Autocuts:

Simultaneous Distortion and Cut Optimization for UV Mapping

ROI PORANNE, ETH Zurich

MARCO TARINI, CNR-ISTI and Univ. Insubria
SANDRO HUBER, ETH Zurich

DANIELE PANOZZO, New York University
OLGA SORKINE-HORNUNG, ETH Zurich

Automatic result

4 Random init.

Bounding box

Back

.

With assistance ~ \ [ User-assisted tearing )

- ' J

Fig. 1. Our method produces high quality UV maps, balancing the number of seams and the distortion of the map. The method runs at interactive rates and
can provide artists with complete control over the UV map if desired. We offer interactive tools such as bounding boxes for packing islands (left), painting of
regions that attract or discourage seam creation, and semi-automatic removal of overlapping regions. Each tool provides interactive feedback, drastically

simplifying the design of complex UV maps.

We propose a UV mapping algorithm that jointly optimizes for cuts and
distortion, sidestepping heuristics for placing the cuts. The energy we mini-
mize is a state-of-the-art geometric distortion measure, generalized to take
seams into account. Our algorithm is designed to support an interactive
workflow: it optimizes UV maps on the fly, while the user can interactively
move vertices, cut mesh parts, join seams, separate overlapping regions,
and control the placement of the parameterization patches in the UV space.
Our UV maps are of high quality in terms of both geometric distortion and
cut placement, and compare favorably to those designed with traditional
modeling tools. The UV maps can be created in a fraction of the time as ex-
isting methods, since our algorithm drastically alleviates the trial-and-error,
iterative procedures that plague traditional UV mapping approaches.

This work is partially supported by the European Research Council under Grant
No.: StG-2012-306877 (ERC Starting Grant iModel), NSF CAREER award (1652515),
PRIN project “DSURF” (2015B8TRFM), and a gift from Adobe Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

0730-0301/2017/11-ART215 $15.00

https://doi.org/10.1145/3130800.3130845

CCS Concepts: « Computing methodologies — Computer graphics;
Shape modeling;

Additional Key Words and Phrases: UV mapping, parameterization, cuts,
distortion minimization

ACM Reference format:

Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-
Hornung. 2017. Autocuts: Simultaneous Distortion and Cut Optimization
for UV Mapping. ACM Trans. Graph. 36, 6, Article 215 (November 2017),
11 pages.

https://doi.org/10.1145/3130800.3130845

1 INTRODUCTION

UV maps are ubiquitously used in computer graphics to map reg-
ularly sampled 2D data, such as colors, normals, or displacements,
onto surfaces embedded in 3D. The design of UV maps has received
extensive attention in the research community in the last three
decades. It is traditionally divided into two steps: the computation
of optimal cuts, also called seams, and the minimization of the distor-
tion of the resulting patches as they are mapped onto the plane. The
two sub-problems are very different in nature: the former is discrete
and combinatorial, since the cuts are selected from a discrete set

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.



215:2 « Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung

of mesh edges, and the latter is continuous, since the distortion
depends on the UV coordinates of the mesh vertices. The cuts are
typically computed first and heavily affect the quality of the result-
ing parameterization; if the quality of the UV map is not sufficiently
good for the intended application, the user must alter the cuts and
re-run the parameterization computation, possibly repeating this
trial-and-error loop several times.

We present the first approach to jointly optimize cuts and geomet-
ric distortion. Our algorithm minimizes state-of-the-art distortion
measures at interactive rates while identifying an adequate set of
mesh edges to cut. While previous methods optimize for either
cuts or distortion alone, our formulation automatically introduces
cuts and minimizes distortion within the same energy optimization
process. The key idea of our algorithm is to model the UV map
by parameterizing each triangle individually, using an attraction
energy to encourage the parameterization to be continuous over
matching edge pairs. A sparsity inducing norm over the attraction
energy results in only a few edge pairs not merging, and these are
the seams of the final UV map. Intuitively, this corresponds to a
relaxation of the classical binary notion of seams: instead of tag-
ging each edge as either a seam or a regular edge, we allow it to be
something in-between during the optimization. As the algorithm
converges, the edges come closer and closer to either becoming
seams or regular edges, until they are close enough to be “snapped”
to one of the two binary choices.

While our algorithm can already be useful in automatic mode, its
advantage is supporting the interactive workflow that is preferred
by digital artists: our optimization runs in the background, while
the user can interactively move vertices, cut mesh parts, join seams,
remove self-overlapping regions and pack the resulting patches in
the UV space (see Fig. 1 and the accompanying video). All such
constraints can be either hard, overriding the energy-minimizing
decisions favored by our algorithm, or soft, steering the optimization
in the desired direction.

We expect our algorithm to impact the design of UV maps, since
it eliminates the frustrating trial-and-error pipeline that is currently
commonplace. Furthermore, it offers an interactive interface that en-
ables artists to manually specify the semantically relevant portions
of the map, while automatically handling the remaining optimiza-
tion in the background. We provide a reference and open-source
implementation of our method (see Section 4) to ensure replicability
of our results and encourage integration into existing tools.

2 RELATED WORK

Surface parameterization, or UV map construction, is widely covered
in the literature [Hormann et al. 2007; Sheffer et al. 2006]. The sub-
problems of computing the cuts and minimizing distortion have
been extensively studied — however, mostly separately.

2.1 Minimizing distortion

Most applications require the parameterization mapping to be as
isometric as possible, i.e., preserve angles and areas as much as pos-
sible. A large number of distortion measures have been proposed to
quantify the discrepancy between a given mapping and an isometry.
A chosen distortion measure is typically optimized by the UV map
over the space of per-vertex UV assignments.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.

Conformal distortion measures, which only penalize angular dis-
tortion, can be expressed as quadratic functions of the UV variables
[Desbrun et al. 2002; Lévy et al. 2002], leading to a sparse least-
squares problem, which is very efficient to solve. Unfortunately,
distortion measures that also consider area (e.g. [Hormann and
Greiner 2000; Liu et al. 2008; Sander et al. 2001]) are nonlinear and
non-convex, and hence challenging to minimize. This has elicited
the search for good algorithmic and numeric solutions tailored to
this specific purpose.

Among the most successful approaches, local/global optimization
[Liu et al. 2008] alternates between computing a perfectly isomet-
ric but discontinuous mapping per face, and stitching it by global
optimization to create a continuous but no longer isometric map-
ping. Our approach borrows the fruitful idea of assigning separate
per-corner variables to each vertex, one for each incident triangle,
effectively detaching each triangle in UV space.

Recent works formulate sophisticated and highly non-convex ob-
jective functions that enable finding nearly isometric and inversion-
free parameterizations by continuous optimization, which works
by minimizing an iteratively updated convex proxy [Kovalsky et al.
2016; Rabinovich et al. 2017; Smith and Schaefer 2015]. We propose
to take another leap forward and include cut optimization together
with a state-of-the-art distortion measure, in the same objective
function. This is far from trivial because cut optimization and dis-
tortion minimization have drastically different behaviors: the latter
tends to spread the error equally over the surface, while the former
must concentrate the error in a discrete set (the cut vertices) and
leave it at zero everywhere else, due to the binary nature of cutting.
Hence, intuitively, an objective function that accommodates both
cuts and low distortion must be extremely non-convex.

2.2 Optimizing cuts
The task of automatic computation of cuts is still an open prob-
lem despite extensive research on mesh parameterization. Many
parameterization methods accept cuts as input and compute the
mapping of a surface that has the topology of one or several disks.
Earlier methods require the shape of the cut in the UV domain to
be specified as well (e.g. [Floater 2003]). More recent free-boundary
methods optimize the shape of the whole 2D patch, including the
boundary (e.g. [Desbrun et al. 2002; Lévy et al. 2002; Liu et al. 2008;
Sheffer et al. 2005]). Current work succeeds to avoid local and global
self-intersections while leaving the boundary free and minimizing
an isometric distortion measure [Smith and Schaefer 2015].

In several works, cuts are identified as part of the parametrization
process. They can be roughly categorized into three different groups,
detailed below.

Cuts for remeshing applications. A large portion of recent parame-
terization literature tends to focus on quadrilateral remeshing appli-
cations, while we are interested in texture mapping. In remeshing
oriented parameterization, cut placement is largely inconsequential,
as long as the two sides of every cut match in the UV space up
to a rotation by an integer multiple of 7/2 and an integer number
of translation steps. A cut with this property is sometimes called
“griddable”, as it can be seamlessly traversed by a grid, and the pa-
rameterization is then termed “seamless”. The problem of good cut



Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping « 215:3

placement is therefore often disregarded in remeshing (see, e.g.,
[Bommes et al. 2009] and the survey [Bommes et al. 2013]). The
placement of cone singularities, which can be understood as end-
points of griddable cuts, is still crucial, and can be the subject of a
separate optimization [Ben-Chen et al. 2008; Myles and Zorin 2013].
Some works optimize the positions of the griddable cuts on the mesh
(starting from the cones) for attributes like straightness or field align-
ment, and shortness [Campen and Kobbelt 2014; Tarini et al. 2011].
The interactive design of the singularity graph [Takayama et al.
2013; Tong et al. 2006] can also be seen as a special way of pre-
scribing griddable cuts. Unfortunately, in the context of traditional
texture mapping applications, griddable cuts are less useful and
impose unnecessary constraints that are only necessary for the case
of quadrilateral meshing. Although they can offer certain benefits
for specific types of texture mapping [Ray et al. 2010], griddable
cuts are not strictly required and hardly ever used, e.g., in the game
industry. One key reason is that general cuts, but not griddable ones,
serve the important purpose of trading Gaussian curvature inside
patches for line curvature at their boundary, reducing distortion.
This consideration is the basis for the algorithms described below.

Adding cuts while minimizing distortion. Many methods generate
new cuts as a means to counter excessive local distortion. One way
is to alternate between minimizing a distortion energy and greedily
placing additional cuts every time the distortion exceeds a certain
threshold, see e.g. [Gu et al. 2002; Sorkine et al. 2002]. An alternative
is to first identify good candidate locations for cuts by analyzing
the Gaussian curvature and visibility, see e.g. [Ben-Chen et al. 2008;
Sheffer and Hart 2002]. All these methods attempt to balance distor-
tion and cuts as part of the same iterative procedure; however, the
cut placement relies on heuristics without directly being part of a
global optimization of the map, unlike in our approach.

Generating cuts by mesh partitioning. Many parameterization
methods developed in the course of over three decades partition the
initial mesh into separate patches (i.e., separate connected compo-
nents) with disk topology, thereby defining cuts as boundaries of
the partitions. The partitioning can be guided by a variety of consid-
erations, for example by clustering triangles according to features
[Zhang et al. 2005], normals [Maillot et al. 1993] or developability
criteria [Julius et al. 2005], seeding and expanding regions [Lévy et al.
2002], computing a centroidal Voronoi tessellation on the surface
[Boier-Martin et al. 2004], simplifying the mesh and using the poly-
gons of the base mesh to define charts [Khodakovsky et al. 2003],
tracing cuts following a cross field [Campen and Kobbelt 2014], or
abiding to a curved skeleton of the surface [Usai et al. 2015] (each
item in this list is represented by one citation of many). While the
choices behind these approaches are all inspired by valid, general
considerations regarding their effect on the final parameterization
quality, the a priori assumptions are indirect and cannot be expected
to lead to optimal UV maps. Typically, the patches tend to be smaller
and more numerous than desirable. An additional limitation is that
by construction, cuts can only appear between elements belonging
to different patches. This imposes an artificial constraint, which is
often violated in many good cut layouts, such as the typical man-
ually designed ones, where cuts are free to appear also between
polygons belonging to the same patch.

Bypassing the need for cuts. A long lived trend in the context of
research on texture mapping strives to bypass rather than solve the
task of identifying good cuts [Tarini et al. 2017], either by providing
a complete substitute for 2D parametrization and 2D texture map-
ping altogether [Benson and Davis 2002; Burley and Lacewell 2008;
Christensen and Batali 2004; Lefebvre and Hoppe 2006; Tarini et al.
2004; Yuksel et al. 2010], or by diminishing some of the detrimental
effects of cuts, thus making their positioning less crucial or even
inconsequential [Lefebvre and Dachsbacher 2007; Purnomo et al.
2004; Ray et al. 2010; Tarini 2012, 2016]. All these methods pro-
vide new perspectives and tradeoffs. At the same time, the industry
almost unanimously sides with the traditional format of UV and
texture maps, probably due to a combination of benefits that they
offer, which are currently not matched in full by any of the alterna-
tives. Aside familiarity, these include, in terms of content creation:
generality, full adaptability, fruitful analogy between texture and
traditional 2D images (exploited in a variety of ways, like direct
painting on 2D textures), and in terms of rendering: simplicity, time
and resource efficiency, paramount GPU-friendliness, the ability to
apply filters and pre-filtering (MIP-mapping). For all these reasons,
we believe that the problem of defining good cuts in UV mappings
remains highly relevant.

Existing tools for manual cut placement. In the graphics related
industry, the task of producing UV mappings is invariably com-
puter assisted rather than fully automatic; distortion minimization
is successfully delegated to automatic algorithms, while the place-
ment of cuts usually requires manual intervention by trained digital
artists. Specialized interfaces and sophisticated interactive tools are
provided by all modern modeling packages, yet the task remains
time consuming (see the accompanying video). If the input mesh
is irregular, the difficulty increases because the UV mapper cannot
quickly select consecutive edges (so-called edge loops) to elect as
cuts. Our method offers an improvement, as it removes the necessity
of full manual cut selection and does not rely on regularity of the
mesh connectivity.

3 UV OPTIMIZATION METHOD

One goal of UV mapping is to parameterize a mesh with minimal
distortion and minimal length of cuts. One extreme is to do the
minimal cuts necessary to induce disk topology, which results in
highly distorted triangles useless for texture mapping applications,
and the other extreme is placing cuts on all internal edges, such
that each triangle is mapped without any distortion [Burley and
Lacewell 2008]. In this work, we propose a method to interactively
explore the solution space.

In our formulation, we treat the original mesh
as a triangle soup, where each triangle is separated
from the others. Every interior edge is duplicated " Y4
and appears as two copies in the triangle soup.

Each vertex is duplicated several times according 3

to its degree, and the copies are called corners. We U2y 22
denote the vertices, edges and faces of the original "
mesh by vj, ej, fi, and use the subscripts i, j,k to
refer to vertex-, edge- and face-related quantities.
For instance, Ay, is the area of face f}, and [; is the

Uzl Us2

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.



215:4 « Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung

Fewer cuts

More cuts

S

S

NN,
MR
VWY

SN
AR

AN

S
7
2\

e,

220D

<
S
L

Eeeeeee

S

2

0

i
T7at

0,
X

&
<

0

Lo

s
RS,

oz

2
S22
=

2\
2\

iy
R

NN
AT
oy

&

A A AT A AT A AT AT AV AT A A AV
S

N
A
AN
IR
GRRRRS

s
s

D
DS
2

>
%
20
5
2
2
=

NN
W
““k‘l

7
T

%
%

=5
%

Z

2

X

2

Eo
7

%
K
%

Z
>
¢z

N

Fig. 2. Balancing between cuts and distortion. The example on the left shows
a less distorted parameterization at the cost of more cuts, i.e. discontinuities.
The example on the right is more distorted, but also more continuous.

length of edge e;. We use mixed subscripts to identify edge copies
and corners in the triangle soup, e.g., e refers to the copy of edge
ej that is incident to face fi, and v;j refers to the corner vertex
originating from v; and residing in face fi. The variables in our
optimization are the positions of the corners in UV space, denoted
by X = {x;x = (Ui, Vir)}. Finally, we use fi(X) to refer to all the
variables related to fi., meaning the three corner UVs x; of fi (and
similarly, e;(X), ek (X), etc.).

A parameterization of a triangle soup is a mapping of each triangle
to the plane. A cut occurs when two copies of an edge are separated
and do not completely coincide. In the broadest sense, our approach
consists in solving the following optimization problem:

min E(X) = min (1-2)D(X) + 1S(X), 1)

where E is the total objective function, D is a distortion objective
(such as preservation of angles or areas), S is a separation objective,
and the parameter A controls the balance between the two objectives
(Fig. 2). The two objectives are defined as a weighted sum over the
faces and edges, respectively:

DX)= Y AEg(fiX), SX) = > LiEs(e;(X), (@)
face k edge j

where Eq is a triangle distortion measure and Es is an edge sepa-
ration measure. While distortion measures have been thoroughly
discussed in previous work (Sec. 2), there is less relevant work
related to separation measures. Identifying an appropriate such
measure is one of the main challenges of this work. We discuss our
choice next and briefly address distortion measures afterward.

The separation measure. Given two copies of an edge positioned
in UV space, our goal is to find a meaningful measure of their
separation. A somewhat similar problem has been discussed in the
field of discontinuous Galerkin methods [Cockburn et al. 2000],
where nonconforming (i.e., discontinuous) finite elements are used.
Babuska and Zlamal [1973] proposed to measure the Ly norm of
the jump along the edge. A more modern approach uses the notion
of numerical flux, which is usually defined as a combination of the
integral of the average and the difference of a function along the

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.

edges [Arnold et al. 2001]. Recently, another separation measure
appeared in [Fu and Liu 2016], utilized for computing bijective maps.
This measure, called an edge-assembly constraint, is essentially the
norm of the difference between the two edge vectors.

In our setting, we observe that an edge can have one
of three distinct states when considering cuts: It can be
uncut, half-cut (where one of the endpoint vertices is
split but the other is not), and fully cut (see inset). The
measures described above cannot distinguish between
fully cut and half-cut states. Instead, we propose to
consider each pair of corners at each of the edge end-
points independently. That is, the separation measure
includes both distances between the two pairs of end-
points. More precisely, let fi, and f, be two faces
that share an edge e; with two endpoints v;, v;,. We define a corner
separation measure applied to both pairs v;;(X) and v ;(X), i.e., the
two pairs of corners at the endpoints of e;:

Es(vij(X)) = s (||xix, — Xk, [) - 3)
Es(0rj(X) = s ([|xirk, = Xirko|]) -

where s(-) is a monotonic weight function defined later. We then
rewrite the problem in Eq. (2) as follows:

minimize for X E(X) = 4
= (=1 D AcBa(fie) + 4 Y Ls(llxir, = x|
face k {i, k1, k2 }~j
D(X) S(X)

where the second sum is over all corners v;; and faces f,, f,
incident to edge e;.

We define s(+) to achieve two goals: (i) we want to have as few cuts
as possible, and (ii) if an edge is cut, there is no reason to encourage
its two copies to remain spatially close to each other in the UV
domain. The ideal function that satisfies these desiderata is:

0, t=0

1, otherwise.

s(t) =

For this choice for s, Eq. (4) is an Ly-regularized optimization prob-
lem, which is notoriously difficult to solve directly. In the following
we discuss our approach for solving it using homotopy optimization.

The distortion measure. Since most texture mapping applications
favor isometry, we use the symmetric Dirichlet energy [Smith and
Schaefer 2015] for all results in this paper, defined by

Ea(fi () = e (fGOIE + e Fe GO - 5)

where J(fi(X)) is the Jacobian of the mapping on face f; and
[|-]|r is the Frobenius norm. This measure is indeed minimal for
rotations, and it has several additional favorable properties. First, it
infinitely penalizes inverted elements, preventing them. Second, it
is computationally efficient since it requires rather few elementary
operations to evaluate. If required by specific applications, other
energies, such as the conformal AMIPS [Fu et al. 2015], could be
easily minimized by our algorithm with minimal modifications.



Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping « 215:5

5 =10°
§=10""
=102

Fig. 3. Left: Homotopy optimization. The objective function E is first rad-
ically smoothed to obtain Es (top); it is then iteratively sharpened back,
and a new minimum is found starting the optimization in the previous
minimizer. As § becomes smaller, Es approaches the original E and the
found minima converge to a minimum of E (bottom). Right: Plots of our
smooth approximations ss(¢) (colored curves) and the discontinuous func-
tion s(¢) (in black) used in the separation measure. As § approaches zero,
ss(t) sharpens and approaches s(t).

3.1 Homotopy optimization

With the choices of separation and distortion energies above, Eq. (4)
becomes non-smooth and non-convex. It is thus, difficult and com-
putationally expensive to minimize directly. Nevertheless, practical
algorithms such as iteratively reweighted least-squares [Daubechies
et al. 2010], L1 relaxation [Boyd and Vandenberghe 2004], and the
homotopy optimization method perform well for such an energy.
We use an approach similar to the latter, as explained below.

The homotopy optimization technique, also known as the con-
tinuation method [Allgower and Georg 2003], is a technique for
solving highly non-convex problems. Similar to methods such as
graduated optimization and deterministic annealing [Rose 1998],
it eliminates many local minima by smoothing the objective func-
tion, then gradually sharpening it back [Mobahi and Fisher 2015].
In each iteration, the algorithm finds a local minimum, using the
previous minimum as the starting point (see the sketch in Fig. 3, left).
Specifically, given an objective E(X), the method requires a family
of functions Es(X), for a parameter § > 0 controlling the smooth-
ness, such that limg_,¢ E5(X) = E(X); d is updated in each iteration
according to a certain strategy (see later), until convergence. See
Algorithm 1 below.

Algorithm 1: Homotopy Optimization

Input:
E5(X), § > 0, such that lims_,q E5(X) = E(X)

0 «— 5()

X  arg miny E5(X)

ne1

while criterion not reached do
Update § according to strategy
X"  argminy E5(X) using X"~V as initialization
nen+1

Seamless Ly penalty. Since the problematic non-convexity of Eq. (4)
stems from the definition of s(¢), we need to find an appropriate
family of functions sg(¢) which smoothly approximate it. Li et al.

5~ 10"%

Fig. 4. The influence of the parameter § on the generated UV map. Red
hue on the 3D mesh marks edges with high separation energy.

[2012] introduce such a smooth approximation, termed the seam-
less Lo penalty. Inspired by their proposal, we define the following
approximation (Fig. 3, right):

/2
2+68

ss(t) = (6)
The argument ¢ is squared so that ss(t) is differentiable at zero. It
is easy to verify that limg_,( s5(t) = s(t); although the functions
ss(t) are not globally convex, they are convex within a certain
distance from the origin (defined by a closed-form formula) and are
significantly easier to minimize than the discontinuous s(#).

The parameter §. The standard, fully automatic version of continu-
ation method offers guarantees of convergence to a global minimum
only under certain conditions on Es and on the strategy to update
§ [Allgower and Georg 2003]; instead, we opt for an interactive ver-
sion where § is left as a parameter that users can manipulate to steer
the optimization towards the goal they have in mind. The influence
of § on the resulting UV map is demonstrated in Fig. 4. In a basic
workflow, the user starts with a relatively high §; in this situation,
all edges are cut, but corner pairs still stay close together. The result
is in many cases very similar to single-patch parameterization (if the
corners were to be snapped back together). As the user decreases J,
some of the corner pairs remain close, but others start to separate,
generating a visible cut. Further decreasing § lumps close corners
together, making the map continuous along their edges, while the
remaining corners stop influencing each other.

3.2 Numerical optimization

To solve Eq. (4), we use Newton’s method with line search. In each
iteration n, where the current iterate is X(”), we solve for the Newton
search direction p("):

H p™ = gl e, %)
(- nEG +210) p =~ - Dl - 2gl”, @)

where gg'), g](Dn ), g(sn) and H(E"), ng ), Hgl ) are the gradients and Hes-

sians of the total energy E, distortion energy D and separation

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.



215:6  « Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung

energy S at x(m, respectively. We then obtain the next iterate by
x(n+1) — x(n) ap("), ()

where step-size « is found with a line search; we use the strategy by
Smith and Schaefer [2015] to ensure that no triangle gets flipped.
To find the gradients and Hessians of D(X), we iterate over the
faces and accumulate the per-face gradients and modified Hessians
using [Shtengel et al. 2017]. This ensures that the overall modified
Hessian is positive definite while avoiding costly SVD computations
of each face Hessian, as was done in [Fu and Liu 2016]. For the
separation function S(X), we derive closed-form expressions for the
gradient and positive modified Hessian of ss in Appendix A.

4 FRAMEWORK IMPLEMENTATION AND RESULTS

Implementation and performances. We ran our experiments on a
12-core Xeon clocked at 2.7 GHz, using the PARDISO solver [Kuzmin
et al. 2013; Schenk et al. 2008, 2007] for the linear system solve in
Eq. (8). For the mesh sizes we experimented with, performances
scale roughly linearly, one iteration requiring 15 ms for 3K trian-
gles, and about 100 ms for 20K triangles. A reference, open-source
implementation is available at https://github.com/Roipo/Autocuts.

Parameters tuning. The optimization process runs indefinitely in
the background, until the user is ready to save the result. We let
the user interactively control the parameters § and A. Parameter A
is initialized at 0 and controlled freely in the full [0, 1] range. § is
initialized at 1 and modified by halving or doubling it.

Initialization. Since we treat the input mesh as a triangle soup,
initialization of the UV map can simply be done by placing the
triangles individually in the plane with a rigid transformation: our
distortion energy is rotation invariant, so the specific transformation
used does not affect its minimum. Our method is extremely robust
to different initializations, as demonstrated in Fig. 5.

Finalizing the UV map. Once the user is satisfied with the result,
we generate a UV map that is continuous, except across the seams.
To achieve this, we iterate over all pairs of corners and unify them
at their average if their separation energy is lower than 0.5 (see for
example Fig. 5 and 7). The UV map is also uniformly scaled and
translated to fit into the canonical [0, 1]? texture space.

Unassisted cutting. Our method can achieve high quality results
with no user input, or very little input in the form of A and § values
(see Fig. 17 for examples of obtained UV maps). In contrast, profes-
sional artists must provide a lot of manual input in state-of-the-art
software in order to cut a mesh for UV mapping. To the best of our
knowledge, the most advanced commercial tool for UV mapping
is ZBrush’s UV Master [Pixologic 2017]. This tool allows the user
to paint regions where cuts should appear or be avoided, and then
provides a map; the user is then tasked with repainting the regions
until the desired result is obtained. From our experiments with this
tool, we suspect that the cuts are computed a priori, before the cut
mesh is parameterized. We compare our method in unassisted mode
against UV Master with substantial user input on the Bumpy Cube
in Fig. 6: our method properly balances between cuts and distortions,
and places the cuts along the “edges” of the cube, while the ZBrush
result seems somewhat random. See Fig. 17 for more results.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.

Snapped UVs

(took 8 iterations) (took 28 iterations)

(took 4 iterations)

Fig. 5. Our method is extremely robust to bad initialization. The results
obtained starting from Tutte (left), a rigid transformation of each triangle
onto the UV plane (middle), and a completely random set of positions (right)
are almost identical (up to a rotation and translation). For all results in the
paper, we used the method in the middle, due to its efficiency and simplicity.

Assisted cutting. In many cases, the user wishes to create (or
avoid) cuts in specific regions. We enable this by letting the user
select the edges whose weight should be modified in the separation
objective, either by clicking on them or painting. Encouraging cuts
is simply implemented by reducing (resp. increasing) the weight of
the relevant terms for the two pairs of corners in the optimization
problem in Eq. (4). We observe that in many cases, it is sufficient to
seed a cut along a single edge, and the rest of it propagates on its
own during the optimization (see Fig. 7). Additionally, we allow the
user to deform, tear, and attach the UV island simply by dragging
(see, e.g., Fig. 1 and the attached video).

Bounding rectangles. In many situations, it is useful to require the
UV shape to be bounded by a certain UV rectangle. This can improve
texture space efficiency and aid packing. We enable interactive
drawing and manipulation of bounding rectangles in UV space, and
we add a soft constraint to the objective function, as a “box” energy
B penalizing UV corner positions outside the relevant rectangle R.
We add B to our objective in (4), with a certain weight § (in our
system we used f = 100). Specifically, R is defined as the Cartesian
product of two given intervals, R=[u, u | X[ v, v ], and B is the
sum, over all affected UV positions x = (u, v), of

c(u,u)+c(u,u)+c(v,v)+c(v,v) (10)



Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping « 215:7

Our result

Initialization

Fig. 6. Result of an automatic UV mapping of the Bumpy Cube using
our method, without user interaction and with default parameter settings,
which produces an intuitive cut along the edges of the cube. In contrast, the
assisted UV map of ZBrush fails to find this cut even with extensive manual
suggestions, which we provided by manually painting candidate regions
(purple regions, bottom right).

where c(a, b) is a C! function penalizing a > b:

(@.b) 0, a<b
c(a,b) =
(a-b)? a>b

See Fig. 8 and the attached video for examples of using bounding
rectangles.

(11)

UV maps for quad meshes. Our approach also supports the design
of UV maps for quadrilateral or polygonal meshes, which are com-
mon in the graphics community. Since the distortion measure is
defined for triangles, we simply triangulate all polygons and prevent
the introduced edges from separating by increasing the weights of
their associated separation energy terms by a factor 100 (Fig. 12).

UV maps for irregular meshes. In some applications, such as model-
ing for video games, and in stark contrast with geometry processing,
meshes with highly irregular faces and non standard topologies are
acceptable. Since our approach treats the mesh as a triangle soup,
we can handle such meshes without any special considerations. In
Fig. 10 we show an example of an irregular mesh and the UVs we
obtained using our system. Note that despite its appearance as a
single manifold, the mesh is in fact comprised of many connected
components, hence the numerous patches we obtain in the UV map.

Comparison with [Sorkine et al. 2002]. We empirically compare
our method with [Sorkine et al. 2002]. This method also targets low
distortion and small number of cuts, but does so in a greedy manner.
Starting from an isometrically parameterized single triangle, the
method appends more triangles to it to create a patch, unless doing
so exceeds a distortion bound or creates self-intersections. When no
additional triangle can be added, the current patch is finalized and
a new one is seeded from another triangle. In Fig. 11 we show the

(a) (b) ~

GATLs
a5

.455‘ O

/
\VaVa.,

AVAVAVA
 VAVAVANETAYY
%
< W
%A#AA 3
VAVAVA

ap.

K]

Kz
7

=
N/
vy
X\
<§4"

N

Fig. 7. In many cases, manually cutting one edge triggers the creation
of a complete cut line. (a) User force-cuts a single edge in the highlighted
region. (b) The cut automatically propagates through the mesh, considerably
reducing the distortion. (c) Final result.

Fig. 8. Left: unconstrained parameterization; right: adding bounding rec-
tangle constraints.

result on the Octopus mesh, for a specified distortion bound of 3 and
an area-to-perimeter ratio of 10000; the map is over-segmented, and
contains numerous patches consisting of a single triangle or short
triangle strips. In contrast, the result obtained with our interactive
system features fewer and better-shaped patches.

Removing self-overlaps. Texture mapping requires the map to be
free from global-overlaps (as well as local ones, i.e. triangle flips,
which are prevented by our energy functions). We offer no advance-
ment toward the fulfillment of this requirement. Existing fully auto-
matic techniques such as [Smith and Schaefer 2015] prevent global
overlaps from appearing during the optimization, but this requires
a valid, overlap-free map to start from, and the map must be kept
overlap-free during all intermediate phases, which unnecessarily
limits the solution space and hinders interactive UV map production.
In contrast, in traditional interactive UV authoring suites, global
overlaps are dealt with by the digital artist, for example by manually

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.



215:8 « Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung

Fig. 9. From left to right: Using our tool, the user can select a maximal
non-overlapping region and move it away, resolving overlaps. Bottom: the
final non-overlapping UVs with a texture.

splitting self-overlapping charts. Our interactive framework can
be employed, just as well, to this end. A difference is that, in our
case, the task of identifying a proper location for the extra cuts can
benefit from the assisted tools of our framework, which favors good
cuts; for example, one can use a tear-up gesture for this purpose
(see Fig. 1 and the accompanying video). Figures 11 and 14-16 show
examples of overlap free UV maps constructed in this way. Many
traditional suites also offer optional single-touch tools which the
user can invoke at any moment to fix current global overlaps, using
some automatic heuristic; the result is rarely immediately usable,
and needs to be manually adjusted; still, this is usually faster than
removing overlaps from scratch. Similar functionalities can be inte-
grated in our framework too. In our prototype, we experimented
with a greedy procedure based on [Sorkine et al. 2002] (see Fig. 11,
right): starting from an arbitrary seed triangle, we visit the mesh
in breadth-first order, avoiding triangles which would oversteps in
UV any already visited triangle (as in [Sorkine et al. 2002], this test
only affects the boundary of the visited region, making it efficient);
when no new triangle can be added, we start with a new seed, and
so on until all triangles are visited.

Cut length vs. number of cuts. By default, we minimize the total
length of the cuts, by weighting the separation measure by edge
length in Eq. (1). This reflects application penalties associated with
cuts, such as texel replication or bleeding artifacts, which can be
considered proportional to the length. Other penalties, like the need
for vertex duplication, are rather associated with the number of cut
edges. We can choose to minimize this number instead of the total
length by giving all edges a weight of 1. This potentially leads to
different results (see Fig. 13).

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.

Fig. 10. Parameterization of an irregular, “video game style” mesh.

[Sorkine et. al 2002] Ours (usgf assisted) Ours (agtomatic)

Fig. 11. Comparison with [Sorkine et al. 2002]. Our user-assisted optimiza-
tion (middle column) results in fewer cuts and fewer patches. Right: auto-
matic result obtained with our heuristic to add cuts and remove overlaps.

Fig. 12. UV-mapping of a quad mesh: internally, quad faces are triangulated,
but cuts never split them.

5 LIMITATIONS AND CONCLUDING REMARKS

We proposed an algorithm to address a central challenge of param-
eterization design, that is, the identification of cuts and distortion
minimizing unfolding within a unified minimization process of a
single energy function. This is a stark, qualitative improvement over
previous approaches, where the two problems are solved in cascade
or in alternation. Our framework makes the entire interactive UV-
map creation process faster and more intuitive. We conjecture that a
commercial grade software suite based on our method would further
improve it. We asked professional artists to experiment with our
software, and received positive feedback. Initial experimentation
showed that our approach can speed up the process of manual UV



Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping « 215:9

Minimize total cut length ~ Minimize number of cut edges

Illll 7>
e 2
Wiz e
XSRS 4SSN
RS2 SN
1= 25
=~ 2K N
=\

Z
=\
2

Fig. 15. An example of texture from a high-poly Armadillo model (right)
baked on a low-poly Armadillo model that has been UV mapped with our

Fig. 13. By default, we minimize the total length of cuts (left), but we can technique. Left: resulting textured low-res model.
opt to minimize their number instead (right).

50

Fig. 16. A light-texture baked over a model that has been UV mapped
with our technique. The illumination on the renderings on the right comes
exclusively from the texture.

Fig. 14. Left: a texture set (top: tangent-space normal map, bottom: diffuse of freedom in the problem. Currently, we treat all edges as candi-
map), manually 3D painted over one model UV-mapped with our technique. dates for cut placement; this is can be excessive, since the placement
Right: two views of the final model. does not always have to be so accurate. Another direction for future

work is adapting acceleration techniques [Kovalsky et al. 2016; Liu

mapping considerably. While it does require a slight re-adjustment et al. 2017] to our formulation.

of the UV-mapping pipeline, the artists expressed interest in using
our method for their future UV-mapping tasks, exploring its limita-
tions and providing us with case studies for future development.

Insensitivity to global overlaps. While our framework unifies cut
placement and distortion minimization, two other tasks of UV-
mapping authoring pipelines are left out of it: the removal of global

Scalability with mesh resolution. Our system is sufficiently respon- overlaps and the final packing of charts are simply delegated to
sive only if the input mesh is within the range of approximately 20k the manual intervention by the designer (assisted by the proposed
triangles. Many models employed by the game industry are already interactive tools); in this, our framework offers no direct advance-
in the acceptable range. Our method can still be used offline, but the ment over current UV authoring practices. A challenging avenue
results then might require manual retouches to be finalized. One for future work is to embed the two tasks into the energy to be
future direction for exploration is to reduce the number of degrees minimized, similarly to what we now introduced for cut selection.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.



Fig. 17. Several results obtained using our system with no assistance (Hand, Elk, Oct%pus, Moai statue), painting the front facing side to have no cuts (Eight,
Girl) or painting regions that should have cuts (High-Genus Tet). See the accompanying video for more examples.

ACKNOWLEDGMENTS

We would like to thank Mario Botsch, Francis Williams, and the
anonymous reviewers for their helpful comments and suggestions.

REFERENCES

E. L. Allgower and Kurt Georg. 2003. Introduction to Numerical Continuation Methods.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.

Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini.
2001. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Prob-
lems. SIAM J. Numer. Anal. 39, 5 (2001), 1749-1779. DOI:http://dx.doi.org/10.1137/
50036142901384162

Ivo Babuska and M. Zlamal. 1973. Nonconforming Elements in the Finite Element
Method with Penalty. SIAM J. Numer. Anal. 10, 5 (1973), 863-875. DOI : http://dx.doi.
0rg/10.1137/0710071 arXiv:http://dx.doi.org/10.1137/0710071

Mirela Ben-Chen, Craig Gotsman, and Guy Bunin. 2008. Conformal Flattening by
Curvature Prescription and Metric Scaling. Comput. Graph. Forum 27, 2 (2008),
449-458. DOT : http://dx.doi.org/10.1111/].1467-8659.2008.01142.x

D. Benson and J. Davis. 2002. Octree textures. ACM Trans. Graph. 21, 3 (2002), 785-790.

Toana Boier-Martin, Holly Rushmeier, and Jingyi Jin. 2004. Parameterization of Triangle
Meshes over Quadrilateral Domains. In Proc. Symposium on Geometry Processing.
193-203. DOI:http://dx.doi.org/10.1145/1057432.1057459

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,
and Denis Zorin. 2013. Quad-Mesh Generation and Processing: A Survey. Computer
Graphics Forum 32, 6 (2013), 51-76.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.

David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation.
ACM Trans. Graph. 28, 3, Article 77 (2009), 10 pages. DOI :http://dx.doi.org/10.1145/
1531326.1531383

Stephen Boyd and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge
University Press, New York, NY, USA.

Brent Burley and Dylan Lacewell. 2008. Ptex: Per-Face Texture Mapping for Production
Rendering. In Proc. Eurographics Symp. on Rendering. 1155-1164.

M. Campen and L. Kobbelt. 2014. Quad Layout Embedding via Aligned Parameterization.
Comput. Graph. Forum 33, 8 (2014), 13. DOI:http://dx.doi.org/10.1111/cgf.12401
Per H. Christensen and Dana Batali. 2004. An Irradiance Atlas for Global Illumination
in Complex Production Scenes. In Proc. Eurographics Symp. on Rendering. 133-141.

DOI:http://dx.doi.org/10.2312/EGWR/EGSR04/133-141

B. Bernardo Cockburn, George Karniadakis, and Chi-Wang Shu (Eds.). 2000. Discontin-
uous Galerkin methods : theory, computation, and applications. Springer, Berlin, New
York. http://opac.inria.fr/record=b1096869

Ingrid Daubechies, Ronald Devore, Massimo Fornasier, and C. Sinan Giintiirk. 2010.
Iteratively reweighted least squares minimization for sparse recovery. Comm. Pure
Appl. Math 63, 1 (2010), 1-38.

Mathieu Desbrun, Mark Meyer, and Pierre Alliez. 2002. Intrinsic Parameterizations of
Surface Meshes. Comput. Graph. Forum 21, 3 (2002), 209-218. DOI : http://dx.doi.org/
10.1111/1467-8659.00580

M. S. Floater. 2003. Mean Value Coordinates. Computer Aided Geometric Design 20, 1
(2003), 19-27.

Xiao-Ming Fu and Yang Liu. 2016. Computing Inversion-free Mappings by Simplex
Assembly. ACM Trans. Graph. 35, 6, Article 216 (2016), 12 pages. DOI:http://dx.doi.
org/10.1145/2980179.2980231



Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping + 215:11

Xiao-Ming Fu, Yang Liu, and Baining Guo. 2015. Computing Locally Injective Mappings
by Advanced MIPS. ACM Trans. Graph. 34, 4, Article 71 (2015), 12 pages. DOI:
http://dx.doi.org/10.1145/2766938

Xianfeng Gu, Steven J. Gortler, and Hugues Hoppe. 2002. Geometry Images. ACM
Trans. Graph. 21, 3 (2002), 355-361. DOI:http://dx.doi.org/10.1145/566654.566589

K. Hormann and G. Greiner. 2000. MIPS: An Efficient Global Parametrization Method.
In Proc. Curve and Surface Design. 153-162.

K. Hormann, B. Lévy, and A. Sheffer. 2007. Mesh parameterization: Theory and practice.
In ACM SIGGRAPH Course Notes.

Dan Julius, Vladislav Kraevoy, and Alla Sheffer. 2005. D-Charts: Quasi-Developable
Mesh Segmentation. Comput. Graph. Forum 24, 3 (2005).

Andrei Khodakovsky, Nathan Litke, and Peter Schréder. 2003. Globally Smooth Param-
eterizations with Low Distortion. ACM Trans. Graph. 22, 3 (2003), 350-357. DOI:
http://dx.doi.org/10.1145/882262.882275

Shahar Z. Kovalsky, Meirav Galun, and Yaron Lipman. 2016. Accelerated quadratic
proxy for geometric optimization. ACM Trans. Graph. 35, 4 (2016). DOI:http:
//dx.doi.org/10.1145/2897824.2925920

A. Kuzmin, M. Luisier, and O. Schenk. 2013. Fast Methods for Computing Selected Ele-
ments of the Green’s Function in Massively Parallel Nanoelectronic Device Simula-
tions. In Proc. Euro-Par. 533-544. DOI : http://dx.doi.org/10.1007/978-3-642-40047-6_
54

Sylvain Lefebvre and Carsten Dachsbacher. 2007. Tiletrees. In Proc. of the Symp. on
Interact. 3D Graph. and Games. ACM, 25-31.

S. Lefebvre and H. Hoppe. 2006. Perfect spatial hashing. ACM Trans. Graph. 25, 3 (2006),
579-588.

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and JAIrome Maillot. 2002. Least Squares
Conformal Maps for Automatic Texture Atlas Generation. ACM Trans. Graph. 21, 3
(2002), 362-371. DOI:http://dx.doi.org/10.1145/566654.566590

Zilin Li, Sijian Wang, and Xihong Lin. 2012. Variable selection and estimation in
generalized linear models with the seamless Ly penalty. Canadian Journal of Statistics
40, 4 (2012), 745-769. DOI:http://dx.doi.org/10.1002/cjs.11165

Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven J. Gortler. 2008. A Lo-
cal/Global Approach to Mesh Parameterization. In Proc. Symposium on Geometry
Processing. 1495-1504. http://dl.acm.org/citation.cfm?id=1731309.1731336

Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton Methods for
Real-Time Simulation of Hyperelastic Materials. ACM Transactions on Graphics
(TOG) 36, 3 (2017), 23.

Jérome Maillot, Hussein Yahia, and Anne Verroust. 1993. Interactive Texture Mapping.
In Proc. ACM SIGGRAPH. 27-34. DOI :http://dx.doi.org/10.1145/166117.166120

Hossein Mobahi and John W. Fisher. 2015. On the Link between Gaussian Homotopy
Continuation and Convex Envelopes. In Proc. Energy Minimization Methods in
Computer Vision and Pattern Recognition. 43-56. DOI:http://dx.doi.org/10.1007/
978-3-319-14612-6_4

Ashish Myles and Denis Zorin. 2013. Controlled-distortion Constrained Global
Parametrization. ACM Trans. Graph. 32, 4, Article 105 (2013), 14 pages. DOI:
http://dx.doi.org/10.1145/2461912.2461970

Pixologic. 2017. ZBrush. http://pixologic.com/. (2017). Accessed: 2017-02-01.

Budirijanto Purnomo, Jonathan D Cohen, and Subodh Kumar. 2004. Seamless texture
atlases. In Proc. Symposium on Geometry Processing. 65-74.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2 (2017), 16:1-16:16.
Nicolas Ray, Vincent Nivoliers, Sylvain Lefebvre, and Bruno Lévy. 2010. Invisible Seams.
In Proc. Eurographics Symp. on Rendering. DOI : http://dx.doi.org/10.1111/1.1467-8659.

2010.01746.x

Kenneth Rose. 1998. Deterministic Annealing for Clustering, Compression, Classifi-
cation, Regression, and Related Optimization Problems. In Proceedings of the IEEE.
2210-2239.

Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. 2001. Texture
mapping progressive meshes. In Proc. ACM SIGGRAPH. 409-416. http://doi.acm.
org/10.1145/383259.383307

Olaf Schenk, Matthias Bollhéfer, and Rudolf A. Rémer. 2008. On Large-Scale Diagonal-
ization Techniques for the Anderson Model of Localization. SIAM Rev. 50, 1 (2008),
91-112. DOI:http://dx.doi.org/10.1137/070707002

Olaf Schenk, Andreas Wichter, and Michael Hagemann. 2007. Matching-based prepro-
cessing algorithms to the solution of saddle-point problems in large-scale nonconvex
interior-point optimization. Computational Optimization and Applications 36, 2-3
(2007), 321-341. DOI : http://dx.doi.org/10.1007/s10589-006-9003-y

Alla Sheffer and John C. Hart. 2002. Seamster: Inconspicuous Low-distortion Texture
Seam Layout. In Proc. Visualization. 8. http://dl.acm.org/citation.cfm?id=602099.
602144

Alla Sheffer, Bruno Lévy, Maxim Mogilnitsky, and Alexander Bogomyakov. 2005. ABF++:
Fast and Robust Angle Based Flattening. ACM Trans. Graph. 24, 2 (2005), 311-330.
DOI : http://dx.doi.org/10.1145/1061347.1061354

A. Sheffer, E. Praun, and K. Rose. 2006. Mesh parameterization methods and their
applications. Foundations and Trends® in Computer Graphics and Vision 2, 2 (2006),
105-171.

Anna Shtengel, Roi Poranne, Olga Sorkine-Hornung, Shahar Z. Kovalsky, and Yaron
Lipman. 2017. Geometric Optimization via Composite Majorization. ACM Trans.
Graph. 36, 4, Article 38 (July 2017), 11 pages. DOI:http://dx.doi.org/10.1145/3072959.
3073618

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.
ACM Trans. Graph. 34, 4, Article 70 (2015), 9 pages. DOI:http://dx.doi.org/10.1145/
2766947

Olga Sorkine, Daniel Cohen-Or, Rony Goldenthal, and Dani Lischinski. 2002. Bounded-
distortion piecewise mesh parameterization. In Proc. Visualization. 355-362.

Kenshi Takayama, Daniele Panozzo, Alexander Sorkine-Hornung, and Olga Sorkine-
Hornung. 2013. Sketch-Based Generation and Editing of Quad Meshes. ACM Trans.
Graph. 32, 4 (2013), 97:1-97:8. DOI : http://dx.doi.org/10.1145/2461912.2461955

M. Tarini. 2012. Cylindrical and toroidal parameterizations without vertex seams.
Journal of Graphics Tools 16, 3 (2012), 144-150.

Marco Tarini. 2016. Volume-encoded UV-maps. ACM Trans. Graph. 35, 4, Article 107
(2016), 13 pages. DOI :http://dx.doi.org/10.1145/2897824.2925898

M. Tarini, K. Hormann, P. Cignoni, and C. Montani. 2004. PolyCube-Maps. ACM Trans.
Graph. 23, 3 (2004), 853-860. DOI : http://dx.doi.org/10.1145/1015706.1015810

Marco Tarini, Enrico Puppo, Daniele Panozzo, Nico Pietroni, and Paolo Cignoni. 2011.
Simple Quad Domains for Field Aligned Mesh Parametrization. ACM Trans. Graph.
30, 6, Article 142 (2011), 12 pages. DOI:http://dx.doi.org/10.1145/2070781.2024176

Marco Tarini, Cem Yuksel, and Sylvain Lefebvre. 2017. Rethinking Texture Mapping. In
ACM SIGGRAPH 2017 Courses (SIGGRAPH ’17). ACM, New York, NY, USA, Article
11, 139 pages. DOI:http://dx.doi.org/10.1145/3084873.3084911

Y. Tong, P. Alliez, D. Cohen-Steiner, and M. Desbrun. 2006. Designing Quadrangulations
with Discrete Harmonic Forms. In Proc. Symp. Geom. Processing. 201-210. http:
//dLacm.org/citation.cfm?id=1281957.1281983

Francesco Usai, Marco Livesu, Enrico Puppo, Marco Tarini, and Riccardo Scateni. 2015.
Extraction of the Quad Layout of a Triangle Mesh Guided by Its Curve Skeleton. ACM
Trans. Graph. 35, 1, Article 6 (2015), 13 pages. DOI : http://dx.doi.org/10.1145/2809785

Cem Yuksel, John Keyser, and Donald H. House. 2010. Mesh colors. ACM Trans. Grap.
29, 2, Article 15 (2010), 11 pages. DOI : http://dx.doi.org/10.1145/1731047.1731053

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2005. Feature-based Surface
Parameterization and Texture Mapping. ACM Trans. Graph. 24, 1 (Jan. 2005), 1-27.
DOI : http://dx.doi.org/10.1145/1037957.1037958

APPENDIX A SEPARATION GRADIENT AND HESSIAN

We write the expressions for the gradient and Hessian of the sepa-
ration measure between two corners. Let the two corners be x;,
and x;,. Then the separation measure (Eq. (3)) between them is
A 2 A t
$ (”xik1 _Xik2|| ), where $(t) = roys
The gradient and modified Hessian of s is as follows. Define the
column vectord = 2 (zi,’zl : iizz).Then Vs (”Xikl - xikZ”Z) = %d
and the Hessian H is ’ 1
+1 0 -1 0
% 1+ 080 +1 o -1

H=V% (||Xik1 _xiszZ) = ﬁdd + atl-1 o 41 o

To ensure that the total Hessian is positive definite, a well known
trick is to project H of each face onto the set of positive semidefi-
nite matrices before summing them up. This requires to compute
one SVD for each face, and can be time consuming; instead, after
[Shtengel et al. 2017], we simply remove the non-convex part in
the expression for V2§. The second term in the expression is always
positive semidefinite, while the first term depends on the second
derivative of §, which can be negative; therefore, its elimination
leads to a modified positive semidefinite H:
V25 (i, — ) = %E

By using this modified Hessian, we observe an increase in the frame
rate, while the effect on convergence is marginal.

ACM Transactions on Graphics, Vol. 36, No. 6, Article 215. Publication date: November 2017.



	Abstract
	1 Introduction
	2 Related work
	2.1 Minimizing distortion
	2.2 Optimizing cuts

	3 UV Optimization Method
	Appendix A Separation gradient and Hessian

