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ABSTRACT

Today, isolated trusted computation and code execution is of 

paramount importance to protect sensitive information and 

workfl ows from other malicious privileged or unprivileged 

software. Intel Software Guard Extensions (SGX) is a set of 

security architecture extensions fi rst introduced in the Skylake 

microarchitecture that enables a Trusted Execution Environment 

(TEE). It provides an ‘inverse sandbox’, for sensitive programs, 

and guarantees the integrity and confi dentiality of secure 

computations, even from the most privileged malicious software 

(e.g. OS, hypervisor).

SGX-capable CPUs only became available in production systems 

in Q3 2015, and they are not yet fully supported and adopted in 

systems. Besides the capability in the CPU, the BIOS also needs 

to provide support for the enclaves, and not many vendors have 

released the required updates for the system support. This has led 

to many wrong assumptions being made about the capabilities, 

features, and ultimately dangers of secure enclaves. By having 

access to resources and publications such as white papers, 

patents and the actual SGX-capable hardware and software 

development environment, we are in a privileged position to be 

able to investigate and demystify SGX.

In this paper, we fi rst review the previous trusted execution 

technologies, such as ARM Trust Zone and Intel TXT, to better 

understand and appreciate the new innovations of SGX. Then, we 

look at the details of SGX technology, cryptographic primitives 

and the underlying concepts that power it, namely the sealing, 

attestation, and the Memory Encryption Engine (MEE). We also 

consider use cases such as trusted and secure code execution on 

an untrusted cloud platform, and digital rights management 

(DRM). This is followed by an overview of the software 

development environment and the available libraries.

1. INTRODUCTION

Today, cloud platforms are becoming more widely used, both by 

end-users and enterprises. However, the notion of trusting a 

third party with your secrets is not very desirable for many 

entities. The status quo not only forces users to put their faith in 

the honesty and trustworthiness of the cloud providers but also 

forces them to trust in the lack of malware and comprise of the 

cloud platforms. Intel SGX is a new technology that guarantees 

the confi dentiality of users’ data on a remote node, against other 

unprivileged or even privileged software such as the operating 

system and hypervisor. Without adequate support from the 

hardware to provide a secure execution environment, previous 

work relied on trusted hypervisors to protect applications 

against malicious OSs [1–3]. An alternative approach that 

mobilized the research community is to compute over encrypted 

data [4], for example using Fully Homomorphic Encryption 

(FHE) schemes [5] that can perform general operations on 

encrypted data. However, current FHE techniques are still 

several orders of magnitude slower than necessary for practical 

applications.

Earlier attempts such as Intel TXT, formerly known as LaGrande 

Technology, did not succeed in becoming widely adopted and 

deployed. Intel TXT is a platform-level enhancement and set of 

extensions to attest the authenticity of the hardware and 

operating system by enabling the measurement and verifi cation 

of the environment [6]. Currently, ARM TrustZone is one of  the 

most successful and widely deployed TEEs both for clients and 

enterprises.

Previous works have looked at Intel SGX and discussed its 

potentials and shortcomings [7–9]. However, they were based on 

the information available prior to the offi cial release of the SGX 

hardware (processors and supporting motherboards) and its 

specifi cations. In this work, by having access to resources and 

publications such as white papers, patents and the actual 

SGX-capable hardware and software development environment, 

we are in a privileged position to be able to report on our 

experience with SGX. We fi rst look at ARM TrustZone, the other 

competing TEE technology that is widely used. Then we 

overview the SGX internals and the underlying concepts that 

power it, followed by a discussion of its use cases. Finally, we 

review the software development model and libraries available in 

SGX.

2. ARM TRUSTZONE

ARM TrustZone is a set of security enhancement extensions to 

the ARM architecture that appears in ARMv6 and later versions. 

It introduces two security modes, which divide the CPU into two 

isolated worlds, the secure mode and the normal mode. A third 

mode, called the monitor mode, is in charge of the switch 

between the secure and normal worlds. The Secure Monitor Call 

(SMC) instruction is invoked to switch between the two worlds. 

In TrustZone, the two worlds have their own separate address 

spaces and different privileges. The memory is partitioned into 

two sections, one of which is reserved exclusively for the secure 

mode. Furthermore, individual peripherals can be assigned to 

different worlds. Both worlds can run any software, ranging from 

unprivileged user-level applications, to the OS.

To guarantee the integrity of the secure world’s components and 

software, upon powering the device, it boots into the secure 

world, and after executing the secure boot and verifying the 

signature of the boot image, it can attest that the software has not 

been modifi ed.

To determine the state of the CPU, an extra bit is added to the 

Secure Confi guration Register (SCR), called the non-secure (NS) 

bit, which indicates the security context of the CPU. When the 

NS bit is zero, the CPU is in the secure world mode, and when 

the NS bit is set to 1, the CPU is in the normal mode.

Previous work has looked at the use and application of TrustZone 

for a wide range of domains. For example, to regulate devices in 

restricted spaces [10], for cache-assisted secure execution [11], 
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and for enabling a Samsung mobile security solution called 

KNOX.

As noted in ARM TrustZone, the TCB is much larger than SGX. 

The larger size of TCB can lead to errors and ultimately 

vulnerabilities. Furthermore, a trusted system stack, including 

OS, fi rmware, and libraries, needs to be implemented and 

trusted by all the users.

3. INTEL SOFTWARE GUARD EXTENSIONS 

(SGX)

Intel SGX allows the creation of secure enclaves that can keep 

and be trusted with a secret. In the context of SGX, enclaves are 

isolated execution units, with encrypted code and data. At the 

beginning, enclaves have no secret, since they can be 

disassembled and viewed like any other normal program. After 

their launch, the enclaves need to be provisioned, to retrieve the 

secret data. The following is an overview of SGX [12] (Figure 1 

provides a diagram of the procedure and lifecycle of an SGX 

enclave):

F  igure 1: Diagram of the SGX enclave lifecycle.

• Step 1 (Launch): the untrusted application loads the 

enclave code and instantiates it. During this process a log is 

created called the enclave’s measurement. This 

measurement is used in the verifi cation by the remote party 

(service provider).

• Step 2 (Attestation): the enclave contacts the service 

provider for provisioning and retrieving the secrets. As 

mentioned earlier, the enclave does not contain any secret 

information before provisioning. The enclave presents its 

attested measurement to the service provider, which 

identifi es the hardware environment and the enclave.

• Step 3 (Provisioning): after verifying the attestation 

provided by the enclave in step 2, the service provider 

establishes a secure communication channel with the 

enclave. The service provider uses the key exchange 

information in the attestation. After establishing the secure 

channel, the service provider sends the secure data to the 

enclave.

• Step 4 (Sealing/Unsealing): to allow an enclave to access 

the secret material in a secure and confi dential way, the 

data can be sealed (encrypted) and stored on persistent 

storage. Later, based on the policies defi ned by the service 

provider, the data can be decrypted into an enclave without 

going through the remote attestation and provisioning 

again.

3.1 New instructions and data structures

The two main challenges to enable the functionalities of SGX 

are memory access semantics and protection of the address 

mappings [13]. To address this, new instructions, data 

structures, and a new mode of execution have been introduced.

The 18 new instructions can be categorized into fi ve groups: fi ve 

instructions to build and destroy enclaves, four instructions to 

enter and exit enclaves, fi ve instructions to move enclave pages 

to and from memory, two instructions to debug enclaves, and 

two instructions for the security operation of enclaves, including 

key generation and the measurement of the enclaves.

Six new data structures have been introduced to hold the 

enclave’s data and metadata:

• The Enclave Page Cache (EPC) is a protected memory 

region used to hold the protected code and data, in 4k pages. 

The EPC is encrypted through the Memory Encryption 

Engine (MME), and is managed by the OS/VMM. 

• The Enclave Page Cache Map (EPCM) contains the 

metadata of the enclave pages, and is used by the CPU to 

keep track of the content of EPC pages. The EPCM is 

controlled by the CPU and is not directly accessible by the 

software or devices. 

• The SGX Enclave Control Store (SECS) and Thread 

Control Structure (TCS) hold the metadata for each 

enclave, and each thread, respectively. 

• The Version Array (VA) of evicted pages.

• The SIGSTRUCT record, which is responsible for the 

signature and sealing identity of the enclave.

The new mode (enclave mode) is activated when a process 

moves into an enclave. In this mode, extra memory access 

checks are performed to ensure the confi dentiality and 

protection of the enclave’s memory from other processes.

3.2 Types of enclaves

Enclaves are the secure computation units that run in ring 

level 3 (user level). They have no privileged access, yet they are 

protected against the higher level, privileged programs, 

including the OS, VMM and hypervisor. Since enclaves run in 

ring 3, and do not have direct access to peripheral and I/O 

devices, they cannot harm systems [7]. The enclaves are 

designed to work on multi-core platforms, since multiple 

enclaves can run at the same time. Furthermore, the enclave and 

the untrusted application can run in simultaneous threads. SGX 

provides isolation between enclaves, and mitigates against 

replay attack, by checking for the freshness and integrity of the 

pages, through the MEE. To ensure the security of enclaves, 

access control mechanisms make sure that the enclave data is 

protected from other software while it is in the register and the 

cache inside the CPU. Not even exits from enclaves or 

exception handling leak information about them.

The secrets will be provisioned into the enclaves after the 

remote attestation is complete. Special ‘architectural enclaves’ 

are involved in this process to generate a measurement report 

and attestation of the enclave. After this set-up, the service 

provider can provision their secret into the enclave. To avoid 



TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS...  NOUBIR & SANATINIA

3VIRUS BULLETIN CONFERENCE OCTOBER 2016

going through the remote attestation each time and provisioning 

the enclave, SGX provides a sealing mechanism. Sealing binds 

the data and key to the enclave and the CPU. In the future the 

enclave will be able to access the protected content without 

going through the provisioning and remote attestation process. 

The attestation process uses the Enhanced Privacy ID (EPID) 

and group signature algorithm to preserve the privacy of the 

individuals, since each private key belongs to a much larger set 

of private keys that correspond to a public key, therefore it will 

not be possible to identify or track an individual in the set.

To create an enclave, fi rst the ECREATE instruction creates and 

initializes the SECS structure. EADD adds the pages to the 

enclave; after the page is added, EEXTEND measures the 

content, and EINIT fi nalizes the creation of the enclave.

3.2.1 Architectural enclaves

There are two types of enclaves, the ‘architectural enclaves’, 

which are provisioned and belong to Intel, and the normal/user 

enclaves, which are created by the user or service provider. The 

architectural enclaves facilitate the attestation, provisioning and 

licensing capabilities. Only these enclaves have access to the 

keys that are inside the CPU.

3.2.1.1 Provisioning enclave

The provisioning enclave uses EGETKEY to access the 

provisioning key that is provided by Intel to the CPU. It is used 

to authenticate the CPU to the Intel provisioning service [6]. 

The Intel provisioning service generates an attestation key and 

returns it to the provisioning enclave which is encrypted with 

the provisioning seal key for storage on the platform.

3.2.1.2 Quoting enclave

The quoting enclave creates the EPID key that is used to sign 

the platform attestations. Only this enclave has access to the 

EPID key inside the CPU fuse (by calling the EGETKEY 

instruction). This key also indicates the trustworthiness of the 

platform. The EPID key is bound to the device’s fi rmware 

version. The quoting enclave and underlying keys facilitate the 

remote attestation procedure.

3.2.1.3 Licensing enclave

This is used to produce the code in the deployment mode, 

otherwise the program is compiled and run in debug mode, 

which means it does not utilize the full power of the SGX 

capability and the protection it provides. All public keys need to 

be registered with Intel (at least in the current generation of 

SGX – in future generations, this process might be moved to 

other domains, for example an enterprise could be in charge of 

its own licensing server). As of now, Intel claims, this is a 

security measure, and it is not intended to marginalize service 

providers who have not paid enough licence fee to develop and 

deploy SGX-capable software. This is one of the less discussed 

aspects of SGX that has raised some concerns [14].

3.2.2 Normal/user enclaves

The other type of enclaves are the ones that are created by the 

user or service providers. These enclaves do not have access to 

the keys inside the fuses. They rely on the architectural enclaves 

for attestation. Note that the enclave code should not contain 

any secret, since they can be disassembled just like any other 

binary. The secret should be provisioned in the enclaves after 

instantiation and provisioning. 

3.3 Attestation

Attestation is used to ensure that the software and enclaves are 

instantiated on a genuine Intel SGX platform [12] [15]. There 

are two modes of attestation: local attestation and remote 

attestation. In the former, one enclave wishes to prove and 

authenticate to another on the same platform that it is also 

running on the same platform. In the latter, an enclave wishes to 

prove to a remote third party the authenticity of itself and the 

platform on which it is being instantiated.

For attestation and sealing, SGX has access two measurement 

registers. MRENCLAVE holds the identity of the code and data. 

It is a SHA-256 digest of the enclave creation log. It includes 

code, data, stack, heap, and the position of the pages and the 

security fl ags. MRSIGNER, which acts as the identity of the 

signer authority, is a structure which contains a signed enclave 

certifi cate (SIGSTRUCT) and the expected value for the 

MRENCLAVE. If the checks in the hardware pass, then the 

public key of the signer is stored in MRSIGNER.

3.3.1 Local attestation

Local attestation is used when a developer wants two enclaves 

to operate together on the same platform. The two enclaves can 

authenticate each other, and ensure that they are running on the 

same platform.

When an enclave invokes the EREPORT instruction, it creates a 

signed structure called REPORT that contains the identity of the 

enclave, attributes, and additional information that the developer 

has specifi ed to be passed on to the target enclave, as well as the 

Message Authentication Code (MAC). The target enclave would 

verifi es the MAC of the report, to ensure that the enclave that 

created the report runs on the same platform. The MAC is 

created using AES128-CMAC, and the key is a shared 

symmetric key retrieved by calling the EREPORT instruction on 

the source enclave and EGETKEY on the target enclave.

The REPORT structure also has a 256-bit fi eld for user data, 

which can be used, for example, to authenticate randomly 

generated Diffi e-Hellman keys that two enclaves now share and 

can use for further secure communication and data sharing.

3.3.2 Remote attestation

The secrets are provisioned into an enclave after a remote 

service provider has verifi ed the enclave based on the remote 

attestation that the quoting enclave generates. Therefore, the 

remote attestation is of paramount importance. The remote 

attestation is mostly used at the beginning for the provisioning, 

and after that the data can be sealed to the platform and stored 

on the persistent storage. The remote attestation also allows the 

establishment of a secure communication channel between the 

service provider and the enclave, by negotiating authenticated 

Diffi e-Hellman keys. This is analogous to the key negotiation 

procedure in SSL/TLS.
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Fi gure 2: Flow diagram of remote attestation.

Figure 2 depicts the attestation procedure. First, the service 

provider (challenger) asks the application to provide an 

attestation (step 1). Then the application asks its enclave to 

create an attestation (step 2), and the enclave returns the local 

attestation to the application (step 3). To transform the local 

attestation to a remote attestation, the application sends it to the 

quoting enclave (step 4). The quoting enclave replaces the MAC 

of the REPORT with a signature created with the CPU’s private 

key, using the EPID group signature. The newly created 

structure is called QUOTE. The QUOTE is returned to the 

application (step 5). The application returns the remote 

attestation (QUOTE) to the challenger (step 6). To verify the 

remote attestation, the service provider contacts the attestation 

verifi er server (step 7).

3.4 Sealing/unsealing

After an enclave is provisioned with a secret, the confi dentiality 

of the secret is guaranteed within the CPU and TCB boundary. 

However, after the enclave exits, or after a power outage, when 

the enclave is destroyed, the secret that resided within the 

protected memory is also removed. To allow access to the 

secrets in the future, SGX provides the sealing functionality, 

where the data can be encrypted, using the sealing keys 

provided by EGETKEY, and stored on persistent storage. There 

are two sealing policies supported by SGX: sealing to the 

enclave and sealing to the author/sealing identity [12].

When sealing to the enclave identity, EGETKEY keys are based 

on the enclave measurement (MRENCLAVE). Therefore, it 

provides an isolation for data access between different versions 

of the same enclave. Additionally, any changes to an enclave 

that result in a different measurement make the data unusable, 

since the key also changes. This makes the migration of the data 

between software upgrades harder.

When choosing to seal the data to the sealing identity, 

EGETKEY returns keys based on the value of MRSIGNER, and 

the enclave’s version. This approach allows easy migration of 

data between different versions of an enclave. Furthermore, it 

allows the transparent sharing of the sealed data between 

different enclaves created by the same developer/service 

provider (sealing identity). The sealing authority still has the 

option to limit the data sharing between enclaves of same 

security version number (SVN), by specifying this attribute in 

EGETKEY.

3.5 Memory Encryption Engine (MEE)

In SGX, only the CPU and its internals are in the TCB, and the 

memory is not. Therefore, to protect the contents of EPC while 

in the RAM, it needs confi dentiality, integrity and freshness. 

Merely encrypting the data is not enough, it also needs to be 

integrity checked and mitigated against replay attacks [16]. 

However, in many physical attacks, such as the cold boot attack, 

merely encrypting the memory contents is suffi cient.

The Memory Encryption Engine (MEE) is an extension of the 

memory controller which provides the aforementioned 

functionalities. The requests for memory access to the protected 

memory pass through MEE, which encrypts/decrypts the data 

before writing/reading it to/from RAM, and verifi es the integrity 

and freshness of the data. The limit for protected memory is 

128MB, but only 96MB is usable for the enclaves, because the 

rest of the space is used to store the integrity tree and the MACs. 

For encryption, MEE uses the AES block cipher in counter 

mode (CTR), for increased speed and parallelization. The 

MACs and the integrity tree tags are based on the 

Carter-Wegman MAC.

Note that MEE is not an oblivious RAM, and it is not protected 

against side channel attacks and traffi c analysis. MEE has the 

following three properties [16]:

1. The keys are generated randomly at boot time and 

never leave the TCB boundary.

2. The authentication and encryption keys are different.

3. The MME enforces the drop-and-lock policy, meaning 

that if the MAC verifi cation of a page fails, MEE issues 

a fault and it drops the transaction immediately. This 

causes the system to stop and require a reboot. At the 

reboot time, new keys will be generated. Therefore, the 

adversary has one trial per key.

The MEE introduces an overhead to the operations. According to 

the measurement in [16], the performance overhead ranges from 

2.2% to 14%, with an average of 5.5%. The statistics are based on 

adapting SPECINT2006 v01 and the Graphene library OS.

3.6 Enhanced Privacy ID (EPID)

Due to privacy concerns with asymmetric signing schemes, Intel 

created EPID, which is an extension of the Direct Anonymous 

Attestation (DDA). The DDA scheme is a cryptosystem that 

provides anonymous signatures, specifi cally designed for the 

Trusted Platform Module (TPM). EPID improves DDA by 

adding revocation capabilities, and improved effi ciency.

In EPID, one group key corresponds to many private keys. Each 

one of the private keys can generate a signature that can be 

verifi ed by the group public key. The issuer does not need to 

know the members’ private keys. Moreover, the signatures are 

anonymous, meaning the verifi er cannot determine who created 

the signature. Furthermore, an important difference between 

EPID and other group signatures is that the EPID signatures are 

untraceable, meaning that not even the issuer can determine the 

group member who created the signature [17].

EPID is used by the quoting enclave to sign the enclave’s 

remote attestations. In the context of Intel SGX, the group refers 
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to the set of CPUs of the same type. For example, CPUs from 

the core i3, i5, or i7 families. Therefore, based on this grouping, 

the size of a fully populated group would be a few million 

platforms [18].

There are two signature modes, with different linkability 

capabilities. For each signature a base is chosen; if the base of 

two signatures is different, then the two signatures are unlinkable. 

However, if the bases for two signatures are the same, then it is 

possible to determine if the signatures are generated by the same 

key. Note that it is still not possible to identify the specifi c key 

that generated the signature, but only whether the same key has 

generated the signatures. The two modes discussed are called 

Random Base Mode, and Name Base Mode.

From the security point of view, the Name Base Mode signatures 

are preferred. Imagine a scenario where an EPID key is 

compromised, and a malware writer is able to trick users into 

using this enclave. If the Random Base Mode is used instead of 

the Name Base Mode, the EPID owner will not be able to detect 

that all the signatures belong to the same key, or even notify users 

about the key. Therefore, the Name Base Mode is preferred [18].

One of the enhancements to EPID is the revocation capability. 

There are four supported revocation mechanisms/modes. Private 

key revocation (if Intel receives a private EPID key), verifi er 

local revocation (if a key is noticed to be compromised, the key 

can be revoked locally, which is possible when the Name Base 

Mode is used), signature-based revocation (when evidence is 

provided to a revocation authority that a key is compromised, 

the corresponding certifi cate will be added to the Certifi cate 

Revocation List (CRL), which is available in both the Random 

Base, and Named Base modes), and fi nally, group-based 

revocation (when a group is no longer valid, e.g. if the group 

master key is compromised).

4. USE CASES

In this section we look at a few use cases for the SGX technology. 

SGX is an evolution of trusted code execution and trusted 

platform. Compared to previous technologies such as ARM 

TrustZone, the TCB is much smaller in SGX, and the only source 

of trust is Intel and the CPU boundaries. Such confi guration 

makes it a very attractive and promising technology for digital 

rights management (DRM), where the content provider and 

distributors can be assured of the protection of their content from 

theft. Another venue where SGX is attracting attention is in 

trusted code execution on untrusted cloud platforms, since the 

users do not need to trust the cloud service provider, the OS or 

the VMM. Furthermore, they have the capability to attest their 

enclaves remotely. Note that, at the time of writing this paper, the 

fi rst generation of SGX is not available on server-end CPUs and 

is targeted towards client computers.

4.1 Digital rights management (DRM)

Digital rights management (DRM) refers to techniques and 

mechanisms used to restrict access to digital content and 

material, mostly sought after by content distributors for profi t 

and revenue. There are many DRM technologies available, 

proposed and deployed by different companies and alliances to 

address different issues and mitigate against evolving and ever 

more complex DRM circumvention tools and techniques. For 

example, Google products use Wivedine; Netfl ix and Microsoft 

products rely on Microsoft’s Play Ready; and Apple uses the 

in-house FairPlay. DRM technologies are mostly based on a 

few functionalities, namely key management, rights 

management, and a secure playback mechanism for audio and 

video [19]. To address the incompatibility issue of different 

DRM technologies, in 2011, Intel introduced UltraViolet in the 

‘Sandy Bridge’ family of CPUs. UltraViolet is not a DRM, but a 

cloud-based system that contains several DRMs to unify 

different schemes [19].

Given the capability of the enclaves to guarantee the secrecy of 

their data and availability of remote attestation, content 

providers and distributors can use SGX to deploy a DRM 

technology. Furthermore, to secure the transmission of the 

content on the bus to the GPU, they can use Intel’s Protected 

Audio Video Path (PAVP) and High-bandwidth Digital Content 

Protection (HDCP). These technologies protect the audio and 

video fl ow in the graphic processor unit (GPU) by sending the 

GPU the encrypted data and having the GPU decrypt the data. 

Even though DRM technologies can rely on TrustZone as well, 

its two shortcomings are persistent non-volatile storage for 

device keys and installed licences, and secure audio and video 

path [19]. Intel SGX can make the whole process easier because 

of the remote attestation, secure execution and sealing.

4.2 Trusted execution on untrusted cloud 

platforms

As mentioned earlier, as of now, server-end SGX-capable CPUs 

are not yet available. However, previous studies have looked at 

the utilization of SGX functionalities and services for trusted 

verifi able code execution on untrusted cloud providers, as 

discussed in the following.

VC3 [20] allows the execution of Hadoop Map-Reduce jobs on 

an untrusted platform, while keeping the data and code secret. 

VC3 excludes the OS, hypervisor and Hadoop framework from 

the TCB, and works on the unmodifi ed Hadoop platform. VC3 

relies on SGX functionalities and services, such as memory 

isolation, to achieve this. To deploy tasks, users implement their 

map-reduce code in C++, encrypt them, bind them to the code 

that implements the VC3 protocol, and upload their encrypted 

code to the cloud. After the code is loaded, the map and reduce 

functions will be decrypted, and the distributed computations 

will run. To ensure the integrity of the computations, VC3 uses a 

job execution protocol where nodes produce a summary of their 

computations and aggregate them. Later, the user can verify that 

the cloud provider did not interfere with the computations, by 

reviewing the aggregate summaries.

Haven [21] introduces the concept of shielded execution, a 

reverse sandboxing mechanism to protect the confi dentiality and 

integrity of the application from a malicious OS, or hypervisor. 

It ensures the secrecy and confi dentiality of the application’s 

code and data. Furthermore, if the application executes, it will 

produce verifi able correct results. This means that the users can 

be assured that the software executed correctly. Haven allows 

the shielded execution of unmodifi ed software on the Windows 

platform. It relies on SGX for isolation and protection of the 
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software from the privileged system software, Iago attacks [22], 

and other unprivileged software and processes.

5. SGX SOFTWARE DEVELOPMENT AND 

LIBRARIES

As of the time of writing this paper, the SGX capability is only 

available for the Microsoft Windows platform. However, 

according to Intel, a Linux Software Development Kit (SDK), 

will be available in June 2016 [23]. Currently, only Visual 

Studio Integrated Development Environment (IDE) has support 

for SGX programming. Furthermore, there is an SGX simulator 

available for the Windows platform, which allows the simulation 

of SGX programs on non-SGX CPUs. Note that the simulator is 

neither performant, nor does it provide the actual SGX secrecy 

guarantees, since it works at the software level.

Even though the whole program can run inside an enclave, this 

is not the recommended approach, since: 1) the enclaves’ 

memory size is very limited, 2) enclaves do not have direct 

access to the peripherals, I/O devices and some of the system 

calls, and 3) increasing the size of TCB can lead to a higher 

error rate and an increase in vulnerabilities. The recommended 

SGX programming model is to redesign ad split applications 

into two different sections. One section for secure and 

information-sensitive functionalities that run inside an enclave, 

and another section for general operations. The SGX does not 

support dynamic library loading for enclaves. Programs need to 

be statically linked, and the libraries also should not have 

external dynamic dependency. Everything should be compiled 

as a single static binary blob. The calls from the untrusted 

application to inside an enclave are called ECalls, and the calls 

from inside an enclave to the untrusted application are called 

OCalls. These interfaces enable the interaction between the 

enclave and the application.

The Intel SGX SDK provides a set of trusted static libraries that 

can be used inside an enclave. These libraries provide sets of 

functionalities, such as standard C library (sgx_tstdc.lib), 

standard C++ libraries and STL (sgx_tstdcxx.lib), cryptographic 

functions (sgx_tcrypto.lib), and trusted key exchange (sgx_

tkey_exchange.lib) [24].

CONCLUSION

SGX is a new functionality introduced by Intel, in its 

sixth-generation CPUs (code-named Skylake), which allows the 

launch and execution of secure enclaves. In this paper, we have 

presented an overview of the SGX internals, its use cases, the 

programming model, and the available libraries. SGX can be 

used for a range of sensitive applications, from digital rights 

management to trusted code execution on untrusted platforms. 

As of the time of writing this paper, SGX is limited to the 

Windows operating system. Furthermore, at this moment the 

only IDE available for SGX programming is Visual Studio 2012. 

Even though SGX does not provide any security measure against 

side channel attack, power analysis attack, and low-level 

hardware attacks, it would be interesting to evaluate the 

diffi culty and accuracy of such attacks. Another issue that may 

limit the adoption and deployment of the SGX platform is the 

current licensing mechanism. However, unlike many other 

previous TEE attempts, SGX has the potential of gaining 

widespread adoption because of its small TCB and affordable 

low cost.

REFERENCES

[1]  Chen, X.; Garfi nkel, T.; Lewis, E. C.; Subrahmanyam, 

P.; Waldspurger, C. A.; Boneh, D.; Dwoskin, J.; Ports, 

D. R. Overshadow: A Virtualization-Based Approach to 

Retrofi tting Protection in Commodity Operating 

Systems. International Conference on Architectural 

Support for Programming Languages and Operating 

Systems (ASPLOS), 2008. 

[2]  Hofmann, O. S.; Kim, S.; Dunn, A. M.; Lee, M. Z.; 

Witchel, E. InkTag: Secure Applications on an 

Untrusted Operating System. International Conference 

on Architectural Support for Programming Languages 

and Operating Systems (ASPLOS), 2013. 

[3]  Zhang, F.; Chen, J.; Chen, H.; Zang, B. CloudVisor: 

Retrofi tting Protection of Virtual Machines in Multi-

tenant Cloud with Nested Virtualization. Symposium 

on Operating Systems Principles (SOSP), 2011. 

[4]  Sahai, A. Computing on Encrypted Data. International 

Conference on Information Systems Security, 2008. 

[5]  Gentry, C. A fully homomorphic encryption scheme. 

2009.

[6]  Intel. Intel Trusted Execution Technology: White Paper.

[7]  Davenport, S.; Ford, R. SGX: the good, the bad and the 

downright ugly. 2014. https://www.virusbulletin.com/

virusbulletin/2014/01/sgx-good-bad-and-downright-

ugly.

[8]  Rutkowska, J. Thoughts on Intel’s upcoming Software 

Guard Extensions (Part 1). 2013. 

http://theinvisiblethings.blogspot.com/2013/08/

thoughts-on-intels-upcoming-software.html.

[9]  Rutkowska, J. Thoughts on Intel’s upcoming Software 

Guard Extensions (Part 2). 2013. 

http://theinvisiblethings.blogspot.com/2013/09/

thoughts-on-intels-upcoming-software.html.

[10]  Brasser, F.; Kim, D.; Liebchen, C.; Ganapathy, V.; 

Iftode, L.; Sadeghi, A.-R. Regulating ARM TrustZone 

Devices in Restricted Spaces. ACM International 

Conference on Mobile Systems, Applications, and 

Services (MobiSys), 2016. 

[11]  Zhang, N.; Sun, K.; Lou, W.; Hou, Y. T. CaSE: 

Cache-Assisted Secure Execution on ARM Processors. 

37th IEEE Symposium on Security and Privacy 

(Oakland), 2016. 

[12]  Anati, I.; Gueron, S.; Johnso, S. P.; Scarlata, V. R. 

Innovative Technology for CPU Based Attestation and 

Sealing. International Workshop on Hardware and 

Architectural Support for Security and Privacy (HASP), 

2013. 

[13]  McKeen, F.; Alexandrovich, I.; Berenzon, A.; Rozas, 

C.; Shafi , H.; ShanbhogueV.; Savagaonkar, U. 



TRUSTED CODE EXECUTION ON UNTRUSTED PLATFORMS...  NOUBIR & SANATINIA

7VIRUS BULLETIN CONFERENCE OCTOBER 2016

Innovative Instructions and Software Model for 

Isolated Execution. 2nd International Workshop on 

Hardware and Architectural Support for Security and 

Privacy (HASP), 2013. 

[14]  Costa, V.; Devadas, S. Intel SGX Explained. 

Cryptology ePrint Archive: Report 2016/086, 2016.

[15]  Intel. Intel Software Guard Extensions: Intel Attestaion 

Service API. 2016.

[16]  Gueron, S. A Memory Encryption Engine Suitable for 

General Purpose Processors. Cryptology ePrint 

Archive, Report 2016/204, 2016.

[17]  Brickell, E.; Li, J. Enhanced Privacy ID from Bilinear 

Pairing for Hardware Authentication and Attestation. 

IEEE Second International Conference on Social 

Computing (SocialCom), 2010. 

[18]  Johnson, S.; Scarlata, V.; Rozas, C.; Brickell, E.; 

Mckeen, F. Intel Software Guard Extensions: EPID 

Provisioning and Attestation Services. Intel, 2016.

[19]  Ruan, X. Platform Embedded Security Technology 

Revealed, Apress, 2014, p. 272.

[20]  Schuster, F.; Costa, M.; Fournet, C.; Gkantsidis, C.; 

Peinado, M.; Mainar-Ruiz, G.; Russinovich, M. VC3: 

Trustworthy Data Analytics in the Cloud using SGX. 

Symposium on Security and Privacy, 2015. 

[21]  Baumann, A.; Peinado, M.; Hunt, G. Shielding 

Applications from an Untrusted Cloud with Haven. 

USENIX Symposium on Operating Systems Design 

and Implementation (OSDI), 2014. 

[22]  Checkoway, S.; Shacham, H. Iago attacks: why the 

system call API is a bad untrusted RPC interface.

Proceedings of the 18th International Conference on 

Architectural Support for Programming Languages and 

Operating Systems (ASPLOS), 2013. 

[23]  Z. Dan. Intel Software Guard Extensions SDK for 

Linux Availability Update. 11 4 2016. 

https://software.intel.com/en-us/blogs/2016/04/11/

intel-software-guard-extensions-sdk-for-linux-

availability-update.

[24]  Intel. Intel Software Guard Extensions Evaluation SDK 

for Windows OS. 2016.


