (hoj , d
0
i) 2 E| (1)

The size s of the minimal set tells us that there cannot be
less than s malicious HSDirs who would explain the visits.
Furthermore, when s is relatively small compared to Nhsdirs,
any HSDir identified as an explanation of multiple visits is
highly likely to be malicious. This derives from the fact that
the probability of co-hosting a honion with a malicious HSDir
once being small, it decreases exponentially as a function of
number of visits.

B. Reduction from set cover

Finding the smallest set S as defined by Equation 1, is
not trivial as one can easily see that it is equivalent to the
hitting set problem, which itself is equivalent to the set cover
problem. The set cover problem is well known to be NP-
Complete. An intuitive sketch of proof for the equivalence
to set cover is as follows. For each HSDir dj define the set
of honions Oj = {hoi|(hoi, dj) 2 E}. Solving Equation 1
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Fig. 4: Flow diagram of the honion system. We generate a set of honions to cover all the HSDirs and run a server behind each
one, Here, we only show one descriptor per honion. When a visit happens to one of the honions, we can infer which HSDirs
hosted it (and knew about its existence) using the consensus document and the list of relays. After identifying the potential
suspicious HSDirs, we add the candidates to the bipartite graph.

amounts to finding the smallest set of Oj that covers all
the visited honions. The set cover problem has an ln(n) + 1
approximation algorithm where n is the size of the set to be
covered [14]. Based on this, we derive the following heuristic,
with ln(|HO|)+1 approximation ratio. The advantages of this
heuristic is its low computation complexity O(|E|).

Input: G(V,E): Bipartite graph of honions to HSDirs
Output: S: Set explaining visits

1 S  ;
2 while V \HO 6= ; do
3 Pick d 2 V \HSD : with highest degree
4 V  V \ {d and its honion neighbors}
5 end

Algorithm 1: Minimal HSDir Heuristic

C. Formulation as an Integer Linear Program

Solving the problem defined by Equation 1, can also be
formulated as an Integer Linear Program. Let x1j|HSD|

be binary variables taking values 0 or 1. Solving Equation 1,
consists of finding Integer assignments to the xj such that:

min(x1,...,xHSD)

P|HSD|
j=1 xj

subject to 8hoi 2 HO
P

8j:(hoi,dj)2E xj ≥ 1

While this ILP will give the optimal solution, it has
exponential computation complexity in the worst case. In a
subsequent section, our experimental results show that al-
though it performs fairly well for our setup, it is significantly
slower than the heuristic.

V. DETECTION INFRASTRUCTURE & RESULTS

In this section we discuss the implementation and de-
ployment of the detection infrastructure as highlighted in
Section III and depicted in Figure 4.

Cloud Exit Cloud & Exit Not Cloud & Not Exit

81 27 23 25

TABLE I: Type of the snooping HSDirs. More than 70% are
hosted on Cloud.

Alibaba Digital Ocean Online S.A.S. OVH SAS Hetzner Online GmbH

15 7 7 6 6

TABLE II: Top 5 Cloud Providers.

A. Implementation and Deployment of the Detection Platform

We developed simple HTTP servers to listen on specific
ports for incoming requests. Upon receiving a request, each
server would log the time and full request into separate files.
At first we developed the HTTP servers using Python and Flask
web framework. However, because of the size that is occupied
by the framework and the interpreter we faced difficulties in
scaling our detection platform. The programs when instantiated
in memory would take up to 40 MB, including the shared
libraries. Running 1500 instances would take up to 12GB.
Meaning each instance on average could take about 8-9 MB.
As a result, we decided to port the code to C, without using
any external third party library or framework. We relied solely
on the BSD Sockets API. This allowed us to reduce the size of
the code including the shared libraries to 6 MB. Running 1500
instances with the ported code only occupied around 2GB,
meaning each instance on average occupied less than 1.5 MB,
therefore, reducing the resource allocations by 6 times.

We distributed the 1500 honions over 30 Tor relays equally,
to avoid overloading a single relay and reducing performance
and responsiveness of the hidden services. We created scripts
that would automatically generate and place new honions
based on the three schedules discussed earlier (daily, weekly,
monthly). Each schedule was running on a separate Virtual
Machine to isolate the infrastructures.









the majority of hidden services belong to botnets, followed by
adult content and drug markets. Another study [36], measures
the leakage of onion addresses at the root DNS servers (A and
J), and provides the popularity of different hidden services
categories based on the leaked requests.

VIII. CONCLUSION

Tor is a widely popular system for protecting users
anonymity. However, at its core it relies on the non-malicious
behavior of its peer-to-peer nodes. In this work, we introduced
honey onions, a framework for methodically estimating and
identifying the most likely Tor HSDir nodes that are snooping
on hidden services they are hosting. We propose algorithms
to both estimate the number of snooping HSDirs and identify
them. Our experimental results indicate that during the period
of the study (72 days) at least 110 such nodes were snooping
information about hidden services they host. We reveal that
more than half of them were hosted on cloud infrastructure
and delayed the use of the learned information to prevent easy
traceback. Another interesting finding is that although a large
number of snooping HSDirs were hosted on US IP addresses
(37), several (15) were actually hosted on Alibaba’s data center
in California.
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