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Fig. 1. The positions of the vertices of an input tetrahedral mesh (left, # = 0) are morphed (¢ = 1) into a hex-dominant mesh (right), guided by an orientation
and a position field. The singularities of both fields are shown in the middle image, in red and yellow respectively.

We propose a robust and efficient field-aligned volumetric meshing algorithm
that produces hex-dominant meshes, i.e. meshes that are predominantly com-
posed of hexahedral elements while containing a small number of irregular
polyhedra. The latter are placed according to the singularities of two opti-
mized guiding fields, which allow our method to generate meshes with an
exceptionally high amount of isotropy.

The field design phase of our method relies on a compact quaternionic
representation of volumetric octa-fields and a corresponding optimization
that explicitly models the discrete matchings between neighboring elements.
This optimization naturally supports alignment constraints and scales to
very large datasets. We also propose a novel extraction technique that uses
field-guided mesh simplification to convert the optimized fields into a hex-
dominant output mesh. Each simplification operation maintains topological
validity as an invariant, ensuring manifold output. These steps easily gener-
alize to other dimensions or representations, and we show how they can be
an asset in existing 2D surface meshing techniques.

Our method can automatically and robustly convert any tetrahedral mesh
into an isotropic hex-dominant mesh and (with minor modifications) can also
convert any triangle mesh into a corresponding isotropic quad-dominant
mesh, preserving its genus, number of holes, and manifoldness. We demon-
strate the benefits of our algorithm on a large collection of shapes provided
in the supplemental material along with all generated results.
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1 INTRODUCTION

When solving non-linear partial differential equations on volumes,
hexahedral meshes are generally preferred to tetrahedral ones, since
they achieve the same accuracy with a drastically lower element
count [Cifuentes and Kalbag 1992; Benzley et al. 1995; Tadepalli
etal. 2010]. Unfortunately, the generation of high quality hexahedral
meshes at coarse resolutions remains an elusive task involving a
number of unsolved problems, thus automatic techniques capable of
producing them robustly are still out of reach despite three decades
of extensive research dedicated to this topic. Hexahedral-dominant
meshes strike a good balance: they are easier to generate, since they
can contain a small number of irregular elements, while offering
good numerical properties [Owen and Saigal 2000; Martin et al. 2008;
Reberol and Lévy 2016].

Building upon the 2D instant meshing (IM) approach [Jakob et al.
2015], we propose a novel algorithm to efficiently, robustly, and
automatically create field-aligned hex-dominant meshes.

Our first contribution is a quaternionic representation for a volu-
metric cross-field designed to efficiently support explicit encoding
of the field matching. When paired with a hierarchical accelerations
structure, this representation enables us to interpolate user-defined
constraints, while naturally aligning to shape features. Our algo-
rithm is extremely robust and it converges to a smooth field even
with a random initialization.

Our second contribution is a robust extraction algorithm guaran-
teed to extract a compatible manifold mesh from any field-aligned
parameterization — it is designed to work with local parameteri-
zations that are characteristic of the output produced by the IM
technique, but it can also be applied to any global parameterization
generated by other means. The algorithm uses a sequence of local
topological operations to collapse and split edges, faces, and polyhe-
dra of the input mesh, eventually converting the input tetrahedral
(or triangle) mesh into a hex-dominant (or quad-dominant) output
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mesh. Topological invariants are checked before each operation,
and only those preserving the invariants are executed, which en-
sures that both genus and manifoldness of the input are preserved
throughout this process.

While the two contributions are independently useful in existing
meshing pipelines, they have been designed together to extend the
IM pipeline to the volumetric cases. Combined, they lead to a sim-
ple, robust, automatic, and scalable pipeline that can automatically
remesh the benchmark proposed in [Fu et al. 2016], which is com-
posed of 106 meshes, with no user-interaction and no parameter
tweaking. We attach all results in the additional material, including
a 10 second long peeling animation for each one of them.

2 RELATED WORK

We review the literature for the creation of pure hexahedral and
hex-dominant meshes. Many of these algorithms are based on simi-
lar corresponding methods previously developed for quadrilateral
meshing — we restrict our survey to volumetric meshing techniques
and we refer an interested reader to [Bommes et al. 2013] for an
overview of quad meshing techniques.

Local Connectivity Editing. Two of the earliest attempts to achieve
automatic hexahedral meshing are paving (i.e. inserting regular lay-
ers of cubes aligned with a boundary quad mesh) and sweeping
(i.e. extruding a partial quad mesh) [Shepherd and Johnson 2008;
Owen and Saigal 2000; Yamakawa and Shimada 2003]. Their im-
plementation is extremely challenging due to the large number of
special cases that could occur, and they introduce a large number of
singularities in regions where the fronts meet. The special case of
tubular models has been considered in Livesu et al. [2016], where
a skeleton is used to sweep a regular hex-mesh in its interior. Our
method optimizes guiding fields to determine the placement of sin-
gularities throughout the interior of the mesh. It can automatically
mesh complex objects without requiring user input such as skeletal
or cage-based decompositions.

Spatial Partitioning. Spatial partitioning methods can be used
to discretize shapes in regular collection of cubes, which coarsely
approximate the input shape. This approach is very popular [Su
et al. 2004; Zhang and Bajaj 2006; Zhang et al. 2007], in particu-
lar combined with octrees [Maréchal 2009; Ito et al. 2009; Zhang
et al. 2013]. These methods can represent only features that are
well-aligned with the grid axes and place all singularities on the
shape boundary, which is unfortunate since this is often the region
of highest interest. These disadvantages are, however, compensated
by the high robustness of these methods, making them the de facto
standard for automatic hex mesh generation. Aside from the lim-
itation to hex-dominant output, our algorithm shares the general
robustness of these methods while adding two desirable properties:
automatic alignment to shape features and improved placement of
singularities.

Polycube Parametrization. Polycube methods [Gregson et al. 2011;
Livesu et al. 2013; Huang et al. 2014; Fang et al. 2016; Fu et al.
2016; Li et al. 2013] parameterize the interior of a closed surface
mesh into a polycube. The polycube is trivially subdivided in a
hexahedral mesh, that is finally warped back into the input geometry.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 114. Publication date: July 2017.

Similarly to spatial partitioning methods, all singularities are located
on the surface boundary. However, in contrast to spatial partitioning
schemes, polycube methods distribute them in a superior way to
account for surface features, obtaining both higher quality elements
and a lower total element count. These methods are unfortunately
not guaranteed to produce a valid polycube and can fail on complex
inputs, limiting their practical applicability. Our algorithm robustly
generates hex-dominant meshes which similarly adapt to surface
features.

Field-Aligned Methods. Field-aligned methods [Nieser et al. 2011;
Huang et al. 2011; Li et al. 2012; Jiang et al. 2014] compute a hex-mesh
in three stages. They first estimate the gradients of a volumetric
parameterization using a directional field [Vaxman et al. 2016], com-
pute a parameterization aligned with the estimated gradients, and
finally trace the cubes edges in parametric space [Lyon et al. 2016].
Computing a parameterization that induces a pure hexahedral mesh
remains an unsolved problem, and currently used heuristics tend to
fail on complex inputs.

Our technique is based on a similar pipeline, but avoids com-
puting a globally consistent parameterization in favor of local, per-
vertex parameterizations. Instead of explicitly tracing edges in the
parameterization domain, we opt for a robust simplification-based
algorithm that is guaranteed to produce a manifold hex-dominant
mesh as output.

To our knowledge, the method by Sokolov et al. [2016] (hence-
forth referred to as PGP3D) is the only existing field-aligned pa-
rameterization method that also targets hex-dominant meshes. Our
algorithm shares many similarities with this method, even if the pro-
duced meshes are different at a superficial level. PGP3D can robustly
process complex CAD models with alignment to surface features,
creating meshes composed of hexahedra, tetrahedra, triangle-based
prisms, and quad-based pyramids, while our method may create
arbitrary polyhedra. The price paid by PGP3D’s approach is that
their meshes are not conforming (i.e. there are interfaces where
a quad is e.g. touching two triangles), and a layer of zero-volume
elements needs to be introduced to convert them into conforming
meshes. In our case, the meshes are conforming, but we cannot
guarantee to have only a restricted set of elements. Converting be-
tween these two representations is straightforward (in the space of
non-conforming meshes), and the favored representation depends
on the application. For example, polyhedral meshes can be directly
used for computer animation in the algorithm proposed in [Martin
et al. 2008; Bishop 2014], while non-conforming meshes are ideal
for [Reberol and Lévy 2016]. Quality-wise, the hexahedral elements
of our meshes are more isotropic than those generated by PGP3D
(figures 10 and 11). Our algorithm casts the optimization of both
the orientation and of the directional field as simple local iterations,
which are simple to implement and robust to random initializations
(Figure 9). Additionally, our mesh extraction algorithm is general,
can be used for surfaces and volumes, and it does not rely on a
constrained Delaunay tetrahedralization step.

Existing Software. Robust software solutions exist for octree-based
hexahedral meshing, producing cut cells and a high degree of refine-
ment at the boundary [Car 2016; LBI 2016; Har 2016; HEX 2016; Bol
2016; Hex 2016; Mes 2016a; Kub 2016; XBX 2016]. Boundary-aligned
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1. Field optimization

2. Field-guided polyhedral agglomeration
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Fig. 2. Our method is composed of two high-level phases: field optimization takes an existing tetrahedral mesh as input and optimizes the smoothness of
two guiding fields controlling the orientation and spatial placement of mesh elements. A multi-resolution hierarchy accelerates convergence during this

process. The field-guided agglomeration phase converts the fields into a stream of local transformations applied to the input mesh, each preserving both
manifold structure and genus. Self-loops indicate repeated application of an operation over the entire mesh until no more qualifying elements are left. Certain

operations occur multiple times—once as a sweep over the mesh (with self-loop), and once as a local step triggered by another operation (an edge split

e.g. triggers a face split, which in turn triggers a polyhedral split).

techniques exist to automatically meshing special geometries, such
as cylinders, boxes and sweepable solids [PAM 2016; ANS 2016;
Hyp 2016; Sie 2016]. Hexahedral meshes of arbitrary geometries
are currently constructed by manually decomposing the shape into
simpler pieces, that are then meshed while ensuring compatible
interfaces are introduced [CUB 2016; Tre 2016; Ape 2016]. Mixed
meshes, containing different types of elements, are easier to gener-
ate, and many commercial codes have been developed for this task
[Aut 2016; Mes 2016b; AMP 2016; BET 2016; TEX 2016]; these tools
are closer to our goals. However, to the best of our knowledge, no
free or open-source implementation exists, and the limitations of
these techniques, while informally known, are difficult to quantify
precisely. In addition, none of these softwares can produce meshes
aligned with a given volumetric orientation field.

Our reference implementation will be the first open-source, fully
automatic, and unconditionally robust hex-dominant mesher. It is
based on a field-aligned approach, ensuring alignment to features
and even distribution of singularities in the interior, which ensures
high element isotropy. We expect our contribution and reference
implementation to have a large impact in the graphics and computer
aided design research communities.

3 FIELD OPTIMIZATION

Seen from a high level, our algorithm consists of three major com-
ponents (Figure 2) that follow a well-established structure used by
numerous recent global parameterization methods: the first com-
putes an orientation field guiding the orientation of edges in the
output mesh; the second takes the orientation field as input and
converts it into a position field guiding the spatial placement of mesh
elements. The last step extracts the final mesh from the two fields.

Overview. The orientation and position optimizations are real-
ized using a unified iterative smoothing algorithm, which accounts
for inherent symmetries associated with the respective fields. The
contents of the optimized output fields are then used to guide the
mesh extraction phase, but the algorithm’s correctness does not

hinge upon their quality. This is a crucial property: although the
fields will generally be in close agreement with the extracted mesh,
they are not guaranteed to be free of degeneracies.

The final mesh extraction phase converts the information con-
tained in the position field into a stream of local mesh operations
that are sequentially applied to the input triangle or tet mesh, even-
tually producing the output mesh. Importantly, each iteration of this
process preserves the manifoldness as an invariant; operations that
would introduce non-manifold configurations are simply postponed
and retried later on. During this process, our algorithm continues
to update the position and orientation fields to account for changes
resulting from the simplification steps. This is crucial: in certain
situations, it may be necessary to locally subdivide (i.e. increase
the element count rather than reduce it) in a part of the mesh to
unlock a sequence of subsequent simplification operations. Having
access to continually updated orientation and position fields leads
to a straightforward criterion to decide whether and where such
steps are necessary.

We now discuss each of these components in turn, focusing on
the 3D case; the generalization to two dimensions is discussed later
in Appendix.

Notation. The input to our method is an existing tetrahedral mesh
with boundary G = (V, &, 7, 7°) with vertex positions x; for every
vertex i € V. We define the neighborhood of a vertex as N = {j €
VI1@,j) e &)

3.1 Orientation Field Optimization

The first phase of our method optimizes the smoothness of the
orientation field which associates a 3D cross represented using a
right handed coordinate frame Q; € R3*3 with every vertex x;
inside the volume. Each frame controls the alignment of a local
parameterization encoded via the position field that is generated
in a subsequent step and then used to guide the mesh extraction
phase. Since our goal is to create isotropic output, we impose the
constraint that the Q; are rotation matrices.
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Fig. 3. Left: Incompatible pair of orientations. Right: Matched orientations
using one of the 24 canonical rotations from the field’s symmetry group.

Smoothness. The orientation field is subject to symmetries that
must be considered when reasoning about its smoothness. Analo-
gous to cross fields on surfaces, any 3D frame that can be reached
by transforming an existing one using arbitrary sequences of 90°-
rotations around any of its axes is considered part of the same
equivalence class, leading to a 24-fold symmetry (Figure 3).

We define the smoothness of the orientation field using an energy
function that measures the dissimilarity of appropriately rotated
neighboring frames, i.e.

EgQx) = > > do(Re,Qi,Q)) (1
i€V jEN (i)

where dp(Q;, Qj) = %II log(QinT)II is a metric denoting geodesic
distance on the rotation group SO(3) and x denotes a matching
on edges. Each matching variable x;; selects one of the 24 possible
rotation matrices Ry, . . ., Ro4 from the frame field’s symmetry group.
Optimizing the smoothness thus entails finding both the set of
matchings and orientations so that the energy is minimized, i.e.

(Q*, k") = argmin Ep(Q, x). (2)
Similar to surface-based cross field smoothness energies that incor-
porate integer variables [Bommes et al. 2009], the discrete nature
of the matchings leads to a challenging non-convex optimization
problem whose combinatorial nature defies techniques that exhaus-
tively search the solution space for the global optimum. As in the
2D case, we observed that the energy landscape is characterized by
a large number of local minima that generally don’t correspond to
satisfactory solutions, hence purely local iterative solvers cannot be
used.

Multi-Resolution Hierarchy. Our optimization approach is inspired
by the Instant Field-Aligned Meshes (IM) [Jakob et al. 2015] tech-
nique, specifically the observation that a relatively naive iterative
algorithm can produce excellent results when it is combined with a
coarse-to-fine optimization scheme based on an unstructured mul-
tiresolution hierarchy. As in IM, we build this hierarchy level by level
starting from the input tet mesh, with each progressively coarser
level containing approximately half the number of vertices. The
coarser levels only encode edge connectivity, which suffices to solve
diffusion-type smoothing problems.

To create a coarser layer from an existing one in the hierarchy,
we visit each edge (sorted from shortest to longest) and attempt to
collapse it into a single vertex located at its barycenter (Figure 4). A
vertex can only be part of a single operation in each phase, and the
coarsening step finishes when no more edges can be merged. We
repeat this process until only a single vertex remains and keep track
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Fig. 4. Left: Our method’s two field optimizations propagate course solu-
tions through an unstructured multiresolution hierarchy that is constructed
by greedily collapsing adjacent vertices. The above illustration shows a tiny
hierarchy constructed from a single tetrahedron.

of all intermediate layers as well as the relations between finer and
coarser-level vertices that can be used to propagate solutions up
and down in the resulting tree.

As with other iterative solution techniques for nonconvex ener-
gies, our method cannot guarantee convergence to a global min-
imum. The discrete matchings in the energy lead to a solution
space that is characterized by many local minima that correspond
to low-quality solutions, hence an algorithm that “merely” con-
verges to any local minimum is not usable for mesh generation.
Our use of a hierarchy was driven by the em-
pirically motivated hypothesis that the global
minima of the energy function for two adja- _ _
cent hierarchy levels are closely related so that § 0
a converged solution at one level provides an
excellent warm start for optimization at the o = = =
next finer level. The inset shows a plot of the
smoothness energy for the fertility model in Figure 9.

168

Orientation field

Nonlinear Gauss-Seidel. We now focus on the iterative part of
the algorithm performed on each level, which consists of simple
sequence nonlinear Gauss-Seidel steps where each step replaces
the rotation Q; at a vertex i with an average of the rotations of its
neighbors N (i). The averaging proceeds vertex by vertex using a
conceptual sequence of updates of the following form (initialized
with Q} « 0) followed by re-normalization:

Q; — Q: + RKiij (3)

Since the averaging only considers pairs of elements at a time, the
best matching «;; between Q] and Q; can be determined using
an exhaustive search. At this point, we note that a representing
rotations as 3 X 3 matrices leads to an unnecessarily inefficient im-
plementation: in addition to the obvious redundancy, a considerable
amount of arithmetic is spent evaluating the rotation group metric
dg(:,) to determine the best matching x;; in each smoothing itera-
tion. Finally, the resulting average Q7 is generally not orthogonal
and will require re-normalization using Gram-Schmidt or a similar
algorithm.



Robust Hex-Dominant Mesh Generation using Field-Guided Polyhedral Agglomeration « 114:5

Quaternionic Representation. These drawbacks motivate our re-
liance on unit quaternions q; € Q, which admit highly efficient
implementations of the key operations that are needed by the orien-
tation field optimization. In this representation, the rotation group
metric takes on the simple form dp(q;,q;) = arccos(q;,q;) and
the canonical rotations Py, .. ., P24 from the symmetry group are
elements of

R = {r/nrn

ri € —1,0,1}4/\2 Ipil = 1,2,0r4}, (4)

i.e. the set of unit quaternions with 1, 2, or 4 nonzero entries of the
same magnitude. Note that R has 48 elements as every rotation can
be represented by two equivalent quaternions of opposite sign.

Finding the best matching x;; now entails minimizing dq (q;, q;j1%)
over 1y € R, and the form of dp implies that the minimizer is simply
the quaternion r* maximizing the inner product (q;, q;r*). Let

@ = (Qi> qjer ) (k=1,...,4) (5

where ey are the standard basis vectors in Q. Due to linearity, the

inner product f* associated with the best matching r* can be ex-
pressed as

4
= (@i g = ) axpp )
k=1
Interestingly, due to the simple structure of R, the inner products
ay already contain sufficient information to distinguish how many
nonzero entries the best matching r* must have. Specifically, let

1= maxjegl, yp = Il'ilf}x|ai| +lajl,  ya = Z lail.  (7)
’ i

If both y4 > y; and y4 > y» then the largest possible inner prod-
uct f* = y4 necessarily involves a quaternion of the form r =
(£1, +1, +1, +1)/2 whose component signs match those of the inner
products @;. A similar logic can be used to determine r* for the other
two cases, hence finding a matching reduces to a simple computa-
tion involving four dot products, determining which of three cases
applies and finally constructing a unit quaternion with the corre-
sponding set of nonzero entries and signs. A detailed discussion of
these steps is provided in the supplemental material. Needless to say,
this is dramatically more efficient than the brute force matrix-based
approach.

Using the quaternionic representation, one full sweep of the non-
linear Gauss-Seidel update then takes on the form

function OPTIMIZE-ORIENTATIONS(q)

1

2 fori=1,...,ndo

3 q; <0

4 for each j € N (i) do

5 q; < q; +9;r(qi.q))
6 qi < q;/llq;ll

This iteration visits every vertex in the mesh, replacing the local
orientation field value with an average while using the previously
discussed matchings r* to account for symmetries. We run the opti-
mization for 200 iterations at every level and then copy the solution
to the next finer level. While experimenting with different versions
of this approach, we found that a judicious amount of randomness

can help the individual smoothing iterations move out of local min-
ima, which further improves convergence in conjunction with the
hierarchy. Specifically, we modify the traversal in line 4 to visit the
neighboring vertices N (i) using a different order in each iteration.
The order of the vertices in the outer loop (line 2) is not randomized.

Constraints. Without added constraints, the above algorithm will
simply converge to a constant orientation field; however, to be
useful for remeshing, the field should smoothly interpolate boundary
constraints and possibly internal alignment constraints if specified.

In standard iterative solvers for linear systems, such point-wise
constraints are easily applied by replacing certain variables with
constants. However, this is too severe of a constraint in our case,
since the orientation field values should only be fixed up to trans-
formations by the underlying symmetry group. Furthermore, the
orientation field frames on the boundary should still have a degree
of freedom to permit rotation perpendicular to the surface normal.

A simple extension of Algorithm 1 then corrects the averaged
orientations q; by applying the smallest rotation that will make one
of the frame’s axes align with the normal vector n; at boundary
vertices. As in the case of the matchings, this rotation is easily and
efficiently obtained by reasoning about magnitudes and signs of the
quaternion entries. We provide a detailed specification of this step
in the supplemental material.

Symmetrized Orientations. Before continuing, we establish two
additional definitions that are required by the subsequent phases.
The field .

gy = LFTUT D) ®)
lqi + q;r*(qi, q;)l
defines a symmetrized set of orientations satisfying q;; = qj; (i.e.
equality up to symmetries). We furthermore define Q(q) as the
matrix representation of a rotation quaternion q.

3.2 Position Field Optimization

The position field optimization is a generalization of the correspond-
ing step in the two-dimensional IM technique, which we discuss
here for completeness.

The position field is easiest to visualize when its discretization is
sampled on volume elements (Figure 5). In this case, the position field
values encode points on 3D grids permeating the interior of mesh
elements, whose axes are determined by the previously computed
orientation field. Since the grid does not change when translated
by integer multiples of its cell width, only the fractional part of the
position is relevant. In practice, our implementation samples the
position field on vertices along with the orientation field, which is
helpful in the extraction stage later on.

Smoothness of the position field is defined as a sum over the
squared distances of suitably translated positions field values

Ep(p.7)i= D > dp(pi +AQ(@i)Tisp)t ()

i€V jeN(i)
where 7;; € Z3 (i,j = 1,...,n) is a set of 3D integer translations,
dp(a,b) := |la — bllz, and A is the position field’s grid size, which
is identical to the desired target edge length. The integer variables
serve the same purpose as the rotation indices x;; from before: to
remove excess integer jumps so that only fractional differences are
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Fig. 5. Conceptual cutaway view of a position field discretized on a pair of
overlapping volume elements. p; and p; encode three-dimensional positions
located on integer positions of a 3D grid permeating their interior. Translat-
ing them by integer amounts does not change the underlying grid, hence
only the fractional position is relevant. The second stage of our pipeline op-
timizes the smoothness of this field subject to a symmetry group of integer
translations.

measured. Optimizing the smoothness, again, entails finding both
the field and the set of matchings minimizing the energy, i.e.
(p*, ") = argmin E, (p, 7), (10)
The position field optimization relies on the same overall approach
of performing non-linear Gauss-Seidel sweeps over the mesh in
conjunction with a coarse-to-fine traversal of the multi-resolution
hierarchy. One missing piece to realize this step is a way of obtaining
the best position field matching for an adjacent pair of vertices,
which is defined as
. . 2
7;; = argmindy (p; + 4Q(qij)ij, Pj)" (11)
Tij

where 1Q(q;;)7i; the offset due to an integer number of steps on
a grid with cell spacing A and orientation Q(q;;). Since the axes
of this grid are orthogonal, the minimization has a simple explicit
solution in terms of a component-wise rounding operation:

7}; = round [(/’lQ(qij))_1 (ps - Pi)] ’ 2

With this last piece at hand, we can now define the position smooth-
ing iteration applied to each level of the hierarchy:

1 function OPTIMIZE-POSITIONS(p)

2 fori=1,...,ndo

3 p; < 0,k«0

4 for each j € N (i) do

5 P; < P; +pj +AQ(qij) " (pi- pj)
6 k—k+1

7 pi < pi/k

pi — pi + Q71 (qij) round (A71Q(qij) (xi - pi))

oo

The last step in line 8 rounds each position field value p; to the in-
teger position closest to the associated vertex position x;.Constraints
can be incorporated by projecting the position field entry onto the
tangent plane of boundary vertices following this rounding step.
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Fig. 6. Examples of singularity graphs obtained with our method. Red and
yellow curves denote singularities of the orientation and position field,
respectively.

The inset shows energy for the fertility model

20 Position field
in Figure 9. s

Field Singularities. The orientation and po- o
sition fields are characterized by the presence Z
of degeneracies named singularities. They can ~ ° * ,%, @
be detected by concatenating the computed integer rotations r;; or
translations 7;; around simple loops (i.e. connected chains of edges
that do not self-intersect) and testing whether the concatenation
becomes an identity upon returning to the starting point [Huang
et al. 2011; Li et al. 2012; Ray et al. 2016].

Singularities effectively absorb excess rotations and translations,
allowing our method to achieve a high level of isotropy. They are
automatically introduced as part of optimizing the smoothness of
the field. Figure 6 shows several visualizations of singularity graphs
obtained using our method.

4 MESH EXTRACTION

Following field optimization, the second phase of our method draws
on the information contained in the orientation and position fields
to convert the input tetrahedral mesh into a manifold hex-dominant
output mesh.

Recall that the position field records the offset of a local parame-
terization at every vertex, which is encoded as the 3D position of
the nearest integer grid point. If we simply replace the positions
of all input mesh vertices with their optimized position field coun-
terparts, we obtain a new mesh, whose shape generally resembles
the hex-dominant mesh we wish to extract. Figure 7 shows several
interpolated versions of this transformation to illustrate its behav-
ior. Note that the connectivity of the transformed mesh matches
that of the input mesh—in other words, it has the structure of a
manifold tetrahedral mesh, which will naturally require further
modifications before it can be used as hex-dominant output. From a
geometric viewpoint, we observe that the transformation creates
many undesirable collapsed and inverted elements.
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) ) = Face diagonal
I

Interior diagonal

t=372 t=1

Persistent edge

Fig. 7. Position field visualization for a cube-shaped tetrahedral object meshed into a single hexahedron. The sequence shows intermediate steps of a linear
interpolation v;(¢) := (1—¢)x; + tp; from the original vertex positions x; to their associated position field values p;. The interpolation reveals how the position
field maps most tetrahedral elements onto regions with zero volume (vertices as well as quad- and hex-diagonal edges). Colors in the above visualization are
chosen according to the position field integer variables z;;, which classify the intended role of edges in the final mesh. Please see the supplemental material

for an animated version of this figure.

The mesh extraction phase of our method then applies a sequence
of local operators to fix problematic areas in the transformed mesh,
removing collapsed regions and agglomerating tetrahedra into hex-
ahedra or other types of polyhedra. The precise sequence of opera-
tions is controlled by the position field integer variables z;;, which
specify the intended final role of every edge in the transformed
mesh (Figure 7).

Similar to other field-aligned meshing techniques, the optimized
fields are not guaranteed to be free of degeneracies and should there-
fore only be used as guides, hence, an important aspect of this phase
is that each operation is only performed if it preserves the manifold
structure and genus as an invariant. Apart from the difference in
dimension, this approach constitutes a significant deviation from
the IM mesh extraction algorithm, which unconditionally applied a
single operation capable of producing non-manifold output.

4.1 Edge Classification

It will be helpful to classify edges into several groups analogous to
the color scheme in Figure 7; the classification of an edge (i, j) is
based on the associated position field integer value z;;.

(1) Transient edges satisfy 7;; = 0. They are the most com-
mon and occur in larger clusters of edges that all map to a
single vertex of the output mesh. Transient edges are thus
not needed, and our extraction pipeline attempts to remove
them.

(2) Persistent edges have an integer variable 7;; with exactly
one nonzero coeflicient +1. Persistent edges are aligned
with the orientation field and connect clusters of transient
edges. They correspond to the edges of the final mesh that
should persist through the extraction pipeline, hence their
name. Note that there might be multiple representatives of
a persistent edge that will be merged during extraction.

(3) Face and interior diagonals have an integer variable 7;;
with exactly two or three nonzero coefficients +1, respec-
tively. These edges are not aligned with the orientation
field and pass diagonally through faces or polyhedra of the
output mesh. In both cases, the associated edges should
be dissolved during extraction, merging the tetrahedral

elements around them into hexahedra or other kinds of
polyhedral elements.

(4) Other edge types must by definition involve an integer
variable with at least one coefficient having magnitude > 1,
which means that the target edge length A is at least a factor
of 1.5 smaller than the distance of the edge’s vertices in the
input mesh. For simplicity, our extraction pipeline does not
attempt to deal with such edges—if they arise, it is necessary
to either increase the target edge length A or create a finer
tetrahedral input mesh using TetGen [Si 2015] or a similar
tool.

We also introduce a version of the position field energy that is

defined per edge, i.e.

eij = llpi — pj + AQ(qij)7ijlI (13)

When our extraction pipeline applies local operators during sweeps
over the mesh, it uses the values of ¢;; to prioritize regions where
the position field is smoothest. Large values of ¢;; imply an ambigu-
ous and potentially low-quality classification into the categories of
the above list, hence the associated elements are considered last (at
which point they are usually ignored since applying the correspond-
ing operator would break manifoldness).

4.2 Extraction via Polyhedral Agglomeration

Seen from a high level, our extraction algorithm alternates between
consecutive coarsening and splitting phases. The coarsening phase
reduce the complexity of the input mesh by removing edges, ver-
tices, and faces from it. However, this phase alone does not suffice:
an algorithm that is only based on local coarsening operators can
run into complex interlocking configurations of elements where
any further operation would break manifoldness, thereby inhibit-
ing forward progress; an instance of this problem was studied by
Dougherty et al. [2004].

The second phase of our algorithm thus performs additional
splitting operations where needed. These steps release interlocked
configurations, and they reduce the complexity of elements by split-
ting high-degree faces and polyhedra into simpler configurations.
This alternating sequence of iterations repeats until no more edges
can be collapsed or split, or after a maximum of 10 iterations has
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passed. In our experiments, we find that most models converge after
an average number of 3 iterations. A few models contain elements
that are alternately coarsened and split, eventually triggering the
10 iteration limit. These are ambiguous elements which have a sat-
isfactory quality in both coarsen and split configurations and hence
do not cause problems.

We now discuss each operator in turn. Note that the color scheme
in the small inset figures differs from that of Figure 7: red refers to
components to be removed, and blue and green are used to highlight
distinct components.

4.2.1 Coarsening Operators.

Edge Collapse. The first coarsening op-
erator traverses all transient mesh edges
using a priority queue that is ordered
according to the edge energy ¢;j, visit-

o

Edge collapse

ing smoother regions of the mesh first.
It then attempts to collapse each transient edge into a single ver-
tex using a suitable update to the surrounding mesh connectivity.
Collapse operations that would result in a non-manifold or genus-
changing configuration are rejected but can be retried in a later
phase. The underlying topological test is identical for all operators
and is described in Section 4.2.3. If successful, the collapsed vertex is
assigned an averaged orientation and position field value computed
from its constituent vertices.

Note that position field adjustments will generally change the
smoothness energy ¢;; of connected vertices and could potentially
even trigger a change in the high-level classification of adjacent
edges. We associate a discrete timestamp with every edge that is
also pushed on the priority queue. When an edge obtained from the
queue does not match its global timestamp, the information is stale
and can safely be ignored.

Edge Dissolve. The second coarsening
operator traverses all edges classified as
face diagonals according to ¢;; and at-
tempts to remove them to create a larger

087

Edge dissolve

face. In the inset shown on the right, this
operation entails converting two polyhedra with seven faces into
two hexahedra with six faces each. Invalid operations are skipped

Face Dissolve. The third coarsening
operator traverses all edges classified as
interior diagonals (dashed), attempting
to remove all adjacent faces and thereby

as before .
—|

Face dissolve

agglomerating tetrahedra into hexahe-
dra, prisms, or other polyhedra. The algorithm also attempts to
remove the leftover face diagonal edges (solid red) as part of a sepa-
rately triggered set of atomic operations.

4.2.2 Splitting Operators. Following coarsening, the second of
the two alternating extraction phase performs splits according to a
set of criteria to be discussed, which increase the number of vertices,
faces, and edges. Splits are intended to simplify high-degree polyhe-
dral elements by breaking them into smaller parts as well as trigger
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sequences of coarsening steps that were previously inaccessible
due to interlocking configurations. Note that some of the splitting
operations occur multiple times —once as a sweep over the mesh
(indicated using a self-loop in Figure 2), and once as a local step
triggered by another operation (an edge split e.g. triggers a face
split, which in turn triggers a polyhedral split). Each step occurs
in an atomic unit; recursively triggered steps are not required to

Edge Split. Consider the example con-

succeed for the parent operation to be committed to the mesh.
figuration shown in the right inset: a pair -

of elongated faces (dark blue) containing “ >

an overly long edge (dashed) interrupts Edge split

the otherwise regular structure of the
mesh. Ideally, the two faces should be collapsed and removed, but
there are no transient edges that would allow such an operation to
occur.

We handle this and a variety of other similar configurations by
detecting overly long edges in faces and inserting a vertex at their
barycenter. A subsequent face split operation (discussed next) then
inserts the requisite transient edge, enabling an edge collapse in the
next extraction phase. An edge is defined as being overly long if the
ratio of its horizontal or vertical length (determined according to
the orientation field) compared to the corresponding length of the
smallest adjacent edge rounds to a value > 2. In this case, we split
the edge in the middle by inserting a vertex with an interpolated
rotation and position field value.

Face Split. The face split operation

traverses every face of the mesh and at-

tempts to insert an additional persistent -

or transient edge that would cause the -
Face split

face to separate into two parts. The op-
erator simply loops over every possible pair of edges in the face,
classifying the resulting hypothetical edges using their orientation
and position field values. The operator then evaluates the smooth-
ness energy ¢&;; for each candidate from the set of transient and
persistent edges and finally attempts to carry out the lowest-energy
face split.

When a localized face split operation is triggered by a preceding
edge split, the search over edges constrains one of the endpoints
to lie on the newly created vertex. A face split operation in turn
triggers two recursive polyhedral split operations associated with
each of the newly created faces.

Polyhedral Split. The preceding split-
ting operators increase the number of
faces of the surrounding mesh elements,
which may occasionally create polyhe-

BRIl N

Polyhedral split

dra with a large number of faces. These
elements are not representative of the mesh encoded by the position
field—they are simply artifacts of the lack of a sufficient number of
edges in the input mesh and therefore undesirable. The last split-
ting operator processes these large polyhedra, breaking them into
smaller components.
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Fig. 8. Our field optimization supports alignment constraints on the bound-
ary (left) and in the interior (right).

The polyhedral split operation traverses every polyhedron in
the mesh and attempts to insert an additional face to the interior
that would cause the polyhedron to separate into two parts. A split
candidate must be constructed from previously existing mesh edges
arranged in a simple loop. Our implementation uses depth first
search to enumerate all possible loops that start and end on the
same edge, filtering non-manifold configurations. We then select
the loop that deviates less, i.e. it is more planar, with respect to
one of the main axes of the face. The polyhedra in our meshes are
fortunately small enough so that the exponential number of edges
found in this way remains unproblematic.

4.2.3 Topological Invariants. Our algorithm starts from a mani-
fold tetrahedral mesh and preserves its manifoldness by preserving
the following invariants throughout the coarsening and splitting
phases.

(1) Each face of a polyhedron is topologically a circle.

(2) Each polyhedron is topologically a sphere.
Designing mesh operations that efficiently enforce the above condi-
tions on a general polyhedral mesh can be tremendously challenging.
To keep implementation complexity at bay while allowing for strong
guarantees, we opted for the following simpler approach: before
each operation, we extract a sufficiently large topological sphere
encapsulating the affected element(s) using breadth first search. Af-
ter applying the operations to the extracted mesh, our algorithm
scrutinizes the resulting connectivity, only accepting the operation
if the topological invariants are not violated. While this is far from
optimal from an efficiency perspective, it allowed for a drastically
simplified implementation.

5 RESULTS

We implemented our algorithm in C++, using Eigen for linear algebra
routines. We run all our experiments on a workstation with a 6-cores
Intel processor clocked at 3.5 Ghz and 64 Gb of memory, using only
one thread.

Parameters. Our algorithm only requires one parameter, the target
edge-length [ of the hex-dominant mesh, which controls the output
mesh density. Our pipeline requires a clean, sliver-free input triangle
mesh. Its resolution is not important since we convert it into a dense
tetrahedral mesh with an edge-length of 30% [ using tetgen [Si 2015].

Optionally, our method can preserve sharp features prescribed
by the user. Since our test datasets do not explicitly contain this

Fig.9. Our orientation field optimization is robust to different initializations.
The fields obtained starting from a constant (left) and random (right) initial-
ization are indistinguishable. Left: constant initialization. Right: random
initialization

information, we detect them using a simple heuristic: we tag all the
edges with a dihedral angle lower than 150 degrees as sharp edges.
Vertices on sharp edges are tagged as features, and are not enforced
explicitly: we align both fields to the boundary only on non-feature
vertices. The alignment to the sharp features is a consequence of
the energy minimization and it happens automatically.

Internal Constraints. Internal constraints can be easily incorpo-
rated into our field optimization framework in the same way as we
handle boundary alignment. Figure 8 shows an example where we
added a line alignment constraint in the interior of the twisted cube.

Robustness. To test the robustness of our algorithm, we process
the complete database proposed in [Fu et al. 2016], with a target
edge length of 2.5 times the average edge length of the input mesh.
Our algorithm successfully produced hex-dominant meshes for all
106 models. We attach the remeshed database as additional material:
For each model we provide the mesh file in ascii format, and a short
mp4 clip showing its interior during a plane sweep. The size of the
meshes in the database ranges from 0.06 to 3.6 millions tetrahedra,
our running time from 1 minute to 10 hours, the hexahedral ratio
from 48% to 91%, and the average Jacobian from 0.93 to 0.99. We
refer to Table 1 for more detailed timings and quality measurements
for the results shown in the paper. In figures 10, 11, 13, 14, and 15, we
show histograms of the scaled Jacobian of the hexahedral elements.

Comparison with [Ray et al. 2016]. Section 3.1 introduces a novel
volumetric orientation field representation and a corresponding
smoothing algorithm. We processed the same models used in figure
11, 13, and 15 of [Ray and Sokolov 2015] with our algorithm and
obtained visually similar fields. Remarkably, also the singularity
structure is similar (Figure 6), suggesting that the two measures of
smoothness are deeply related. One major advantage of our repre-
sentation is the explicit modeling of the matchings, which supports
higher-order singularities and exact singularity prescription. In con-
trast to methods based on spherical harmonics [Huang et al. 2011;
Ray et al. 2016], our smoothing algorithm is insensitive to the initial-
ization, as demonstrated in Figure 9. For all the other results in the
paper and in the additional material, we use a random initialization.

Comparison with [Sokolov et al. 2016]. Figures 10 and 11 compare
our algorithm with [Sokolov et al. 2016] on two datasets provided by
the authors of [Sokolov et al. 2016]. Our algorithm produces meshes
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. 8K

Fig. 10. A comparison between a remeshing of the cheese dataset created
by [Sokolov et al. 2016] (left) and by our algorithm (right). The hex ratio
is 60.43% (left) and 88.82% (right). The hexahedral element quality of the
meshes are 0.96/-0.005/0.05 (left) and 0.95/-0.65/0.05 (right), measured by
the scaled Jacobian in the format of average/minimum/standard deviation.

-1

Fig. 11. A comparison between a remeshing of a challenging example with
thin features, computed with [Sokolov et al. 2016] (top) and our algorithm
(bottom). From left to right: an external view, an internal view obtained by
peeling one layer of elements, a side view with a vertical cut. Our algorithm
produces a more regular output (hex ratio 73.77% vs 35.27%) and the hex
elements have a higher quality (0.97/0.04/0.04 vs 0.91/-0.23/0.08).

with higher regularity and similar hexahedral element quality (as
detailed in the figure captions). Note that the results from [Sokolov
et al. 2016] have been optimized with [Brewer et al. 2003], while
ours are not.

Comparison with [Jakob et al. 2015]. Our extraction algorithm
(Section 4) can be easily adapted to process 2D orientation and
position fields. In Figure 12, we compare our extraction algorithm
with the greedy one proposed in [Jakob et al. 2015]: While the results
between the two extraction methods are visually similar (Figure 12),
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Fig. 12. Our extraction algorithm is guaranteed to produce manifold out-
puts (right), while the greedy method proposed by [Jakob et al. 2015] (left)
often introduces non-manifold artifacts on features smaller than the target
edge length.

20K

Fig. 13. A selection of CAD models meshed with our algorithm. Our meshes
are highly isotropic and preserve sharp features.

the major advantage of our approach is that it is guaranteed to
produce a manifold output, even for a large target edge length.

Gallery. CAD models with multiple holes and sharp features
are challenging models for field-aligned parametrization methods.
Our algorithm can process them robustly, while preserving sharp
features (Figure 13). The orientation field also naturally aligns to
smooth features of organic shapes, due to its extrinsic formulation
(Figure 14). We show two additional challenging examples in Figure
15, and we refer to the additional material for more results.

6 LIMITATIONS AND CONCLUDING REMARKS

We introduced a fully automatic and robust algorithm to create
manifold hex-dominant meshes, and validated it on a database with
more than a hundred models. We expect that our algorithm will
have a major impact in the graphics and CAD community and we
will release a reference implementation to foster replicability of
results and future research in this area.

Our current implementation is single-threaded, and not suited
to process datasets with billions of tetrahedra. However, this is
not a limitation of the algorithm, which can be fully parallelized
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Dataset #Tin  #Hout | Hupr Hyol Quality  #Inv #Int #P | Hierarchy RoSy PoSy Extraction
Cheese (Fig. 10) 765911 8439 | 0.89 0.89 0.95/-0.65/0.05 2/25/0 1 20 0.24 391 7.07 58.88
ASM_Limited (Fig. 11) | 1457332 13010 | 0.74 0.72  0.97/0.04/0.04 0/56/0 8 41 0.34 5.16 12.24 139.36
Casting (Fig. 13) 218533 1916 | 0.83 0.83  0.98/0.53/0.04  0/4/1 0 17 0.07 1.1 1.86 6.21
Lock (Fig. 13) 1702872 20503 | 0.91 091  0.99/0.35/0.02 0/48/1 3 17 0.45 6.71  14.05 176.39
Sculpt (Fig. 13) 224353 1794 | 073 0.73  0.97/0.73/0.04  0/1/0 0 22 0.04 0.83 1.69 3.2
Elephant (Fig. 14) 1029536 9505 | 0.73 0.73 0.96/-0.35/0.06 3/26/3 2 31 0.21 3.61 7.48 52.32
Fertility (Fig. 14) 516140 4769 | 0.72  0.73  0.96/-0.33/0.07 4/23/0 2 24 0.12 1.9 4.02 17.77
Igea (Fig. 14) 1234724 12936 | 0.81 0.81 0.97/-0.23/0.05 1/33/0 2 22 0.24 4.08 9.84 69.35
Rocker (Fig. 14) 526133 5238 | 0.78 0.80 0.98/-0.78/0.05 1/11/1 2 18 0.11 1.9 4.12 18.3
Daratech (Fig. 15) 766733 8867 | 0.87 0.87 0.98/0.18/0.04 0/18/0 2 19 0.22 3.43 6.65 57.55
Mazewheel (Fig. 15) 637011 6938 | 0.81 0.81 0.97/0.28/0.04 0/36/0 3 18 0.17 2.72 5.02 45.33

Table 1. Timings and statistics for the models shown in the paper. From left to right: number of input tetrahedra, number of output polyhedra, ratio of
the number of hexahedra to polyhedra, ratio of the volume of hexahedra to polyhedra, quality of hex elements (measured as average scaled Jacobian,
minimum scaled Jacobian and standard deviation), number of degenerated elements (inverted hexahedra/inverted polyhedral/collapsed polyhedra), number of
self-intersected elements, the maximal number of faces (for polyhedra), timings in minutes for hierarchy construction, RoSy optimization, PoSy optimization,

and mesh extraction.

Fig. 14. A selection of models with smooth surface features. Note how our
algorithm naturally aligns to them, even if they are not explicitly marked as
features.

using the same strategy proposed in [Jakob et al. 2015] — Extending
this algorithm to work in a distributed system is a challenging and
exciting research direction.

Similarly to the original IM algorithm, the number of position
singularities increases with the target density. The curl-correction
step proposed in [Sokolov et al. 2016] could be applied to slightly
decrease the number of singularities, but it is not as effective as its
2D counterparts [Ray et al. 2006; Diamanti et al. 2015]. Successfully
tackling this problem would increase the regularity of our meshes,
at the price of isotropy.

Our approach might introduce inverted, self-intersecting, or col-
lapsed elements. However, they rarely appear in our experiments
(Table 1). Our results are obtained without doing any further mesh
improvement, which could likely resolve these rare cases. Differ-
ently from the 2D case, where it is straightforward to convert hybrid

meshes to pure quadrilateral with a subdivision step, this is not the
case for 3D.

We believe that automatic generation of hex-dominant meshes
will play a key role in the nearby future: adaptive spline technology
is quickly advancing [Sederberg et al. 2003; Giannelli et al. 2012;
Dokken et al. 2013; Kang et al. 2015], and it is likely that a general
solution to construct higher-order isogeometric basis will be soon
discovered. Such a technology, when paired with our algorithm,
would allow to do simulations and analysis sidestepping the expen-
sive and time consuming manual meshing process that is currently
used both in industry and in academia.
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Fig. 16. The field-guided agglomeration phase converts the fields into a
stream of local transformations applied to the input mesh, each preserving
both manifold structure and genus. Self-loops indicate repeated application
of an operation over the entire mesh until no more qualifying elements are
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edge split e.g. triggers a face split).
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APPENDIX - 2D EXTRACTION VIA POLYGON
AGGLOMERATION

We can adapt our extraction algorithm to convert any manifold trian-
gle mesh into a quad-dominant mesh while maintaining the genus,
number of holes and manifoldness of the input model. Similarly
to our 3D extraction, all edges can be classified into transient, per-
sistent, diagonal, and long edges. To remove non-persistent edges,
the extraction algorithm alternates between coarsening and splitting
operators. As shown in Figure 16, the coarsening operators are edge
collapses (to remove transient edges) and edge dissolves (to remove
diagonal edges). The splitting operators are edge splits (to remove
long edges) and face splits (to prevent large polygons). These opera-
tors are sequentially executed and iterated until no more elements
can be collapsed or split.
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