Field-Aligned Online Surface Reconstruction

NICO SCHERTLER, New York University and TU Dresden
MARCO TARINI, Universita dell’Insubria and I1STI - CNR

WENZEL JAKOB, Ecole Polytechnique Fédérale de Lausanne (EPFL)

MISHA KAZHDAN, Johns Hopkins University
STEFAN GUMHOLD, TU Dresden
DANIELE PANOZZO, New York University

Fig. 1. Multiple successively acquired 3D scans (top row) are interactively integrated into a coarse base mesh (bottom row). The user sees the final reconstructed
result at all times, enriched with textures that encode colors and displacement (right-most). The user can decide to reconstruct a triangle or a quad-dominant
mesh, which has high isotropy and regularity. [Original Sculpture Courtesy of Michael Defeo, mesh statistics can be found in Table 1]

Today’s 3D scanning pipelines can be classified into two overarching cat-
egories: offline, high accuracy methods that rely on global optimization
to reconstruct complex scenes with hundreds of millions of samples, and
online methods that produce real-time but low-quality output, usually from
structure-from-motion or depth sensors. The method proposed in this paper
is the first to combine the benefits of both approaches, supporting online
reconstruction of scenes with hundreds of millions of samples from high-
resolution sensing modalities such as structured light or laser scanners. The
key property of our algorithm is that it sidesteps the signed-distance com-
putation of classical reconstruction techniques in favor of direct filtering,
parametrization, and mesh and texture extraction. All of these steps can be
realized using only weak notions of spatial neighborhoods, which allows
for an implementation that scales approximately linearly with the size of
each dataset that is integrated into a partial reconstruction. Combined, these
algorithmic differences enable a drastically more efficient output-driven

This work was supported by the NSF CAREER award 1652515, NSF award 1422325,
MIUR project DSurf, and a fellowship within the FITweltweit program of the German
Academic Exchange Service (DAAD).

© 2017 ACM. This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published in ACM
Transactions on Graphics, https://doi.org/http://dx.doi.org/10.1145/3072959.3073635.

interactive scanning and reconstruction workflow, where the user is able to
see the final quality field-aligned textured mesh during the entirety of the
scanning procedure. Holes or parts with registration problems are displayed
in real-time to the user and can be easily resolved by adding further localized
scans, or by adjusting the input point cloud using our interactive editing
tools with immediate visual feedback on the output mesh. We demonstrate
the effectiveness of our algorithm in conjunction with a state-of-the-art
structured light scanner and optical tracking system and test it on a large
variety of challenging models.

CCS Concepts: « Computing methodologies — Mesh models;

Additional Key Words and Phrases: Surface Reconstruction, Parameterization

ACM Reference format:

Nico Schertler, Marco Tarini, Wenzel Jakob, Misha Kazhdan, Stefan Gumhold,
and Daniele Panozzo. 2017. Field-Aligned Online Surface Reconstruction.
ACM Trans. Graph. 36, 4, Article 77 (July 2017), 13 pages.

DOIL: http://dx.doi.org/10.1145/3072959.3073635

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

77:2 « Schertler, N. et al.

1 INTRODUCTION

3D scanning and reconstruction are historically independent prob-
lems. During a typical scanning session, a coarse preview of the
acquired data is shown, and it is only once all scans are available
that a reconstruction algorithm consolidates them into a single
consistent 3D model.

Different techniques to preview the scanned data exist: collections
of range scans can be rendered directly, often after down-sampling,
by splatting point primitives [Rusinkiewicz and Levoy 2000] or by
superimposing triangulated height fields (e.g. [Cignoni et al. 2011]);
other systems update a relatively low-res volumetric distance-field
representation and interactively ray-cast it [Izadi et al. 2011; New-
combe et al. 2011]. In either case, the final, unified, high-resolution
geometry is extracted after the scanning session, using offline mesh
reconstruction algorithms (for example, based on Poisson surface
reconstruction [Kazhdan et al. 2006]). Depending on the intended
application, this is followed by semiregular remeshing, or simplifi-
cation, which is then parameterized; finally, the original high fre-
quency details or additional properties like colors are reintroduced
as textures. While this workflow has been widely used in the last
three decades, it hides a subtle, but major limitation: the preview is
not a faithful representation of the final model and thus may not
indicate artifacts like the ones due to poor registration, missing
data, insufficient sampling density, etc. This leads to a frustratingly
time-expensive workflow, where the user has to go back to acquire
additional data (or modify the acquired point clouds) and then re-
peat the full reconstruction step, which can require from minutes
to hours depending on the size of the model. The authors’ own
experience scanning numerous models using this tedious workflow
motivated the development of the algorithm proposed in this work.

We propose a novel approach for online mesh reconstruction,
which seamlessly integrates high resolution scanning and high qual-
ity reconstruction. The final reconstructed, semiregular, and tex-
tured model is computed on-the-fly as new geometry is acquired.
Our algorithm produces results comparable to state-of-the-art meth-
ods that rely on expensive global optimization, while supporting
online reconstruction with a cost that is approximately linear in
the size of the acquired data. Directly working with the final recon-
structed model in lieu of a preview offers major advantages over
traditional pipelines:

(1) Artifacts or missing parts are immediately visible and high-
lighted with visual aids, guiding the user during the scan-
ning process. Such visual feedback dramatically reduces
the scanning time, as new scans can be placed only when
actually needed

(2) Since our method generates semiregular medium resolution
meshes, where hi-frequency details are efficiently stored
as textures, it can achieve a faithful reconstruction using a
geometry budget that is very small compared to the input
point cloud size. Large-scale point clouds that cannot be
rendered interactively pose no problems, as they are simply
stored in virtual memory and paged when not in use—the
only requirement is that the reconstruction output fits into

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

GPU memory. This allows our method to remain interac-
tive even when working with extremely large datasets on
commodity hardware.

(3) The reconstructed model serves as a proxy for interactive
editing tools that modify the original point clouds (e.g.
smoothing). After every edit, the final reconstructed model
is immediately computed and shown.

(4) The model the user sees at any moment is the final result
of the entire scanning and reconstruction pipeline. This
follows the WYSIWYG paradigm, which has never been
applied to an online 3D scanning pipeline before.

We rely on a two-level representation to ensure that partial recon-
structions can be viewed at interactive rates: the visible geometry
consists of a relatively coarse polygonal mesh generated using the
remeshing approach proposed in the Instant Field-Aligned Meshes
technique (henceforth referred to as IM), while detail maps encode
an offset surface and color data.

There are two challenges in adapting Instant Meshes (IM) to the
context of online reconstruction. First, IM has poor locality: since
it relies on global optimization techniques, even a single new data
point could affect every location on the mesh, requiring a costly full
rebuild of the entire output. Second, the hierarchical solver in IM
requires a costly multi-resolution hierarchy which is invalidated
when new scans stream in and adjacency relations change.

We address the first problem using an adaptive hierarchical error
criterion that allows such large-scale changes to take place while
dynamically limiting the amount of computation for localized small-
scale changes. The second problem is tackled making the following
observation with regards to the Laplace operator: While a “good”
definition of the Laplacian requires an accurate notion of neighbors,
distances, and angles [Dziuk 1988; Pinkall and Polthier 1993] the dif-
ference between a “good” Laplacian and a “bad one” is pronounced
at higher frequencies. Having a “good” Laplacian is necessary for
many geometry-processing applications. However, in our context,
the Laplacian is only needed to solve diffusion systems for low-
frequency solutions. This allows us to use an approximate Laplacian
defined over an approximation of a k-nn graph — a data-structure
that can be easily computed from a point cloud and efficiently up-
dated to incorporate new scan data.

To validate our contribution, we integrate it with a commercial
3D scanner and a commercial optical tracking system, and use it to
scan and reconstruct highly detailed and challenging models.

2 RELATED WORK
2.1 Offline Reconstruction

Reconstructing surfaces from scanned points is a well-studied prob-
lem in computer graphics [Berger et al. 2014]. In the offline set-
ting, these approaches take as their input a set of points (pos-
sibly with normals) and output a manifold surface that interpo-
lates/approximates the input. In general, these methods can be char-
acterized as either combinatorial or implicit.

Combinatorial Algorithms. These approaches reconstruct the sur-
face by triangulating (a subset of) the point samples. Typically,
this is done by tetrahedralizing the points, marking the individual

tetrahedra as either internal or external, and then setting the bound-
ary faces to be the triangles of the reconstruction. Although the
earliest methods used the local shape of the cells to label the tetra-
hedra [Amenta et al. 2001; Bernardini et al. 1999; Boissonnat and
Oudot 2005; Dey and Goswami 2003; Edelsbrunner and Miicke 1994;
Podolak and Rusinkiewicz 2005], labeling techniques using global
approaches such as spectral [Kolluri et al. 2004], graph-cut [Hornung
and Kobbelt 2006; Labatut et al. 2009], and winding-number [Jacob-
son et al. 2013] partitioning have also been used.

These combinatorial methods often have provable properties
under appropriate sampling. However, they are inherently interpo-
latory and tend to reproduce the noise often present in scanner data.
Our approach also directly uses the point samples, but it is more
robust to noise and bad sampling since it relies on an underlying
surface parametrization.

Implicit Functions. To be robust to scanner noise, implicit methods
reconstruct an approximating surface by using the input points to
define a function in 3D and then extracting the appropriate level-set
using Marching Cubes [Kazhdan et al. 2007; Lorensen and Cline
1987]. Most often, these methods reconstruct the signed distance
transform [Bajaj et al. 1995; Calakli and Taubin 2011; Carr et al.
2001; Curless and Levoy 1996; Hoppe et al. 1992; Mullen et al. 2010]
or the indicator function [Kazhdan 2005; Kazhdan and Hoppe 2013;
Manson et al. 2008]. They discretize the space of functions using
radial basis functions, B-splines, or wavelets, and solve the associ-
ated global linear systems using hierarchical approaches like fast-
multipole or multigrid.

While the above approaches often require solving a global linear
system to compute the surface, a number of methods have been
proposed that only require local scan information to define the value
of the function [Fuhrmann and Goesele 2014; Ohtake et al. 2003].
These types of approaches tend to give a more efficient implemen-
tation at the cost of sacrificing some of the robustness provided by
global methods. Our approach achieves a similar quality, but works
directly on the point cloud: by sidestepping the use of an implicit
function, we reduce memory consumption and computational cost,
and we are able to seamlessly handle boundaries. In addition, the
meshes produced by our method are highly isotropic and do not
require remeshing.

Parameterization. Another representation that is useful for recon-
struction is a parameterization defined on the input data, e.g. on
multiple range scans [Pietroni et al. 2011]. They define a global pa-
rameterization using a common manifold domain with appropriate
transition functions between the scans. Our approach also uses a pa-
rameterization of the input, but since our parameterization is local,
we can achieve significantly higher performance while sacrificing
only a small amount of parameterization regularity.

2.2 Online Reconstruction

With the advent of low-cost, high frame-rate, commodity scanners
like the Microsoft Kinect sensor [Microsoft 2010], there has been
a growing interest in online reconstruction. In this setting, scan
data streams into the system as the user moves a scanner around an
object (or within a scene) and the system integrates the data into

Field-Aligned Online Surface Reconstruction « 77:3

an evolving surface representation that is displayed interactively,
guiding the choice of location and orientation for subsequent scans.

To support such interactivity, existing methods [Newcombe et al.
2011; Rusinkiewicz et al. 2002] use a local surface representation,
describing the reconstructed surface using a truncated signed dis-
tance function [Curless and Levoy 1996]. The local representation
allows for parallelizable, space- and time-efficient updates of the
surface representation that only require the subset of the model in
the vicinity of the new scans to be changed. As a result, the cost of
updates in such systems is proportional to the size of the new scan
data, not the size of the entire reconstruction.

As with these earlier works, our goal is to support integration of
new scan data into an evolving mesh interactively. However, in our
work we use a hierarchical representation, presenting a new online
method that simultaneously preserves the robustness of global ap-
proaches and maintains the efficiency of local solutions. Moreover,
we directly produce a semi-regular, feature-aligned, and (option-
ally) quad-dominant mesh, whereas all previous online methods can
only offer irregular triangle meshes. In the traditional online setup,
regularity, feature-alignment, and conversion to quad-dominant
meshes, which are recognized as necessary for many downstream
applications [Bommes et al. 2012], can only be achieved through
post-processing remeshing phases.

3 BRIEF OVERVIEW OF INSTANT MESHES

This section reviews key concepts of field-aligned parametrization
methods [Bommes et al. 2012; Vaxman et al. 2016], with a partic-
ular focus on the Instant Field-Aligned Meshes approach [Jakob
et al. 2015] (IM), upon which our algorithm builds. We restrict the
discussion to the quad-dominant case, and we refer to the original
paper for its extension to triangular meshes. In Section 4, we discuss
specific changes required to adapt IM to the online setting.

The original IM algorithm takes as its input a point cloud or
irregular mesh and a target edge length, and outputs a semi-regular
quad-dominant mesh with approximately constant element size.

Fields. Field-aligned parametrization methods are based on the ob-
servation that assuming such a quadrangulation already exists, one
can easily use it to derive a global parametrization whose gradients
are aligned with the mesh’s edges. This observation is then reversed
to compute a field-aligned mesh by first computing the gradients
of the parametrization, integrating them, and finally extracting the
mesh from the parametrization.

IM implements this idea encoding the gradients with an orienta-
tion (RoSy) field [Palacios and Zhang 2007] that assigns a frame to
each point, aligned with the edges of the containing quad (repre-
sented by a unit vector that is unique up to rotation by an integer
multiple of 7/2, Figure 2a). Instead of using a globally consistent
parametrization, IM uses a position (PoSy) field to assign fractional
coordinates to each point, giving its position within the containing
quad (represented as an element of R? that is unique up to trans-
lation along the integer lattice oriented with the directional frame
and scaled by the target edge length, Figure 2b).

The original IM pipeline is decomposed into three steps: first,
an orientation field is computed everywhere on the surface; then,
the orientation field is used to define a position field; finally, a

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

77:4 « Schertler, N. et al.

0; n;
of n]
|/ ‘ ‘%
Oj

(a) Orientation Field

(b) Position Field

Fig. 2. Illustration of the fields used by the Instant Meshes technique.
(a) Neighboring point cloud vertices v; and v; representing surface ob-
servations (abstract shapes) with normals n; and n; store orientations o;
and o; (red arrows) that control the alignment of the output mesh. The
orientations satisfy a rotational symmetry (RoSy) condition, such that each
direction is part of an equivalence class with three other elements (grey
arrows); a hierarchical optimization scheme optimizes the field smoothness
subject to this symmetry. (b) The position field controls the fractional offset
(green dot) of a local parameterization (regular grid) that is aligned with
the previously computed orientations and used to mesh the point cloud. A
similar positional symmetry (PoSy) defines translated versions of the offset
(black dots at grid intersections) are equivalent. The position step then
optimizes the smoothness of the position field subject to this symmetry.

quadrangulation is extracted by clustering points whose positional
field values fall into nearby positions to obtain the vertices of the
output mesh, and then connecting clusters to obtain the edges.

Smoothing. Obtaining the fields requires solving a diffusion-like
system. For the orientation field, if two points are adjacent, their
associated frames should be similar. For the position field, if two
points are adjacent, the parameter of one point should be close to
the parameter of the other plus the the coordinates of the difference
in positions, expressed in the frame of the orientation field.

IM uses similar approaches to solve these systems, subject to the
respective symmetry conditions. The two fields are initially set to
random values and iteratively optimized by means of a sequence
of local smoothing operations. Each iteration recomputes the field
value of a point based on its immediate neighbors analogous to
explicit Laplacian smoothing [Taubin 1995]; accounting for the
RoSy and PoSy symmetries entails an exhaustive search through
the corresponding symmetry spaces. Neighbors are defined in terms
of graph adjacency. When the input is a mesh, the graph is the
connectivity graph of the mesh. When it is a point cloud, a k-nn
graph is used.

Hierarchy. To perform the smoothing efficiently, IM relies on
a simple multi-resolution hierarchy: the finest level corresponds
to the input points, and each progressively coarser layer contains
approximately half the number of points until only a single point is
left. The fields are then optimized in a coarse-to-fine manner, and
the optimization at each level is warm-started with the projected
solution from the previous level. For topological reasons, and to
maximize smoothness, both optimized fields may contain singular
points where local connectivity deviates from that of a regular grid.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

The IM algorithm has several useful properties that we exploit
in our method: the most important is that all steps only rely on
weak notions of neighborhood that allows them to work with both
meshes and unstructured point clouds as input. In addition, the local
nature of the individual smoothing operations is well-suited for
streaming computation.

4 FIELD-ALIGNED SURFACE RECONSTRUCTION

In the following section, we explain the concepts that allow our
reconstruction pipeline to support interactive, online reconstruction.
Our pipeline takes as input a streaming set of scans of a 3D object
and outputs a textured surface. We represent the surface as the
combination of a coarse (semi-regular) quad or triangle mesh with
an offset and color map associated with each face.

The core of our pipeline is a multi-resolution hierarchy, which
stores the original point and field data as well as coarsened ver-
sions thereof, similar to the original IM pipeline. However, since the
requirements for surface reconstruction are fundamentally differ-
ent than those for remeshing, the design of our hierarchy deviates
significantly from the IM hierarchy.

Overview. Every action in our system can be described as a modifi-
cation of the original point data, including addition of new scans, re-
registration, and point removal. For every modification, our pipeline
executes the following steps to update the final mesh (Figure 3): First,
we update the point data at the finest level of the hierarchy accord-
ing to the type of modification (Section 4.2). Changes made during
this update are then propagated to the coarser levels (Section 4.3).
This fine-to-coarse pass is followed by a coarse-to-fine pass (Section
4.3), in which the direction and position fields are re-optimized.
During this pass, the pipeline adaptively re-optimizes the fields,
focusing the computation on regions in the finer level for which
non-negligible modifications were observed in the corresponding
region on the coarser level. This criterion generally localizes the
amount of re-computation associated with new data while allowing
large-scale changes (e.g. alignment to a sharp geometry feature) to
propagate when needed. The result of the coarse-to-fine pass is the
updated field and a set of points whose field values have changed sig-
nificantly. We use this information to extract a part of the mesh from
the changed region and merge it with the final mesh (Section 4.4).
The pipeline concludes the mesh update by calculating detail maps
for colors and displacement for the new region (Section 4.5). Overall,
we designed all update steps so that they produce results that are
similar to those obtained by discarding the previous reconstruction
and re-calculating everything from scratch (Figure 4).

4.1 Approximate k-nn

Efficient computation of the neighborhood of a point is essential
for optimization of both fields, so we require a data structure that
supports efficient neighbor queries, as well as frequent updates.
Most data structures that store point data either do not support
these queries (e.g. point lists), are hard to update (e.g. balanced
k-D trees), or exhibit bad data locality (e.g. hash grids), making
them unsuitable for our purposes. In particular, we experimented
with spatial hashing techniques, which allow for constant-time
updates, but found that lack of data locality, exacerbated by the

2. Update Hierarchy

Field-Aligned Online Surface Reconstruction « 77:5

4. Extract Base Mesh

3. Re-Optimize 5. Calculate Detail Maps

Fig. 3. Pipeline Overview

(a) Successive addition of scans

(b) Full Opimization

Fig. 4. Comparison of the final results obtained from successive addition
of scans and a complete optimization of the entire point cloud. Although
the base mesh’s face layout exhibits minor differences, the geometries are
indistinguishable.

need to perform multiple separate hash accesses for each query,
downgraded performance and ultimately hindered the interactivity
required for online reconstruction.

A key observation of our work is that the smoothing step in field
optimization does not require the exact k-nn, allowing us to gain
efficiency by using an approximate nearest neighbor representation.

We use a structure based on a combination of multiple Morton
codes [Morton 1966], similar to [Li et al. 2012]. The Morton code of
an n-dimensional integer vector is an easily computable integer that
represents the position of the vector on the n-D z-order curve. Since
nearby points tend to have nearby Morton code indices, sorting a set
of points by their indices allows us to define an approximate notion
of adjacency in terms of proximity within the sorted list. This is
not perfect, however, as some nearby points may be far apart in the
list. Since adding an offset s to each point’s coordinate, re-encoding,
and re-sorting generally leads to a different set of neighbors, we
combine the information of multiple shifted z-curves to define an
improved neighborhood relation that is fast to compute and suitable
for online updates.

Shifted Grids. Four shifted grids and their corresponding z-order
curves — each translated by an offset s € Z* (an integer multiple
of the cell size) compared to the previous one — form the basis of
our neighborhood data structure. The grids are represented as lists
of points that are sorted by the corresponding cells’ Morton codes
(we use a notation that supports negative coordinates by including
the inverted sign bit in the code). This representation provides fast
queries and efficient updates. We add every point to all four grids,
where the location in the list is determined by the difference of the

Morton code of the point’s quantized position and the respective
grid’s offset. We calculate the grid size g used for quantization in a
way such that the average number of points in a cell is close to a
target cell cardinality 6. (15 in our implementation) when the first
point set V is added. We start with an initial guess from the heuristic

b 1)

g =3 - max (diag(V)) y N

where diag(V) is the diagonal of the axis-aligned bounding box of V,
max(-) represents the maximum coefficient of a vector, and N(V) is
the number of points in V. We then refine this value by calculating
the actual average cell cardinality ¢ for the grid size g and update
the initial guess g* according to:

S
g—g\/j (2

In our implementation, we use s = (5,5, 5)T cells because we
found that this produces higher k-nn accuracy among a variety
of data sets. We experimented with more shifted grids but found
diminishing returns beyond four.

Implementation Notes. We store the original point data only once
to conserve memory. New points are appended to the back of this
contiguous vector and deletions create gaps that can be filled by
other points later on. Adjacency information is defined indirectly
using sorted lists that refer to points via their indices. Specifically,
for every shifted grid, we store the permutation of the base list
that generates the grid, where every entry is represented by the
Morton code in the grid and an index into the original list. The
rule for deletions ensures that point indices are preserved, which is
important to avoid costly updates that touch the entire dataset.

Insertion. Adding a new set of points into this data entails sorting
the new points according to their Morton codes and merging the
result with the existing sorted list of points, which can be done very
efficiently; this process must be repeated four times for each of the
shifted grids. To further improve cache coherency, we also sort the
point data that is appended to the base list by their Morton codes.

Query. To approximate the k-nearest neighbors of a given point,
we locate the point in all the shifted grids using binary search over
the permutation vectors. Note that since the first few elements
accessed by the binary searches for close-by points are usually the
same, they will stay in cache, leading to very fast lookups. After
the point is located on a shifted grid, the m points immediately

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

77:6 « Schertler, N. et al.

A A

g

Fig. 5. A point cloud and a reference point (yellow) for which we seek
neighbors. Two shifted grids (black and blue) with the relevant part of their
z-order curve are superimposed. The two immediate neighbors on the curve
are considered as adjacency candidates. The right figure shows the retrieved
neighbor candidates (with color indicating the source z-curve).

Y

preceding and following the point in the grid are considered as
neighbor candidates if they do not exceed an upper distance limit.
We set this upper limit, which is

needed to filter out outliers, to the

target edge length of the reconstruc-

tion. From the resulting set of can-

didates, we calculate the k nearest

neighbors to find the final neighbor

set (Figure 5). For our implementa-

tion, we used k = 8 and m = 2, result-

ing in a maximum candidate set size

of2-2-4=16.

4.2 Multi-Resolution Hierarchy

The hierarchy’s main purpose is to provide an initial guess for the
finer levels during field optimization, where each level is optimized
successively. Using a hierarchy allows us to limit the number of
field optimization iterations per level to a small value (we use six).
Figure 6 shows the importance of the hierarchy for a procedural
data set. Hierarchy-less optimization is not able to produce a regular
mesh even for these perfect data. While the meshing results near
the features are adequate, the small number of iterations are not
sufficient to propagate the information from the guiding edges to the
face centers. Using the hierarchy avoids this problem because these
guides can be efficiently propagated over long distances at coarser
levels. Every node in the hierarchy stores geometry information
(position and normal) and field values (directional and positional).
Furthermore, nodes on the finest level also store color information.

To support neighbor queries for field optimization, every level of
the hierarchy contains an instance of our neighbor data structure
with original points and shifted grids. Since we are using Morton
codes for the neighbor data structures on each level, an octree is
a natural choice for the hierarchy because the coordinates of a
cell’s parent can be calculated efficiently with bitshift operations
on the cell’s Morton code. This allows us to keep the hierarchical
relationships entirely implicit, which saves memory and improves
memory coherency because access patterns are less random than
with nodes linked by pointers. Except for the finest level, every cell
at coarser levels stores the average of the data of its children. In

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

L4 4

(a) Optimization without hierarchy (b) Optimization using the hierarchy

Fig. 6. Comparison of the extraction results for fields that are optimized
without a hierarchy (left) and with the hierarchy (right). Both optimizations
use six iterations per level. Colors have been generated procedurally on the
input point cloud.

bytes

point”’
IM hierarchy (which stores neither colors nor references to mesh
bytes

point*

All the operations for maintaining and updating the hierarchy
explained above, including updates of the neighbor data structure,
are very efficient, and we experimentally observed that the time
spent on these operations is usually only about 1% of the total time

of our pipeline (for details, refer to Figure 13).

total, our hierarchy requires about 130 whereas the original

vertices) uses about 425

4.3 Point Data Update and Field Re-Optimization

As points are added and removed from the input, we modify the
representation at the finest level of the hierarchy and adjust the
coarser resolutions by updating the average positions of points
in the parent nodes. Storing the average at node n as the sum of
positions and the sample count, (2, k,), the average of a parent
node can be efficiently updated by adding the positions (and counts)
of points inserted into the child and subtracting those removed.
Specifically, if we denote by p(n) the parent of node n, we get:

(Zptmkpm) = (Bptm + 25 = Zakpim + 15 —12))

< (2;01) 20 Ky T))

(21_70!)’ K;(ﬂ)) - (2;(11) + 2, Kp(n)) (5

where (2}, k") (resp. (£},, k5,)) is the sum and count of points added
to (resp. removed from) node n.

As we update the averages in a fine-to-coarse manner, we add
the visited nodes to a queue of nodes for which the directional and
positional fields need to be updated. We then perform a subsequent
coarse-to-fine pass to update the field values of queued nodes. Un-
fortunately, we cannot exclusively update the nodes visited when
updating the averages as the prolongation of coarse solutions into
finer children may require a modification of the fields in nearby
regions as well. Failing to do so may result in suboptimal fields
because the old field values pose a hard boundary constraint. We
also cannot update all finer children, since this would require all
nodes to be updated.

(ZZW K;m))

Fig. 7. Visualization of the re-optimized region (right part, shaded yellow)
when adding a new scan (top left) to the current reconstruction (bottom
left). The back of the guinea pig’s left side is re-optimized to accommodate
the new data while the left foreleg stays unaffected.

Instead, we track the extent to which the fields change as a result
of the update step. More specifically, given the old and new field
values 0,74, Onew, Pold> and prew, we calculate the changes as:

Ao = l0o1d — Onewll

1 (6)
Ap = 7 lpo1a = prewll,

where ¢ is the target edge length. If one of these changes is above a
prescribed threshold, we add all of the nodes’ children to the queue
for processing the next finer level. We achieve good results with
the thresholds 0.1 for both fields on the finest level. The thresh-
olds are doubled successively at each coarser level to account for
the coarser resolution . In practice, this approach usually leads to
re-optimization of only the area surrounding the modified points.
However, in cases where there are no features in the input that
guide the alignment field, new data may cause re-optimization of
large parts of the model. Figure 7 shows the updated regions for an
example data set.

4.4 Coarse Mesh Update

The locally-updated fields contain all the information required to
extract the coarse mesh. As in previous steps, we want to process
only the newly modified data to avoid costly passes over the entire
point cloud. To extract the mesh locally, we propose a mesh merging
procedure guided by the position field values — the key idea is to
exploit the fact that in the untouched regions, the position field
averages used by the IM extraction will lead to identical coordinates
for the final mesh vertices. We thus identify the modified regions,
grow them to capture a small strip of untouched elements, mesh the
extended region, and zip the meshes together exploiting the vertex
correspondences in the overlapping strip (Figure 8).

Active Region. Expansion is performed in two steps. First, we
identify points on the boundary of the changed set. Then, we find the
points that are outside of the changed set but within a fixed radius
of this boundary. Using the nearest-neighbor graph (previously

Field-Aligned Online Surface Reconstruction « 77:7

Modified Point Set

Expanded Point Set

Fig. 8. Coarse mesh update. The set of modified points is grown to yield
an expanded point set, from which a partial mesh is extracted. This partial
overlay mesh is then integrated into the old mesh, replacing overlapping
areas.

computed for updating the field values), we define the boundary
of the changed set by identifying those points that are not in the
changed set but which are neighbors of points that are.

In expanding the boundary, our goal is to find all points outside
of the changed set whose associated mesh vertices can share a face
with the mesh vertices associated to points inside the change set. We
do this using the target edge length of IM as a heuristic. Specifically,
assuming that all edges have a length equal to the target edge length,
the distance between two points that define vertices sharing a quad
is at most twice the target diagonal length (one diagonal inside the
quad and another diagonal to account for the correspondences as the
distance between a point and its positional field value is by definition
at most half the target diagonal length). Since the optimization and
clustering can cause slight deviations from this rigid scheme, we
add a small margin and use the final heuristic » = 3 - £, where ¢
is the target edge length. A similar argument shows that r =3 - ¢
suffices for triangle faces as well. Thus, by growing the modified
set by a radius of 3 - £, we identify all points whose associated mesh
vertices are within a one-ring neighborhood of the mesh vertices
associated with boundary points (and possibly more). We refer to
the set of added points as the expanded points.

Extraction. An overlay mesh is then extracted using the IM graph-
based collapsing approach from the active region. We construct a
local graph covering the active region, where every point generates
a vertex at the location of its positional field value and edges are
added according to the original point cloud’s adjacency graph —
since this graph will in general not be symmetric, we symmetrize it
by adding the missing edges that are needed by the mesh extraction
of IM. By construction, this graph forms clusters, which are then
collapsed into a single node using length-based edge collapse. For
every node in the collapsed graph, a mesh vertex is generated and
faces are determined using a greedy search over the adjacency graph.
Our pipeline supports triangles and quadrilaterals. We tessellate
faces of higher degree as well as non-planar quads.

Stitching. The first stitching step deletes all vertices of the old
mesh that have been previously created by points in the changed
set. This generates a punctured mesh with a hole in the area of the
changed set. In our representation, every point stores a reference to
its associated mesh vertex. Thus, deleting mesh geometry during

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

77:8 « Schertler, N. et al.

(a) Coarse base mesh (b) Tessellated mesh (c) Tessellated mesh
without color

Fig. 9. High-frequency details are added to the coarse base mesh by the
color and displacement maps.

the update is a matter of iterating over points in the changed set
and removing the associated mesh vertices (and incident edges and
faces). Since, by construction, vertices generated solely from the
expanded points are duplicated in the punctured mesh, it is possible
to glue the overlay mesh to it by merging the duplicate vertices.

Special care must be taken of vertices that are formed by points
close to the boundary of the active region. The original clusters
for those vertices may include points that are outside of the active
region and averaging the positional field values of a partial cluster
results in a different vertex position in general, preventing duplicate
detection. To avoid this, we identify vertices formed from partial
clusters with a breadth-first search on the overlay mesh starting
from the vertices generated by the (unexpanded) changed set. The
BFS proceeds until it reaches a duplicate vertex with respect to
the punctured mesh and excludes every vertex beyond this point.
The resulting front of duplicate vertices is sufficient to stitch the
punctured mesh with the overlay mesh and we delete every vertex
that has not been reached by the BFS as these vertices may be formed
by partial clusters.

4.5 Detail Map Calculation

The final step of our reconstruction pipeline adds details in the
form of a color and displacement map to the coarse mesh (Figure
9). The displacement map is a scalar height field over the mesh
that displaces the surface in the direction of the interpolated vertex
normals. We use linear and bilinear interpolation for triangles and
quads, respectively. The vertex normals are calculated as the area-
weighted average of incident face normals on the coarse mesh. As in
previous steps, detail map calculation is only performed in regions
of the mesh that have changed, i.e. on new faces that are generated
during the creation of the coarse mesh.

Local Parametrization. Since a global UV
parametrization is not necessary for our purposes,
we opt for a local, per-face parametrization that °,°

L]
allows us to store these data together with the .~ . o
geometry, similar to Mesh Colors [Yukseletal. ¢ o o o o
2010]. We use the texel layout that isused by the ¢ o o o o
GPU tessellation unit (see inset figure) to allow ¢ o o o o
efficient rendering of the high-resolution mesh, oo

similar to [Schéfer et al. 2013]. Using this representation, every

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

r=0.25

A=0.90

Fig. 10. Influence of the smoothness parameter A on the extracted surface

face, edge, and vertex defines a set of texels storing the color and
offset information, where texels of edges and vertices are shared by
multiple faces.

Filtering. The texel values are defined so that the resulting tes-
sellated mesh is at once faithful to the input points and robust to
scanner noise. We achieve this by solving a linear least-squares
system combining interpolation and regularization terms:

argmin ((1—2)- I®) + 1-R(@)) 7)
i

Here, 1 is the vector containing texel data, I(7) is the data fidelity
term, and R(f) measures the smoothness. The weight parameter
A € [0,1] is used to balance between the two terms. Figure 10
compares the reconstructed surface for two choices of 1. While
small values reconstruct the input points more closely, larger values
can reduce noise significantly. We perform all color calculations in
CIE La™b* space in order to measure smoothness and color similarity
in a way that aligns with human perception.

Regularization Term. We use the bi-Laplacian to define the regu-
larizer, setting:

R(® = ||| ®)
where L is the uniform Laplacian matrix for the tessellated mesh
where every texel corresponds to one vertex. Note that as we are
only regularizing for the smoothness of the normal offset, not the 3D
displacement: this formulation will preserve creases in the input data
as soon as the field optimization step aligns the edges of the coarse
mesh to them (Figure 6). This formulation can result in a visible grid
pattern on the reconstructed surface that reveals the underlying
coarse mesh, especially for large smoothness values A. To remedy
this, we replace rows of the linear system for the displacement map
that correspond to texels on non-crease edges (which we determine
by a user-specified threshold on the dihedral angle) with a geometric

Laplacian, i.e. for the current texel i and its neighbors N(i):

1
(pi+n,-.t,»)——|N(i)| VZ'(ijrnf'tj):O’)
JEN(i)
where p;, nj, and t; are the interpolated position, normal and the
displacement of texel i, respectively.

Projection. To measure data fidelity, we project every point in the
changed set onto the coarse mesh in the direction of the interpolated
vertex normal, as proposed in [Kobbelt et al. 1999]. We do this
efficiently, by only projecting a point onto the faces of the coarse
mesh that are incident to the associated vertex.

We then find the projection of a point p by solving for the face f,
and bilinear coordinates (resp. barycentric coordinates for triangles),
a@p, such that the vertex projects on the face at the interpolated point
using the interpolated normal:

p- ﬂf(a)) X ng(a) =0, (10)
where 77() is the linearly (resp. bilinearly) interpolated position
within the triangle (resp. quad) f at coordinates a and ng(«) is
the interpolated normal. For each face, we solve the non-linear
equation using Newton iterations, discarding modified points from
the interpolation constraints when they do not project inside any
incident face. If there are multiple projections, we use the one that
results in the smallest offset, measured as

(p = (@), ng(a))

IRE an

Data Term. Using the projection, we define the interpolation
penalty in terms of the deviation of the point’s attribute (color and
offset) from the attribute obtained by sampling the texture map at
the projected position:

10 = Y ({(fprap) — ap)”. (12)

pEP

where P is the set of modified points, (f, @) is the evaluation of
the texture map at face f and coordinates @, and ap is the attribute
associated to point p.

We solve the sparse linear system in Equation (7) using Conjugate
Gradients, locking the texel values of unmodified faces to define
Dirichlet boundary constraints, and using as initial guess the point’s
attribute that is closest to a texel. In our experiments, the solver
converges quickly, usually in less than 30 iterations. The final texel
values are then uploaded to the GPU together with the coarse mesh
and are rendered using the GPU’s tessellation unit.

5 RESULTS

We use an HP 3D Structured Light Scanner Pro S3 and an automatic
turntable to acquire range scans as input for our pipeline. To provide
a coarse registration without further user interaction, we attached
an HTC Vive controller to the scanner rig whose orientation and
position in a reference coordinate system can be tracked accurately
(Figure 11). We use a workstation with a 6-core i7 processor clocked
at 3.5 GHz to run all our experiments.

We use a semi-automatic calibration process to determine all rel-
evant parameters of this system, which allows us to place acquired
3D scans in the Vive’s reference coordinate system. The details of

Field-Aligned Online Surface Reconstruction « 77:9

Fig. 11. Hardware setup

Points Coarse Faces Fine Vertices

Eagle 796,825 21,296 1,955,789

King | 1,876,034 17,440 1,549,559

Guinea Pig | 2,532,694 5,019 472,602
Head (quads) 3,165,119 16,058 1,540,950
Head (tris) | 3,165,119 33,539 2,526,406
Broccoli | 3,433,542 9,406 832,670
Monk | 5,661,497 9,441 907,846
Soldier | 6,690,187 8,887 793,119

Table 1. Reconstruction input and output statistics

this calibration can be found in the supplementary material. Since
small errors in the tracked controller orientation can lead to rela-
tively large offsets in the scanned area (especially for small models),
we provide an optional two-click coarse registration tool that lets
the user specify one correspondence from which a correcting trans-
lation is calculated. The coarse registration obtained in this way
(with or without user corrections) provides a good initial guess for a
subsequent fine registration, for which we use Sparse ICP [Bouaziz
et al. 2013] with the point-to-plane formulation. Table 1 shows sta-
tistics for all presented data sets, including the numbers of input
points, extracted base mesh faces, and vertices in the tessellated
mesh. (Our implementation and selected data sets are available at
https://github.com/NSchertler/OnlineSurfaceReconstruction.)

Visual Aids. Our system highlights the boundaries of the recon-
structed model after each scan is integrated (Figure 12, left), suggest-
ing where data is required and helping to plan the next scan. While
more advanced next-best-view optimizations could be integrated
[Fan et al. 2016; Wu et al. 2014], we found the guidance provided by
our direct visual feedback to be sufficient for all our experiments.
We efficiently scanned models with complex shapes, combining an
initial set of automatic scans (taken using a rotational stage), with a
few manual scans of the occluded regions (Figure 12, right).

Normal Filtering. The point normals that are used for field opti-
mization play an important role in the final result. Directly using
the normals of the point clouds leads to noisy directional and posi-
tional fields in regions with high-frequency details, which breaks
the extraction process in some places (Figure 14a.) We address this
problem applying a smoothing filter with Gaussian weights to the

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

77:10 « Schertler, N. et al.

(a) Partial result with highlighted boundary (b) Final result

Fig. 12. Boundaries of the extraction result are highlighted with a flashing
border during the scan session in order to help locate the next scan.

Average Step Time

Relative Run Time Per Step

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

M Hierarchy Update M Optimization M Coarse Mesh Extraction Texture Baking M Other

Fig. 13. Average relative time for each step of our pipeline

(b) Cleaned with a Gaussian filter

(a) Unmodified Normals

Fig. 14. Comparison of the extraction result using normals calculated as
the average of incident faces in the range scan (left) and after a cleaning
pass using Gaussian filtering (right).

normals after integrating a scan into the hierarchy, using our approx-
imate neighbor definition. We couple the variance of the Gaussian
to the target edge length ¢, setting 0 = 0.1¢. This smoothing pro-
duces much cleaner fields which results in a more regular mesh
(cf. Figure 14b).

Direct Point Cloud Editing. The ability to update the reconstructed
surface at interactive rates enables a user to correct problems in the
scans (e.g. outliers or holes), with immediate visual feedback of the
final reconstruction.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

:

(e) Superflous Points

r

(f) Delete-Points Brush

(a) Noisy Region (c) Missing Data

(b) Smoothing Brush

(d) Fill-Holes Brush

Fig. 15. Usage of interactive point cloud editing tools to resolve several
problems in the scans

We implemented three different field-aligned brushes to showcase
this feature (Figure 15).

The smoothing brush takes advantage of the hierarchy’s efficient
neighbor queries and applies a Gaussian filter to the point positions
(Figure 15, b). Optionally, anisotropic smoothing can be applied,
picking one of the directions of the directional field and specifying
the filter strength in each of the three local dimensions, i.e. chosen
direction, perpendicular tangential direction, and normal (see sup-
plementary material for more details). For example, the region in
Figure 15 was smoothed only along the normal direction.

The fill-holes brush reconstructs missing data in the scans. For
example, we used it in our experiments to complete the eye of the
guinea pig model, where the scanner failed to capture samples due
to high specularity (Figure 15, d). The brush works in four stages:
(1) the user marks a support region in the point cloud, where the
reconstructed surface serves as a proxy for the 3D selection tool;
(2) we fit a plane to this region using PCA and project the points of
the support region onto this plane; (3) this produces a sampling of a
height field & : R? — R over the plane, which we reconstruct using
a thin plate spline; (4) the user can interactively sample points from
this height field to fill the hole, until satisfied with the result.

Finally, the remove-points brush deletes undesired points in a
spherical region around the 3D cursor (Figure 15, f).

Data Source. Our pipeline is not specific
to our hardware setup, and can be used
to process any range scan or point cloud.
The inset shows a dataset acquired with a
laser scanner and registered externally. The
colors are procedural and depend on the
vertex coordinates.

Comparison with IM. The original IM
pipeline does not support updates of its underlying data structures.
Therefore, if this pipeline were to be used, every new scan would
initiate an entire rebuild of the hierarchy and extracted mesh. Our

Ratio IM / Online Reconstruction

[}
35 °
°
3 o®
o ©
] g
&‘; 25 o ®
o ®
2 ... o o o
15
1
0 200 400 600 800 1000 1200 1400

Total Points [Thousands]

Fig. 16. Ratio of the total running times of IM and our pipeline for successive
addition of new scans (Gargoyle dataset).

Fig. 17. Comparison of the extraction results of our method (left) and
Screened Poisson Reconstruction (right) [data courtesy of LGG, EPFL,
http://1gg.epfl.ch/statues.php].

pipeline updates only as much data as required. As a result, as more
scans are added, the total runtime of the IM pipeline increases ap-
proximately quadratically. Figure 16 visualizes the ratio of runtimes
of the IM pipeline and our solution. The increasing trend clearly
shows that the IM pipeline becomes less efficient as more scans are
added.

Comparison with Screened Poisson Reconstruction. In Figure 17, we
compare our method with Screened Poisson Reconstruction (SPR)
on the dataset used for Figure 8 of [Kazhdan and Hoppe 2013]. We
used the reference implementation provided by the authors, and
manually adjusted the resolution and smoothing parameter of both
methods to produce a mesh with similar density and surface details.
SPR took 39.5 seconds and required 910.4 MB to reconstruct the
800k points data set at the given resolution on a six-core Intel Core
17 machine, using all cores. Our pipeline outperforms SPR both in
terms of running time, requiring 12.4 seconds, and peak memory
usage (639.8 MB). Visually, the results are very similar with the main
difference being that SPR fills holes where no data is present, while
our method does not, introducing boundaries in the reconstructed

Field-Aligned Online Surface Reconstruction « 77:11

Fig. 19. Comparison of the extraction results of our method (left) and Kinect
Fusion (right), computed from noisy range scanned data captured from a
Kinect device. Results of Kinect Fusion are smoothed out, resulting in loss of
detail (first close-up) and shrinkage (second close-up, where the silhouette
of our result is superimposed as a dotted blue line, to highlight differences).
Black regions in the Kinect Fusions results correspond to areas which were
not visible to the scanner and for which color data is not available.

mesh. The meshing pattern of our result is highly isotropic and
semi-regular, and it is not plagued by the irregularity and sliver
elements of the Marching Cubes step used by SPR.

Figure 18 provides a more quantitative comparison with SPR us-
ing the benchmark of Berger et al. [2013]. The results were obtained
by reconstructing surfaces from 240 virtual scans of 5 models (An-
chor, Dancing Children, Daratech, Gargoyle, and Lord Quasimodo).
The figure shows the ratio of running times (left), positional accu-
racy (center), and normal accuracy (right) of our method relative
to SPR, and confirms that our method produces reconstructions
more efficiently without sacrificing geometric quality. (We ran SPR
at depth 9 to produce surfaces with resolution comparable to ours.
We measured positional and normal accuracy using reconstruction-
to-ground-truth errors in order to avoid bias due to reconstruction
holes in regions that were not visible to the virtual scanners.)

Comparison with Kinect Fusion. In order to compare our pipeline
with the online reconstruction of [Newcombe et al. 2011], we per-
formed a scanning session with the Kinect Fusion implementation
provided in the Microsoft Kinect SDK, capturing 800 frames at 30
fps, and reconstructed the triangle mesh from the acquired volumet-
ric representation. We used every tenth captured depth map, which
the Kinect Fusion system already smoothed with a bilateral filter, as
input for our pipeline. We ran fine registration and extraction with
a target edge length that approximately matches those in the Fusion
reconstruction and a smoothness of A = 0.98. Both results are shown
in Figure 19. Kinect Fusion results are smoothed out, resulting in
loss of detail and shrinkage. This aggressive smoothing is required
to avoid artefacts caused by noisy input data and registration errors
from the utilized SLAM (e.g. table surface). In addition, during the
scanning section, Kinect Fusion results are only available as ray-
traced distance fields, whereas our system offers a “final” on-the-fly
feedback consisting of a quad-dominant, semiregular, field-aligned,
displacement-mapped, explicit mesh representation.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

77:12 « Schertler, N. et al.

Time Distance

1/4

1/8 \ \ \ 1/8 \

1/4

1/8 T

20000 40000 80000 160000 320000 20000 40000

80000 160000 320000 20000 40000 80000 160000 320000

Fig. 18. Ratios of the running time (left), positional accuracy (center), and normal accuracy (right) of our method relative to SPR, obtained across 240 virtual

scans, given as a function of the number of points in the scan.

Fig. 20. Reconstruction of the large Bremen data set.

5000
4500
4000
3500
3000
2500
2000
1500

1000
500

Total Time [seconds]

0 20 40 60 80

Total Points [million points]

Fig. 21. Performance recording for integrating each of the 99 scans of the
Bremen data set on an Intel Core i7 machine.

Large Dataset. The approximately linear cost of our reconstruc-
tion pipeline makes it ideal for large datasets. We show the recon-
struction result for the Bremen data set [Borrmann and Niichter
2016] in Figure 20. The dataset is comprised of 99 registered scans

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

acquired by a laser scanner, for a total of about 80 million points. The
approximate linear cost is clearly visible in Figure 21, where we plot
the cumulative time as more and more range scans are integrated
in the reconstruction.

6 LIMITATIONS AND CONCLUDING REMARKS

We presented the first online algorithm to convert range scans and
point clouds to semi-regular, coarse, feature-aligned meshes. Our
results are equipped with a local parametrization, which is used for
generating color and displacement maps.

Similar to the original IM algorithm, our method is not guaranteed
to produce manifold output, (though we have found non-manifold
output to be rare in our experiments). Heavy undersampling can
produce undesired holes approximately of the size of the target edge
length: while this can be addressed by taking another scan or using
our hole-filling brush, it would be interesting to combine our ap-
proach with the indicator function of a local Poisson reconstruction
to automatically insert additional points and solve these problems.

Moderate levels of zero-mean noise with a standard deviation
that is smaller than the target edge length can be handled well
through our detail map generation. More severe noise can cause
the base mesh generation to break, but basic filtering techniques
can help significantly to overcome this problem as we have shown
in Figure 14 and Figure 19. Registration errors can lead to noisy
surfaces since their errors have non-zero mean. Outliers usually
do not pose a challenge for our pipeline because these are already
filtered out during base mesh generation — a feature that we adopted
from the underlying IM framework.

Our results are made possible by leveraging the recent advance-
ments in field-aligned parametrization and extending them, for the
first time, to an online setting. We believe that this algorithm is
useful in contexts other than range scanning, such as reconstruction
of time varying datasets or interactive modeling sessions, where
the data is represented as an implicit surface or a CSG tree. We plan
to explore this direction in future work.

REFERENCES

N. Amenta, S. Choi, and R. Kolluri. 2001. Power Crust. In ACM Symposium on Solid
Modeling and Applications. 249-260.

C. Bajaj, F. Bernardini, and G. Xu. 1995. Automatic Reconstruction of Surfaces and
Scalar Fields from 3D Scans. In Proceedings of the Conference on Computer Graphics
and Interactive Techniques (SSIGGRAPH 1995). 109-18.

Matthew Berger, Joshua A. Levine, Luis Gustavo Nonato, Gabriel Taubin, and Claudio T.
Silva. 2013. A Benchmark for Surface Reconstruction. ACM Transactions on Graphics
32, 2 (2013), 20:1-20:17.

Matthew Berger, Andrea Tagliasacchi, Lee M. Seversky, Pierre Alliez, Joshua A. Levine,
Andrei Sharf, and Claudio T. Silva. 2014. State of the Art in Surface Reconstruction
from Point Clouds. In Eurographics 2014 - State of the Art Reports, Sylvain Lefebvre
and Michela Spagnuolo (Eds.). The Eurographics Association. DOI : https://doi.org/
10.2312/egst.20141040

F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. 1999. The Ball-
Pivoting Algorithm for Surface Reconstruction. IEEE Transactions on Visualization
and Computer Graphics 5 (1999), 349-359.

J.D. Boissonnat and S. Oudot. 2005. Provably good sampling and meshing of surfaces.
Graphical Models 67 (2005), 405-451.

D. Bommes, B. LAlvy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, and D. Zorin. 2012.
State of the Art in Quad Meshing. In Eurographics STARS.

Dorit Borrmann and Andreas Nichter. 2016. Robotic 3D Scan Repository.
http://kos.informatik.uni-osnabrueck.de/3Dscans. (2016). http://kos.informatik.
uni-osnabrueck.de/3Dscans

Sofien Bouaziz, Andrea Tagliasacchi, and Mark Pauly. 2013. Sparse iterative closest
point. In Computer graphics forum, Vol. 32. Wiley Online Library, 113-123.

F. Calakli and G. Taubin. 2011. SSD: Smooth Signed Distance Surface Reconstruction.
Computer Graphics Forum 30 (2011), 1993-2002.

J. Carr, R. Beatson, H. Cherrie, T. Mitchell, W. Fright, B. McCallum, and T. Evans.
2001. Reconstruction and representation of 3D objects with radial basis functions.
In Proceedings of the Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 2001). 67-76.

P Cignoni, G Ranzuglia, M Callieri, M Corsini, F Ganovelli, N Pietroni, and M Tarini.
2011. MeshLab. http://www.meshlab.org/. (2011).

B. Curless and M. Levoy. 1996. A Volumetric Method for Building Complex Models
from Range Images. In Proceedings of the Conference on Computer Graphics and
Interactive Techniques (SSGGRAPH 1996). 303-312.

T. Dey and S. Goswami. 2003. Tight Cocone: A Water-tight Surface Reconstructor. In
Proceedings of the Symposium on Solid Modeling and Applications. 127-134.

G. Dziuk. 1988. Finite elements for the Beltrami operator on arbitrary surfaces. In
Partial Differential Equations and Calculus of Variations, Lecture Notes in Mathematics.
Vol. 1357. 142-155.

H. Edelsbrunner and E. Miicke. 1994. Three-dimensional Alpha Shapes. ACM Transac-
tions on Graphics 13 (1994), 43-72.

S. Fuhrmann and M. Goesele. 2014. Floating Scale Surface Reconstruction. ACM
Transactions on Graphics 33 (2014), 46:1-46:11.

H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. 1992. Surface Recon-
struction from unorganized points. In Proceedings of the Conference on Computer
Graphics and Interactive Techniques (SSIGGRAPH 1992). 71-78.

A. Hornung and L. Kobbelt. 2006. Robust reconstruction of watertight 3D models from
non-uniformly sampled point clouds without normal information. In Symposium on
Geometry Processing. 41-50.

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe,
Pushmeet Kohli, Jamie Shotton, Steve Hodges, Dustin Freeman, Andrew Davison,
and others. 2011. KinectFusion: real-time 3D reconstruction and interaction using a
moving depth camera. In Proceedings of the 24th annual ACM symposium on User
interface software and technology. ACM, 559-568.

Alec Jacobson, Ladislav Kavan, and Olga Sorkine-Hornung. 2013. Robust Inside-Outside
Segmentation using Generalized Winding Numbers. ACM Transactions on Graphics
(proceedings of ACM SIGGRAPH) 32, 4 (2013), 33:1-33:12.

Wenzel Jakob, Marco Tarini, Daniele Panozzo, and Olga Sorkine-Hornung. 2015. Instant
Field-Aligned Meshes. ACM Transactions on Graphics (Proceedings of SSGGRAPH
ASIA) 34, 6 (Nov. 2015). DOI : https://doi.org/10.1145/2816795.2818078

Michael Kazhdan. 2005. Reconstruction of Solid Models from Oriented Point Sets. In
Proc. of the 3rd Eurographics Symp. on Geometry Processing (SGP °05). Eurographics
Association, Article 73. http://dl.acm.org/citation.cfm?id=1281920.1281931

Michael Kazhdan, Matthew Bolitho, and Hugues Hoppe. 2006. Poisson Surface Recon-
struction. (2006), 61-70. http://dl.acm.org/citation.cfm?id=1281957.1281965

M. Kazhdan and H. Hoppe. 2013. Screened Poisson surface reconstruction. ACM
Transactions on Graphics 32 (2013), 29:1-29:13.

M. Kazhdan, A. Klein, K. Dalal, and H. Hoppe. 2007. Unconstrained Isosurface Extraction
on Arbitrary Octrees. In Symposium on Geometry Processing. 125-133.

Leif Kobbelt, Jens Vorsatz, and Hans-Peter Seidel. 1999. Multiresolution Hierarchies
on Unstructured Triangle Meshes. Comput. Geom. Theory Appl. 14, 1-3 (Nov. 1999),
5-24. DOI:https://doi.org/10.1016/S0925-7721(99)00032- 2

Field-Aligned Online Surface Reconstruction « 77:13

R. Kolluri, J. Shewchuk, and J. O’Brien. 2004. Spectral Surface Reconstruction From
Noise Point Clouds. In Symposium on Geometry Processing. 11-21.

P. Labatut,].-P. Pons, and R. Keriven. 2009. Robust and efficient surface reconstruction
from range data. Computer Graphics Forum 28 (2009), 2275-2290.

Shengren Li, Lance Simons, Jagadeesh Bhaskar Pakaravoor, Fatemeh Abbasinejad,
John D Owens, and Nina Amenta. 2012. KANN on the GPU with shifted sorting. In
Proc. of the 4th ACM SIGGRAPH/Eurographics conf. on High-Performance Graphics.
Eurographics Association, 39-47.

W. Lorensen and H. Cline. 1987. Marching Cubes: A High Resolution 3D Surface
Reconstruction Algorithm. In Computer Graphics (Proceedings of SSIGGRAPH 87).
163-169.

J. Manson, G. Petrova, and S. Schaefer. 2008. Streaming surface reconstruction using
wavelets. In Symposium on Geometry Processing. 1411-1420.

Microsoft. 2010. Kinect. https://developer.microsoft.com/en-us/windows/kinect. (2010).

Guy M Morton. 1966. A computer oriented geodetic data base and a new technique in file
sequencing. International Business Machines Company New York.

P. Mullen, F. De Goes, M. Desbrun, D. Cohen-Steiner, and P. Alliez. 2010. Signing the
Unsigned: Robust Surface Reconstruction from Raw Pointsets. Computer Graphics
Forum 29 (2010), 1733-1741.

Richard A. Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David Kim,
Andrew J. Davison, Pushmeet Kohli, Jamie Shotton, Steve Hodges, and Andrew
Fitzgibbon. 2011. KinectFusion: Real-Time Dense Surface Mapping and Tracking. In
Proceedings of IEEE ISMAR - 10th International Symposium on Mixed and Augmented
Reality. IEEE, 127-136.

Y. Ohtake, A. Belyaev, M. Alexa, G. Turk, and H. Seidel. 2003. Multi-level partition of
unity implicits. ACM Transactions on Graphics 22 (2003), 463-470.

Nico Pietroni, Marco Tarini, Olga Sorkine, and Denis Zorin. 2011. Global parametriza-
tion of range image sets. In ACM Transactions on Graphics (TOG), Vol. 30. ACM,
149.

U. Pinkall and K. Polthier. 1993. Computing Discrete Minimal Surfaces and Their
Conjugates. Experimental Mathematics 2 (1993), 15-36.

J. Podolak and S. Rusinkiewicz. 2005. Atomic volumes for mesh completion. In Sympo-
sium on Geometry Processing. 33—41.

Szymon Rusinkiewicz, Olaf Hall-Holt, and Marc Levoy. 2002. Real-time 3D Model
Acquisition. ACM Trans. Graph. 21 (2002), 438-446.

Szymon Rusinkiewicz and Marc Levoy. 2000. QSplat: A Multiresolution Point Rendering
System for Large Meshes. In Proceedings of ACM SIGGRAPH 2000. 343-352.

Henry Schiéfer, Magdalena Prus, Quirin Meyer, Jochen Siiffmuth, and Marc Stamminger.
2013. Multiresolution Attributes for Hardware Tessellated Objects. IEEE transactions
on visualization and computer graphics 19, 9 (2013), 1488-1498.

Gabriel Taubin. 1995. A Signal Processing Approach to Fair Surface Design. In
Proceedings of the 22Nd Annual Conference on Computer Graphics and Interac-
tive Techniques (SIGGRAPH ’95). ACM, New York, NY, USA, 351-358. DOI:https:
//doi.org/10.1145/218380.218473

Xinyi Fan, Linguang Zhang, Benedict Brown, and Szymon Rusinkiewicz. 2016. Auto-
mated View and Path Planning for Scalable Multi-Object 3D Scanning. ACM Trans.
Graph. (Proc. SSGGRAPH Asia) 35, 6 (nov 2016).

Jonathan Palacios and Eugene Zhang. 2007. Rotational Symmetry Field Design on
Surfaces. ACM Trans. Graph. (SIGGRAPH 2007) 26, 3, Article 55 (jul 2007). DOI:
https://doi.org/10.1145/1276377.1276446

Shihao Wu, Wei Sun, Pinxin Long, Hui Huang, Daniel Cohen-Or, Minglun Gong, Oliver
Deussen, and Baoquan Chen. 2014. Quality-driven Poisson-guided Autoscanning.
ACM Trans. Graph. (Proc. SSIGGRAPH Asia) 33, 6, Article 203 (nov 2014), 12 pages.
DOI:https://doi.org/10.1145/2661229.2661242

Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes,
Klaus Hildebrandt, and Mirela Ben-Chen. 2016. Directional Field Synthesis, Design,
and Processing. Computer Graphics Forum (2016), 15. http://graphics.tudelft.nl/
Publications-new/2016/VCDPBHB16

Cem Yuksel, John Keyser, and Donald H House. 2010. Mesh colors. ACM Transactions
on Graphics (TOG) 29, 2 (2010), 15.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 77. Publication date: July 2017.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Offline Reconstruction
	2.2 Online Reconstruction

	3 Brief Overview of Instant Meshes
	4 Field-Aligned Surface Reconstruction
	4.1 Approximate k-nn
	4.2 Multi-Resolution Hierarchy
	4.3 Point Data Update and Field Re-Optimization
	4.4 Coarse Mesh Update
	4.5 Detail Map Calculation

	5 Results
	6 Limitations and Concluding Remarks
	References

