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a b s t r a c t

A novel metamaterial configuration is presented that combines hybrid attributes from acoustic metama-
terials and phononic crystals. The dispersion characteristics of the system, referred to as the phononic
resonator (PR), is shown to vary across a wide spectrum of behaviors that can, via optimal selection
of inertial and stiffness parameters, be tuned to resemble a locally resonant mechanism, a phononic
system, as well as a uniform homogeneous lattice. When coupled with damping elements, the emergent
dissipative effect, known as the metadamping phenomenon, of the PR is shown to exceed that of a
statically equivalent acoustic metamaterial under certain conditions which are highlighted here. The
metadamping amplification is verified in finite PR systems via a power flow approach that depicts the
spatial rate of energy dissipation along the length of a 100 cells phononic resonator.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The physics of periodic structures have received considerable
attention lately owing to their unique abilities to manipulate
elastic wave propagation within their media [1]. Such abili-
ties culminate in intriguing features including band gaps (fre-
quency ranges of blocked wave propagation) [2,3], directional
patterns [4,5], and amplified energy dissipation [6,7]. As such,
periodic structures with unconventional dispersive characteristics
have been mostly classified into two main categories: Phononic
Crystals (PCs) and Acoustic Metamaterials (AMs). Both categories
have been heavily investigated in the context of discrete (spring–
mass) systems [8–11], bars [12–15], flexural beams [16–18] and
plates [19–22].

The interplay between wave dispersion in periodic systems
and material and/or viscous damping have been shown to onset
interesting traits [23–28]. One of these is the generation of en-
hanced damping properties, ormetadamping, that goes beyond the
conventional dissipation provided by the damping elements. The
emergence ofmetadamping in an AM in particular has been shown
to quantitatively yield higher damping ratios across the entire
wavenumber spectrum when compared to a statically equivalent
PCwith an identical damping amount [6].Wave propagation in pe-
riodic systems ismodeled using their derived dispersion equations
which relate the spatial and temporal properties of the propagating
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waves. Such relations are typically obtained from the dynamics of
an individual unit cell using the Bloch solution which assumes an
infinite chain of cells [29,30]. The output is a band structure that
graphically relates the incident frequencyω to the wavenumber β .
A PC unit cell comprises a discrete change in inertial and elastic
properties which results in Bragg-type band gaps (Fig. 1a) [31].
An AM’s unit cell consists of a base structure that houses a local
resonator that contributes to the rise of lower frequency, yet nar-
rower, band gaps [8,32] (Fig. 1b).

Periodic systems that combine elements of phononics and lo-
cally resonant mechanisms have been, at times, shown to ac-
quire novel dispersion features or drastically improve current ones
[33–35]. In this letter, we report the dispersion as well as dissi-
pative characteristics of a hybrid phononic system that comprises
a base cell that houses a resonant substructure that is locally
connected to the adjacent cell, rather than being isolated. As de-
picted in Fig. 1c, the hybrid system (referred to here as a Phononic
Resonator (PR) for brevity) represents a wide spectrum of physical
design choices. The traditional PC and AM represent two distinct
data points on the opposing spectrum ends and can be realized
by setting ka and one of the kb springs to zero, respectively. The
dampers ca,b are added to characterize the energy dissipation in the
PR which is shown to exercise significantly greater metadamping
effects than both the PC and the AM with the suitable choice
of parameters. The effectiveness of the PR’s enhanced damping
ratio is mathematically quantified and correlated to the mass and
stiffness ratios of the structure.
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Fig. 1. Discrete realizations of (a) a Phononic Crystal (PC), (b) an AcousticMetamaterial (AM) , and (c) a Phononic Resonator (PR). (d) Different possible continuous realizations
of the PR system.

2. Dispersion relations

2.1. Mathematical formulation

The displacements ui and vi of the ith cell of a phononic res-
onator (PR), as highlighted in Fig. 1c are governed by the equations
of motion given by

maüi + ca(2u̇i − u̇i+1 − u̇i−1) + ka(2ui − ui+1 − ui−1)
− cb(v̇i+1 + v̇i − 2u̇i) − kb(vi+1 + vi − 2ui) = 0 (1a)

mbv̈i + 2cbv̇i + 2kbvi − cb(u̇i−1 + u̇i) − kb(ui−1 + ui) = 0 (1b)

and its dispersion relations can be obtained by assuming a gener-
alized Bloch solution of the form

ui+r = ũeirβ̄+λt (2)

and similarly for vi+r . In Eq. (2), ũ is the complex wave amplitude,
and λ is a frequency function, which is a complex quantity for
damped systems and equivalent to iω for undamped ones, β̄ =

βℓ is the dimensionless wavenumber, ℓ is the cell spacing, r =

−1, 0, 1, and i =
√

−1. By substituting Eq. (2) in (1), and with
some additional manipulations [6], the dispersion relation can be
obtained as

λ̄4
+ āλ̄3

+ b̄λ̄2
+ c̄λ̄ + d̄ = 0 (3)

where λ̄ =
λ
ω0

. Eq. (3) is normalized using ω0 =

√
kb
mb

and the
following non-dimensional quantities: the mass ratio µ =

mb
ma

, the
stiffness ratio κ =

kb
ka
, γ =

µ

κ
, the local damping ratios ζa =

ca
2
√
maka

and ζb =
cb

2
√

mbkb
. It is worth noting that this dispersion relation is

the same for an AM and a PC with different expressions of ā, b̄, c̄
and d̄. The summary of these parameters for the three systems (PC,
AM, and PR) are listed in Table 1.

2.2. Behavior of an undamped PR

For an undamped PR, ζa = ζb = 0 and consequently Eq. (3)
reduces to

�4
− b̂�2

+ d̂ = 0 (4)

where� =
ω
ω0

, b̂ = 2(1+µ)+2γα and d̂ = (4γ +2µ)α. The upper
(optic) dispersion branch given by Eq. (4) can be manipulated by
changing the PR’s system parameters such that it resembles either

a PC or an AM with a turning point in between. The difference
between the optic branch of PC and AM is the group velocity
(i.e. the branch’s slope) where the AM and the PC possess positive
and negative group velocities, respectively. The turning point can
be analytically obtained by equating the roots of the optic branch in
Eq. (4) at β̄ = 0 and β̄ = π which are given by � =

√
2(µ + 1) and

� =

√
2µ( 2

κ
+ 1). By equating these roots, it can be shown that

2µ = κ is the relation that governs this AM-to-PC performance
switch. If 2µ > κ , the branch behaves in a manner consistent with
AMs while for 2µ < κ , it resembles the optic branch of a PC. One
of the band gap limits is always at � =

√
2 while the other occurs

at � =

√
2µ( 2

κ
+ 1) or � =

√
2(µ + 1) depending on whether

the system is behaving similar to a PC or an AM, respectively. It is
worth noting that while the PR behaves like a PC, it is possible for
� =

√
2µ( 2

κ
+ 1) to be either greater than or less than

√
2, which

indicates that the root may appear in either the optic or acoustic
branches. Investigating the special case 2µ = κ reveals some
interesting characteristics of the PR’s dispersive behavior. In such
a case, the optic branch reduces to a flat line indicating a natural
frequency of the system located at � =

√
2 + κ . Moreover, the

band gap in this case ceases to exist and an unbounded stop band
starts immediately after� =

√
2. Furthermore, the PR can be tuned

to behave similar to a band gap free homogeneous lattice given
the right choice of parameters. Such a condition is satisfied when
the optic and the acoustic branches at β̄ = π coincide, i.e. when
the discriminant of Eq. (4) is equal to zero. This condition can be
shown to happen when µ =

κ
κ+2 or κ =

2µ
1−µ

. Fig. 2 graphically
summarizes all of the aforementioned scenarios.

To further understand the behavior of a PR’s band structure, we
consider the driven wave problemwhere Eq. (4) is reformulated in
terms of β̄ = cos−1Φ with

Φ(�) = 1 −
κ

2µ
�4

− 2(1 + µ)�2

�2 − (2 + κ)
(5)

It can be inferred from Eq. (5) that the resultant wavenumber is
complex (indicating a band gap) for |Φ| > 1. By setting ∂Φ

∂�
= 0,

the roots �̂ can be obtained which are indicative of maximum
attenuation frequencies or inflection points, given by

�̂2
±

= (2 + κ) ±

√
(2 + κ)(κ − 2µ) (6)

As evident in Eq. (5), and confirmed by Fig. 2, it can be observed
that � =

√
2 + κ is a point of discontinuity which also happens

to be a point of maximum attenuation when the discriminant of
Eq. (6) is zero. This point is found to be equivalent to the resonance
frequency denoted �̂R in Fig. 2. With �̂ =

√
2 + κ and revisiting
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Table 1
ā, b̄, c̄ and d̄ in Eq.(3) for all systems, where α = (1 − cos β̄).

PR PC AM

ā 4ζb(1 + µ) + 4ζa
√

γα 2(1 + µ)(ζa
√

γ

µ
+ ζb) 2ζb(1 + µ) + 4ζa

√
γα

b̄ 2(1 + µ) + 2(γ + 8ζaζb
√

γ + 4µζ 2
b )α (1 +

1
κ
)(1 + µ) + 8ζaζb

√
γα (1 + µ) + 2(γ + 4ζbζa

√
γ )α

c̄ 8(ζbγ + ζa
√

γ + ζbµ)α 4
√

γ (ζa + ζb
√

γ )α 4
√

γ (ζa + ζb
√

γ )α
d̄ (4γ + 2µ)α 2γα 2γα

Fig. 2. Dispersion relations of the PR at the different mass and stiffness ratios, µ and κ , combinations: (a) 2µ > κ , (b) 2µ = κ , (c) 2µ < κ , and (d) µ = κ/(κ + 2).

the case where 2µ = κ , Eq. (5) reduces to (1 − �2) which
explains the lack of an �̂R in Fig. 2b. For 2µ > κ , Eq. (6) yields
complex roots which explains the lack of maximum attenuation or
inflection points besides �̂R in Fig. 2a. In Fig. 2c where 2µ < κ ,
�̂+ is an inflection point in the stop band region while �̂− dictates
the location of the maximum attenuation of the Bragg band gap.
The latter vanisheswhen the PR behaves similar to a homogeneous
lattice at µ =

κ
κ+2 , at which case the inflection point is located at

�̂+ =
√
2(1 + κ) as demonstrated in Fig. 2d.

2.3. Negative effective mass

Since the PR exhibit a dispersion behavior similar to the AM, it
is naturally of interest to examine the effective mass of the unit
cell as a function of the frequency and how it compares to the
band gap location. If the mass mb and its stiffness kb are assumed
to be embedded within the mass ma, the unit cell can be seen as
a single effective mass me with a spring of stiffness ka. Knowing
that the dispersion relation of a single spring–mass with spring
ka and mass me is ω =

√
2kaα/me [25], it immediately follows

that α =
ω2me
2ka

=
�2κm̄e

2 , where m̄e =
me
ma

is the nondimensional
effective mass. Substituting α back into Eq. (4) and rearranging the
equation in terms of m̄e, we obtain:

m̄e =
2(1 + µ) − �2

(2 + κ) − �2 (7)

Eq. (7) results in a negative effective mass if the numerator and
denominator have different signs. Interestingly, the PR will always
exhibit a negative effective mass at a certain range of frequencies
whether it behaves as a PC or AM, but the negative mass coincides
with the band gap region only when it behaviors as an AM and
lies in the unbounded stop band region when it behaves as a PC.
A spacial case is the turning point of 2µ = κ , where the effective
mass is neutralized and its value becomes me = 1 as a result
of the numerator and denominator cancellation. Fig. 3 shows the
dispersion curves (1st column) and the corresponding effective
mass (2nd column) as a function of frequency for (a) µ = 0.5 and
κ = 0.05 where PR behaves as an AM and (b) µ = 0.2 and κ = 1
where in it acts as PC.

Fig. 3. The dispersion curves (1st column) and effective mass (2nd column) plots
for (a) µ = 0.5 and κ = 0.05 and (b) µ = 0.2 and κ = 1. PR behaves as an AM in
(a) while in (b) it behaves as PC.

2.4. Long wave speed

In order to accurately evaluate the performance of a PR as it
compares to a PC and anAM, the three systemsunder consideration
should be statically equivalent, i.e. exhibit an identical long wave
speed cstat . As such, analytical expressions of cstat for the three
systems are derived from their respective dispersion relations us-
ing Taylor series expansions and binomial approximations around
β̄ = 0. The detailed derivations are provided in the Appendices.
For brevity, the final expressions are given by

cPCstat = ωPC
0 ℓ

√
µ

(κ + 1)(1 + µ)
(8)

cAMstat = ωAM
0 ℓ

√
µ

κ(1 + µ)
(9)

cPRstat = ωPR
0 ℓ

√
µ(κ + 2)
2κ(1 + µ)

(10)
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Consequently, the three systems will be kept statically equivalent
by equating Eqs. (8) through (10). If themass and stiffness ratios are
kept fixed, the values of the different ω0 have to be appropriately
adjusted to maintain the required static equivalence. As a result,
the ratio between the different ω0’s can be easily found. Further,
the dispersion relations have to bemodified tomaintain this equiv-
alence throughout the analysis. Following Ref. [6] and choosing a
PC system as a starting point, it can be shown that the dispersion
relations for the AM and the PR become

λ̄4
+ ω̄0āλ̄3

+ ω̄2
0 b̄λ̄

2
+ ω̄3

0 c̄λ̄ + ω̄4
0d̄ = 0 (11)

where λ̄ =
λ

ωPC
0

and ω̄0 =

√
κ

κ+1 and
√

2κ
(κ+1)(κ+2) for an AM and

a PR, respectively. The dispersion relation in Eq. (3) remains the
same for the PC. Another means of maintaining static equivalence
is by keeping ω0 fixed for the three systems and adjusting the
stiffness and/or mass ratios, κ and µ, accordingly. In this scenario,
Eq. (3) can be used as is for all systems. By choosing to fix κ ,
and again using µPC as a reference point, it can be shown that
µAM

=
µPCκ

1+κ+µPC and µPR
=

2κµPC

(2+κ+κ2)µPC+(1+κ)(2+κ)
will guarantee

static equivalence. To provide a consistent comparative analysis
with the results provided in [6], the first approach will be adopted
here.

3. Metadamping enhancement in PRs

3.1. Damping ratio

In this section, we evaluate metadamping in PR systems by
comparing the effective damping ratio of the phononic resonator
to that of an AM and a PC reported in a benchmark example
from literature [6]. The following parameters (arbitrary units) are
adopted in the analysis for all three systems: ma = 1, mb = 5
(i.e. µ = 5), κ = 1/5, ωPC

0 = 100, and ωAM
0 = 40.9. The adjusted

ωPC
0 is equal to 38.9 resulting in a long wave speed of cstat = 83.3.

The damping coefficients ca = cb = 40 are used for all three
systems. The local damping ratios ζa and ζb of the PC as defined
earlier are equal to 0.04. To calculate ζa and ζb corresponding to the
AM and PR systems, the following conditions have to be satisfied

ζ AM
= µ̄PC

AM

√
κ

κ + 1
ζ PC (12a)

ζ PR
= µ̄PC

PR

√
2κ

(κ + 1)(κ + 2)
ζ PC (12b)

where µ̄PC
AM =

mPC
b

mAM
b

and µ̄PC
PR =

mPC
b

mPR
b

for the two systems; both
equal to 1 in this case. To further ensure a fair comparison, and
since a PR comprises one more damper per unit cell, the value of
ζ PR
b outputted from Eq. (12b) is multiplied by a factor of 0.5. The
dispersion relations of the three systems are computed by imple-
menting Eq. (11) and sweeping the values of the wavenumber β̄

across one wave cycle, i.e. β̄ = 0 → π . The solution λ̄ can then be
expressed in the form [6]

λ̄s(β̄) = −ξs(β̄)ω̄s(β̄) ± iω̄ds (β̄) (13)

where ω̄s and ω̄ds are the normalized resonant and the damped
wave frequencies, respectively [25] and s = 1, 2 refers to the
acoustic and optic dispersion branches. ξs(β) = −ℜ[λ̄s(β̄)]/|λ̄s(β̄)|
is the damping ratio corresponding to each dispersion branch and
the combined term ξs(β̄)ω̄s(β̄) is the decay in the wave amplitude
with time [25]. The system’s total damping ratio ξsum is given by
ξ z
sum(β) = ξ z

1 (β) + ξ z
2 (β), where the index z denotes the system

under consideration: PC, AM, or PR. Henceforth, following the con-
straints enforced earlier related to static equivalency and unifying

the damping amount per unit cell, any remaining discrepancies in
the damping ratios across the wave number spectrum is a direct
indication of the metadamping phenomenon in each system. In
other words, systemswith higher damping ratios are able to better
attenuate incidentwaveswith the same amount of damping as that
of a system with a lower one.

Fig. 4 shows the dispersion diagrams as well as the damping
ratio variation in all the three systems for (a) the parameters used
in the benchmark example: µ = 5 and κ =

1
5 [6] and (b) µ =

5 and κ = 5. The results of the damped natural frequency ωd
are presented in the dimensional form for comparison purposes,
where ωd = ω̄dω

PC
0 . It is important to note here that the dispersion

shape of the damped PR will not necessarily follow the equations
developed for the undamped case in Section 2.2. Thus, the results
presented here for κ = µ should not be confused with the
undamped behavior of the PR when its behavior resembles an AM
(Fig. 2a).

From the results, it can be seen that the damping ratio of the
AM when κ = 1/5 is slightly higher than that of the PR and that
the damping ratios of both the AM and the PR are higher than
that of the PC. The dispersion curves show that the PR, in this
case, behaves like an AM. On the other hand, when κ = 5, the
PR’s dispersion resembles a PC with an improved damping ratio
that exceeds both the AM and the PC. Given that the emergence of
metadamping was first reported as a unique qualitative advantage
of locally resonant AM systems, this is an interesting result since
the enhanced damping performance of the PR demonstrated in this
example occurs when the system starts behaving like a PC.

As has been reported in [6], the accumulative effect of the
metadamping phenomenon over the entire wavenumber spec-
trum can bemathematically quantified by the damping emergence
metric Zz given by the integration

Zz
=

∫ π

0
ξ z
sumdβ̄ (14)

which is most insightful when comparing the differences in the
accumulative damping capability of the different designs. These
differences can be calculated by subtracting the respective Z’s. For
example, the enhancement of a PR’s metadamping over a PC is
given by

ZPR
PC = ZPR

− ZPC (15)

Therefore, it follows that a negative ZPR
PC indicates a metadamp-

ing deterioration. Fig. 5 displays provides a comparison of the
metadamping metric across the three systems for a wide range
of µ and κ combinations, while maintaining the same ζa and ζb
used in Fig. 4. As can be seen from the figure, the metadamping
advantage of one design over the other is contingent on the unit
cell parameters. Each of the three systemshave regionswhere their
damping effectiveness outperforms the other two, except for the
PC which can only match the damping emergence in the PR but
not exceed it. When comparing AMs to PCs, it can also be seen
that the PC will rarely outperform the AM which is consistent
with the findings of [6]. On the other hand, when comparing
the new PR design to the AM, there are large regions where
one design becomes notably more effective in terms of damping
capacity.

The results presented in Fig. 5 are all computedwith for ζa = ζb.
Therefore, it is naturally of interest to examine the effects of both
ζa and ζb on the same phenomenon. Fig. 6 displays the effects of
varying ζa and ζb on the metadamping of the different systems
for both sets of µ and κ used to generate Fig. 4. The results show
that different damping amounts in the system, whichever one it is,
may induce larger metadamping emergence but the trends change
depending on the mass and stiffness ratios chosen. For all three
cases of Z at κ = 1/5, a global maximum of the metadamping
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Fig. 4. Dispersion curves for ωd and ξs for a PC, AM, and a PR for µ = 5 and (a) κ = 1/5 and (b) κ = 5.

Fig. 5. Comparative evaluation of the metadamping emergence in the three designs. ζa and ζb equal to 0.04 for all cases. For reference, the normalized long wave speed
c̄stat =

cstat
ωPC
0 ℓ

is displayed in the last column.

phenomenon is found corresponding to a certain optimal ζa and
ζb combination. However, for κ = 5, ZPR

AM and ZPR
PC have multiple

optimal points. This comparison between themetadamping at κ =

1/5 and κ = 5 proves that a deliberate change in the amount of
damping injected in the system can have a drastic influence on
the resultant metadamping emergence and should, therefore, be
considered in the design process.

Finally, we conclude this discussion with an optimization study
designed to seek the maximum possible enhancement of the
metadamping phenomenon for a given set ofµ, κ , ζa and ζb values.
The optimization is performed as follows: for each combination of
µ and κ , ζa and ζb are swept in search for themaximum emergence
value similar to Fig. 6. The maximum value of Z is recorded along
with the values of ζa and ζb that result in this maximum. Fig. 7
shows the results of the optimization process. An interesting ob-
servation is that the regions containing the largest metadamping
improvement of one design over the other mostly require small
values of ζa and ζb. This implies that the emergence of metadamp-
ing in dissipative PCs, AMs, or PRs, is primarily a product of the unit
cell dynamics rather than the existing damping elements. It also
indicates that the total metadamping amount depends more on
the stiffness and mass ratios, κ and µ, as opposed to ζa and ζb. The
optimization results also suggest trends that enable certain designs
to be more effective in vibration mitigation applications without
necessarily needing heavy material damping which can often be
detrimental to the structure’s load-bearing capacity. Specifically,
in the cases of ZAM

PC and ZPR
PC , larger metadamping can be achieved

Fig. 6. Evaluation of the metadamping emergence metrics ZAM
PC , ZPR

AM and ZPR
PC as a

function of ζa and ζb values for a mass ratio of µ = 5 and two different stiffness
ratios: κ = 1/5 and κ = 5.

for small values of κ and large values of µ. While in the case of
ZPR
AM, larger metadamping tends to accompany larger values of κ at

a given value of µ.
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Fig. 7. (a) Optimal metadamping emergence in the metrics: ZAM
PC , ZPR

AM and ZPR
PC as a function of the mass and stiffness ratios, µ and κ and (b) the corresponding ζa and ζb

values.

(a) Acoustic branch. (b) Optic branch.

(c) Cumulative.

Fig. 8. Flow diagrams of the spatial power dissipation of an AM and a PR for frequencies spanning (a) the acoustic dispersionmode, (b) the opticmode, and (c) the cumulative
effect.

3.2. Power flow

The previous analysis is dispersion based and thus reflects
metadamping enhancements in theoretically infinite realizations
of a PR compared to infinite AMs and PCs. For completion, we

briefly extend the investigation to finite systems and present an
evaluation of the damping performance in the context of spatial
power flow dissipation. For simplicity, we exclude the PC from the
comparison since it exhibits the minimal metadamping effect. We
consider a PR and an AM consisting of 100 cells and adopt the
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structural intensity approach (SIA) to compute the rate of energy
transport along the length of both systems [36,37]. A detailed
account of SIA calculations in periodic systems can be also found
in [12]. At steady state, the complex frequency-dependent struc-
tural intensity of the ith mass in the PR can be obtained from

Ii(ω) = −
1
2
iωF∗

i (ω)ui(ω) = P(ω) + iQ (ω) (16)

where F∗

i (ω) is the complex conjugate of the force in the ith spring
and ui(ω) is the displacement of the ith mass. Eq. (16) can be
decomposed to its imaginary and real components to obtain the
active (dissipative) P(ω) and reactive power Q (ω) components,
respectively. The finite PR and AM systems are excited with a
frequency-sweeping force at the first cell. Fig. 8 displays the spatial
power dissipation in both the PR and the AM for the acoustic and
optic bands as well as the cumulative effect on both modes. P̄ is
the active power component normalized to themaximumvalue for
each case. Matching the expectations of Fig. 4b, the flow diagrams
show faster power dissipation in the PR across both dispersion
modes. The optic mode understandably shows a faster decay en-
velope given the higher excitation frequencies. The shaded area
quantitatively reflects the metadamping enhancement in the PR
system for appropriately chosen parameters.

4. Conclusion

This letter reports the dispersion characteristics of the phononic
resonator (PR); a hybrid metamaterial configuration that consists
of base substructures that are simultaneously connected via (1)
direct elastic components and (2) local mechanical resonators. The
PR design possesses qualitative properties in its band structure
that can resemble phononic crystals (PCs), acoustic metamaterials
(AMs), homogeneous systems, as well as its unique dispersive
attributes. Upon comparing the damping performance of the PR
to that of statically equivalent PC and AM configurations with
identical damping amounts, it was demonstrated that the newly
emergent damping capacity of the system, or the metadamping
effect, of the PR can be larger than its counterparts for certainmass
and stiffness ratios. Following a brief optimization analysis, the
theoretically predicted metadamping enhancement is validated
in finite phononic resonators via a power flow approach which
illustrates the faster spatial energy attenuation in the optimized
PR across frequencies corresponding to both the acoustic and optic
dispersion modes.
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Appendix A. Dispersion derivations

We start by deriving the equations of motion for the phononic
resonator (PR)

maüi + ca(2u̇i − u̇i+1 − u̇i−1) + ka(2ui − ui+1 − ui−1)
− cb(v̇i+1 + v̇i − 2u̇i) − kb(vi+1 + vi − 2ui) = 0 (A.1a)

mbv̈i + 2cbv̇i + 2kbvi − cb(u̇i−1 + u̇i) − kb(ui−1 + ui) = 0 (A.1b)

Substituting the generalized Bloch-wave solution, ui+r =

ũei(βx+rβ̄)+λt and vi+r = ṽei(βx+rβ̄)+λt , into the previous equations
and rewriting in matrix form yields[

λ2ma + 2(cb + caα)λ + 2(kb + kaα) −kb(eiβ̄ + 1) − cb(eiβ̄ + 1)λ
−kb(e−iβ̄

+ 1) − cb(e−iβ̄
+ 1)λ λ2mb + 2cbλ + 2kb

]{
ũ
ṽ

}
=

{
0
0

}
(A.2)

where α = (1 − cos β̄). Taking the determinant of the matrix in
Eq. (A.2) generates the dispersion relation

λ4
+ aλ3

+ bλ2
+ cλ + d = 0 (A.3)

The expressions of a, b, c and d in Table A.2 can be then rewritten
in non-dimensional form as given in the manuscript.

Appendix B. Extrema of the dispersion relations

The analysis presented here is for the undamped PR, which has
the following dispersion relation

�4
− (2(1 + µ) + 2γα)�2

+ (4γ + 2µ)α = 0 (B.1)

Substituting β̄ = 0 intoα the dispersion relation Eq. (B.1) produces
two solutions to the acoustic and optical branches, which are given
by

� = 0 (B.2a)

� =

√
2(1 + µ) (B.2b)

Similarly, two additional solutions are obtained by substituting
β̄ = π , resulting in the following equation

�4
− (2(1 + µ) + 4γ )�2

+ 4(2γ + µ) = 0 (B.3)

which has two roots

�2
±

=
(2(1 + µ) + 4γ ) ±

√
(2(1 + µ) + 4γ )2 − 16(2γ + µ)

2
(B.4)

After further manipulation, the roots of the equations can be re-
duced to

�2
±

= ((1 + µ) + 2γ ) ±

√
(1 +

2
κ
)2(µ −

1
1 +

2
κ

)2 (B.5)

which can be reduced to

�+ =

√
2µ(

2
κ

+ 1) (B.6a)

�− =
√
2 (B.6b)

Appendix C. Switching point of a PR

The solutions of the dispersion curve at β̄ = 0 and β̄ = π
presented earlier determine the limits of the band gap of the PR
depending on whether it behaves like a PC or an AM. Here, we
determine the point at which the behavior of the PR optic branch
switches from that of an AM to a PCwhich corresponds to the optic
branch being perfectly flat. The condition is obtained by equating
Eq. (B.6a) to Eq. (B.2b), resulting in

µ =
κ

2
(C.1)

Ifµ < κ
2 , the systembehaves as a PCwhile ifµ > κ

2 it resembles an
AM. There are two scenarios for the order of the band gap limits in
the case of PC behavior. If �+ in Eq. (B.6) is part of the optic band,
then �+ >

√
2, hence 2µ( 2

κ
+ 1) > 2 has to be satisfied, resulting

in the following condition

µ <
κ

2 + κ
(C.2)

The condition in Eq. (C.2) is a subset of µ < κ
2 and if it is

not satisfied, then � =
√
2 becomes the upper band gap limit.

Interestingly, if µ =
κ

2+κ
the band gap vanishes and the optic
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Table A.2
Expressions for a, b, c , and d for all systems [6].

PR PC AM

a 2cb(ma+mb)+2cambα
mamb

(ma+mb)(ca+cb)
mamb

cb(ma+mb)+2cambα
mamb

b 2kb(ma+mb)+2(kamb+2cacb+c2b )α
mamb

(ka+kb)(ma+mb)+2cacbα
mamb

kb(ma+mb)+2(kamb+cacb)α
mamb

c 4(cakb+kacb+cbkb)α
mamb

2(cakb+kacb)α
mamb

2(cakb+kacb)α
mamb

d 2kb(2ka+kb)α
mamb

2kbkaα
mamb

2kbkaα
mamb

and acoustic bands merge at β̄ = π , which is equal to � =
√
2.

This latter scenario mimics the behavior of a uniform lattice. If
the system behaves like an AM, the upper limit is always equal to
Eq. (B.6a) and the lower limit is� =

√
2. In all these cases, it can be

shown that one limit of the band gap has to be located at � =
√
2.

Appendix D. Maximum attenuation

Examining the derivative of the reverse problem gives themax-
ima of the dispersion relation in Eq. (B.1). Solving for β̄ in Eq. (B.1),
we obtain

β̄ = cos−1Φ (D.1)

where

Φ = 1 −
�4

− 2(1 + µ)�2

2µ
κ

�2 − ( 4µ
κ

+ 2µ)
(D.2)

The derivative of Eq. (D.2) with respect to � is found to be
dΦ
d�

= (
2µ
κ

�2
− (

4µ
κ

+ 2µ))(4�3
− 4(1 + µ)�)

− (�4
− 2(1 + µ)�2)(

4µ
κ

�) (D.3)

After further manipulation, we get
dΦ
d�

= �
(
�4

− 4(1 +
κ

2
)�2

+ 4(1 + µ)(1 +
κ

2
)
)

(D.4)

If the derivative is set to zero, � = 0 is a solution, which is
a minimum, and the following quadratic formula represents the
remaining roots

�2
=

4(1 +
κ
2 ) ±

√
16(1 +

κ
2 )

2 − 16(1 + µ)(1 +
κ
2 )

2
(D.5)

Simplifying the roots further, we finally obtain

�2
= (2 + κ) ±

√
(2 + κ)(κ − 2µ) (D.6)

Appendix E. Long wave speed

The undamped long wave speed, or cstat , is calculated from the
acoustic branch of the dispersion curve which, for PR case, is given
by

�1 =

√
1 + µ + γα −

√
(1 + µ + γα)2 − 2(2γ + µ) (E.1)

where α = sin2 β̄

2 . Here, two approximations for the dispersion
relation are used. The first is a binomial approximation (1+ χ )ϵ ≃

1 + ϵχ , when χ ≪ 1 and the second is a Taylor series expansion.
If the dispersion relation is written in the following form

� =

√(
(1 + µ) + 2γ sin2 β̄

2

)(
1 −

√
1 + χ

)
(E.2)

where

χ = −4
(2γ + µ)sin2 β̄

2(
(1 + µ) + 2γ sin2 β̄

2

)2 (E.3)

then the value of ϵ =
1
2 and 1 −

√
1 + χ simplifies to:

1 −

√
1 + χ ≃ −

1
2
χ = 2

(2γ + µ)sin2 β̄

2(
(1 + µ) + 2γ sin2 β̄

2

)2 (E.4)

which yields

�2
≃ 2

(2γ + µ)sin2 β̄

2

(1 + µ) + 2γ sin2 β̄

2

(E.5)

A second order Taylor series approximation around β̄ = 0 is
needed to further reduce the equation. If Eq. (E.5) is written as

α1θ2

α2+α3θ2
, the Taylor series approximation gives

f (θ ) ≃
α1

α2
θ2 (E.6)

where α1 = 4γ + 2µ, α2 = 1 + µ, α3 = 2γ and θ = sin β̄

2 . Hence
Eq.(E.5) becomes

�2
≃

4γ + 2µ
1 + µ

sin2 β̄

2
(E.7)

It is established that the small-angle approximation for sin2 β̄

2 =

β̄2

4 . Therefore, the final approximation of the acoustic branch
around β̄ = 0 in the dimensional form is

ω ≃ ωPR
0 βℓ

√
γ +

µ

2

1 + µ
(E.8)

Finally, the derivative with respect to the wavenumber β can be
applied to find the initial slope of the acoustic dispersion band

cPRstat ≃
∂ω

∂β
≃ ωPR

0 ℓ

√
γ +

µ

2

1 + µ
= ωPR

0 ℓ

√
µ(κ + 2)
2κ(1 + µ)

(E.9)

A similar process can be followed for an undamped AM, as the AM
dispersion relation has similar formulation of PR. The only differ-
ence is that the AM dispersion relation has different coefficients,
which are α1 = 4γ , α2 = 1 + µ, and α3 = 4γ . The final form of
the equation is given by

cAMstat = ωAM
0 ℓ

√
µ

κ(1 + µ)
(E.10)

An undamped PC, however, has a different form than that of PR or
AM, where the acoustic branch solution is given by

�1 =

√
(1 + µ)(1 + 1/κ)

2
−

√
(1 + µ)2(1 + 1/κ)2

4
− 2γα (E.11)

After writing the dispersion relation in a similar form as that of Eq.
(E.2), we get

�1 =

√
α1

(
1 −

√
1 + χ

)
(E.12)

where χ = −
2γ
α2
1
α and α1 =

(1+µ)(1+1/κ)
2 . Applying the binomial

approximation, while assuming small angles, results in

�1 ≃

√
γ

(1 + µ)(1 + 1/κ)
β̄ (E.13)
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Writing the frequency in dimensional from, and with further ma-
nipulation, simplifies the equation to

ω ≃ ωPC
0 βℓ

√
µ

(1 + µ)(1 + κ)
(E.14)

Finally, the derivative with respect to β yields the initial slope of
the acoustic dispersion band

cPCstat ≃
∂ω

∂β
≃ ωPC

0 ℓ

√
µ

(κ + 1)(µ + 1)
(E.15)
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