Simplicial Complex Augmentation Framework for Bijective Maps

ZHONGSHI JIANG, New York University
SCOTT SCHAEFER, Texas A&M University
DANIELE PANOZZO, New York University

Fig. 1. The Nefertiti model with prescribed seams is UV mapped by our algorithm. Each chart is bijective mapped into a circle or ring with Tutte’s embedding
and achieves minimal distortion in less than a second. The layout is further improved interactively and the final parametrized model is shown on the right. Our
approach guarantees a valid UV map with no inverted elements or overlapping triangles. See the attaching video for the optimization and manual interaction.

Bijective maps are commonly used in many computer graphics and scientific
computing applications, including texture, displacement, and bump mapping.
However, their computation is numerically challenging due to the global na-
ture of the problem, which makes standard smooth optimization techniques
prohibitively expensive. We propose to use a scaffold structure to reduce
this challenging and global problem to a local injectivity condition. This
construction allows us to benefit from the recent advancements in locally
injective maps optimization to efficiently compute large scale bijective maps
(both in 2D and 3D), sidestepping the need to explicitly detect and avoid col-
lisions. Our algorithm is guaranteed to robustly compute a globally bijective
map, both in 2D and 3D. To demonstrate the practical applicability, we use it
to compute globally bijective single patch parametrizations, to pack multiple
charts into a single UV domain, to remove self-intersections from existing
models, and to deform 3D objects while preventing self-intersections. Our
approach is simple to implement, efficient (two orders of magnitude faster
than competing methods), and robust, as we demonstrate in a stress test on
a parametrization dataset with over a hundred meshes.

CCS Concepts: » Computing methodologies — Shape modeling;

ACM Reference format:

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial Com-
plex Augmentation Framework for Bijective Maps. ACM Trans. Graph. 36, 6,
Article 186 (November 2017), 9 pages.
https://doi.org/10.1145/3130800.3130895

This work was supported in part by the NSF CAREER awards IIS-1652515 and IIS-
1148976, and a gift from Adobe.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

0730-0301/2017/11-ART186 $15.00

https://doi.org/10.1145/3130800.3130895

1 INTRODUCTION

The computation of discrete maps is a fundamental problem in
computer graphics that has been extensively studied in the last three
decades. The problem is challenging due to the large solution space
and the non-linearity of the desired properties (in both distortion
measures and constraints). Algorithms for robustly and efficiently
computing locally injective (i.e. non-flipping) maps have been only
recently introduced [Lipman 2012; Kovalsky et al. 2016; Rabinovich
et al. 2017] and are now having a major impact in many research
areas outside of traditional texture mapping, including remeshing
[Bommes et al. 2013], image editing [Poranne and Lipman 2014],
and cultural heritage [Pal et al. 2014].

In this paper, we consider the problem of generating bijective
maps, i.e. locally injective maps with non-intersecting boundaries
This is a difficult problem, exacerbated by the fact that any pair of
boundary elements could overlap, leading to non-linear constraints
whose number is quadratic in the size of the boundary. This problem
is usually tackled by iteratively deforming an existing map, check-
ing for overlaps after each step, and then preventing the overlap
using constraints [Harmon et al. 2011] or penalty forces [Harmon
2010]. These methods require a spatial acceleration structure to
find the candidate pairs of overlapping elements and a resolution
strategy that updates the map while avoiding the detected overlaps.
However, the newly computed displacement might in turn lead to
new overlaps, and this process has to be performed iteratively in the
hope that no collisions are left. Difficult cases with many collisions
might requires tens or hundreds of iterations before all the candidate
intersecting pairs are detected.

Our approach sidesteps the need to find candidate self-intersections
based on a simple observation: if the the entire ambient space (with

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

186:2 « Z.Jianget. al.

a fixed simple boundary) is tessellated, then local injectivity im-
plies global bijectivity [Zhang et al. 2005; Lipman 2013; Miiller et al.
2015]. We thus propose an optimization framework based on this
idea making it possible to leverage recent techniques for locally
injective maps; our algorithm is simple to implement, robust, and
two orders of magnitude faster than competing methods.

Overview. Given an input bijective map represented by a discrete
triangle mesh and its mapped vertex locations, we create a new
scaffold mesh for a bounding box that contains the initial, mapped
triangle mesh (Figure 1) and conforms to its boundary. We then
optimize for the desired property of the map (such as distortion,
positional constraints, etc.) while ensuring that no triangle will
flip. This property is achieved using a variational formulation that
combines a user-defined energy for the map with a regularization
term that allows the scaffold to freely deform without hindering the
optimization of the map properties. During the optimization, we
refine and optimize the connectivity of the scaffold mesh to prevent
possible locking situations.

While a scaffold mesh has been already used in previous works
[Zhang et al. 2005; Misztal and Beerentzen 2012; Miiller et al. 2015],
we propose to use an isometric distortion energy on the scaffold
mesh, with the reference reset to the current rest pose at each
iteration, and an online remeshing strategy. Our scaffold energy
aims for "isometry to the current iteration", which resembles how
plasticity is usually modeled in elasto-plastic simulations — this
leads to a global and natural deformation of the scaffold elements
that opens up space for the evolving boundary and allows for an
efficient optimization using recent numerical methods for locally
injective maps [Rabinovich et al. 2017].

We demonstrate the practical utility of our algorithm in the con-
text of single patch mesh parametrization by producing distortion
minimizing bijective maps for a collection of 119 challenging mod-
els. Our algorithm is ideal to compute tight UV maps for models
with multiple connected components and seams as we demonstrate
in our interactive texture packing experiments. Our algorithm can
also be easily extended to 3D by replacing the triangular scaffold
with one composed of tetrahedra. For the 3D case, we show that our
method can be used to deform surfaces preventing self-intersections
and to remove self-intersection from existing genus-0 surfaces when
paired with a mean conformalized flow [Kazhdan et al. 2012; Sacht
et al. 2013].

In the additional material, we provide a video (showing the op-
timization iterations) and the input/output meshes for each figure
in the paper. To foster replicability of results, we will release an
open-source reference implementation of our algorithm.

2 PREVIOUS WORK

Bijective maps find a host of applications in a variety of fields includ-
ing physical simulation, surface deformation, and parametrization.
We review only the most relevant prior works here and refer to
the following surveys for more details [Floater and Hormann 2005;
Sheffer et al. 2006; Hormann et al. 2007].

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

Locally Injective Maps.

There are many methods that focus on creating locally injective
maps, which amounts to requiring that triangles maintain their
orientation (i.e. they do not flip). In mesh parameterization, many
flip-preventing metrics have been developed: the idea is to force
the metric to diverge to infinity as triangles become degenerate,
inhibiting flips. These metrics optimize various geometric proper-
ties such as angle [Hormann and Greiner 2000; Degener et al. 2003]
or length [Sander et al. 2001; Sorkine et al. 2002; Aigerman et al.
2014; Poranne and Lipman 2014; Smith and Schaefer 2015] preser-
vation. Similar techniques in the context of deformation have been
used to add barrier functions to enforce local injectivity in defor-
mations [Schilller et al. 2013]. Our method uses these techniques to
prevent flips in the scaffold.

Many methods have also been developed to optimize these distor-
tion energies including moving one vertex at a time [Hormann and
Greiner 2000], parallel gradient descent [Fu et al. 2015], as well as
other quasi-newton approaches [Smith and Schaefer 2015; Kovalsky
et al. 2016; Rabinovich et al. 2017]. Other approaches construct such
maps by performing a change of basis, projecting to an inversion
free space, and then constructing a parametrization from the re-
sult [Fu and Liu 2016]. While our method could potentially use any
of these optimization methods, we use [Rabinovich et al. 2017] for
its large step sizes. We elaborate on this choice in Section 3.1.

Bijective Maps.

In addition to injective constraints, bijective maps have the addi-
tional requirement that the boundary does not intersect. One simple
method for creating a bijective map in 2D involves constraining the
boundary to a convex shape such as a circle [Tutte 1963; Floater
1997]. Such parametrizations guarantee a bijective map in 2D but cre-
ate significant distortion. Even so, these methods are commonly used
to create a valid starting point for further optimization [Schiiller et al.
2013; Smith and Schaefer 2015; Rabinovich et al. 2017]. While meth-
ods that produce bijective maps with fixed boundaries exist [Weber
and Zorin 2014; Campen et al. 2016], we aim to produce maps where
the boundary is free to move to reduce the distortion of the map.

[Gotsman and Surazhsky 2001; Surazhsky and Gotsman 2001]
introduced the concept of scaffolding where the free space is trian-
gulated for the purpose of morphing without self-intersection. In
[Zhang et al. 2005], the scaffold triangles are given a step function
for their error: zero if not flipped, otherwise infinity. Hence, the
bijective condition becomes local in that the shape can evolve until a
scaffold triangle flips, in which case the free space is retriangulated
and the optimization continues. The main limitation of this work is
the lack of an evolving triangulation during the line search and the
absence of a rotationally invariant metric for the scaffold triangles,
which lead to very small steps and an inefficient optimization.

The Deformable Simplicial Complex (DSC) method [Misztal and
Beerentzen 2012] utilize a triangulation of both the free space and
the interior of an object to track the interface between the two
volumes. Similar to [Zhang et al. 2005], the DSC retriangulates at
degeneracies but also performs operations to improve the shape of
the triangles. This method changes the triangulation of the interface

Simplicial Complex Augmentation Framework for Bijective Maps + 186:3

that it tracks, which works well for simulation, but it is not allowed
in many other applications such as UV mapping.

Air meshes [Miiller et al. 2015] extends the technique of Zhang et
al. [2005] to add the concept of triangle flipping based on a quality
measure during the optimization instead of simply retriangulating
at the first sign of a degeneracy. However, this method does not
maintain bijective maps as boundaries are allowed to inter-penetrate
during optimization: the scaffold is only used to efficiently detect
problematic regions, and the local injectivity requirement is a soft
constraint in the optimization. The problem tackled in this paper
is much harder, because we do not allow any overlap during any
stage of the optimization to guarantee that the resulting maps will
be bijective.

[Smith and Schaefer 2015] take a different approach: instead of
using a scaffold triangulation, the authors introduce a locally sup-
ported barrier function for the boundary to prevent intersection
and explicitly limit the line search by computing the singularities
of both the distortion energy and the boundary barrier function.
Such an approach is inspired by traditional collision detection and
response methods that are discussed below. Given a bijective start-
ing point, this approach never leaves the space of bijective maps
during optimization. Its main limitation is that it is computationally
expensive, especially for large models. Our method is two order of
magnitude faster (Figure 11).

Collision Detection and Response.

While not directly related to our approach, bijective maps inher-
ently involve some form of collision detection and response to avoid
overlaps. The field on collision detection is vast, and we refer the
reader to a survey [Jimenez et al. 2001]. In terms of simulations,
methods such as asynchronous contact mechanics [Harmon et al.
2009; Harmon 2010; Ainsley et al. 2012] ensure the bijective prop-
erty but are very expensive and designed to operate as part of a
simulation. Differently, our approach is specialized for geometric
optimization, where we are interested in a quasi-static solution (i.e.
we do not want to explicitly simulate a dynamic system, but only
find an equilibrium solution).

The work that is closer to ours in term of application (but very
different in term of formulation) is [Harmon et al. 2011], where col-
lision detection and response is used to interactively deform shapes
while avoiding self-intersections. Similarly to the previous methods,
the explicit detection and iterative response is expensive when many
collisions happen at the same time. Our work avoids these expensive
computations, and can robustly handle hundreds of simultaneous
collisions while still making large steps in the optimization.

Seam Creation.

In the context of parametrization, some approaches optimize the
connectivity of the charts of the surface during parametrization
to obtain a bijective map. [Lévy et al. 2002; Zhou et al. 2004] pa-
rameterize the surface and then split charts based on whether they
intersect [Lévy et al. 2002] or based on a level of distortion [Zhou
et al. 2004]. Sorkine et al. [Sorkine et al. 2002] employ a bottom-up
approach and add triangles to a parametrization chart until bijectiv-
ity would be violated. The problem we are solving is more general

(seams are only useful for texture mapping applications) and con-
strained (we preserve the prescribed seams). Our algorithm could be
used by these algorithms to parametrize single charts, which could
reduce the number of additional seams.

3 METHOD

Our method, Simplicial Complex Augmentation Framework (SCAF)
utilizes a scaffold structure to robustly compute a bijective map
between a pair of simplicial meshes with the same connectivity.
SCAF is specialized for the context of geometric optimization, i.e. we
are interested in maps with low distortion and optionally satisfying
a set of geometric constraints. We assume our maps are continuous
and piecewise affine, i.e. the map deforms every simplex with an
affine deformation. Thus, we can fully define the map using the
image of its vertices.

Our algorithm uses a discrete, bijective identity map (encoded
as a non-overlapping and non-flipping triangle/tetrahedral mesh)
as initialization and then iteratively refines it, displacing the ver-
tices while always ensuring that it remains bijective. Our method
is composed of three stages: (1) augment the initial mesh with a
scaffold, filling a bounding box around the initial map image; (2)
optimize the extended mesh (scaffold included), reducing the geo-
metric distortion of the map; (3) update the vertices and scaffold,
enlarging the bounding box if necessary, to improve the quality of
the triangulation. Steps (2) and (3) are iterated until the quality of
the map is deemed sufficient.

3.1 General Formulation

Denote the input simplicial mesh by M = (V,¥) with a single,
simple boundary representing a compact d-dimensional manifold
embedded in the d-dimensional Euclidean space, where V is the set
of n-vertices and ¥ is the set of m-simplices. Our goal is to compute
a continuous and piecewise affine mapping ® : M — R? with
Q := ®(M) = (V’, F) the resulting simplicial mesh with the same
connectivity as M.
We are interested in the bijective map that minimizes a given
type of geometric energy:
min E p (P
nin - Ep(®) o
s.t. @ is bijective,
where E y is a user-defined geometric energy.

Reduction to Local Orientation Preservation. A sufficient condi-
tion for the simplicial map ® : M — Q to be bijective is that
the map preserves orientation and its restriction to the boundary
Dloy : OM — 9Q is bijective [Lipman 2013]. In this light, we are
able to take advantage of the following simple construction (Figure
2): the algorithm extends the axis aligned bounding box of M to
get a d-orthotope and fills the enclosed region with a scaffold sim-
plicial complex to form a simplicial complex mesh D that includes
and conforms to M C D. We can now define the continuous and
piecewise affine map ¥ : D — D’ with ® = ¥|3; where ¥|gp
is the identity map, and denote the scaffold region as S = D \ M.
Now & is guaranteed to be bijective if ¥ preserves orientation. Us-
ing this observation, we can translate the bijectivity into a local,
orientation-preserving requirement defined per simplex.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

186:4 « Z.Jianget. al.

Fig. 2. The initial mesh M (in green, left), is embedded in another mesh
D (in gray, middle) that covers a box in the ambient space and contains
the same triangles as M. D might contain additional points (orange). We
denote the triangles that are in D but not in M as the scaffold S. Our
algorithm deforms D, inducing a corresponding deformation on M (right),
while keeping the boundary (blue vertices) fixed and preventing changes in
the triangle orientation.

Variational Formulation. Minimizing the distortion of ® using the
augmented map ¥ poses an interesting challenge: what is the desired
shape of the scaffold S? Ideally we would like the simplices in the
scaffold to maintain their orientation and not affect the optimization
in any other way. Such a requirement is difficult to model directly,
since it is a discontinuous condition that is not well-suited for the
variational framework that we would like to use to minimize E y4.

We propose a regularized version of this condition modeled with
an energy E 5((¥|s) that still diverges when elements change orien-
tation and that mildly penalizes any non-rigid distortion.

We choose a reweighted version of the symmetric Dirichlet en-
ergy O [Smith and Schaefer 2015], measured w.r.t. the Jacobian of
the map ¥ computed from the rest pose of S for each simplex f,

Jf = V‘I’f 2)
where ¥y is the restriction of ¥ over the simplex f, which is an
affine map. We divide the energy of each scaffold simplex f by its
area Ag, and sum them up to obtain the final energy that favors an
equal contribution regardless of the size of each scaffold simplex:

1
Es(¥ls) =) A, 20p
fes
2 -12 ©®)
= >~ (i + 17117 - 2d).
fes
The —2d term ensures that the energy is 0 when J; = 1. The map is
then computed by summing the two terms:

mén Epm(¥Ipm) + AEs(¥]s)

st. ¥lgp is Identity (4)

Y preserves orientation.

where A > 0 is balancing the contribution of the two energies,
decreasing as the optimization proceeds.

Iterative Regularization. Solving this problem leads to a bijective
and distortion minimizing map, but the regularizer will affect the
stationary points of E 54, which is problematic, especially for large
deformations. To address this problem we iteratively minimize this
energy, regenerating the scaffold at each iteration, and use the new
scaffold as a rest pose for the regularization term Eg(¥|s). This

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

iterative procedure has two positive effects: (1) it acts as a proximal
regularization term without inhibiting movement since the rest pose
is updated at each iteration; (2) the meshing quality of the scaffold
is high, which avoids locking configurations.

Interpolation Coefficient. We experimentally observed that our
algorithm is robust to different choices of A, generating indistin-
guishable results in most cases. However, A affects the convergence

1 Em(¥Im)

speed (Figure 3). We used A = 155 5 for all our experiments,

where |S| is the number of scaffold simplices.

3 =

L7
B
X Q" SRS

LRSS

Fig. 3. Different values of A do not affect the result, but they change the
number of iterations needed. From left to right: we used a large weight
(100x ours), our weight, and a small weight (0.01x ours). The optimization
took 9,7, and 8 iterations, respectively, to reach the same energy level.

Solver. Since our energy is rotational invariant, we can mini-
mize the energy with the same quadratic proxy proposed in SLIM
[Rabinovich et al. 2017], enriching the approach with the equal-
ity constraint needed to fix the boundary dD. We also employ the
orientation-preserving line search [Smith and Schaefer 2015] (with
exact predicates [Shewchuk 1996]) to ensure that no triangles can
change orientation. Alternatively, other methods such as AQP [Ko-
valsky et al. 2016] could be used to minimize this energy. Since our
approach changes the mesh connectivity at every iteration, AQP
loses much of its advantages as the approximate Hessian must be
recomputed at each iteration and not prefactored. Therefore, our
approach is an ideal fit for [Rabinovich et al. 2017], which takes large
steps at every iteration without relying on a constant, prefactored
matrix at each iteration. For practical applications, SLIM iterations
are sufficient to minimize the energy to acceptable levels. For two
stress tests (figures 4 and 11) we used the result of SLIM as a warm
start for a Newton optimization (as suggested by [Rabinovich et al.
2017]), which quickly converges to a numerical minimum.

3.2 Surface Parametrization

Our framework can be used for many applications, one of which is
computing a bijective surface parametrization from a 3D surface into
the UV plane. We follow [Liu et al. 2008] and assume that each 3D
triangle £3 is equipped with a rigid transformation Ry such that
applying Ry to f 3D maps 3P to the plane. Given this transformed
triangle f, we can now measure the distortion of the map using the

Simplicial Complex Augmentation Framework for Bijective Maps + 186:5

Jacobian of the affine transformation (a 2 X 2 matrix) from Ry (f 3Dy
to f, the location of the triangle in the parametrization.

Initialization. Our method is initialized with Tutte’s embedding
algorithm [Tutte 1963]:

e : M3P — QO

where QU is a simplicial disk domain. Then we construct a larger
rectangular domain D® > Q°, where dD° is an axis-aligned rectan-
gle, and use Triangle [Shewchuk 1996] to triangulate the region in
between. We enforce a quality bound of 20° to obtain a graded mesh
that is coarse on the boundary and conforming the boundary of Q.
This grading implicitly produces an approximate inverse distance
weighting of the scaffold space with respect to the error function,
which enables a larger deformation per iteration. Then we define
¥ : D — D c R% and restrict ¥|5p0 to be the identity.

Mesh Improvement. At the end of each iteration, we improve the
quality of the scaffold. The reason for maintaining a good mesh
quality is two-fold. First, as observed in [Zhang et al. 2005; Miiller
et al. 2015], fixing the scaffold will potentially prevent movement.
Secondly, the quality of the scaffold affects the condition of the
linear system in SLIM [Rabinovich et al. 2017]: a higher quality
leads to larger and more efficient iterations.

We resort to Triangle [Shewchuk 1996] to create the initial scaf-
fold and to regenerate the scaffold mesh in the improvement step.
Our experiments show that, in 2D, it is faster to generate the mesh
from scratch at every iteration instead of trying to optimize the scaf-
fold using local operations as suggested in [Miiller et al. 2015]. Since
our solver makes large steps in each iteration, the scaffold requires
significant connectivity changes each iteration, which explains why
regenerating the triangulation is faster than local operations. This
is in stark contrast with physical simulation scenarios where each
iteration represents a small time step and, thus, a minor change in
the vertex positions.

We demonstrate the effectiveness of the remeshing strategy in
Figure 4 where our method recovers from a large rotation — note
that the scaffold is updated during the iterations and always leaves
space for the map to move freely.

Fig. 4. A bijective map from a circle (left) to a spiral (right) is computed
without (top) and with (bottom) the iterative remeshing step. The slivers in
the triangulation locks the optimization (top), preventing it from reaching
the target shape.

Sliding & Degeneracy Prevention. As the optimization proceeds
and some of the boundary elements get closer, some of the scaffold
triangles might (and often will) get smaller and smaller, restricting
the amount of sliding that is allowed in one iteration as well as
introducing numerical difficulties in computing the corresponding
Jacobian Jy whose singular values will approach infinity.

To avoid this issue, we replace the degenerating target when
computing its Jacobian. For the triangles with an area smaller than
€, we use an equilateral triangle with area e to compute the local
Jacobian. In our experiment, we traverse through the boundary of
the interior of the uv domain at the current iteration to find the
minimum edge length [and set € = %.

A theoretical downside of this modification is that it affects the
distortion energy. We experimentally observed that the changes are
negligible, and we thus used it for all our experiments. However, on
the practical side, it discourages fully degenerate elements — this
change, coupled with the orientation preserving line search [Smith
and Schaefer 2015], makes our algorithm robust enough for the
challenging stress tests shown in Figure 5.

3.3 Extension to 3D

Our formulation naturally unifies bijective geometric optimization
problems in 2D and 3D, so the algorithm readily extends to the
3D case with only one major difference: the scaffold becomes a
tetrahedral mesh, which is computationally more challenging to
create and update.

Mesh Improvement. We use TetGen [Si 2015] to generate the initial
scaffold and the local operations proposed in [Klingner 2009] to
optimize the scaffold’s quality in the subsequent iterations. It is
unfortunately not possible to directly use TetGen at every iteration
as we did with Triangle in the 2D case, since TetGen fails when
boundaries get too close, which is common in our experiments.

Guarantee. Similarly to the 2D case, we are guaranteed that no
flipping or self-intersecting tetrahedra will occur since we are fol-
lowing an interior point strategy. Notice the contrast with Air Mesh
[Miiller et al. 2015] where only if penetration happens can the con-
straints be of effect. However, as pointed out in [Dougherty et al.
2004], the local operations we are performing may not be sufficient
to explore the entire space of possible tetrahedralizations. There-
fore, we cannot guarantee that the algorithm achieves the globally
optimal solution.

4 RESULTS

We implemented our algorithm in C++ using Eigen for linear algebra
routines. We ran our experiments on a desktop with a 4-core Intel i7
processor clocked at 4 GHz and 32 GB of memory but using only one
thread on a single core. For all experiments, the scaffold bounding
box is computed by uniformly scaling by three times the bounding
box of the image of the current map.

Robustness. To demonstrate the robustness of our algorithm, we
computed bijective maps for all the 102 meshes parametrized by
the MIQ algorithm [Bommes et al. 2009] and for the 17 meshes
parametrized by [Myles et al. 2014] in the dataset proposed by
[Myles et al. 2014]. The cuts in these meshes have been designed

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

186:6 « Z.Jianget. al.

/
4

AV

o
0:0"11
Kz
7]

o
,‘!

),
".‘ S,
T ITA]

i
N,

X

C

Fig. 5. Two models are cut using [Bommes et al. 2009] and bijectively
parametrized using our algorithm. See the additional material for more
examples.

for locally injective parametrization that usually have major self-
overlap. We use them as a stress test for the effectiveness and robust-
ness of our method: the cuts introduce a massive distortion in the
Tutte initialization and lead to boundaries that are prone to overlap
in hundreds of locations. Our method successfully creates bijective
parametrizations for all these models with default parameters. We
attach all the parametrized models in the additional material and
show two examples in Figure 5.

Scalability. Our methods scales gracefully to large datasets, simi-
larly to [Rabinovich et al. 2017]. We repeat their scalability experi-
ment, but producing bijective maps instead of just locally injective
maps (Figure 6). The behaviour is remarkably similar — the density
of the model (and consequently of the scaffold) does not affect the
number of required iterations.

Texture Atlas Generation. UV mapping is a time consuming pro-
cedure required in most geometric modeling pipelines. Existing
commercial tools provide the ability to flatten single patches and ar-
range them in UV layouts where multiple patches are tightly packed
inside a rectangular domain, which is then loaded in the texture
memory of a GPU.

Our algorithm can bijectively parameterize a single patch (Figure
7), avoiding the typical manual UV postprocessing required with
traditional tools. Our algorithm can also be used to create auto-
matic UV charts of models with multiple connected components
(or predefined cut edges). We show an example in Figure 8 where
we detected the connected components, bijectively map the patches

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

1200

—_—1

2

6
8
10

— {2

1000

800

600

400

200

30

Fig. 6. We compare the distortion energy with respect to the number of
iterations on a set of Lucy’s meshes with different resolutions (from 1 to
12 million faces). In the center of the plot, we show the TM Lucy model
parametrized by our algorithm.

4

7
%
7

L
2
i

A2

7
7

%%

A7
A
X7X
%

X7
4%
7
5%
7
s
AN
AN
NN

XX
A
é? 7
AL
RN
N
N
AVAVAY

7
eA

w.v
P
i

&

N
!

“
TR
N
i

7

=7
%

geeees
s

5257
7
505
1k
b
fgv
Q!

7h
{
i
Vﬁ
S

ey
S
s

=7
7

i

i

i

X7
%;7
K
M

R

i
‘
3

g

X7

Z

AT
>
22

A%
7z

X7 X
KL

2

ST
NN|
N

N

27

SRR
NN
Q5
NN

1P
;ﬁ‘%ﬁ‘mu&

w,
ek
o
o

SN
5;“
RN
PPN

=

==
B2,
BEHIRREE

=
“
B
AN
4YAY
%V
2

0

R
KRR
S
SR

wm:;(

sy ,;EL

s
03
0

-a
5

v

i
m@%
N\

W
N

s
'f

)

S

=
e

Fig. 7. A mesh is cut by an artist into a single chart and parametrized using
SLIM [Rabinovich et al. 2017] (left) and with our algorithm (right). Note that
local-injectivity is not sufficient for this model, since the global overlaps
in the highlighted region prevent this parametrization from being a UV
texture map. Our result (right) is guaranteed to be bijective.

into a set of circles (using a grid layout), and reduce their distortion
using our algorithm. The result is a tight and automatic packing
without resorting to any user-interaction. Additional interactive
tools can further improve the atlas by dragging&dropping regions
or translating islands while ensuring that no overlaps are introduced
(Figure 1). We show interactive sessions using our packing tool in
the additional material.

Preventing Self-Intersections. Our algorithm can be generalized to
handle mixed dimension problems, such as the deformation of 2D
surface in 3D space, while preventing self-intersections. In Figure 9,
we demonstrate the use of our method to resolve self-intersections
of surfaces. First we perform a conformalized flow [Kazhdan et al.
2012] using the algorithm proposed in [Sacht et al. 2013] to resolve

Simplicial Complex Augmentation Framework for Bijective Maps + 186:7

S

S
s

X
SlsSesess
Nl st tie
B0
5

9!
SRS

o

SOOTSS,
S
S5

gt
“
SO
t:“‘“

o

5

i

XEKS

7777
AT

SoE

777

L7
L7

Fig. 8. A model with multiple chart (left) is automatically parametrized in
a texture atlas (bottom-right) by first mapping each component to a circle
(top-right) and then minimizing the distortion.

Fig. 9. We remove the self-intersections from a genus 0 model using the
conformalized flow [Kazhdan et al. 2012; Sacht et al. 2013]. The flow is
inverted, while using our algorithm to compute a bijective volumetric map, to
recover a self-intersection free version of the original surface. The final model
can now be meshed using TetGen, since it is free from self-intersections.

any self-intersections. While [Sacht et al. 2013] will resolve the
intersections, the resulting surface may be geometrically far from
the initial shape (see Figure 9). Next we tetrahedralize the ambient
space while conforming to the deformed surface mesh and minimize
Equation 4 with an additional energy term that strives to restore the
rest pose geometry of the surface, using the surface ARAP energy
proposed in [Sorkine and Alexa 2007]. The result is a surface similar
to the original mesh, but without self-intersections. In this example,
it is possible to observe that even dramatic changes of scale (on the
foot) can be robustly handled by our parametrization algorithm.

A more challenging stress test is shown in Figure 10, where the
bunny model is scaled up inside a box, to 30 times its original size. No
self-intersections are introduced, despite the extreme, constrained
deformation.

Comparison with [Smith and Schaefer 2015]. The algorithm clos-
est to ours is [Smith and Schaefer 2015], which tackles a similar
problem (restricted to the 2D case). We replicated the space filling
curve experiment and obtained remarkably similar results, where
our running time is 96s, compared with 8,472s for [Smith and Schae-
fer 2015] (88 times faster). We show in Figure 11 a more challenging

Fig. 10. We grow a bunny inside a box, while preventing self-intersections.
We show the result after 0,10,20,30,40, and 50 iterations.

Fig. 11. We repeat the challenging test in [Smith and Schaefer 2015] with a
subdivided version of their Hilbert curve to increase the triangle count. Our
method starts from a disc (upper left), gracefully extends (upper right), and
reaches the same minimum (lower left) in 39 minutes whereas [Smith and
Schaefer 2015] didn’t terminate more than 5 days (lower right), highlighting
our performance boost of over 200 times.

experiment with a subdivided version of the space filling curve to
emphasize the performance difference: our algorithm converges
in 39 minutes, while [Smith and Schaefer 2015] did not converge
after 5 days and 21 hours. For this example, we used the procedure
suggested in [Rabinovich et al. 2017]: we performed a few iterations
minimizing the quadratic proxy and then switch to a traditional
newton method until numerical convergence. A video of the opti-
mization is provided in the additional material.

Our method produces results that are visually identical to [Smith
and Schaefer 2015]. In Figure 12 we repeat the experiments shown
in [Smith and Schaefer 2015], stopping our optimization at the same
energy value.

Local vs Global Optimization. Both [Zhang et al. 2005] and [Misz-
tal and Beerentzen 2012] use a construction similar to ours to gen-
erate bijective maps (Section 2). Both methods explicitly prevent
changes of orientation using a local approach: they optimize the
map using coordinate descent iterations [Solomon 2015] allowing
only one vertex at a time to move in its 1-ring and thus ensuring that
no triangle flip. This strategy severely limits the maximal displace-
ment per iteration and restricts the step to the size of the 1-rings.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

186:8 « Z.Jianget. al.

Fig. 12. We apply our algorithm on 4 models used in [Smith and Schaefer
2015] (using the same stopping criteria) obtaining visually identical results.
Distortion errors produced by our algorithm (outer) and theirs (inner) are
shown in black.

Fig. 13. A single iteration of our algorithm (from left to right) drastically
reduces the distortion. The black vector in the center is 150 times longer
than the average edge length of its 1-ring. Iterative methods would need
thousands of iterations to achieve a similar progress.

Such a restriction makes these methods impractical for parametriza-
tion applications since the difference in scale between the Tutte’s
embedding and the final result is extreme (the ratio of min and max
triangle area is 107° in Figure 13). We show an example of one of
our iterations in Figure 13, where the highlighted vertex traversed a
distance of 150 times the size of the average edge length of its 1-ring
in one single step. Using coordinate descent would have required
hundreds of iterations to achieve the same effect.

Despite the orientation-dependent box used as scaffold boundary,
our optimization produces results that are, in practice, independent
of orientation. We show this effect in Figure 14 where we initialize
the optimization with 1000 randomly rotated Tutte’s mappings of
the same camel model and run our optimization. The isometric
distortion of the model after 50 iterations is quite similar in all trials
(the minimum, maximum, average, standard deviation of distortion
errors in all 1000 runs are 0.1086, 0.1107, 0.1095, 3.2698e-4 resp.)
indicating very little change based on the initial orientation.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

Fig. 14. Our algorithm is independent to the initial orientation. We rotate
the initializing Tutte’s mapping of the camel model and obtain results with
similar isometric distortion.

Type Model #V #F #Vg #Fs It. Total Time (s) It. Time (s)
Atlas Nefertiti (Fig. 1) 1697 2823 983/ 247 1945 /728 50 071 0.01
Maneki-Neko (Fig. 8) 23025 43648 2427 /725 7174/ 3770 50 16.81 034
Hand (Fig. 3) 2239 4046 347/280 1104/970 7 0.14 0.02
Spiral (Fig. 4) 54 52 78/36 190/106 50(50) 0.04(0.21) 0.01
‘Thai Statue (Fig. 5, left) 42405 79970 3665/1593 12148/8004 50 28.28 056
Filigree (Fig. 5, right) 56062 100000 9160/2627 30422/17356 100 75.99 076
Lucy (Fig. 6) 501105 1000000 1856/ 3470 5900/ 5674 100 2524.22 25.24
o Lucy (Fig.6) 1001375 1999999 2284/ 4400 7297/ 7133 100 7251.00 72,51
Lucy (Fig. 6) 2002031 3999999 3587/6930 11215/ 10985 100 22500.07 225.00
Lucy (Fig. 6) 3002899 5999999 5135/9859 16047/ 15601 100 5223531 52235
Lucy (Fig. 6) 4002816 8000000 5140/ 10288 15890/ 15918 100 59413.14 594.13
Lucy (Fig. 6) 5003408 10000000 6194/ 12231 19182/ 19040 100 95247.59 952.47
Lucy (Fig. 6) 6004111 12000000 7357/6418 2291/21036 50 78726.05 1574.52
Animal (Fig. 7) 19937 39040 747/593 2306/1998 50 1536 031
Space Filling (Fig. 11) 79545 146832 90815/88237 181608/176452 200(250) 547.13(1836.58) 530
Horse (Fig. 12) 20636 39698 1343/984 4238/3520 30(10) 826(12.03) 0.28(1.20)
Camel (Fig. 12) 2032 3576 384/272 1234/1010 30(10) 052(1.13) 0.02(0.11)
Cow (Fig. 12) 3195 5804 491/277 1546/1118 30(10) 0.81(1.74) 0.03(0.17)
Tricera (Fig. 12) 3163 5660 544/329 1732/1302 30(10) 0.83(1.77) 0.03(0.18)
s Leg(Fig9) 6617 13230 5016/5021 68521/68544 500 3251.17 6.50
Bunny (Fig. 10) 568 1132 683/706 6209/6289 50 7.16 0.14

Table 1. Timings and statistics for the models shown in the paper. From
left to right: number of input vertices and simplices, number of initial/final
scaffold vertices and simplices, number of iterations, running time in seconds.
The numbers in parenthesis refer to the Newton optimization. Note that our
timings are considerably higher than those reported in the SLIM paper for
the Lucy model since we used the reference implementation in [Jacobson
et al. 2014], which does not use a multi-threaded solver.

Timings. The timings for all the results in the paper are reported
in Table 1.

5 LIMITATIONS AND CONCLUDING REMARKS

We proposed a simple and robust algorithm to generate bijective
maps, both in 2D and 3D. We demonstrated the practical value of
the algorithm in UV mapping and deformation applications, and its
robustness with extensive stress tests.

One major venue for future work is the support of hard posi-
tional constraints, which are favored over soft constraints in many

Simplicial Complex Augmentation Framework for Bijective Maps + 186:9

practical applications. Our current algorithm only supports soft
constraints as geometric energy [Schiiller et al. 2013]. To support
hard constraints we would need to generate a bijective starting
point that guarantees those constraints, and then preserve them in
our optimization. While bijecive maps with hard constraints can
be constructed for a 2D patch homeomorphic to a disk [Weber and
Zorin 2014] and for a 3D volume homeomorphic to a ball [Campen
et al. 2016], the generic solution is still elusive.

In 3D cases, the generation of the initial scaffold is not as robust
as in 2D, since TetGen fails for geometries with self-intersections
and other imperfections. Our algorithm is also slower in 3D due to
larger and denser linear systems, as well as the need for local mesh
refinement operations instead of regenerating the entire tetrahedral-
ization. We believe a more optimized and parallel implementation
could reduce this overhead, and plan to explore this in the future.

ACKNOWLEDGMENTS

The authors would like to thank Michael Rabinovich and Roi Po-
ranne for providing the source code and Lucy models for [Rabi-
novich et al. 2017], Leonardo Sacht for providing the source code
and Leg model for [Sacht et al. 2013], and the anonymous reviewers
for their insightful comments and suggestions.

REFERENCES

Noam Aigerman, Roi Poranne, and Yaron Lipman. 2014. Lifted Bijections for Low
Distortion Surface Mappings. ACM Trans. Graph. 33, 4 (2014), 69:1-69:12.

Samantha Ainsley, Etienne Vouga, Eitan Grinspun, and Rasmus Tamstorf. 2012. Specu-
lative Parallel Asynchronous Contact Mechanics. ACM Trans. Graph. 31, 6, Article
151 (2012), 8 pages.

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.
2013. Integer-grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4, Article
98 (July 2013), 12 pages.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation.
ACM Trans. Graph. 28, 3, Article 77 (July 2009), 10 pages.

Marcel Campen, Claudio T. Silva, and Denis Zorin. 2016. Bijective Maps from Simplicial
Foliations. ACM Trans. Graph. 35, 4, Article 74 (July 2016), 15 pages.

P. Degener, J. Meseth, and R. Klein. 2003. An Adaptable Surface Parameterization
Method. In Proceedings of the 12th International Meshing Roundtable. 201-213.

Randall Dougherty, Vance Faber, and Michael Murphy. 2004. Unflippable Tetrahedral
Complexes. Discrete & Computational Geometry 32, 3 (01 Sep 2004), 309-315. https:
//doi.org/10.1007/s00454-004-1097-3

Michael S. Floater. 1997. Parametrization and smooth approximation of surface trian-
gulations. Computer Aided Geometric Design 14 (1997), 231-250.

Michael S. Floater and Kai Hormann. 2005. Surface Parameterization: a Tutorial and
Survey. In In Advances in Multiresolution for Geometric Modelling, Mathematics and
Visualization. Springer Verlag, 157-186.

Xiao-Ming Fu and Yang Liu. 2016. Computing Inversion-free Mappings by Simplex
Assembly. ACM Trans. Graph. 35, 6, Article 216 (Nov. 2016), 12 pages.

Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing Locally Injective Mappings
by Advanced MIPS. ACM Trans. Graph. 34, 4, Article 71 (July 2015), 12 pages.

Craig Gotsman and Vitaly Surazhsky. 2001. Guaranteed intersection-free polygon
morphing. Computers & Graphics 25, 1 (2001), 67-75.

David Harmon. 2010. Robust, efficient, and accurate contact algorithms. Ph.D. Disserta-
tion. Columbia University.

David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin. 2011. Interference-
aware Geometric Modeling. ACM Trans. Graph. 30, 6, Article 137 (Dec. 2011),
10 pages.

David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Eitan Grinspun.
2009. Asynchronous Contact Mechanics. ACM Trans. Graph. 28, 3, Article 87 (July
2009), 12 pages.

K. Hormann and G. Greiner. 2000. MIPS: An Efficient Global Parametrization Method.
In Curve and Surface Design: Saint-Malo 1999. 153-162.

Kai Hormann, Bruno Lévy, and Alla Sheffer. 2007. Mesh Parameterization: Theory and
Practice. In ACM SIGGRAPH 2007 Courses (SIGGRAPH °07). ACM, New York, NY,
USA.

Alec Jacobson, Daniele Panozzo, et al. 2014. libigl: A simple C++ geometry processing
library. (2014). http://igl.ethz.ch/projects/libigl/.

P. Jimenez, F. Thomas, and C. Torras. 2001. 3D collision detection: a survey. Computers
& Graphics 25, 2 (2001), 269 — 285.

Michael Kazhdan, Jake Solomon, and Mirela Ben-Chen. 2012. Can Mean-Curvature
Flow Be Modified to Be Non-singular? Comput. Graph. Forum 31, 5 (Aug. 2012),
1745-1754.

Bryan Matthew Klingner. 2009. Tetrahedral mesh improvement. Ph.D. Dissertation.
University of California at Berkeley.

Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated Quadratic
Proxy for Geometric Optimization. ACM Trans. Graph. 35, 4, Article 134 (July 2016),
11 pages.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least Squares
Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21,3
(July 2002), 362-371.

Yaron Lipman. 2012. Bounded Distortion Mapping Spaces for Triangular Meshes. ACM
Trans. Graph. 31, 4 (2012), 108:1-108:13.

Yaron Lipman. 2013. Construction of Injective Mappings Of Meshes. CoRR abs/1310.0955
(2013). http://arxiv.org/abs/1310.0955

Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. 2008. A Lo-
cal/Global Approach to Mesh Parameterization. In Proceedings of the Symposium on
Geometry Processing (SGP "08). Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 1495-1504.

Marek Krzysztof Misztal and Jakob Andreas Baerentzen. 2012. Topology-adaptive
Interface Tracking Using the Deformable Simplicial Complex. ACM Trans. Graph.
31, 3, Article 24 (June 2012), 12 pages.

Matthias Miiller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air
Meshes for Robust Collision Handling. ACM Trans. Graph. 34, 4, Article 133 (July
2015), 9 pages.

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust Field-aligned Global
Parametrization. ACM Trans. Graph. 33, 4, Article 135 (July 2014), 14 pages.

Kazim Pal, Christian Schiiller, Daniele Panozzo, Olga Sorkine-Hornung, and Tim
Weyrich. 2014. Content-Aware Surface Parameterization for Interactive Restoration
of Historical Documents. Computer Graphics Forum (proceedings of EUROGRAPHICS
issue) 33, 2 (2014).

Roi Poranne and Yaron Lipman. 2014. Provably Good Planar Mappings. ACM Trans.
Graph. 33, 4 (2014), 76:1-76:11.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 16 (2017),
16 pages.

Leonardo Sacht, Alec Jacobson, Daniele Panozzo, Christian Schiiller, and Olga Sorkine-
Hornung. 2013. Consistent Volumetric Discretizations Inside Self-Intersecting Sur-
faces. Computer Graphics Forum (proceedings of EUROGRAPHICS/ACM SIGGRAPH
Symposium on Geometry Processing) 32, 5 (2013), 147-156.

Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. 2001. Texture
Mapping Progressive Meshes. In ACM SIGGRAPH. 409-416.

Christian Schiiller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung. 2013.
Locally Injective Mappings. In Symposium on Geometry Processing. 125-135.

Alla Sheffer, Emil Praun, and Kenneth Rose. 2006. Mesh Parameterization Methods and
Their Applications. Found. Trends. Comput. Graph. Vis. 2, 2 (2006), 105-171.

Jonathan Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator and De-
launay triangulator. Applied computational geometry towards geometric engineering
(1996), 203-222.

Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM
Transactions on Mathematical Software (TOMS) 41, 2 (2015), 11.

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.
ACM Trans. Graph. 34, 4, Article 70 (July 2015), 9 pages.

Justin Solomon. 2015. Numerical Algorithms: Methods for Computer Vision, Machine
Learning, and Graphics. A. K. Peters, Ltd., Natick, MA, USA.

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible Surface Modeling. In Pro-
ceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP "07).
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 109-116.

Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski. 2002. Bounded-
distortion Piecewise Mesh Parameterization. In Proceedings of the Conference on
Visualization. 355-362.

Vitaly Surazhsky and Craig Gotsman. 2001. Morphing stick figures using optimized
compatible triangulations. In Computer Graphics and Applications, 2001. Proceedings.
Ninth Pacific Conference on. IEEE, 40-49.

W. T. Tutte. 1963. How to draw a Graph. Proceedings of the London Mathematical Society
13, 3 (1963), 743-768.

Ofir Weber and Denis Zorin. 2014. Locally Injective Parametrization with Arbitrary
Fixed Boundaries. ACM Trans. Graph. 33, 4, Article 75 (July 2014), 12 pages.

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2005. Feature-based Surface
Parameterization and Texture Mapping. ACM Trans. Graph. 24, 1 (Jan. 2005), 1-27.

Kun Zhou, John Synder, Baining Guo, and Heung-Yeung Shum. 2004. Iso-charts: Stretch-
driven Mesh Parameterization Using Spectral Analysis. In Proceedings of the 2004
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (SGP °04). ACM,
New York, NY, USA, 45-54.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

	Abstract
	1 Introduction
	2 Previous Work
	3 Method
	3.1 General Formulation
	3.2 Surface Parametrization
	3.3 Extension to 3D

	4 Results
	5 Limitations and Concluding Remarks
	Acknowledgments
	References

