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Fig. 1. The positions of the vertices of an input tetrahedral mesh (let, t = 0) are morphed (t = 1) into a hex-dominant mesh (right), guided by an orientation
and a position field. The singularities of both fields are shown in the middle image, in red and yellow respectively.

We propose a robust and eicient ield-aligned volumetric meshing algorithm

that produces hex-dominant meshes, i.e. meshes that are predominantly com-

posed of hexahedral elements while containing a small number of irregular

polyhedra. The latter are placed according to the singularities of two opti-

mized guiding ields, which allow our method to generate meshes with an

exceptionally high amount of isotropy.

The ield design phase of our method relies on a compact quaternionic

representation of volumetric octa-ields and a corresponding optimization

that explicitly models the discrete matchings between neighboring elements.

This optimization naturally supports alignment constraints and scales to

very large datasets. We also propose a novel extraction technique that uses

ield-guided mesh simpliication to convert the optimized ields into a hex-

dominant output mesh. Each simpliication operation maintains topological

validity as an invariant, ensuring manifold output. These steps easily gener-

alize to other dimensions or representations, and we show how they can be

an asset in existing 2D surface meshing techniques.

Our method can automatically and robustly convert any tetrahedral mesh

into an isotropic hex-dominant mesh and (with minor modiications) can also

convert any triangle mesh into a corresponding isotropic quad-dominant

mesh, preserving its genus, number of holes, and manifoldness. We demon-

strate the beneits of our algorithm on a large collection of shapes provided

in the supplemental material along with all generated results.

CCS Concepts: • Computing methodologies → Volumetric models;

Additional Key Words and Phrases: 3D frame ield, quaternionic representa-

tion, singularity graph, hexahedral dominant.

ACM Reference format:

Xifeng Gao, Wenzel Jakob, Marco Tarini, and Daniele Panozzo. 2017. Robust

Hex-Dominant Mesh Generation using Field-Guided Polyhedral Agglomera-

tion. ACM Trans. Graph. 36, 4, Article 114 (July 2017), 13 pages.

DOI: http://dx.doi.org/10.1145/3072959.3073676

This work was supported in part by the NSF CAREER award 1652515 and by the MIUR
project DSurf.
© 2017 ACM. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The deinitive Version of Record was published in ACM
Transactions on Graphics, https://doi.org/http://dx.doi.org/10.1145/3072959.3073676.

1 INTRODUCTION

When solving non-linear partial diferential equations on volumes,

hexahedral meshes are generally preferred to tetrahedral ones, since

they achieve the same accuracy with a drastically lower element

count [Cifuentes and Kalbag 1992; Benzley et al. 1995; Tadepalli

et al. 2010]. Unfortunately, the generation of high quality hexahedral

meshes at coarse resolutions remains an elusive task involving a

number of unsolved problems, thus automatic techniques capable of

producing them robustly are still out of reach despite three decades

of extensive research dedicated to this topic. Hexahedral-dominant

meshes strike a good balance: they are easier to generate, since they

can contain a small number of irregular elements, while ofering

good numerical properties [Owen and Saigal 2000; Martin et al. 2008;

Reberol and Lévy 2016].

Building upon the 2D instant meshing (IM) approach [Jakob et al.

2015], we propose a novel algorithm to eiciently, robustly, and

automatically create ield-aligned hex-dominant meshes.

Our irst contribution is a quaternionic representation for a volu-

metric cross-ield designed to eiciently support explicit encoding

of the ield matching. When paired with a hierarchical accelerations

structure, this representation enables us to interpolate user-deined

constraints, while naturally aligning to shape features. Our algo-

rithm is extremely robust and it converges to a smooth ield even

with a random initialization.

Our second contribution is a robust extraction algorithm guaran-

teed to extract a compatible manifold mesh from any ield-aligned

parameterization Ð it is designed to work with local parameteri-

zations that are characteristic of the output produced by the IM

technique, but it can also be applied to any global parameterization

generated by other means. The algorithm uses a sequence of local

topological operations to collapse and split edges, faces, and polyhe-

dra of the input mesh, eventually converting the input tetrahedral

(or triangle) mesh into a hex-dominant (or quad-dominant) output
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mesh. Topological invariants are checked before each operation,

and only those preserving the invariants are executed, which en-

sures that both genus and manifoldness of the input are preserved

throughout this process.

While the two contributions are independently useful in existing

meshing pipelines, they have been designed together to extend the

IM pipeline to the volumetric cases. Combined, they lead to a sim-

ple, robust, automatic, and scalable pipeline that can automatically

remesh the benchmark proposed in [Fu et al. 2016], which is com-

posed of 106 meshes, with no user-interaction and no parameter

tweaking. We attach all results in the additional material, including

a 10 second long peeling animation for each one of them.

2 RELATED WORK

We review the literature for the creation of pure hexahedral and

hex-dominant meshes. Many of these algorithms are based on simi-

lar corresponding methods previously developed for quadrilateral

meshing Ð we restrict our survey to volumetric meshing techniques

and we refer an interested reader to [Bommes et al. 2013] for an

overview of quad meshing techniques.

Local Connectivity Editing. Two of the earliest attempts to achieve

automatic hexahedral meshing are paving (i.e. inserting regular lay-

ers of cubes aligned with a boundary quad mesh) and sweeping

(i.e. extruding a partial quad mesh) [Shepherd and Johnson 2008;

Owen and Saigal 2000; Yamakawa and Shimada 2003]. Their im-

plementation is extremely challenging due to the large number of

special cases that could occur, and they introduce a large number of

singularities in regions where the fronts meet. The special case of

tubular models has been considered in Livesu et al. [2016], where

a skeleton is used to sweep a regular hex-mesh in its interior. Our

method optimizes guiding ields to determine the placement of sin-

gularities throughout the interior of the mesh. It can automatically

mesh complex objects without requiring user input such as skeletal

or cage-based decompositions.

Spatial Partitioning. Spatial partitioning methods can be used

to discretize shapes in regular collection of cubes, which coarsely

approximate the input shape. This approach is very popular [Su

et al. 2004; Zhang and Bajaj 2006; Zhang et al. 2007], in particu-

lar combined with octrees [Maréchal 2009; Ito et al. 2009; Zhang

et al. 2013]. These methods can represent only features that are

well-aligned with the grid axes and place all singularities on the

shape boundary, which is unfortunate since this is often the region

of highest interest. These disadvantages are, however, compensated

by the high robustness of these methods, making them the de facto

standard for automatic hex mesh generation. Aside from the lim-

itation to hex-dominant output, our algorithm shares the general

robustness of these methods while adding two desirable properties:

automatic alignment to shape features and improved placement of

singularities.

Polycube Parametrization. Polycube methods [Gregson et al. 2011;

Livesu et al. 2013; Huang et al. 2014; Fang et al. 2016; Fu et al.

2016; Li et al. 2013] parameterize the interior of a closed surface

mesh into a polycube. The polycube is trivially subdivided in a

hexahedral mesh, that is inally warped back into the input geometry.

Similarly to spatial partitioning methods, all singularities are located

on the surface boundary. However, in contrast to spatial partitioning

schemes, polycube methods distribute them in a superior way to

account for surface features, obtaining both higher quality elements

and a lower total element count. These methods are unfortunately

not guaranteed to produce a valid polycube and can fail on complex

inputs, limiting their practical applicability. Our algorithm robustly

generates hex-dominant meshes which similarly adapt to surface

features.

Field-Aligned Methods. Field-aligned methods [Nieser et al. 2011;

Huang et al. 2011; Li et al. 2012; Jiang et al. 2014] compute a hex-mesh

in three stages. They irst estimate the gradients of a volumetric

parameterization using a directional ield [Vaxman et al. 2016], com-

pute a parameterization aligned with the estimated gradients, and

inally trace the cubes edges in parametric space [Lyon et al. 2016].

Computing a parameterization that induces a pure hexahedral mesh

remains an unsolved problem, and currently used heuristics tend to

fail on complex inputs.

Our technique is based on a similar pipeline, but avoids com-

puting a globally consistent parameterization in favor of local, per-

vertex parameterizations. Instead of explicitly tracing edges in the

parameterization domain, we opt for a robust simpliication-based

algorithm that is guaranteed to produce a manifold hex-dominant

mesh as output.

To our knowledge, the method by Sokolov et al. [2016] (hence-

forth referred to as PGP3D) is the only existing ield-aligned pa-

rameterization method that also targets hex-dominant meshes. Our

algorithm shares many similarities with this method, even if the pro-

duced meshes are diferent at a supericial level. PGP3D can robustly

process complex CAD models with alignment to surface features,

creating meshes composed of hexahedra, tetrahedra, triangle-based

prisms, and quad-based pyramids, while our method may create

arbitrary polyhedra. The price paid by PGP3D’s approach is that

their meshes are not conforming (i.e. there are interfaces where

a quad is e.g. touching two triangles), and a layer of zero-volume

elements needs to be introduced to convert them into conforming

meshes. In our case, the meshes are conforming, but we cannot

guarantee to have only a restricted set of elements. Converting be-

tween these two representations is straightforward (in the space of

non-conforming meshes), and the favored representation depends

on the application. For example, polyhedral meshes can be directly

used for computer animation in the algorithm proposed in [Martin

et al. 2008; Bishop 2014], while non-conforming meshes are ideal

for [Reberol and Lévy 2016]. Quality-wise, the hexahedral elements

of our meshes are more isotropic than those generated by PGP3D

(igures 10 and 11). Our algorithm casts the optimization of both

the orientation and of the directional ield as simple local iterations,

which are simple to implement and robust to random initializations

(Figure 9). Additionally, our mesh extraction algorithm is general,

can be used for surfaces and volumes, and it does not rely on a

constrained Delaunay tetrahedralization step.

Existing Software. Robust software solutions exist for octree-based

hexahedral meshing, producing cut cells and a high degree of reine-

ment at the boundary [Car 2016; LBI 2016; Har 2016; HEX 2016; Bol

2016; Hex 2016; Mes 2016a; Kub 2016; XBX 2016]. Boundary-aligned
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Fig. 2. Our method is composed of two high-level phases: field optimization takes an existing tetrahedral mesh as input and optimizes the smoothness of
two guiding fields controlling the orientation and spatial placement of mesh elements. A multi-resolution hierarchy accelerates convergence during this
process. The field-guided agglomeration phase converts the fields into a stream of local transformations applied to the input mesh, each preserving both
manifold structure and genus. Self-loops indicate repeated application of an operation over the entire mesh until no more qualifying elements are let. Certain
operations occur multiple timesÐonce as a sweep over the mesh (with self-loop), and once as a local step triggered by another operation (an edge split
e.g. triggers a face split, which in turn triggers a polyhedral split).

techniques exist to automatically meshing special geometries, such

as cylinders, boxes and sweepable solids [PAM 2016; ANS 2016;

Hyp 2016; Sie 2016]. Hexahedral meshes of arbitrary geometries

are currently constructed by manually decomposing the shape into

simpler pieces, that are then meshed while ensuring compatible

interfaces are introduced [CUB 2016; Tre 2016; Ape 2016]. Mixed

meshes, containing diferent types of elements, are easier to gener-

ate, and many commercial codes have been developed for this task

[Aut 2016; Mes 2016b; AMP 2016; BET 2016; TEX 2016]; these tools

are closer to our goals. However, to the best of our knowledge, no

free or open-source implementation exists, and the limitations of

these techniques, while informally known, are diicult to quantify

precisely. In addition, none of these softwares can produce meshes

aligned with a given volumetric orientation ield.

Our reference implementation will be the irst open-source, fully

automatic, and unconditionally robust hex-dominant mesher. It is

based on a ield-aligned approach, ensuring alignment to features

and even distribution of singularities in the interior, which ensures

high element isotropy. We expect our contribution and reference

implementation to have a large impact in the graphics and computer

aided design research communities.

3 FIELD OPTIMIZATION

Seen from a high level, our algorithm consists of three major com-

ponents (Figure 2) that follow a well-established structure used by

numerous recent global parameterization methods: the irst com-

putes an orientation ield guiding the orientation of edges in the

output mesh; the second takes the orientation ield as input and

converts it into a position ield guiding the spatial placement of mesh

elements. The last step extracts the inal mesh from the two ields.

Overview. The orientation and position optimizations are real-

ized using a uniied iterative smoothing algorithm, which accounts

for inherent symmetries associated with the respective ields. The

contents of the optimized output ields are then used to guide the

mesh extraction phase, but the algorithm’s correctness does not

hinge upon their quality. This is a crucial property: although the

ields will generally be in close agreement with the extracted mesh,

they are not guaranteed to be free of degeneracies.

The inal mesh extraction phase converts the information con-

tained in the position ield into a stream of local mesh operations

that are sequentially applied to the input triangle or tet mesh, even-

tually producing the output mesh. Importantly, each iteration of this

process preserves the manifoldness as an invariant; operations that

would introduce non-manifold conigurations are simply postponed

and retried later on. During this process, our algorithm continues

to update the position and orientation ields to account for changes

resulting from the simpliication steps. This is crucial: in certain

situations, it may be necessary to locally subdivide (i.e. increase

the element count rather than reduce it) in a part of the mesh to

unlock a sequence of subsequent simpliication operations. Having

access to continually updated orientation and position ields leads

to a straightforward criterion to decide whether and where such

steps are necessary.

We now discuss each of these components in turn, focusing on

the 3D case; the generalization to two dimensions is discussed later

in Appendix.

Notation. The input to our method is an existing tetrahedral mesh

with boundary G = (V, E,F ,T ) with vertex positions xi for every

vertex i ∈ V . We deine the neighborhood of a vertex as N = {j ∈

V | (i, j ) ∈ E}.

3.1 Orientation Field Optimization

The irst phase of our method optimizes the smoothness of the

orientation ield which associates a 3D cross represented using a

right handed coordinate frame Qi ∈ R
3×3 with every vertex xi

inside the volume. Each frame controls the alignment of a local

parameterization encoded via the position ield that is generated

in a subsequent step and then used to guide the mesh extraction

phase. Since our goal is to create isotropic output, we impose the

constraint that the Qi are rotation matrices.
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Fig. 3. Let: Incompatible pair of orientations.Right: Matched orientations
using one of the 24 canonical rotations from the field’s symmetry group.

Smoothness. The orientation ield is subject to symmetries that

must be considered when reasoning about its smoothness. Analo-

gous to cross ields on surfaces, any 3D frame that can be reached

by transforming an existing one using arbitrary sequences of 90◦-

rotations around any of its axes is considered part of the same

equivalence class, leading to a 24-fold symmetry (Figure 3).

We deine the smoothness of the orientation ield using an energy

function that measures the dissimilarity of appropriately rotated

neighboring frames, i.e.

EQ (Q,κ ) ≔
∑

i ∈V

∑

j ∈N (i )

dQ (Rκi jQi ,Qj )
2 (1)

where dQ (Qi ,Qj ) =
1
2 ∥ log(QiQ

T
j )∥ is a metric denoting geodesic

distance on the rotation group SO (3) and κ denotes a matching

on edges. Each matching variable κi j selects one of the 24 possible

rotationmatricesR1, . . . ,R24 from the frame ield’s symmetry group.

Optimizing the smoothness thus entails inding both the set of

matchings and orientations so that the energy is minimized, i.e.

(Q∗,κ∗) = argminEQ (Q,κ ). (2)

Similar to surface-based cross ield smoothness energies that incor-

porate integer variables [Bommes et al. 2009], the discrete nature

of the matchings leads to a challenging non-convex optimization

problem whose combinatorial nature deies techniques that exhaus-

tively search the solution space for the global optimum. As in the

2D case, we observed that the energy landscape is characterized by

a large number of local minima that generally don’t correspond to

satisfactory solutions, hence purely local iterative solvers cannot be

used.

Multi-Resolution Hierarchy. Our optimization approach is inspired

by the Instant Field-Aligned Meshes (IM) [Jakob et al. 2015] tech-

nique, speciically the observation that a relatively naive iterative

algorithm can produce excellent results when it is combined with a

coarse-to-ine optimization scheme based on an unstructured mul-

tiresolution hierarchy. As in IM, we build this hierarchy level by level

starting from the input tet mesh, with each progressively coarser

level containing approximately half the number of vertices. The

coarser levels only encode edge connectivity, which suices to solve

difusion-type smoothing problems.

To create a coarser layer from an existing one in the hierarchy,

we visit each edge (sorted from shortest to longest) and attempt to

collapse it into a single vertex located at its barycenter (Figure 4). A

vertex can only be part of a single operation in each phase, and the

coarsening step inishes when no more edges can be merged. We

repeat this process until only a single vertex remains and keep track

Level 2

Root node

Level 1

Level 3

Fig. 4. Let: Our method’s two field optimizations propagate course solu-
tions through an unstructured multiresolution hierarchy that is constructed
by greedily collapsing adjacent vertices. The above illustration shows a tiny
hierarchy constructed from a single tetrahedron.

of all intermediate layers as well as the relations between iner and

coarser-level vertices that can be used to propagate solutions up

and down in the resulting tree.

As with other iterative solution techniques for nonconvex ener-

gies, our method cannot guarantee convergence to a global min-

imum. The discrete matchings in the energy lead to a solution

space that is characterized by many local minima that correspond

to low-quality solutions, hence an algorithm that łmerelyž con-

verges to any local minimum is not usable for mesh generation.
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Our use of a hierarchy was driven by the em-

pirically motivated hypothesis that the global

minima of the energy function for two adja-

cent hierarchy levels are closely related so that

a converged solution at one level provides an

excellent warm start for optimization at the

next iner level. The inset shows a plot of the

smoothness energy for the fertility model in Figure 9.

Nonlinear Gauss-Seidel. We now focus on the iterative part of

the algorithm performed on each level, which consists of simple

sequence nonlinear Gauss-Seidel steps where each step replaces

the rotation Qi at a vertex i with an average of the rotations of its

neighbors N (i ). The averaging proceeds vertex by vertex using a

conceptual sequence of updates of the following form (initialized

with Q′i ← 0) followed by re-normalization:

Q′i ← Q′i + Rκi jQj (3)

Since the averaging only considers pairs of elements at a time, the

best matching κi j between Q′i and Qj can be determined using

an exhaustive search. At this point, we note that a representing

rotations as 3 × 3 matrices leads to an unnecessarily ineicient im-

plementation: in addition to the obvious redundancy, a considerable

amount of arithmetic is spent evaluating the rotation group metric

dQ (·, ·) to determine the best matching κi j in each smoothing itera-

tion. Finally, the resulting average Q′i is generally not orthogonal

and will require re-normalization using Gram-Schmidt or a similar

algorithm.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 114. Publication date: July 2017.



Robust Hex-Dominant Mesh Generation using Field-Guided Polyhedral Agglomeration • 114:5

Quaternionic Representation. These drawbacks motivate our re-

liance on unit quaternions qi ∈ Q, which admit highly eicient

implementations of the key operations that are needed by the orien-

tation ield optimization. In this representation, the rotation group

metric takes on the simple form dQ (qi , qj ) = arccos⟨qi , qj ⟩ and

the canonical rotations P1, . . . , P24 from the symmetry group are

elements of

R ≔

{

r/∥r∥
�����
ri ∈

{
−1, 0, 1

}4
∧
∑

|pi | = 1, 2, or 4

}

, (4)

i.e. the set of unit quaternions with 1, 2, or 4 nonzero entries of the

same magnitude. Note that R has 48 elements as every rotation can

be represented by two equivalent quaternions of opposite sign.

Finding the bestmatchingκi j now entailsminimizingdq (qi , qj rk )

over rk ∈ R , and the form ofdQ implies that the minimizer is simply

the quaternion r∗ maximizing the inner product ⟨qi , qj r
∗⟩. Let

αk ≔ ⟨qi , qjek ⟩, (k = 1, . . . , 4) (5)

where ek are the standard basis vectors in Q. Due to linearity, the

inner product β∗ associated with the best matching r∗ can be ex-

pressed as

β∗ := ⟨qi , qj r
∗⟩ =

4
∑

k=1

αkp
∗
k
. (6)

Interestingly, due to the simple structure of R, the inner products

αk already contain suicient information to distinguish how many

nonzero entries the best matching r∗ must have. Speciically, let

γ1 ≔ max
i
|αi |, γ2 ≔ max

i, j
|αi | + |α j |, γ4 ≔

∑

i

|αi |. (7)

If both γ4 > γ1 and γ4 > γ2 then the largest possible inner prod-

uct β∗ = γ4 necessarily involves a quaternion of the form r =

(±1,±1,±1,±1)/2 whose component signs match those of the inner

products αi . A similar logic can be used to determine r∗ for the other

two cases, hence inding a matching reduces to a simple computa-

tion involving four dot products, determining which of three cases

applies and inally constructing a unit quaternion with the corre-

sponding set of nonzero entries and signs. A detailed discussion of

these steps is provided in the supplemental material. Needless to say,

this is dramatically more eicient than the brute force matrix-based

approach.

Using the quaternionic representation, one full sweep of the non-

linear Gauss-Seidel update then takes on the form

1 function Optimize-Orientations(q)

2 for i = 1, . . . , n do

3 q′i ← 0

4 for each j ∈ N (i ) do

5 q′i ← q′i + qj r
∗ (qi , qj )

6 qi ← q′i/∥q
′
i ∥

This iteration visits every vertex in the mesh, replacing the local

orientation ield value with an average while using the previously

discussed matchings r∗ to account for symmetries. We run the opti-

mization for 200 iterations at every level and then copy the solution

to the next iner level. While experimenting with diferent versions

of this approach, we found that a judicious amount of randomness

can help the individual smoothing iterations move out of local min-

ima, which further improves convergence in conjunction with the

hierarchy. Speciically, we modify the traversal in line 4 to visit the

neighboring vertices N (i ) using a diferent order in each iteration.

The order of the vertices in the outer loop (line 2) is not randomized.

Constraints. Without added constraints, the above algorithm will

simply converge to a constant orientation ield; however, to be

useful for remeshing, the ield should smoothly interpolate boundary

constraints and possibly internal alignment constraints if speciied.

In standard iterative solvers for linear systems, such point-wise

constraints are easily applied by replacing certain variables with

constants. However, this is too severe of a constraint in our case,

since the orientation ield values should only be ixed up to trans-

formations by the underlying symmetry group. Furthermore, the

orientation ield frames on the boundary should still have a degree

of freedom to permit rotation perpendicular to the surface normal.

A simple extension of Algorithm 1 then corrects the averaged

orientations qi by applying the smallest rotation that will make one

of the frame’s axes align with the normal vector ni at boundary

vertices. As in the case of the matchings, this rotation is easily and

eiciently obtained by reasoning about magnitudes and signs of the

quaternion entries. We provide a detailed speciication of this step

in the supplemental material.

Symmetrized Orientations. Before continuing, we establish two

additional deinitions that are required by the subsequent phases.

The ield

qi j :=
qi + qj r

∗ (qi , qj )

∥qi + qj r∗ (qi , qj )∥
, (8)

deines a symmetrized set of orientations satisfying qi j ≡ qji (i.e.

equality up to symmetries). We furthermore deine Q(q) as the

matrix representation of a rotation quaternion q.

3.2 Position Field Optimization

The position ield optimization is a generalization of the correspond-

ing step in the two-dimensional IM technique, which we discuss

here for completeness.

The position ield is easiest to visualize when its discretization is

sampled on volume elements (Figure 5). In this case, the position ield

values encode points on 3D grids permeating the interior of mesh

elements, whose axes are determined by the previously computed

orientation ield. Since the grid does not change when translated

by integer multiples of its cell width, only the fractional part of the

position is relevant. In practice, our implementation samples the

position ield on vertices along with the orientation ield, which is

helpful in the extraction stage later on.

Smoothness of the position ield is deined as a sum over the

squared distances of suitably translated positions ield values

Ep (p,τ ) ≔
∑

i ∈V

∑

j ∈N (i )

dp (pi + λQ(qi j )τi j , pj )
2, (9)

where τi j ∈ Z
3 (i, j = 1, . . . ,n) is a set of 3D integer translations,

dp (a, b) ≔ ∥a − b∥2, and λ is the position ield’s grid size, which

is identical to the desired target edge length. The integer variables

serve the same purpose as the rotation indices κi j from before: to

remove excess integer jumps so that only fractional diferences are
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Fig. 5. Conceptual cutaway view of a position field discretized on a pair of
overlapping volume elements. pi and pj encode three-dimensional positions
located on integer positions of a 3D grid permeating their interior. Translat-
ing them by integer amounts does not change the underlying grid, hence
only the fractional position is relevant. The second stage of our pipeline op-
timizes the smoothness of this field subject to a symmetry group of integer
translations.

measured. Optimizing the smoothness, again, entails inding both

the ield and the set of matchings minimizing the energy, i.e.

(p∗,τ∗) = argminEp (p,τ ), (10)

The position ield optimization relies on the same overall approach

of performing non-linear Gauss-Seidel sweeps over the mesh in

conjunction with a coarse-to-ine traversal of the multi-resolution

hierarchy. Onemissing piece to realize this step is a way of obtaining

the best position ield matching for an adjacent pair of vertices,

which is deined as

τ
∗
i j ≔ argmin

τi j

dp (pi + λQ(qi j )τi j , pj )
2. (11)

where λQ(qi j )τi j the ofset due to an integer number of steps on

a grid with cell spacing λ and orientation Q(qi j ). Since the axes

of this grid are orthogonal, the minimization has a simple explicit

solution in terms of a component-wise rounding operation:

τ
∗
i j = round

[
(

λQ(qi j )
)−1 (

pj − pi
)

]
. (12)

With this last piece at hand, we can now deine the position smooth-

ing iteration applied to each level of the hierarchy:

1 function Optimize-Positions(p)

2 for i = 1, . . . , n do

3 p′i ← 0, k ← 0

4 for each j ∈ N (i ) do

5 p′i ← p′i + pj + λQ(qi j )τ
∗ (pi , pj )

6 k ← k + 1

7 pi ← p′i/k

8 pi ← pi + λQ
−1 (qi j ) round

(

λ−1Q (qi j ) (xi − pi )
)

The last step in line 8 rounds each position ield value pi to the in-

teger position closest to the associated vertex position xi .Constraints

can be incorporated by projecting the position ield entry onto the

tangent plane of boundary vertices following this rounding step.

Fig. 6. Examples of singularity graphs obtained with our method. Red and
yellow curves denote singularities of the orientation and position field,
respectively.
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The inset shows energy for the fertility model

in Figure 9.

Field Singularities. The orientation and po-

sition ields are characterized by the presence

of degeneracies named singularities. They can

be detected by concatenating the computed integer rotations ri j or

translations τi j around simple loops (i.e. connected chains of edges

that do not self-intersect) and testing whether the concatenation

becomes an identity upon returning to the starting point [Huang

et al. 2011; Li et al. 2012; Ray et al. 2016].

Singularities efectively absorb excess rotations and translations,

allowing our method to achieve a high level of isotropy. They are

automatically introduced as part of optimizing the smoothness of

the ield. Figure 6 shows several visualizations of singularity graphs

obtained using our method.

4 MESH EXTRACTION

Following ield optimization, the second phase of our method draws

on the information contained in the orientation and position ields

to convert the input tetrahedral mesh into a manifold hex-dominant

output mesh.

Recall that the position ield records the ofset of a local parame-

terization at every vertex, which is encoded as the 3D position of

the nearest integer grid point. If we simply replace the positions

of all input mesh vertices with their optimized position ield coun-

terparts, we obtain a new mesh, whose shape generally resembles

the hex-dominant mesh we wish to extract. Figure 7 shows several

interpolated versions of this transformation to illustrate its behav-

ior. Note that the connectivity of the transformed mesh matches

that of the input meshÐin other words, it has the structure of a

manifold tetrahedral mesh, which will naturally require further

modiications before it can be used as hex-dominant output. From a

geometric viewpoint, we observe that the transformation creates

many undesirable collapsed and inverted elements.
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Persistent edge

Transient edges

Face diagonal

Interior diagonal

Fig. 7. Position field visualization for a cube-shaped tetrahedral object meshed into a single hexahedron. The sequence shows intermediate steps of a linear
interpolation vi (t ) ≔ (1− t )xi + tpi from the original vertex positions xi to their associated position field values pi . The interpolation reveals how the position
field maps most tetrahedral elements onto regions with zero volume (vertices as well as quad- and hex-diagonal edges). Colors in the above visualization are
chosen according to the position field integer variables τi j , which classify the intended role of edges in the final mesh. Please see the supplemental material
for an animated version of this figure.

The mesh extraction phase of our method then applies a sequence

of local operators to ix problematic areas in the transformed mesh,

removing collapsed regions and agglomerating tetrahedra into hex-

ahedra or other types of polyhedra. The precise sequence of opera-

tions is controlled by the position ield integer variables τi j , which

specify the intended inal role of every edge in the transformed

mesh (Figure 7).

Similar to other ield-aligned meshing techniques, the optimized

ields are not guaranteed to be free of degeneracies and should there-

fore only be used as guides, hence, an important aspect of this phase

is that each operation is only performed if it preserves the manifold

structure and genus as an invariant. Apart from the diference in

dimension, this approach constitutes a signiicant deviation from

the IM mesh extraction algorithm, which unconditionally applied a

single operation capable of producing non-manifold output.

4.1 Edge Classification

It will be helpful to classify edges into several groups analogous to

the color scheme in Figure 7; the classiication of an edge (i, j ) is

based on the associated position ield integer value τi j .

(1) Transient edges satisfy τi j = 0. They are the most com-

mon and occur in larger clusters of edges that all map to a

single vertex of the output mesh. Transient edges are thus

not needed, and our extraction pipeline attempts to remove

them.

(2) Persistent edges have an integer variable τi j with exactly

one nonzero coeicient ±1. Persistent edges are aligned

with the orientation ield and connect clusters of transient

edges. They correspond to the edges of the inal mesh that

should persist through the extraction pipeline, hence their

name. Note that there might be multiple representatives of

a persistent edge that will be merged during extraction.

(3) Face and interior diagonals have an integer variable τi j
with exactly two or three nonzero coeicients ±1, respec-

tively. These edges are not aligned with the orientation

ield and pass diagonally through faces or polyhedra of the

output mesh. In both cases, the associated edges should

be dissolved during extraction, merging the tetrahedral

elements around them into hexahedra or other kinds of

polyhedral elements.

(4) Other edge types must by deinition involve an integer

variable with at least one coeicient having magnitude > 1,

which means that the target edge length λ is at least a factor

of 1.5 smaller than the distance of the edge’s vertices in the

input mesh. For simplicity, our extraction pipeline does not

attempt to deal with such edgesÐif they arise, it is necessary

to either increase the target edge length λ or create a iner

tetrahedral input mesh using TetGen [Si 2015] or a similar

tool.

We also introduce a version of the position ield energy that is

deined per edge, i.e.

εi j = ∥pi − pj + λQ(qi j )τi j ∥
2 (13)

When our extraction pipeline applies local operators during sweeps

over the mesh, it uses the values of εi j to prioritize regions where

the position ield is smoothest. Large values of εi j imply an ambigu-

ous and potentially low-quality classiication into the categories of

the above list, hence the associated elements are considered last (at

which point they are usually ignored since applying the correspond-

ing operator would break manifoldness).

4.2 Extraction via Polyhedral Agglomeration

Seen from a high level, our extraction algorithm alternates between

consecutive coarsening and splitting phases. The coarsening phase

reduce the complexity of the input mesh by removing edges, ver-

tices, and faces from it. However, this phase alone does not suice:

an algorithm that is only based on local coarsening operators can

run into complex interlocking conigurations of elements where

any further operation would break manifoldness, thereby inhibit-

ing forward progress; an instance of this problem was studied by

Dougherty et al. [2004].

The second phase of our algorithm thus performs additional

splitting operations where needed. These steps release interlocked

conigurations, and they reduce the complexity of elements by split-

ting high-degree faces and polyhedra into simpler conigurations.

This alternating sequence of iterations repeats until no more edges

can be collapsed or split, or after a maximum of 10 iterations has
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passed. In our experiments, we ind that most models converge after

an average number of 3 iterations. A few models contain elements

that are alternately coarsened and split, eventually triggering the

10 iteration limit. These are ambiguous elements which have a sat-

isfactory quality in both coarsen and split conigurations and hence

do not cause problems.

We now discuss each operator in turn. Note that the color scheme

in the small inset igures difers from that of Figure 7: red refers to

components to be removed, and blue and green are used to highlight

distinct components.

4.2.1 Coarsening Operators.

Edge Collapse. The irst coarsening op-

Edge collapse

erator traverses all transient mesh edges

using a priority queue that is ordered

according to the edge energy εi j , visit-

ing smoother regions of the mesh irst.

It then attempts to collapse each transient edge into a single ver-

tex using a suitable update to the surrounding mesh connectivity.

Collapse operations that would result in a non-manifold or genus-

changing coniguration are rejected but can be retried in a later

phase. The underlying topological test is identical for all operators

and is described in Section 4.2.3. If successful, the collapsed vertex is

assigned an averaged orientation and position ield value computed

from its constituent vertices.

Note that position ield adjustments will generally change the

smoothness energy εi j of connected vertices and could potentially

even trigger a change in the high-level classiication of adjacent

edges. We associate a discrete timestamp with every edge that is

also pushed on the priority queue. When an edge obtained from the

queue does not match its global timestamp, the information is stale

and can safely be ignored.

Edge Dissolve. The second coarsening

Edge dissolve

operator traverses all edges classiied as

face diagonals according to εi j and at-

tempts to remove them to create a larger

face. In the inset shown on the right, this

operation entails converting two polyhedra with seven faces into

two hexahedra with six faces each. Invalid operations are skipped

as before.

Face Dissolve. The third coarsening

Face dissolve

operator traverses all edges classiied as

interior diagonals (dashed), attempting

to remove all adjacent faces and thereby

agglomerating tetrahedra into hexahe-

dra, prisms, or other polyhedra. The algorithm also attempts to

remove the leftover face diagonal edges (solid red) as part of a sepa-

rately triggered set of atomic operations.

4.2.2 Spliting Operators. Following coarsening, the second of

the two alternating extraction phase performs splits according to a

set of criteria to be discussed, which increase the number of vertices,

faces, and edges. Splits are intended to simplify high-degree polyhe-

dral elements by breaking them into smaller parts as well as trigger

sequences of coarsening steps that were previously inaccessible

due to interlocking conigurations. Note that some of the splitting

operations occur multiple times Ðonce as a sweep over the mesh

(indicated using a self-loop in Figure 2), and once as a local step

triggered by another operation (an edge split e.g. triggers a face

split, which in turn triggers a polyhedral split). Each step occurs

in an atomic unit; recursively triggered steps are not required to

succeed for the parent operation to be committed to the mesh.

Edge Split. Consider the example con-

Edge split

iguration shown in the right inset: a pair

of elongated faces (dark blue) containing

an overly long edge (dashed) interrupts

the otherwise regular structure of the

mesh. Ideally, the two faces should be collapsed and removed, but

there are no transient edges that would allow such an operation to

occur.

We handle this and a variety of other similar conigurations by

detecting overly long edges in faces and inserting a vertex at their

barycenter. A subsequent face split operation (discussed next) then

inserts the requisite transient edge, enabling an edge collapse in the

next extraction phase. An edge is deined as being overly long if the

ratio of its horizontal or vertical length (determined according to

the orientation ield) compared to the corresponding length of the

smallest adjacent edge rounds to a value ≥ 2. In this case, we split

the edge in the middle by inserting a vertex with an interpolated

rotation and position ield value.

Face Split. The face split operation

Face split

traverses every face of the mesh and at-

tempts to insert an additional persistent

or transient edge that would cause the

face to separate into two parts. The op-

erator simply loops over every possible pair of edges in the face,

classifying the resulting hypothetical edges using their orientation

and position ield values. The operator then evaluates the smooth-

ness energy εi j for each candidate from the set of transient and

persistent edges and inally attempts to carry out the lowest-energy

face split.

When a localized face split operation is triggered by a preceding

edge split, the search over edges constrains one of the endpoints

to lie on the newly created vertex. A face split operation in turn

triggers two recursive polyhedral split operations associated with

each of the newly created faces.

Polyhedral Split. The preceding split-

Polyhedral split

ting operators increase the number of

faces of the surrounding mesh elements,

which may occasionally create polyhe-

dra with a large number of faces. These

elements are not representative of the mesh encoded by the position

ieldÐthey are simply artifacts of the lack of a suicient number of

edges in the input mesh and therefore undesirable. The last split-

ting operator processes these large polyhedra, breaking them into

smaller components.
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Fig. 8. Our field optimization supports alignment constraints on the bound-
ary (let) and in the interior (right).

The polyhedral split operation traverses every polyhedron in

the mesh and attempts to insert an additional face to the interior

that would cause the polyhedron to separate into two parts. A split

candidate must be constructed from previously existing mesh edges

arranged in a simple loop. Our implementation uses depth irst

search to enumerate all possible loops that start and end on the

same edge, iltering non-manifold conigurations. We then select

the loop that deviates less, i.e. it is more planar, with respect to

one of the main axes of the face. The polyhedra in our meshes are

fortunately small enough so that the exponential number of edges

found in this way remains unproblematic.

4.2.3 Topological Invariants. Our algorithm starts from a mani-

fold tetrahedral mesh and preserves its manifoldness by preserving

the following invariants throughout the coarsening and splitting

phases.

(1) Each face of a polyhedron is topologically a circle.

(2) Each polyhedron is topologically a sphere.

Designing mesh operations that eiciently enforce the above condi-

tions on a general polyhedral mesh can be tremendously challenging.

To keep implementation complexity at bay while allowing for strong

guarantees, we opted for the following simpler approach: before

each operation, we extract a suiciently large topological sphere

encapsulating the afected element(s) using breadth irst search. Af-

ter applying the operations to the extracted mesh, our algorithm

scrutinizes the resulting connectivity, only accepting the operation

if the topological invariants are not violated. While this is far from

optimal from an eiciency perspective, it allowed for a drastically

simpliied implementation.

5 RESULTS

We implemented our algorithm in C++, using Eigen for linear algebra

routines. We run all our experiments on a workstation with a 6-cores

Intel processor clocked at 3.5 Ghz and 64 Gb of memory, using only

one thread.

Parameters. Our algorithm only requires one parameter, the target

edge-length l of the hex-dominant mesh, which controls the output

mesh density. Our pipeline requires a clean, sliver-free input triangle

mesh. Its resolution is not important since we convert it into a dense

tetrahedral mesh with an edge-length of 30% l using tetgen [Si 2015].

Optionally, our method can preserve sharp features prescribed

by the user. Since our test datasets do not explicitly contain this

Fig. 9. Our orientation field optimization is robust to diferent initializations.
The fields obtained starting from a constant (let) and random (right) initial-
ization are indistinguishable. Let: constant initialization. Right: random
initialization

information, we detect them using a simple heuristic: we tag all the

edges with a dihedral angle lower than 150 degrees as sharp edges.

Vertices on sharp edges are tagged as features, and are not enforced

explicitly: we align both ields to the boundary only on non-feature

vertices. The alignment to the sharp features is a consequence of

the energy minimization and it happens automatically.

Internal Constraints. Internal constraints can be easily incorpo-

rated into our ield optimization framework in the same way as we

handle boundary alignment. Figure 8 shows an example where we

added a line alignment constraint in the interior of the twisted cube.

Robustness. To test the robustness of our algorithm, we process

the complete database proposed in [Fu et al. 2016], with a target

edge length of 2.5 times the average edge length of the input mesh.

Our algorithm successfully produced hex-dominant meshes for all

106 models. We attach the remeshed database as additional material:

For each model we provide the mesh ile in ascii format, and a short

mp4 clip showing its interior during a plane sweep. The size of the

meshes in the database ranges from 0.06 to 3.6 millions tetrahedra,

our running time from 1 minute to 10 hours, the hexahedral ratio

from 48% to 91%, and the average Jacobian from 0.93 to 0.99. We

refer to Table 1 for more detailed timings and quality measurements

for the results shown in the paper. In igures 10, 11, 13, 14, and 15, we

show histograms of the scaled Jacobian of the hexahedral elements.

Comparison with [Ray et al. 2016]. Section 3.1 introduces a novel

volumetric orientation ield representation and a corresponding

smoothing algorithm. We processed the same models used in igure

11, 13, and 15 of [Ray and Sokolov 2015] with our algorithm and

obtained visually similar ields. Remarkably, also the singularity

structure is similar (Figure 6), suggesting that the two measures of

smoothness are deeply related. One major advantage of our repre-

sentation is the explicit modeling of the matchings, which supports

higher-order singularities and exact singularity prescription. In con-

trast to methods based on spherical harmonics [Huang et al. 2011;

Ray et al. 2016], our smoothing algorithm is insensitive to the initial-

ization, as demonstrated in Figure 9. For all the other results in the

paper and in the additional material, we use a random initialization.

Comparison with [Sokolov et al. 2016]. Figures 10 and 11 compare

our algorithm with [Sokolov et al. 2016] on two datasets provided by

the authors of [Sokolov et al. 2016]. Our algorithm produces meshes
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Fig. 10. A comparison between a remeshing of the cheese dataset created
by [Sokolov et al. 2016] (let) and by our algorithm (right). The hex ratio
is 60.43% (let) and 88.82% (right). The hexahedral element quality of the
meshes are 0.96/-0.005/0.05 (let) and 0.95/-0.65/0.05 (right), measured by
the scaled Jacobian in the format of average/minimum/standard deviation.
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Fig. 11. A comparison between a remeshing of a challenging example with
thin features, computed with [Sokolov et al. 2016] (top) and our algorithm
(botom). From let to right: an external view, an internal view obtained by
peeling one layer of elements, a side view with a vertical cut. Our algorithm
produces a more regular output (hex ratio 73.77% vs 35.27%) and the hex
elements have a higher quality (0.97/0.04/0.04 vs 0.91/-0.23/0.08).

with higher regularity and similar hexahedral element quality (as

detailed in the igure captions). Note that the results from [Sokolov

et al. 2016] have been optimized with [Brewer et al. 2003], while

ours are not.

Comparison with [Jakob et al. 2015]. Our extraction algorithm

(Section 4) can be easily adapted to process 2D orientation and

position ields. In Figure 12, we compare our extraction algorithm

with the greedy one proposed in [Jakob et al. 2015]: While the results

between the two extraction methods are visually similar (Figure 12),

Fig. 12. Our extraction algorithm is guaranteed to produce manifold out-
puts (right), while the greedy method proposed by [Jakob et al. 2015] (let)
oten introduces non-manifold artifacts on features smaller than the target
edge length.
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Fig. 13. A selection of CAD models meshed with our algorithm. Our meshes
are highly isotropic and preserve sharp features.

the major advantage of our approach is that it is guaranteed to

produce a manifold output, even for a large target edge length.

Gallery. CAD models with multiple holes and sharp features

are challenging models for ield-aligned parametrization methods.

Our algorithm can process them robustly, while preserving sharp

features (Figure 13). The orientation ield also naturally aligns to

smooth features of organic shapes, due to its extrinsic formulation

(Figure 14). We show two additional challenging examples in Figure

15, and we refer to the additional material for more results.

6 LIMITATIONS AND CONCLUDING REMARKS

We introduced a fully automatic and robust algorithm to create

manifold hex-dominant meshes, and validated it on a database with

more than a hundred models. We expect that our algorithm will

have a major impact in the graphics and CAD community and we

will release a reference implementation to foster replicability of

results and future research in this area.

Our current implementation is single-threaded, and not suited

to process datasets with billions of tetrahedra. However, this is

not a limitation of the algorithm, which can be fully parallelized
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Dataset #Tin #Hout Hnbr Hvol Quality #Inv #Int #P Hierarchy RoSy PoSy Extraction

Cheese (Fig. 10) 765911 8439 0.89 0.89 0.95/-0.65/0.05 2/25/0 1 20 0.24 3.91 7.07 58.88

ASM_Limited (Fig. 11) 1457332 13010 0.74 0.72 0.97/0.04/0.04 0/56/0 8 41 0.34 5.16 12.24 139.36

Casting (Fig. 13) 218533 1916 0.83 0.83 0.98/0.53/0.04 0/4/1 0 17 0.07 1.1 1.86 6.21

Lock (Fig. 13) 1702872 20503 0.91 0.91 0.99/0.35/0.02 0/48/1 3 17 0.45 6.71 14.05 176.39

Sculpt (Fig. 13) 224353 1794 0.73 0.73 0.97/0.73/0.04 0/1/0 0 22 0.04 0.83 1.69 3.2

Elephant (Fig. 14) 1029536 9505 0.73 0.73 0.96/-0.35/0.06 3/26/3 2 31 0.21 3.61 7.48 52.32

Fertility (Fig. 14) 516140 4769 0.72 0.73 0.96/-0.33/0.07 4/23/0 2 24 0.12 1.9 4.02 17.77

Igea (Fig. 14) 1234724 12936 0.81 0.81 0.97/-0.23/0.05 1/33/0 2 22 0.24 4.08 9.84 69.35

Rocker (Fig. 14) 526133 5238 0.78 0.80 0.98/-0.78/0.05 1/11/1 2 18 0.11 1.9 4.12 18.3

Daratech (Fig. 15) 766733 8867 0.87 0.87 0.98/0.18/0.04 0/18/0 2 19 0.22 3.43 6.65 57.55

Mazewheel (Fig. 15) 637011 6938 0.81 0.81 0.97/0.28/0.04 0/36/0 3 18 0.17 2.72 5.02 45.33

Table 1. Timings and statistics for the models shown in the paper. From let to right: number of input tetrahedra, number of output polyhedra, ratio of
the number of hexahedra to polyhedra, ratio of the volume of hexahedra to polyhedra, quality of hex elements (measured as average scaled Jacobian,
minimum scaled Jacobian and standard deviation), number of degenerated elements (inverted hexahedra/inverted polyhedral/collapsed polyhedra), number of
self-intersected elements, the maximal number of faces (for polyhedra), timings in minutes for hierarchy construction, RoSy optimization, PoSy optimization,
and mesh extraction.
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Fig. 14. A selection of models with smooth surface features. Note how our
algorithm naturally aligns to them, even if they are not explicitly marked as
features.

using the same strategy proposed in [Jakob et al. 2015] Ð Extending

this algorithm to work in a distributed system is a challenging and

exciting research direction.

Similarly to the original IM algorithm, the number of position

singularities increases with the target density. The curl-correction

step proposed in [Sokolov et al. 2016] could be applied to slightly

decrease the number of singularities, but it is not as efective as its

2D counterparts [Ray et al. 2006; Diamanti et al. 2015]. Successfully

tackling this problem would increase the regularity of our meshes,

at the price of isotropy.

Our approach might introduce inverted, self-intersecting, or col-

lapsed elements. However, they rarely appear in our experiments

(Table 1). Our results are obtained without doing any further mesh

improvement, which could likely resolve these rare cases. Difer-

ently from the 2D case, where it is straightforward to convert hybrid

meshes to pure quadrilateral with a subdivision step, this is not the

case for 3D.

We believe that automatic generation of hex-dominant meshes

will play a key role in the nearby future: adaptive spline technology

is quickly advancing [Sederberg et al. 2003; Giannelli et al. 2012;

Dokken et al. 2013; Kang et al. 2015], and it is likely that a general

solution to construct higher-order isogeometric basis will be soon

discovered. Such a technology, when paired with our algorithm,

would allow to do simulations and analysis sidestepping the expen-

sive and time consuming manual meshing process that is currently

used both in industry and in academia.
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Fig. 16. The field-guided agglomeration phase converts the fields into a
stream of local transformations applied to the input mesh, each preserving
both manifold structure and genus. Self-loops indicate repeated application
of an operation over the entire mesh until no more qualifying elements are
let. Certain operations occur multiple timesÐonce as a sweep over the mesh
(with self-loop), and once as a local step triggered by another operation (an
edge split e.g. triggers a face split).
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APPENDIX - 2D EXTRACTION VIA POLYGON
AGGLOMERATION

We can adapt our extraction algorithm to convert anymanifold trian-

gle mesh into a quad-dominant mesh while maintaining the genus,

number of holes and manifoldness of the input model. Similarly

to our 3D extraction, all edges can be classiied into transient, per-

sistent, diagonal, and long edges. To remove non-persistent edges,

the extraction algorithm alternates between coarsening and splitting

operators. As shown in Figure 16, the coarsening operators are edge

collapses (to remove transient edges) and edge dissolves (to remove

diagonal edges). The splitting operators are edge splits (to remove

long edges) and face splits (to prevent large polygons). These opera-

tors are sequentially executed and iterated until no more elements

can be collapsed or split.
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