
Simplicial Complex Augmentation Framework for Bijective Maps

ZHONGSHI JIANG, New York University

SCOTT SCHAEFER, Texas A&M University

DANIELE PANOZZO, New York University

Fig. 1. The Nefertiti model with prescribed seams is UV mapped by our algorithm. Each chart is bijective mapped into a circle or ring with Tute’s embedding

and achieves minimal distortion in less than a second. The layout is further improved interactively and the final parametrized model is shown on the right. Our

approach guarantees a valid UV map with no inverted elements or overlapping triangles. See the ataching video for the optimization and manual interaction.

Bijective maps are commonly used in many computer graphics and scientiic

computing applications, including texture, displacement, and bumpmapping.

However, their computation is numerically challenging due to the global na-

ture of the problem, which makes standard smooth optimization techniques

prohibitively expensive. We propose to use a scafold structure to reduce

this challenging and global problem to a local injectivity condition. This

construction allows us to beneit from the recent advancements in locally

injective maps optimization to eiciently compute large scale bijective maps

(both in 2D and 3D), sidestepping the need to explicitly detect and avoid col-

lisions. Our algorithm is guaranteed to robustly compute a globally bijective

map, both in 2D and 3D. To demonstrate the practical applicability, we use it

to compute globally bijective single patch parametrizations, to pack multiple

charts into a single UV domain, to remove self-intersections from existing

models, and to deform 3D objects while preventing self-intersections. Our

approach is simple to implement, eicient (two orders of magnitude faster

than competing methods), and robust, as we demonstrate in a stress test on

a parametrization dataset with over a hundred meshes.

CCS Concepts: · Computing methodologies → Shape modeling;

ACM Reference format:

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial Com-

plex Augmentation Framework for Bijective Maps. ACM Trans. Graph. 36, 6,

Article 186 (November 2017), 9 pages.

https://doi.org/10.1145/3130800.3130895

This work was supported in part by the NSF CAREER awards IIS-1652515 and IIS-
1148976, and a gift from Adobe.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full citation
on the irst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speciic permission and/or a
fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.
0730-0301/2017/11-ART186 $15.00
https://doi.org/10.1145/3130800.3130895

1 INTRODUCTION

The computation of discrete maps is a fundamental problem in

computer graphics that has been extensively studied in the last three

decades. The problem is challenging due to the large solution space

and the non-linearity of the desired properties (in both distortion

measures and constraints). Algorithms for robustly and eiciently

computing locally injective (i.e. non-lipping) maps have been only

recently introduced [Lipman 2012; Kovalsky et al. 2016; Rabinovich

et al. 2017] and are now having a major impact in many research

areas outside of traditional texture mapping, including remeshing

[Bommes et al. 2013], image editing [Poranne and Lipman 2014],

and cultural heritage [Pal et al. 2014].

In this paper, we consider the problem of generating bijective

maps, i.e. locally injective maps with non-intersecting boundaries

This is a diicult problem, exacerbated by the fact that any pair of

boundary elements could overlap, leading to non-linear constraints

whose number is quadratic in the size of the boundary. This problem

is usually tackled by iteratively deforming an existing map, check-

ing for overlaps after each step, and then preventing the overlap

using constraints [Harmon et al. 2011] or penalty forces [Harmon

2010]. These methods require a spatial acceleration structure to

ind the candidate pairs of overlapping elements and a resolution

strategy that updates the map while avoiding the detected overlaps.

However, the newly computed displacement might in turn lead to

new overlaps, and this process has to be performed iteratively in the

hope that no collisions are left. Diicult cases with many collisions

might requires tens or hundreds of iterations before all the candidate

intersecting pairs are detected.

Our approach sidesteps the need to ind candidate self-intersections

based on a simple observation: if the the entire ambient space (with

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

186:2 • Z. Jiang et. al.

a ixed simple boundary) is tessellated, then local injectivity im-

plies global bijectivity [Zhang et al. 2005; Lipman 2013; Müller et al.

2015]. We thus propose an optimization framework based on this

idea making it possible to leverage recent techniques for locally

injective maps; our algorithm is simple to implement, robust, and

two orders of magnitude faster than competing methods.

Overview. Given an input bijective map represented by a discrete

triangle mesh and its mapped vertex locations, we create a new

scafold mesh for a bounding box that contains the initial, mapped

triangle mesh (Figure 1) and conforms to its boundary. We then

optimize for the desired property of the map (such as distortion,

positional constraints, etc.) while ensuring that no triangle will

lip. This property is achieved using a variational formulation that

combines a user-deined energy for the map with a regularization

term that allows the scafold to freely deform without hindering the

optimization of the map properties. During the optimization, we

reine and optimize the connectivity of the scafold mesh to prevent

possible locking situations.

While a scafold mesh has been already used in previous works

[Zhang et al. 2005; Misztal and Bñrentzen 2012; Müller et al. 2015],

we propose to use an isometric distortion energy on the scafold

mesh, with the reference reset to the current rest pose at each

iteration, and an online remeshing strategy. Our scafold energy

aims for "isometry to the current iteration", which resembles how

plasticity is usually modeled in elasto-plastic simulations Ð this

leads to a global and natural deformation of the scafold elements

that opens up space for the evolving boundary and allows for an

eicient optimization using recent numerical methods for locally

injective maps [Rabinovich et al. 2017].

We demonstrate the practical utility of our algorithm in the con-

text of single patch mesh parametrization by producing distortion

minimizing bijective maps for a collection of 119 challenging mod-

els. Our algorithm is ideal to compute tight UV maps for models

with multiple connected components and seams as we demonstrate

in our interactive texture packing experiments. Our algorithm can

also be easily extended to 3D by replacing the triangular scafold

with one composed of tetrahedra. For the 3D case, we show that our

method can be used to deform surfaces preventing self-intersections

and to remove self-intersection from existing genus-0 surfaces when

paired with a mean conformalized low [Kazhdan et al. 2012; Sacht

et al. 2013].

In the additional material, we provide a video (showing the op-

timization iterations) and the input/output meshes for each igure

in the paper. To foster replicability of results, we will release an

open-source reference implementation of our algorithm.

2 PREVIOUS WORK

Bijective maps ind a host of applications in a variety of ields includ-

ing physical simulation, surface deformation, and parametrization.

We review only the most relevant prior works here and refer to

the following surveys for more details [Floater and Hormann 2005;

Shefer et al. 2006; Hormann et al. 2007].

Locally Injective Maps.

There are many methods that focus on creating locally injective

maps, which amounts to requiring that triangles maintain their

orientation (i.e. they do not lip). In mesh parameterization, many

lip-preventing metrics have been developed: the idea is to force

the metric to diverge to ininity as triangles become degenerate,

inhibiting lips. These metrics optimize various geometric proper-

ties such as angle [Hormann and Greiner 2000; Degener et al. 2003]

or length [Sander et al. 2001; Sorkine et al. 2002; Aigerman et al.

2014; Poranne and Lipman 2014; Smith and Schaefer 2015] preser-

vation. Similar techniques in the context of deformation have been

used to add barrier functions to enforce local injectivity in defor-

mations [Schüller et al. 2013]. Our method uses these techniques to

prevent lips in the scafold.

Many methods have also been developed to optimize these distor-

tion energies including moving one vertex at a time [Hormann and

Greiner 2000], parallel gradient descent [Fu et al. 2015], as well as

other quasi-newton approaches [Smith and Schaefer 2015; Kovalsky

et al. 2016; Rabinovich et al. 2017]. Other approaches construct such

maps by performing a change of basis, projecting to an inversion

free space, and then constructing a parametrization from the re-

sult [Fu and Liu 2016]. While our method could potentially use any

of these optimization methods, we use [Rabinovich et al. 2017] for

its large step sizes. We elaborate on this choice in Section 3.1.

Bijective Maps.

In addition to injective constraints, bijective maps have the addi-

tional requirement that the boundary does not intersect. One simple

method for creating a bijective map in 2D involves constraining the

boundary to a convex shape such as a circle [Tutte 1963; Floater

1997]. Such parametrizations guarantee a bijectivemap in 2D but cre-

ate signiicant distortion. Even so, thesemethods are commonly used

to create a valid starting point for further optimization [Schüller et al.

2013; Smith and Schaefer 2015; Rabinovich et al. 2017]. While meth-

ods that produce bijective maps with ixed boundaries exist [Weber

and Zorin 2014; Campen et al. 2016], we aim to produce maps where

the boundary is free to move to reduce the distortion of the map.

[Gotsman and Surazhsky 2001; Surazhsky and Gotsman 2001]

introduced the concept of scafolding where the free space is trian-

gulated for the purpose of morphing without self-intersection. In

[Zhang et al. 2005], the scafold triangles are given a step function

for their error: zero if not lipped, otherwise ininity. Hence, the

bijective condition becomes local in that the shape can evolve until a

scafold triangle lips, in which case the free space is retriangulated

and the optimization continues. The main limitation of this work is

the lack of an evolving triangulation during the line search and the

absence of a rotationally invariant metric for the scafold triangles,

which lead to very small steps and an ineicient optimization.

The Deformable Simplicial Complex (DSC) method [Misztal and

Bñrentzen 2012] utilize a triangulation of both the free space and

the interior of an object to track the interface between the two

volumes. Similar to [Zhang et al. 2005], the DSC retriangulates at

degeneracies but also performs operations to improve the shape of

the triangles. This method changes the triangulation of the interface

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

Simplicial Complex Augmentation Framework for Bijective Maps • 186:3

that it tracks, which works well for simulation, but it is not allowed

in many other applications such as UV mapping.

Air meshes [Müller et al. 2015] extends the technique of Zhang et

al. [2005] to add the concept of triangle lipping based on a quality

measure during the optimization instead of simply retriangulating

at the irst sign of a degeneracy. However, this method does not

maintain bijective maps as boundaries are allowed to inter-penetrate

during optimization: the scafold is only used to eiciently detect

problematic regions, and the local injectivity requirement is a soft

constraint in the optimization. The problem tackled in this paper

is much harder, because we do not allow any overlap during any

stage of the optimization to guarantee that the resulting maps will

be bijective.

[Smith and Schaefer 2015] take a diferent approach: instead of

using a scafold triangulation, the authors introduce a locally sup-

ported barrier function for the boundary to prevent intersection

and explicitly limit the line search by computing the singularities

of both the distortion energy and the boundary barrier function.

Such an approach is inspired by traditional collision detection and

response methods that are discussed below. Given a bijective start-

ing point, this approach never leaves the space of bijective maps

during optimization. Its main limitation is that it is computationally

expensive, especially for large models. Our method is two order of

magnitude faster (Figure 11).

Collision Detection and Response.

While not directly related to our approach, bijective maps inher-

ently involve some form of collision detection and response to avoid

overlaps. The ield on collision detection is vast, and we refer the

reader to a survey [Jimenez et al. 2001]. In terms of simulations,

methods such as asynchronous contact mechanics [Harmon et al.

2009; Harmon 2010; Ainsley et al. 2012] ensure the bijective prop-

erty but are very expensive and designed to operate as part of a

simulation. Diferently, our approach is specialized for geometric

optimization, where we are interested in a quasi-static solution (i.e.

we do not want to explicitly simulate a dynamic system, but only

ind an equilibrium solution).

The work that is closer to ours in term of application (but very

diferent in term of formulation) is [Harmon et al. 2011], where col-

lision detection and response is used to interactively deform shapes

while avoiding self-intersections. Similarly to the previous methods,

the explicit detection and iterative response is expensive whenmany

collisions happen at the same time. Our work avoids these expensive

computations, and can robustly handle hundreds of simultaneous

collisions while still making large steps in the optimization.

Seam Creation.

In the context of parametrization, some approaches optimize the

connectivity of the charts of the surface during parametrization

to obtain a bijective map. [Lévy et al. 2002; Zhou et al. 2004] pa-

rameterize the surface and then split charts based on whether they

intersect [Lévy et al. 2002] or based on a level of distortion [Zhou

et al. 2004]. Sorkine et al. [Sorkine et al. 2002] employ a bottom-up

approach and add triangles to a parametrization chart until bijectiv-

ity would be violated. The problem we are solving is more general

(seams are only useful for texture mapping applications) and con-

strained (we preserve the prescribed seams). Our algorithm could be

used by these algorithms to parametrize single charts, which could

reduce the number of additional seams.

3 METHOD

Our method, Simplicial Complex Augmentation Framework (SCAF)

utilizes a scafold structure to robustly compute a bijective map

between a pair of simplicial meshes with the same connectivity.

SCAF is specialized for the context of geometric optimization, i.e. we

are interested in maps with low distortion and optionally satisfying

a set of geometric constraints. We assume our maps are continuous

and piecewise aine, i.e. the map deforms every simplex with an

aine deformation. Thus, we can fully deine the map using the

image of its vertices.

Our algorithm uses a discrete, bijective identity map (encoded

as a non-overlapping and non-lipping triangle/tetrahedral mesh)

as initialization and then iteratively reines it, displacing the ver-

tices while always ensuring that it remains bijective. Our method

is composed of three stages: (1) augment the initial mesh with a

scafold, illing a bounding box around the initial map image; (2)

optimize the extended mesh (scafold included), reducing the geo-

metric distortion of the map; (3) update the vertices and scafold,

enlarging the bounding box if necessary, to improve the quality of

the triangulation. Steps (2) and (3) are iterated until the quality of

the map is deemed suicient.

3.1 General Formulation

Denote the input simplicial mesh by M = (V,F) with a single,

simple boundary representing a compact d-dimensional manifold

embedded in the d-dimensional Euclidean space, whereV is the set

of n-vertices and F is the set ofm-simplices. Our goal is to compute

a continuous and piecewise aine mapping Φ : M → �
d with

Ω := Φ(M) = (V ′,F) the resulting simplicial mesh with the same

connectivity as M.

We are interested in the bijective map that minimizes a given

type of geometric energy:

min
V′

EM (Φ)

s.t. Φ is bijective,
(1)

where EM is a user-deined geometric energy.

Reduction to Local Orientation Preservation. A suicient condi-

tion for the simplicial map Φ : M → Ω to be bijective is that

the map preserves orientation and its restriction to the boundary

Φ|∂M : ∂M → ∂Ω is bijective [Lipman 2013]. In this light, we are

able to take advantage of the following simple construction (Figure

2): the algorithm extends the axis aligned bounding box of M to

get a d-orthotope and ills the enclosed region with a scafold sim-

plicial complex to form a simplicial complex mesh D that includes

and conforms to M ⊂ D. We can now deine the continuous and

piecewise aine map Ψ : D → D ′ with Φ = Ψ|M where Ψ|∂D
is the identity map, and denote the scafold region as S = D \ M .

Now Φ is guaranteed to be bijective if Ψ preserves orientation. Us-

ing this observation, we can translate the bijectivity into a local,

orientation-preserving requirement deined per simplex.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

186:4 • Z. Jiang et. al.

Fig. 2. The initial mesh M (in green, let), is embedded in another mesh

D (in gray, middle) that covers a box in the ambient space and contains

the same triangles as M. D might contain additional points (orange). We

denote the triangles that are in D but not in M as the scafold S . Our

algorithm deforms D , inducing a corresponding deformation on M (right),

while keeping the boundary (blue vertices) fixed and preventing changes in

the triangle orientation.

Variational Formulation. Minimizing the distortion of Φ using the

augmentedmapΨ poses an interesting challenge: what is the desired

shape of the scafold S? Ideally we would like the simplices in the

scafold to maintain their orientation and not afect the optimization

in any other way. Such a requirement is diicult to model directly,

since it is a discontinuous condition that is not well-suited for the

variational framework that we would like to use to minimize EM .

We propose a regularized version of this condition modeled with

an energy EM (Ψ|S) that still diverges when elements change orien-

tation and that mildly penalizes any non-rigid distortion.

We choose a reweighted version of the symmetric Dirichlet en-

ergy D [Smith and Schaefer 2015], measured w.r.t. the Jacobian of

the map Ψ computed from the rest pose of S for each simplex f ,

Jf := ∇Ψf (2)

where Ψf is the restriction of Ψ over the simplex f , which is an

aine map. We divide the energy of each scafold simplex f by its

area Af , and sum them up to obtain the inal energy that favors an

equal contribution regardless of the size of each scafold simplex:

ES (Ψ|S) =
∑

f ∈S

1

Af
D(Jf)

=

∑

f ∈S

(∥ Jf ∥
2
F + ∥ J−1

f
∥2F − 2d).

(3)

The −2d term ensures that the energy is 0 when Jf = I. The map is

then computed by summing the two terms:

min
D

EM (Ψ|M) + λES (Ψ|S)

s.t. Ψ|∂D is Identity

Ψ preserves orientation.

(4)

where λ > 0 is balancing the contribution of the two energies,

decreasing as the optimization proceeds.

Iterative Regularization. Solving this problem leads to a bijective

and distortion minimizing map, but the regularizer will afect the

stationary points of EM , which is problematic, especially for large

deformations. To address this problem we iteratively minimize this

energy, regenerating the scafold at each iteration, and use the new

scafold as a rest pose for the regularization term ES (Ψ|S). This

iterative procedure has two positive efects: (1) it acts as a proximal

regularization termwithout inhibiting movement since the rest pose

is updated at each iteration; (2) the meshing quality of the scafold

is high, which avoids locking conigurations.

Interpolation Coeicient. We experimentally observed that our

algorithm is robust to diferent choices of λ, generating indistin-

guishable results in most cases. However, λ afects the convergence

speed (Figure 3). We used λ = 1
100

EM (Ψ |M)

|S |
for all our experiments,

where |S | is the number of scafold simplices.

Fig. 3. Diferent values of λ do not afect the result, but they change the

number of iterations needed. From let to right: we used a large weight

(100x ours), our weight, and a small weight (0.01x ours). The optimization

took 9,7, and 8 iterations, respectively, to reach the same energy level.

Solver. Since our energy is rotational invariant, we can mini-

mize the energy with the same quadratic proxy proposed in SLIM

[Rabinovich et al. 2017], enriching the approach with the equal-

ity constraint needed to ix the boundary ∂D. We also employ the

orientation-preserving line search [Smith and Schaefer 2015] (with

exact predicates [Shewchuk 1996]) to ensure that no triangles can

change orientation. Alternatively, other methods such as AQP [Ko-

valsky et al. 2016] could be used to minimize this energy. Since our

approach changes the mesh connectivity at every iteration, AQP

loses much of its advantages as the approximate Hessian must be

recomputed at each iteration and not prefactored. Therefore, our

approach is an ideal it for [Rabinovich et al. 2017], which takes large

steps at every iteration without relying on a constant, prefactored

matrix at each iteration. For practical applications, SLIM iterations

are suicient to minimize the energy to acceptable levels. For two

stress tests (igures 4 and 11) we used the result of SLIM as a warm

start for a Newton optimization (as suggested by [Rabinovich et al.

2017]), which quickly converges to a numerical minimum.

3.2 Surface Parametrization

Our framework can be used for many applications, one of which is

computing a bijective surface parametrization from a 3D surface into

the UV plane. We follow [Liu et al. 2008] and assume that each 3D

triangle f 3D is equipped with a rigid transformation Rf such that

applying Rf to f 3D maps f 3D to the plane. Given this transformed

triangle f , we can now measure the distortion of the map using the

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

Simplicial Complex Augmentation Framework for Bijective Maps • 186:5

Jacobian of the aine transformation (a 2 × 2 matrix) from Rf (f
3D)

to f , the location of the triangle in the parametrization.

Initialization. Our method is initialized with Tutte’s embedding

algorithm [Tutte 1963]:

Φ
0 : M3D → Ω

0,

where Ω0 is a simplicial disk domain. Then we construct a larger

rectangular domain D0 ⊃ Ω
0, where ∂D0 is an axis-aligned rectan-

gle, and use Triangle [Shewchuk 1996] to triangulate the region in

between. We enforce a quality bound of 20◦ to obtain a graded mesh

that is coarse on the boundary and conforming the boundary of Ω0.

This grading implicitly produces an approximate inverse distance

weighting of the scafold space with respect to the error function,

which enables a larger deformation per iteration. Then we deine

Ψ : D0 → D ⊂ R2 and restrict Ψ|∂D0 to be the identity.

Mesh Improvement. At the end of each iteration, we improve the

quality of the scafold. The reason for maintaining a good mesh

quality is two-fold. First, as observed in [Zhang et al. 2005; Müller

et al. 2015], ixing the scafold will potentially prevent movement.

Secondly, the quality of the scafold afects the condition of the

linear system in SLIM [Rabinovich et al. 2017]: a higher quality

leads to larger and more eicient iterations.

We resort to Triangle [Shewchuk 1996] to create the initial scaf-

fold and to regenerate the scafold mesh in the improvement step.

Our experiments show that, in 2D, it is faster to generate the mesh

from scratch at every iteration instead of trying to optimize the scaf-

fold using local operations as suggested in [Müller et al. 2015]. Since

our solver makes large steps in each iteration, the scafold requires

signiicant connectivity changes each iteration, which explains why

regenerating the triangulation is faster than local operations. This

is in stark contrast with physical simulation scenarios where each

iteration represents a small time step and, thus, a minor change in

the vertex positions.

We demonstrate the efectiveness of the remeshing strategy in

Figure 4 where our method recovers from a large rotation Ð note

that the scafold is updated during the iterations and always leaves

space for the map to move freely.

Fig. 4. A bijective map from a circle (let) to a spiral (right) is computed

without (top) and with (botom) the iterative remeshing step. The slivers in

the triangulation locks the optimization (top), preventing it from reaching

the target shape.

Sliding & Degeneracy Prevention. As the optimization proceeds

and some of the boundary elements get closer, some of the scafold

triangles might (and often will) get smaller and smaller, restricting

the amount of sliding that is allowed in one iteration as well as

introducing numerical diiculties in computing the corresponding

Jacobian Jf whose singular values will approach ininity.

To avoid this issue, we replace the degenerating target when

computing its Jacobian. For the triangles with an area smaller than

ϵ , we use an equilateral triangle with area ϵ to compute the local

Jacobian. In our experiment, we traverse through the boundary of

the interior of the uv domain at the current iteration to ind the

minimum edge length l and set ϵ = l 2

4 .

A theoretical downside of this modiication is that it afects the

distortion energy. We experimentally observed that the changes are

negligible, and we thus used it for all our experiments. However, on

the practical side, it discourages fully degenerate elements Ð this

change, coupled with the orientation preserving line search [Smith

and Schaefer 2015], makes our algorithm robust enough for the

challenging stress tests shown in Figure 5.

3.3 Extension to 3D

Our formulation naturally uniies bijective geometric optimization

problems in 2D and 3D, so the algorithm readily extends to the

3D case with only one major diference: the scafold becomes a

tetrahedral mesh, which is computationally more challenging to

create and update.

Mesh Improvement. Weuse TetGen [Si 2015] to generate the initial

scafold and the local operations proposed in [Klingner 2009] to

optimize the scafold’s quality in the subsequent iterations. It is

unfortunately not possible to directly use TetGen at every iteration

as we did with Triangle in the 2D case, since TetGen fails when

boundaries get too close, which is common in our experiments.

Guarantee. Similarly to the 2D case, we are guaranteed that no

lipping or self-intersecting tetrahedra will occur since we are fol-

lowing an interior point strategy. Notice the contrast with Air Mesh

[Müller et al. 2015] where only if penetration happens can the con-

straints be of efect. However, as pointed out in [Dougherty et al.

2004], the local operations we are performing may not be suicient

to explore the entire space of possible tetrahedralizations. There-

fore, we cannot guarantee that the algorithm achieves the globally

optimal solution.

4 RESULTS

We implemented our algorithm in C++ using Eigen for linear algebra

routines. We ran our experiments on a desktop with a 4-core Intel i7

processor clocked at 4 GHz and 32 GB of memory but using only one

thread on a single core. For all experiments, the scafold bounding

box is computed by uniformly scaling by three times the bounding

box of the image of the current map.

Robustness. To demonstrate the robustness of our algorithm, we

computed bijective maps for all the 102 meshes parametrized by

the MIQ algorithm [Bommes et al. 2009] and for the 17 meshes

parametrized by [Myles et al. 2014] in the dataset proposed by

[Myles et al. 2014]. The cuts in these meshes have been designed

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

186:6 • Z. Jiang et. al.

Fig. 5. Two models are cut using [Bommes et al. 2009] and bijectively

parametrized using our algorithm. See the additional material for more

examples.

for locally injective parametrization that usually have major self-

overlap. We use them as a stress test for the efectiveness and robust-

ness of our method: the cuts introduce a massive distortion in the

Tutte initialization and lead to boundaries that are prone to overlap

in hundreds of locations. Our method successfully creates bijective

parametrizations for all these models with default parameters. We

attach all the parametrized models in the additional material and

show two examples in Figure 5.

Scalability. Our methods scales gracefully to large datasets, simi-

larly to [Rabinovich et al. 2017]. We repeat their scalability experi-

ment, but producing bijective maps instead of just locally injective

maps (Figure 6). The behaviour is remarkably similar Ð the density

of the model (and consequently of the scafold) does not afect the

number of required iterations.

Texture Atlas Generation. UV mapping is a time consuming pro-

cedure required in most geometric modeling pipelines. Existing

commercial tools provide the ability to latten single patches and ar-

range them in UV layouts where multiple patches are tightly packed

inside a rectangular domain, which is then loaded in the texture

memory of a GPU.

Our algorithm can bijectively parameterize a single patch (Figure

7), avoiding the typical manual UV postprocessing required with

traditional tools. Our algorithm can also be used to create auto-

matic UV charts of models with multiple connected components

(or predeined cut edges). We show an example in Figure 8 where

we detected the connected components, bijectively map the patches

Fig. 6. We compare the distortion energy with respect to the number of

iterations on a set of Lucy’s meshes with diferent resolutions (from 1 to

12 million faces). In the center of the plot, we show the 1M Lucy model

parametrized by our algorithm.

Fig. 7. A mesh is cut by an artist into a single chart and parametrized using

SLIM [Rabinovich et al. 2017] (let) and with our algorithm (right). Note that

local-injectivity is not suficient for this model, since the global overlaps

in the highlighted region prevent this parametrization from being a UV

texture map. Our result (right) is guaranteed to be bijective.

into a set of circles (using a grid layout), and reduce their distortion

using our algorithm. The result is a tight and automatic packing

without resorting to any user-interaction. Additional interactive

tools can further improve the atlas by dragging&dropping regions

or translating islands while ensuring that no overlaps are introduced

(Figure 1). We show interactive sessions using our packing tool in

the additional material.

Preventing Self-Intersections. Our algorithm can be generalized to

handle mixed dimension problems, such as the deformation of 2D

surface in 3D space, while preventing self-intersections. In Figure 9,

we demonstrate the use of our method to resolve self-intersections

of surfaces. First we perform a conformalized low [Kazhdan et al.

2012] using the algorithm proposed in [Sacht et al. 2013] to resolve

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

Simplicial Complex Augmentation Framework for Bijective Maps • 186:7

Fig. 8. A model with multiple chart (let) is automatically parametrized in

a texture atlas (botom-right) by first mapping each component to a circle

(top-right) and then minimizing the distortion.

Fig. 9. We remove the self-intersections from a genus 0 model using the

conformalized flow [Kazhdan et al. 2012; Sacht et al. 2013]. The flow is

inverted, while using our algorithm to compute a bijective volumetricmap, to

recover a self-intersection free version of the original surface. The final model

can now be meshed using TetGen, since it is free from self-intersections.

any self-intersections. While [Sacht et al. 2013] will resolve the

intersections, the resulting surface may be geometrically far from

the initial shape (see Figure 9). Next we tetrahedralize the ambient

space while conforming to the deformed surface mesh and minimize

Equation 4 with an additional energy term that strives to restore the

rest pose geometry of the surface, using the surface ARAP energy

proposed in [Sorkine and Alexa 2007]. The result is a surface similar

to the original mesh, but without self-intersections. In this example,

it is possible to observe that even dramatic changes of scale (on the

foot) can be robustly handled by our parametrization algorithm.

A more challenging stress test is shown in Figure 10, where the

bunnymodel is scaled up inside a box, to 30 times its original size. No

self-intersections are introduced, despite the extreme, constrained

deformation.

Comparison with [Smith and Schaefer 2015]. The algorithm clos-

est to ours is [Smith and Schaefer 2015], which tackles a similar

problem (restricted to the 2D case). We replicated the space illing

curve experiment and obtained remarkably similar results, where

our running time is 96s, compared with 8,472s for [Smith and Schae-

fer 2015] (88 times faster). We show in Figure 11 a more challenging

Fig. 10. We grow a bunny inside a box, while preventing self-intersections.

We show the result ater 0,10,20,30,40, and 50 iterations.

Fig. 11. We repeat the challenging test in [Smith and Schaefer 2015] with a

subdivided version of their Hilbert curve to increase the triangle count. Our

method starts from a disc (upper let), gracefully extends (upper right), and

reaches the same minimum (lower let) in 39 minutes whereas [Smith and

Schaefer 2015] didn’t terminate more than 5 days (lower right), highlighting

our performance boost of over 200 times.

experiment with a subdivided version of the space illing curve to

emphasize the performance diference: our algorithm converges

in 39 minutes, while [Smith and Schaefer 2015] did not converge

after 5 days and 21 hours. For this example, we used the procedure

suggested in [Rabinovich et al. 2017]: we performed a few iterations

minimizing the quadratic proxy and then switch to a traditional

newton method until numerical convergence. A video of the opti-

mization is provided in the additional material.

Our method produces results that are visually identical to [Smith

and Schaefer 2015]. In Figure 12 we repeat the experiments shown

in [Smith and Schaefer 2015], stopping our optimization at the same

energy value.

Local vs Global Optimization. Both [Zhang et al. 2005] and [Misz-

tal and Bñrentzen 2012] use a construction similar to ours to gen-

erate bijective maps (Section 2). Both methods explicitly prevent

changes of orientation using a local approach: they optimize the

map using coordinate descent iterations [Solomon 2015] allowing

only one vertex at a time to move in its 1-ring and thus ensuring that

no triangle lip. This strategy severely limits the maximal displace-

ment per iteration and restricts the step to the size of the 1-rings.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

186:8 • Z. Jiang et. al.

0.10502

0.104597

0.0896

0.09841

0.08476

0.08695

0.08948

0.09568

Fig. 12. We apply our algorithm on 4 models used in [Smith and Schaefer

2015] (using the same stopping criteria) obtaining visually identical results.

Distortion errors produced by our algorithm (outer) and theirs (inner) are

shown in black.

Fig. 13. A single iteration of our algorithm (from let to right) drastically

reduces the distortion. The black vector in the center is 150 times longer

than the average edge length of its 1-ring. Iterative methods would need

thousands of iterations to achieve a similar progress.

Such a restriction makes these methods impractical for parametriza-

tion applications since the diference in scale between the Tutte’s

embedding and the inal result is extreme (the ratio of min and max

triangle area is 10−6 in Figure 13). We show an example of one of

our iterations in Figure 13, where the highlighted vertex traversed a

distance of 150 times the size of the average edge length of its 1-ring

in one single step. Using coordinate descent would have required

hundreds of iterations to achieve the same efect.

Despite the orientation-dependent box used as scafold boundary,

our optimization produces results that are, in practice, independent

of orientation. We show this efect in Figure 14 where we initialize

the optimization with 1000 randomly rotated Tutte’s mappings of

the same camel model and run our optimization. The isometric

distortion of the model after 50 iterations is quite similar in all trials

(the minimum, maximum, average, standard deviation of distortion

errors in all 1000 runs are 0.1086, 0.1107, 0.1095, 3.2698e-4 resp.)

indicating very little change based on the initial orientation.

Fig. 14. Our algorithm is independent to the initial orientation. We rotate

the initializing Tute’s mapping of the camel model and obtain results with

similar isometric distortion.

Type Model #V #F #VS #FS It. Total Time (s) It. Time (s)

Atlas
Nefertiti (Fig. 1) 1697 2823 983/ 247 1945 /728 50 0.71 0.01

Maneki-Neko (Fig. 8) 23025 43648 2427 /725 7174/ 3770 50 16.81 0.34

2D

Hand (Fig. 3) 2239 4046 347/280 1104/970 7 0.14 0.02

Spiral (Fig. 4) 54 52 78/36 190/106 50(50) 0.04(0.21) 0.01

Thai Statue (Fig. 5, left) 42405 79970 3665/1593 12148/8004 50 28.28 0.56

Filigree (Fig. 5, right) 56062 100000 9160/2627 30422/17356 100 75.99 0.76

Lucy (Fig. 6) 501105 1000000 1856/ 3470 5900/ 5674 100 2524.22 25.24

Lucy (Fig. 6) 1001375 1999999 2284/ 4400 7297/ 7133 100 7251.00 72.51

Lucy (Fig. 6) 2002031 3999999 3587/ 6930 11215/ 10985 100 22500.07 225.00

Lucy (Fig. 6) 3002899 5999999 5135/ 9859 16047/ 15601 100 52235.31 522.35

Lucy (Fig. 6) 4002816 8000000 5140/ 10288 15890/ 15918 100 59413.14 594.13

Lucy (Fig. 6) 5003408 10000000 6194/ 12231 19182/ 19040 100 95247.59 952.47

Lucy (Fig. 6) 6004111 12000000 7357/6418 2291/21036 50 78726.05 1574.52

Animal (Fig. 7) 19937 39040 747/593 2306/1998 50 15.36 0.31

Space Filling (Fig. 11) 79545 146832 90815/88237 181608/176452 200(250) 547.13(1836.58) 5.30

Horse (Fig. 12) 20636 39698 1343/984 4238/3520 30(10) 8.26(12.03) 0.28(1.20)

Camel (Fig. 12) 2032 3576 384/272 1234/1010 30(10) 0.52(1.13) 0.02(0.11)

Cow (Fig. 12) 3195 5804 491/277 1546/1118 30(10) 0.81(1.74) 0.03(0.17)

Tricera (Fig. 12) 3163 5660 544/329 1732/1302 30(10) 0.83(1.77) 0.03(0.18)

3D
Leg (Fig. 9) 6617 13230 5016/5021 68521/68544 500 3251.17 6.50

Bunny (Fig. 10) 568 1132 683/706 6209/6289 50 7.16 0.14

Table 1. Timings and statistics for the models shown in the paper. From

let to right: number of input vertices and simplices, number of initial/final

scafold vertices and simplices, number of iterations, running time in seconds.

The numbers in parenthesis refer to the Newton optimization. Note that our

timings are considerably higher than those reported in the SLIM paper for

the Lucy model since we used the reference implementation in [Jacobson

et al. 2014], which does not use a multi-threaded solver.

Timings. The timings for all the results in the paper are reported

in Table 1.

5 LIMITATIONS AND CONCLUDING REMARKS

We proposed a simple and robust algorithm to generate bijective

maps, both in 2D and 3D. We demonstrated the practical value of

the algorithm in UV mapping and deformation applications, and its

robustness with extensive stress tests.

One major venue for future work is the support of hard posi-

tional constraints, which are favored over soft constraints in many

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

Simplicial Complex Augmentation Framework for Bijective Maps • 186:9

practical applications. Our current algorithm only supports soft

constraints as geometric energy [Schüller et al. 2013]. To support

hard constraints we would need to generate a bijective starting

point that guarantees those constraints, and then preserve them in

our optimization. While bijecive maps with hard constraints can

be constructed for a 2D patch homeomorphic to a disk [Weber and

Zorin 2014] and for a 3D volume homeomorphic to a ball [Campen

et al. 2016], the generic solution is still elusive.

In 3D cases, the generation of the initial scafold is not as robust

as in 2D, since TetGen fails for geometries with self-intersections

and other imperfections. Our algorithm is also slower in 3D due to

larger and denser linear systems, as well as the need for local mesh

reinement operations instead of regenerating the entire tetrahedral-

ization. We believe a more optimized and parallel implementation

could reduce this overhead, and plan to explore this in the future.

ACKNOWLEDGMENTS

The authors would like to thank Michael Rabinovich and Roi Po-

ranne for providing the source code and Lucy models for [Rabi-

novich et al. 2017], Leonardo Sacht for providing the source code

and Leg model for [Sacht et al. 2013], and the anonymous reviewers

for their insightful comments and suggestions.

REFERENCES
Noam Aigerman, Roi Poranne, and Yaron Lipman. 2014. Lifted Bijections for Low

Distortion Surface Mappings. ACM Trans. Graph. 33, 4 (2014), 69:1ś69:12.
Samantha Ainsley, Etienne Vouga, Eitan Grinspun, and Rasmus Tamstorf. 2012. Specu-

lative Parallel Asynchronous Contact Mechanics. ACM Trans. Graph. 31, 6, Article
151 (2012), 8 pages.

David Bommes, Marcel Campen, Hans-Christian Ebke, Pierre Alliez, and Leif Kobbelt.
2013. Integer-grid Maps for Reliable Quad Meshing. ACM Trans. Graph. 32, 4, Article
98 (July 2013), 12 pages.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation.
ACM Trans. Graph. 28, 3, Article 77 (July 2009), 10 pages.

Marcel Campen, Cláudio T. Silva, and Denis Zorin. 2016. Bijective Maps from Simplicial
Foliations. ACM Trans. Graph. 35, 4, Article 74 (July 2016), 15 pages.

P. Degener, J. Meseth, and R. Klein. 2003. An Adaptable Surface Parameterization
Method. In Proceedings of the 12th International Meshing Roundtable. 201ś213.

Randall Dougherty, Vance Faber, and Michael Murphy. 2004. Unlippable Tetrahedral
Complexes. Discrete & Computational Geometry 32, 3 (01 Sep 2004), 309ś315. https:
//doi.org/10.1007/s00454-004-1097-3

Michael S. Floater. 1997. Parametrization and smooth approximation of surface trian-
gulations. Computer Aided Geometric Design 14 (1997), 231ś250.

Michael S. Floater and Kai Hormann. 2005. Surface Parameterization: a Tutorial and
Survey. In In Advances in Multiresolution for Geometric Modelling, Mathematics and
Visualization. Springer Verlag, 157ś186.

Xiao-Ming Fu and Yang Liu. 2016. Computing Inversion-free Mappings by Simplex
Assembly. ACM Trans. Graph. 35, 6, Article 216 (Nov. 2016), 12 pages.

Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing Locally Injective Mappings
by Advanced MIPS. ACM Trans. Graph. 34, 4, Article 71 (July 2015), 12 pages.

Craig Gotsman and Vitaly Surazhsky. 2001. Guaranteed intersection-free polygon
morphing. Computers & Graphics 25, 1 (2001), 67ś75.

David Harmon. 2010. Robust, eicient, and accurate contact algorithms. Ph.D. Disserta-
tion. Columbia University.

David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin. 2011. Interference-
aware Geometric Modeling. ACM Trans. Graph. 30, 6, Article 137 (Dec. 2011),
10 pages.

David Harmon, Etienne Vouga, Breannan Smith, Rasmus Tamstorf, and Eitan Grinspun.
2009. Asynchronous Contact Mechanics. ACM Trans. Graph. 28, 3, Article 87 (July
2009), 12 pages.

K. Hormann and G. Greiner. 2000. MIPS: An Eicient Global Parametrization Method.
In Curve and Surface Design: Saint-Malo 1999. 153ś162.

Kai Hormann, Bruno Lévy, and Alla Shefer. 2007. Mesh Parameterization: Theory and
Practice. In ACM SIGGRAPH 2007 Courses (SIGGRAPH ’07). ACM, New York, NY,
USA.

Alec Jacobson, Daniele Panozzo, et al. 2014. libigl: A simple C++ geometry processing
library. (2014). http://igl.ethz.ch/projects/libigl/.

P. Jimenez, F. Thomas, and C. Torras. 2001. 3D collision detection: a survey. Computers
& Graphics 25, 2 (2001), 269 ś 285.

Michael Kazhdan, Jake Solomon, and Mirela Ben-Chen. 2012. Can Mean-Curvature
Flow Be Modiied to Be Non-singular? Comput. Graph. Forum 31, 5 (Aug. 2012),
1745ś1754.

Bryan Matthew Klingner. 2009. Tetrahedral mesh improvement. Ph.D. Dissertation.
University of California at Berkeley.

Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated Quadratic
Proxy for Geometric Optimization. ACM Trans. Graph. 35, 4, Article 134 (July 2016),
11 pages.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérome Maillot. 2002. Least Squares
Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3
(July 2002), 362ś371.

Yaron Lipman. 2012. Bounded Distortion Mapping Spaces for Triangular Meshes. ACM
Trans. Graph. 31, 4 (2012), 108:1ś108:13.

Yaron Lipman. 2013. Construction of InjectiveMappings OfMeshes. CoRR abs/1310.0955
(2013). http://arxiv.org/abs/1310.0955

Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. 2008. A Lo-
cal/Global Approach to Mesh Parameterization. In Proceedings of the Symposium on
Geometry Processing (SGP ’08). Eurographics Association, Aire-la-Ville, Switzerland,
Switzerland, 1495ś1504.

Marek Krzysztof Misztal and Jakob Andreas Bñrentzen. 2012. Topology-adaptive
Interface Tracking Using the Deformable Simplicial Complex. ACM Trans. Graph.
31, 3, Article 24 (June 2012), 12 pages.

Matthias Müller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air
Meshes for Robust Collision Handling. ACM Trans. Graph. 34, 4, Article 133 (July
2015), 9 pages.

Ashish Myles, Nico Pietroni, and Denis Zorin. 2014. Robust Field-aligned Global
Parametrization. ACM Trans. Graph. 33, 4, Article 135 (July 2014), 14 pages.

Kazim Pal, Christian Schüller, Daniele Panozzo, Olga Sorkine-Hornung, and Tim
Weyrich. 2014. Content-Aware Surface Parameterization for Interactive Restoration
of Historical Documents. Computer Graphics Forum (proceedings of EUROGRAPHICS
issue) 33, 2 (2014).

Roi Poranne and Yaron Lipman. 2014. Provably Good Planar Mappings. ACM Trans.
Graph. 33, 4 (2014), 76:1ś76:11.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 16 (2017),
16 pages.

Leonardo Sacht, Alec Jacobson, Daniele Panozzo, Christian Schüller, and Olga Sorkine-
Hornung. 2013. Consistent Volumetric Discretizations Inside Self-Intersecting Sur-
faces. Computer Graphics Forum (proceedings of EUROGRAPHICS/ACM SIGGRAPH
Symposium on Geometry Processing) 32, 5 (2013), 147ś156.

Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. 2001. Texture
Mapping Progressive Meshes. In ACM SIGGRAPH. 409ś416.

Christian Schüller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung. 2013.
Locally Injective Mappings. In Symposium on Geometry Processing. 125ś135.

Alla Shefer, Emil Praun, and Kenneth Rose. 2006. Mesh Parameterization Methods and
Their Applications. Found. Trends. Comput. Graph. Vis. 2, 2 (2006), 105ś171.

Jonathan Shewchuk. 1996. Triangle: Engineering a 2D quality mesh generator and De-
launay triangulator. Applied computational geometry towards geometric engineering
(1996), 203ś222.

Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM
Transactions on Mathematical Software (TOMS) 41, 2 (2015), 11.

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.
ACM Trans. Graph. 34, 4, Article 70 (July 2015), 9 pages.

Justin Solomon. 2015. Numerical Algorithms: Methods for Computer Vision, Machine
Learning, and Graphics. A. K. Peters, Ltd., Natick, MA, USA.

Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible Surface Modeling. In Pro-
ceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP ’07).
Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 109ś116.

Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski. 2002. Bounded-
distortion Piecewise Mesh Parameterization. In Proceedings of the Conference on
Visualization. 355ś362.

Vitaly Surazhsky and Craig Gotsman. 2001. Morphing stick igures using optimized
compatible triangulations. In Computer Graphics and Applications, 2001. Proceedings.
Ninth Paciic Conference on. IEEE, 40ś49.

W. T. Tutte. 1963. How to draw a Graph. Proceedings of the London Mathematical Society
13, 3 (1963), 743ś768.

Oir Weber and Denis Zorin. 2014. Locally Injective Parametrization with Arbitrary
Fixed Boundaries. ACM Trans. Graph. 33, 4, Article 75 (July 2014), 12 pages.

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2005. Feature-based Surface
Parameterization and Texture Mapping. ACM Trans. Graph. 24, 1 (Jan. 2005), 1ś27.

Kun Zhou, John Synder, Baining Guo, and Heung-Yeung Shum. 2004. Iso-charts: Stretch-
driven Mesh Parameterization Using Spectral Analysis. In Proceedings of the 2004
Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (SGP ’04). ACM,
New York, NY, USA, 45ś54.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 186. Publication date: November 2017.

	Abstract
	1 Introduction
	2 Previous Work
	3 Method
	3.1 General Formulation
	3.2 Surface Parametrization
	3.3 Extension to 3D

	4 Results
	5 Limitations and Concluding Remarks
	Acknowledgments
	References

