
TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

1VIRUS BULLETIN CONFERENCE OCTOBER 2016

TRUSTED CODE EXECUTION ON

UNTRUSTED PLATFORMS USING

INTEL SGX
Guevara Noubir & Amirali Sanatinia

Northeastern University, USA

Email {noubir, amirali}@ccs.neu.edu

ABSTRACT

Today, isolated trusted computation and code execution is of

paramount importance to protect sensitive information and

workfl ows from other malicious privileged or unprivileged

software. Intel Software Guard Extensions (SGX) is a set of

security architecture extensions fi rst introduced in the Skylake

microarchitecture that enables a Trusted Execution Environment

(TEE). It provides an ‘inverse sandbox’, for sensitive programs,

and guarantees the integrity and confi dentiality of secure

computations, even from the most privileged malicious software

(e.g. OS, hypervisor).

SGX-capable CPUs only became available in production systems

in Q3 2015, and they are not yet fully supported and adopted in

systems. Besides the capability in the CPU, the BIOS also needs

to provide support for the enclaves, and not many vendors have

released the required updates for the system support. This has led

to many wrong assumptions being made about the capabilities,

features, and ultimately dangers of secure enclaves. By having

access to resources and publications such as white papers,

patents and the actual SGX-capable hardware and software

development environment, we are in a privileged position to be

able to investigate and demystify SGX.

In this paper, we fi rst review the previous trusted execution

technologies, such as ARM Trust Zone and Intel TXT, to better

understand and appreciate the new innovations of SGX. Then, we

look at the details of SGX technology, cryptographic primitives

and the underlying concepts that power it, namely the sealing,

attestation, and the Memory Encryption Engine (MEE). We also

consider use cases such as trusted and secure code execution on

an untrusted cloud platform, and digital rights management

(DRM). This is followed by an overview of the software

development environment and the available libraries.

1. INTRODUCTION

Today, cloud platforms are becoming more widely used, both by

end-users and enterprises. However, the notion of trusting a

third party with your secrets is not very desirable for many

entities. The status quo not only forces users to put their faith in

the honesty and trustworthiness of the cloud providers but also

forces them to trust in the lack of malware and comprise of the

cloud platforms. Intel SGX is a new technology that guarantees

the confi dentiality of users’ data on a remote node, against other

unprivileged or even privileged software such as the operating

system and hypervisor. Without adequate support from the

hardware to provide a secure execution environment, previous

work relied on trusted hypervisors to protect applications

against malicious OSs [1–3]. An alternative approach that

mobilized the research community is to compute over encrypted

data [4], for example using Fully Homomorphic Encryption

(FHE) schemes [5] that can perform general operations on

encrypted data. However, current FHE techniques are still

several orders of magnitude slower than necessary for practical

applications.

Earlier attempts such as Intel TXT, formerly known as LaGrande

Technology, did not succeed in becoming widely adopted and

deployed. Intel TXT is a platform-level enhancement and set of

extensions to attest the authenticity of the hardware and

operating system by enabling the measurement and verifi cation

of the environment [6]. Currently, ARM TrustZone is one of the

most successful and widely deployed TEEs both for clients and

enterprises.

Previous works have looked at Intel SGX and discussed its

potentials and shortcomings [7–9]. However, they were based on

the information available prior to the offi cial release of the SGX

hardware (processors and supporting motherboards) and its

specifi cations. In this work, by having access to resources and

publications such as white papers, patents and the actual

SGX-capable hardware and software development environment,

we are in a privileged position to be able to report on our

experience with SGX. We fi rst look at ARM TrustZone, the other

competing TEE technology that is widely used. Then we

overview the SGX internals and the underlying concepts that

power it, followed by a discussion of its use cases. Finally, we

review the software development model and libraries available in

SGX.

2. ARM TRUSTZONE

ARM TrustZone is a set of security enhancement extensions to

the ARM architecture that appears in ARMv6 and later versions.

It introduces two security modes, which divide the CPU into two

isolated worlds, the secure mode and the normal mode. A third

mode, called the monitor mode, is in charge of the switch

between the secure and normal worlds. The Secure Monitor Call

(SMC) instruction is invoked to switch between the two worlds.

In TrustZone, the two worlds have their own separate address

spaces and different privileges. The memory is partitioned into

two sections, one of which is reserved exclusively for the secure

mode. Furthermore, individual peripherals can be assigned to

different worlds. Both worlds can run any software, ranging from

unprivileged user-level applications, to the OS.

To guarantee the integrity of the secure world’s components and

software, upon powering the device, it boots into the secure

world, and after executing the secure boot and verifying the

signature of the boot image, it can attest that the software has not

been modifi ed.

To determine the state of the CPU, an extra bit is added to the

Secure Confi guration Register (SCR), called the non-secure (NS)

bit, which indicates the security context of the CPU. When the

NS bit is zero, the CPU is in the secure world mode, and when

the NS bit is set to 1, the CPU is in the normal mode.

Previous work has looked at the use and application of TrustZone

for a wide range of domains. For example, to regulate devices in

restricted spaces [10], for cache-assisted secure execution [11],

TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

2 VIRUS BULLETIN CONFERENCE OCTOBER 2016

and for enabling a Samsung mobile security solution called

KNOX.

As noted in ARM TrustZone, the TCB is much larger than SGX.

The larger size of TCB can lead to errors and ultimately

vulnerabilities. Furthermore, a trusted system stack, including

OS, fi rmware, and libraries, needs to be implemented and

trusted by all the users.

3. INTEL SOFTWARE GUARD EXTENSIONS

(SGX)

Intel SGX allows the creation of secure enclaves that can keep

and be trusted with a secret. In the context of SGX, enclaves are

isolated execution units, with encrypted code and data. At the

beginning, enclaves have no secret, since they can be

disassembled and viewed like any other normal program. After

their launch, the enclaves need to be provisioned, to retrieve the

secret data. The following is an overview of SGX [12] (Figure 1

provides a diagram of the procedure and lifecycle of an SGX

enclave):

F igure 1: Diagram of the SGX enclave lifecycle.

• Step 1 (Launch): the untrusted application loads the

enclave code and instantiates it. During this process a log is

created called the enclave’s measurement. This

measurement is used in the verifi cation by the remote party

(service provider).

• Step 2 (Attestation): the enclave contacts the service

provider for provisioning and retrieving the secrets. As

mentioned earlier, the enclave does not contain any secret

information before provisioning. The enclave presents its

attested measurement to the service provider, which

identifi es the hardware environment and the enclave.

• Step 3 (Provisioning): after verifying the attestation

provided by the enclave in step 2, the service provider

establishes a secure communication channel with the

enclave. The service provider uses the key exchange

information in the attestation. After establishing the secure

channel, the service provider sends the secure data to the

enclave.

• Step 4 (Sealing/Unsealing): to allow an enclave to access

the secret material in a secure and confi dential way, the

data can be sealed (encrypted) and stored on persistent

storage. Later, based on the policies defi ned by the service

provider, the data can be decrypted into an enclave without

going through the remote attestation and provisioning

again.

3.1 New instructions and data structures

The two main challenges to enable the functionalities of SGX

are memory access semantics and protection of the address

mappings [13]. To address this, new instructions, data

structures, and a new mode of execution have been introduced.

The 18 new instructions can be categorized into fi ve groups: fi ve

instructions to build and destroy enclaves, four instructions to

enter and exit enclaves, fi ve instructions to move enclave pages

to and from memory, two instructions to debug enclaves, and

two instructions for the security operation of enclaves, including

key generation and the measurement of the enclaves.

Six new data structures have been introduced to hold the

enclave’s data and metadata:

• The Enclave Page Cache (EPC) is a protected memory

region used to hold the protected code and data, in 4k pages.

The EPC is encrypted through the Memory Encryption

Engine (MME), and is managed by the OS/VMM.

• The Enclave Page Cache Map (EPCM) contains the

metadata of the enclave pages, and is used by the CPU to

keep track of the content of EPC pages. The EPCM is

controlled by the CPU and is not directly accessible by the

software or devices.

• The SGX Enclave Control Store (SECS) and Thread

Control Structure (TCS) hold the metadata for each

enclave, and each thread, respectively.

• The Version Array (VA) of evicted pages.

• The SIGSTRUCT record, which is responsible for the

signature and sealing identity of the enclave.

The new mode (enclave mode) is activated when a process

moves into an enclave. In this mode, extra memory access

checks are performed to ensure the confi dentiality and

protection of the enclave’s memory from other processes.

3.2 Types of enclaves

Enclaves are the secure computation units that run in ring

level 3 (user level). They have no privileged access, yet they are

protected against the higher level, privileged programs,

including the OS, VMM and hypervisor. Since enclaves run in

ring 3, and do not have direct access to peripheral and I/O

devices, they cannot harm systems [7]. The enclaves are

designed to work on multi-core platforms, since multiple

enclaves can run at the same time. Furthermore, the enclave and

the untrusted application can run in simultaneous threads. SGX

provides isolation between enclaves, and mitigates against

replay attack, by checking for the freshness and integrity of the

pages, through the MEE. To ensure the security of enclaves,

access control mechanisms make sure that the enclave data is

protected from other software while it is in the register and the

cache inside the CPU. Not even exits from enclaves or

exception handling leak information about them.

The secrets will be provisioned into the enclaves after the

remote attestation is complete. Special ‘architectural enclaves’

are involved in this process to generate a measurement report

and attestation of the enclave. After this set-up, the service

provider can provision their secret into the enclave. To avoid

TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

3VIRUS BULLETIN CONFERENCE OCTOBER 2016

going through the remote attestation each time and provisioning

the enclave, SGX provides a sealing mechanism. Sealing binds

the data and key to the enclave and the CPU. In the future the

enclave will be able to access the protected content without

going through the provisioning and remote attestation process.

The attestation process uses the Enhanced Privacy ID (EPID)

and group signature algorithm to preserve the privacy of the

individuals, since each private key belongs to a much larger set

of private keys that correspond to a public key, therefore it will

not be possible to identify or track an individual in the set.

To create an enclave, fi rst the ECREATE instruction creates and

initializes the SECS structure. EADD adds the pages to the

enclave; after the page is added, EEXTEND measures the

content, and EINIT fi nalizes the creation of the enclave.

3.2.1 Architectural enclaves

There are two types of enclaves, the ‘architectural enclaves’,

which are provisioned and belong to Intel, and the normal/user

enclaves, which are created by the user or service provider. The

architectural enclaves facilitate the attestation, provisioning and

licensing capabilities. Only these enclaves have access to the

keys that are inside the CPU.

3.2.1.1 Provisioning enclave

The provisioning enclave uses EGETKEY to access the

provisioning key that is provided by Intel to the CPU. It is used

to authenticate the CPU to the Intel provisioning service [6].

The Intel provisioning service generates an attestation key and

returns it to the provisioning enclave which is encrypted with

the provisioning seal key for storage on the platform.

3.2.1.2 Quoting enclave

The quoting enclave creates the EPID key that is used to sign

the platform attestations. Only this enclave has access to the

EPID key inside the CPU fuse (by calling the EGETKEY

instruction). This key also indicates the trustworthiness of the

platform. The EPID key is bound to the device’s fi rmware

version. The quoting enclave and underlying keys facilitate the

remote attestation procedure.

3.2.1.3 Licensing enclave

This is used to produce the code in the deployment mode,

otherwise the program is compiled and run in debug mode,

which means it does not utilize the full power of the SGX

capability and the protection it provides. All public keys need to

be registered with Intel (at least in the current generation of

SGX – in future generations, this process might be moved to

other domains, for example an enterprise could be in charge of

its own licensing server). As of now, Intel claims, this is a

security measure, and it is not intended to marginalize service

providers who have not paid enough licence fee to develop and

deploy SGX-capable software. This is one of the less discussed

aspects of SGX that has raised some concerns [14].

3.2.2 Normal/user enclaves

The other type of enclaves are the ones that are created by the

user or service providers. These enclaves do not have access to

the keys inside the fuses. They rely on the architectural enclaves

for attestation. Note that the enclave code should not contain

any secret, since they can be disassembled just like any other

binary. The secret should be provisioned in the enclaves after

instantiation and provisioning.

3.3 Attestation

Attestation is used to ensure that the software and enclaves are

instantiated on a genuine Intel SGX platform [12] [15]. There

are two modes of attestation: local attestation and remote

attestation. In the former, one enclave wishes to prove and

authenticate to another on the same platform that it is also

running on the same platform. In the latter, an enclave wishes to

prove to a remote third party the authenticity of itself and the

platform on which it is being instantiated.

For attestation and sealing, SGX has access two measurement

registers. MRENCLAVE holds the identity of the code and data.

It is a SHA-256 digest of the enclave creation log. It includes

code, data, stack, heap, and the position of the pages and the

security fl ags. MRSIGNER, which acts as the identity of the

signer authority, is a structure which contains a signed enclave

certifi cate (SIGSTRUCT) and the expected value for the

MRENCLAVE. If the checks in the hardware pass, then the

public key of the signer is stored in MRSIGNER.

3.3.1 Local attestation

Local attestation is used when a developer wants two enclaves

to operate together on the same platform. The two enclaves can

authenticate each other, and ensure that they are running on the

same platform.

When an enclave invokes the EREPORT instruction, it creates a

signed structure called REPORT that contains the identity of the

enclave, attributes, and additional information that the developer

has specifi ed to be passed on to the target enclave, as well as the

Message Authentication Code (MAC). The target enclave would

verifi es the MAC of the report, to ensure that the enclave that

created the report runs on the same platform. The MAC is

created using AES128-CMAC, and the key is a shared

symmetric key retrieved by calling the EREPORT instruction on

the source enclave and EGETKEY on the target enclave.

The REPORT structure also has a 256-bit fi eld for user data,

which can be used, for example, to authenticate randomly

generated Diffi e-Hellman keys that two enclaves now share and

can use for further secure communication and data sharing.

3.3.2 Remote attestation

The secrets are provisioned into an enclave after a remote

service provider has verifi ed the enclave based on the remote

attestation that the quoting enclave generates. Therefore, the

remote attestation is of paramount importance. The remote

attestation is mostly used at the beginning for the provisioning,

and after that the data can be sealed to the platform and stored

on the persistent storage. The remote attestation also allows the

establishment of a secure communication channel between the

service provider and the enclave, by negotiating authenticated

Diffi e-Hellman keys. This is analogous to the key negotiation

procedure in SSL/TLS.

TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

4 VIRUS BULLETIN CONFERENCE OCTOBER 2016

Fi gure 2: Flow diagram of remote attestation.

Figure 2 depicts the attestation procedure. First, the service

provider (challenger) asks the application to provide an

attestation (step 1). Then the application asks its enclave to

create an attestation (step 2), and the enclave returns the local

attestation to the application (step 3). To transform the local

attestation to a remote attestation, the application sends it to the

quoting enclave (step 4). The quoting enclave replaces the MAC

of the REPORT with a signature created with the CPU’s private

key, using the EPID group signature. The newly created

structure is called QUOTE. The QUOTE is returned to the

application (step 5). The application returns the remote

attestation (QUOTE) to the challenger (step 6). To verify the

remote attestation, the service provider contacts the attestation

verifi er server (step 7).

3.4 Sealing/unsealing

After an enclave is provisioned with a secret, the confi dentiality

of the secret is guaranteed within the CPU and TCB boundary.

However, after the enclave exits, or after a power outage, when

the enclave is destroyed, the secret that resided within the

protected memory is also removed. To allow access to the

secrets in the future, SGX provides the sealing functionality,

where the data can be encrypted, using the sealing keys

provided by EGETKEY, and stored on persistent storage. There

are two sealing policies supported by SGX: sealing to the

enclave and sealing to the author/sealing identity [12].

When sealing to the enclave identity, EGETKEY keys are based

on the enclave measurement (MRENCLAVE). Therefore, it

provides an isolation for data access between different versions

of the same enclave. Additionally, any changes to an enclave

that result in a different measurement make the data unusable,

since the key also changes. This makes the migration of the data

between software upgrades harder.

When choosing to seal the data to the sealing identity,

EGETKEY returns keys based on the value of MRSIGNER, and

the enclave’s version. This approach allows easy migration of

data between different versions of an enclave. Furthermore, it

allows the transparent sharing of the sealed data between

different enclaves created by the same developer/service

provider (sealing identity). The sealing authority still has the

option to limit the data sharing between enclaves of same

security version number (SVN), by specifying this attribute in

EGETKEY.

3.5 Memory Encryption Engine (MEE)

In SGX, only the CPU and its internals are in the TCB, and the

memory is not. Therefore, to protect the contents of EPC while

in the RAM, it needs confi dentiality, integrity and freshness.

Merely encrypting the data is not enough, it also needs to be

integrity checked and mitigated against replay attacks [16].

However, in many physical attacks, such as the cold boot attack,

merely encrypting the memory contents is suffi cient.

The Memory Encryption Engine (MEE) is an extension of the

memory controller which provides the aforementioned

functionalities. The requests for memory access to the protected

memory pass through MEE, which encrypts/decrypts the data

before writing/reading it to/from RAM, and verifi es the integrity

and freshness of the data. The limit for protected memory is

128MB, but only 96MB is usable for the enclaves, because the

rest of the space is used to store the integrity tree and the MACs.

For encryption, MEE uses the AES block cipher in counter

mode (CTR), for increased speed and parallelization. The

MACs and the integrity tree tags are based on the

Carter-Wegman MAC.

Note that MEE is not an oblivious RAM, and it is not protected

against side channel attacks and traffi c analysis. MEE has the

following three properties [16]:

1. The keys are generated randomly at boot time and

never leave the TCB boundary.

2. The authentication and encryption keys are different.

3. The MME enforces the drop-and-lock policy, meaning

that if the MAC verifi cation of a page fails, MEE issues

a fault and it drops the transaction immediately. This

causes the system to stop and require a reboot. At the

reboot time, new keys will be generated. Therefore, the

adversary has one trial per key.

The MEE introduces an overhead to the operations. According to

the measurement in [16], the performance overhead ranges from

2.2% to 14%, with an average of 5.5%. The statistics are based on

adapting SPECINT2006 v01 and the Graphene library OS.

3.6 Enhanced Privacy ID (EPID)

Due to privacy concerns with asymmetric signing schemes, Intel

created EPID, which is an extension of the Direct Anonymous

Attestation (DDA). The DDA scheme is a cryptosystem that

provides anonymous signatures, specifi cally designed for the

Trusted Platform Module (TPM). EPID improves DDA by

adding revocation capabilities, and improved effi ciency.

In EPID, one group key corresponds to many private keys. Each

one of the private keys can generate a signature that can be

verifi ed by the group public key. The issuer does not need to

know the members’ private keys. Moreover, the signatures are

anonymous, meaning the verifi er cannot determine who created

the signature. Furthermore, an important difference between

EPID and other group signatures is that the EPID signatures are

untraceable, meaning that not even the issuer can determine the

group member who created the signature [17].

EPID is used by the quoting enclave to sign the enclave’s

remote attestations. In the context of Intel SGX, the group refers

TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

5VIRUS BULLETIN CONFERENCE OCTOBER 2016

to the set of CPUs of the same type. For example, CPUs from

the core i3, i5, or i7 families. Therefore, based on this grouping,

the size of a fully populated group would be a few million

platforms [18].

There are two signature modes, with different linkability

capabilities. For each signature a base is chosen; if the base of

two signatures is different, then the two signatures are unlinkable.

However, if the bases for two signatures are the same, then it is

possible to determine if the signatures are generated by the same

key. Note that it is still not possible to identify the specifi c key

that generated the signature, but only whether the same key has

generated the signatures. The two modes discussed are called

Random Base Mode, and Name Base Mode.

From the security point of view, the Name Base Mode signatures

are preferred. Imagine a scenario where an EPID key is

compromised, and a malware writer is able to trick users into

using this enclave. If the Random Base Mode is used instead of

the Name Base Mode, the EPID owner will not be able to detect

that all the signatures belong to the same key, or even notify users

about the key. Therefore, the Name Base Mode is preferred [18].

One of the enhancements to EPID is the revocation capability.

There are four supported revocation mechanisms/modes. Private

key revocation (if Intel receives a private EPID key), verifi er

local revocation (if a key is noticed to be compromised, the key

can be revoked locally, which is possible when the Name Base

Mode is used), signature-based revocation (when evidence is

provided to a revocation authority that a key is compromised,

the corresponding certifi cate will be added to the Certifi cate

Revocation List (CRL), which is available in both the Random

Base, and Named Base modes), and fi nally, group-based

revocation (when a group is no longer valid, e.g. if the group

master key is compromised).

4. USE CASES

In this section we look at a few use cases for the SGX technology.

SGX is an evolution of trusted code execution and trusted

platform. Compared to previous technologies such as ARM

TrustZone, the TCB is much smaller in SGX, and the only source

of trust is Intel and the CPU boundaries. Such confi guration

makes it a very attractive and promising technology for digital

rights management (DRM), where the content provider and

distributors can be assured of the protection of their content from

theft. Another venue where SGX is attracting attention is in

trusted code execution on untrusted cloud platforms, since the

users do not need to trust the cloud service provider, the OS or

the VMM. Furthermore, they have the capability to attest their

enclaves remotely. Note that, at the time of writing this paper, the

fi rst generation of SGX is not available on server-end CPUs and

is targeted towards client computers.

4.1 Digital rights management (DRM)

Digital rights management (DRM) refers to techniques and

mechanisms used to restrict access to digital content and

material, mostly sought after by content distributors for profi t

and revenue. There are many DRM technologies available,

proposed and deployed by different companies and alliances to

address different issues and mitigate against evolving and ever

more complex DRM circumvention tools and techniques. For

example, Google products use Wivedine; Netfl ix and Microsoft

products rely on Microsoft’s Play Ready; and Apple uses the

in-house FairPlay. DRM technologies are mostly based on a

few functionalities, namely key management, rights

management, and a secure playback mechanism for audio and

video [19]. To address the incompatibility issue of different

DRM technologies, in 2011, Intel introduced UltraViolet in the

‘Sandy Bridge’ family of CPUs. UltraViolet is not a DRM, but a

cloud-based system that contains several DRMs to unify

different schemes [19].

Given the capability of the enclaves to guarantee the secrecy of

their data and availability of remote attestation, content

providers and distributors can use SGX to deploy a DRM

technology. Furthermore, to secure the transmission of the

content on the bus to the GPU, they can use Intel’s Protected

Audio Video Path (PAVP) and High-bandwidth Digital Content

Protection (HDCP). These technologies protect the audio and

video fl ow in the graphic processor unit (GPU) by sending the

GPU the encrypted data and having the GPU decrypt the data.

Even though DRM technologies can rely on TrustZone as well,

its two shortcomings are persistent non-volatile storage for

device keys and installed licences, and secure audio and video

path [19]. Intel SGX can make the whole process easier because

of the remote attestation, secure execution and sealing.

4.2 Trusted execution on untrusted cloud

platforms

As mentioned earlier, as of now, server-end SGX-capable CPUs

are not yet available. However, previous studies have looked at

the utilization of SGX functionalities and services for trusted

verifi able code execution on untrusted cloud providers, as

discussed in the following.

VC3 [20] allows the execution of Hadoop Map-Reduce jobs on

an untrusted platform, while keeping the data and code secret.

VC3 excludes the OS, hypervisor and Hadoop framework from

the TCB, and works on the unmodifi ed Hadoop platform. VC3

relies on SGX functionalities and services, such as memory

isolation, to achieve this. To deploy tasks, users implement their

map-reduce code in C++, encrypt them, bind them to the code

that implements the VC3 protocol, and upload their encrypted

code to the cloud. After the code is loaded, the map and reduce

functions will be decrypted, and the distributed computations

will run. To ensure the integrity of the computations, VC3 uses a

job execution protocol where nodes produce a summary of their

computations and aggregate them. Later, the user can verify that

the cloud provider did not interfere with the computations, by

reviewing the aggregate summaries.

Haven [21] introduces the concept of shielded execution, a

reverse sandboxing mechanism to protect the confi dentiality and

integrity of the application from a malicious OS, or hypervisor.

It ensures the secrecy and confi dentiality of the application’s

code and data. Furthermore, if the application executes, it will

produce verifi able correct results. This means that the users can

be assured that the software executed correctly. Haven allows

the shielded execution of unmodifi ed software on the Windows

platform. It relies on SGX for isolation and protection of the

TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

6 VIRUS BULLETIN CONFERENCE OCTOBER 2016

software from the privileged system software, Iago attacks [22],

and other unprivileged software and processes.

5. SGX SOFTWARE DEVELOPMENT AND

LIBRARIES

As of the time of writing this paper, the SGX capability is only

available for the Microsoft Windows platform. However,

according to Intel, a Linux Software Development Kit (SDK),

will be available in June 2016 [23]. Currently, only Visual

Studio Integrated Development Environment (IDE) has support

for SGX programming. Furthermore, there is an SGX simulator

available for the Windows platform, which allows the simulation

of SGX programs on non-SGX CPUs. Note that the simulator is

neither performant, nor does it provide the actual SGX secrecy

guarantees, since it works at the software level.

Even though the whole program can run inside an enclave, this

is not the recommended approach, since: 1) the enclaves’

memory size is very limited, 2) enclaves do not have direct

access to the peripherals, I/O devices and some of the system

calls, and 3) increasing the size of TCB can lead to a higher

error rate and an increase in vulnerabilities. The recommended

SGX programming model is to redesign ad split applications

into two different sections. One section for secure and

information-sensitive functionalities that run inside an enclave,

and another section for general operations. The SGX does not

support dynamic library loading for enclaves. Programs need to

be statically linked, and the libraries also should not have

external dynamic dependency. Everything should be compiled

as a single static binary blob. The calls from the untrusted

application to inside an enclave are called ECalls, and the calls

from inside an enclave to the untrusted application are called

OCalls. These interfaces enable the interaction between the

enclave and the application.

The Intel SGX SDK provides a set of trusted static libraries that

can be used inside an enclave. These libraries provide sets of

functionalities, such as standard C library (sgx_tstdc.lib),

standard C++ libraries and STL (sgx_tstdcxx.lib), cryptographic

functions (sgx_tcrypto.lib), and trusted key exchange (sgx_

tkey_exchange.lib) [24].

CONCLUSION

SGX is a new functionality introduced by Intel, in its

sixth-generation CPUs (code-named Skylake), which allows the

launch and execution of secure enclaves. In this paper, we have

presented an overview of the SGX internals, its use cases, the

programming model, and the available libraries. SGX can be

used for a range of sensitive applications, from digital rights

management to trusted code execution on untrusted platforms.

As of the time of writing this paper, SGX is limited to the

Windows operating system. Furthermore, at this moment the

only IDE available for SGX programming is Visual Studio 2012.

Even though SGX does not provide any security measure against

side channel attack, power analysis attack, and low-level

hardware attacks, it would be interesting to evaluate the

diffi culty and accuracy of such attacks. Another issue that may

limit the adoption and deployment of the SGX platform is the

current licensing mechanism. However, unlike many other

previous TEE attempts, SGX has the potential of gaining

widespread adoption because of its small TCB and affordable

low cost.

REFERENCES

[1] Chen, X.; Garfi nkel, T.; Lewis, E. C.; Subrahmanyam,

P.; Waldspurger, C. A.; Boneh, D.; Dwoskin, J.; Ports,

D. R. Overshadow: A Virtualization-Based Approach to

Retrofi tting Protection in Commodity Operating

Systems. International Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS), 2008.

[2] Hofmann, O. S.; Kim, S.; Dunn, A. M.; Lee, M. Z.;

Witchel, E. InkTag: Secure Applications on an

Untrusted Operating System. International Conference

on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), 2013.

[3] Zhang, F.; Chen, J.; Chen, H.; Zang, B. CloudVisor:

Retrofi tting Protection of Virtual Machines in Multi-

tenant Cloud with Nested Virtualization. Symposium

on Operating Systems Principles (SOSP), 2011.

[4] Sahai, A. Computing on Encrypted Data. International

Conference on Information Systems Security, 2008.

[5] Gentry, C. A fully homomorphic encryption scheme.

2009.

[6] Intel. Intel Trusted Execution Technology: White Paper.

[7] Davenport, S.; Ford, R. SGX: the good, the bad and the

downright ugly. 2014. https://www.virusbulletin.com/

virusbulletin/2014/01/sgx-good-bad-and-downright-

ugly.

[8] Rutkowska, J. Thoughts on Intel’s upcoming Software

Guard Extensions (Part 1). 2013.

http://theinvisiblethings.blogspot.com/2013/08/

thoughts-on-intels-upcoming-software.html.

[9] Rutkowska, J. Thoughts on Intel’s upcoming Software

Guard Extensions (Part 2). 2013.

http://theinvisiblethings.blogspot.com/2013/09/

thoughts-on-intels-upcoming-software.html.

[10] Brasser, F.; Kim, D.; Liebchen, C.; Ganapathy, V.;

Iftode, L.; Sadeghi, A.-R. Regulating ARM TrustZone

Devices in Restricted Spaces. ACM International

Conference on Mobile Systems, Applications, and

Services (MobiSys), 2016.

[11] Zhang, N.; Sun, K.; Lou, W.; Hou, Y. T. CaSE:

Cache-Assisted Secure Execution on ARM Processors.

37th IEEE Symposium on Security and Privacy

(Oakland), 2016.

[12] Anati, I.; Gueron, S.; Johnso, S. P.; Scarlata, V. R.

Innovative Technology for CPU Based Attestation and

Sealing. International Workshop on Hardware and

Architectural Support for Security and Privacy (HASP),

2013.

[13] McKeen, F.; Alexandrovich, I.; Berenzon, A.; Rozas,

C.; Shafi , H.; ShanbhogueV.; Savagaonkar, U.

TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS... NOUBIR & SANATINIA

7VIRUS BULLETIN CONFERENCE OCTOBER 2016

Innovative Instructions and Software Model for

Isolated Execution. 2nd International Workshop on

Hardware and Architectural Support for Security and

Privacy (HASP), 2013.

[14] Costa, V.; Devadas, S. Intel SGX Explained.

Cryptology ePrint Archive: Report 2016/086, 2016.

[15] Intel. Intel Software Guard Extensions: Intel Attestaion

Service API. 2016.

[16] Gueron, S. A Memory Encryption Engine Suitable for

General Purpose Processors. Cryptology ePrint

Archive, Report 2016/204, 2016.

[17] Brickell, E.; Li, J. Enhanced Privacy ID from Bilinear

Pairing for Hardware Authentication and Attestation.

IEEE Second International Conference on Social

Computing (SocialCom), 2010.

[18] Johnson, S.; Scarlata, V.; Rozas, C.; Brickell, E.;

Mckeen, F. Intel Software Guard Extensions: EPID

Provisioning and Attestation Services. Intel, 2016.

[19] Ruan, X. Platform Embedded Security Technology

Revealed, Apress, 2014, p. 272.

[20] Schuster, F.; Costa, M.; Fournet, C.; Gkantsidis, C.;

Peinado, M.; Mainar-Ruiz, G.; Russinovich, M. VC3:

Trustworthy Data Analytics in the Cloud using SGX.

Symposium on Security and Privacy, 2015.

[21] Baumann, A.; Peinado, M.; Hunt, G. Shielding

Applications from an Untrusted Cloud with Haven.

USENIX Symposium on Operating Systems Design

and Implementation (OSDI), 2014.

[22] Checkoway, S.; Shacham, H. Iago attacks: why the

system call API is a bad untrusted RPC interface.

Proceedings of the 18th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), 2013.

[23] Z. Dan. Intel Software Guard Extensions SDK for

Linux Availability Update. 11 4 2016.

https://software.intel.com/en-us/blogs/2016/04/11/

intel-software-guard-extensions-sdk-for-linux-

availability-update.

[24] Intel. Intel Software Guard Extensions Evaluation SDK

for Windows OS. 2016.

