This space is reserved for the Procedia header, do not use it

Facilitating the Reproducibility of Scientific Workflows
with Execution Environment Specifications

Haiyan Meng and Douglas Thain

Department of Computer Science and Engineering, University of Notre Dame
Notre Dame, Indiana, USA
hmeng@nd.edu and dthain@nd.edu

Abstract

Scientific workflows are designed to solve complex scientific problems and accelerate scientific
progress. Ideally, scientific workflows should improve the reproducibility of scientific applica-
tions by making it easier to share and reuse workflows between scientists. However, scientists
often find it difficult to reuse others’ workflows, which is known as workflow decay. In this
paper, we explore the challenges in reproducing scientific workflows, and propose a framework
for facilitating the reproducibility of scientific workflows at the task level by giving scientists
complete control over the execution environments of the tasks in their workflows and integrating
execution environment specifications into scientific workflow systems. Our framework allows
dependencies to be archived in basic units of OS image, software and data instead of gigantic
all-in-one images. We implement a prototype of our framework by integrating Umbrella, an
execution environment creator, into Makeflow, a scientific workflow system.

To evaluate our framework, we use it to run two bioinformatics scientific workflows, BLAST
and BWA. The execution environment of the tasks in each workflow is specified as an Umbrella
specification file, and sent to execution nodes where Umbrella is used to create the specified
environment for running the tasks. For each workflow we evaluate the size of the Umbrella spec-
ification file, the time and space overheads of creating execution environments using Umbrella,
and the heterogeneity of execution nodes contributing to each workflow. The evaluation results
show that our framework improves the utilization of heterogeneous computing resources, and
improves the portability and reproducibility of scientific workflows.

Keywords: reproducible research, scientific workflows, execution environment specifications

1 Introduction

The reproducibility of scientific applications has become increasingly important for the progress
of computational science because it allows the original author and others to reproduce, verify,
and further extend the original applications [10]. Different solutions have been proposed to

Facilitating the Reproducibility of Scientific Workflows with Execution Environment Specs = Meng and Thain

° capitoLmontaqeqif: capitol.jpg capitol.90.jpg capitol.180.3pg
capitol.270.jpg capitol.360.3pg /usr/bin/convert
convert -delay 10 -loop O capitol.jpg capitol.90.3pg
capitol.180.3jpg capitol.270.jpg capitol.360.3pg capitol.270.jpg
capitol.180.jpg capitol.90.jpg capitol.montage.gif

[Fs | capito1.90.3pg: capitol.jpg
° e 0 e convert -swirl 90 capitol.jpg capitol.90.3pg
[Fa | capito1.180.3pg: capitol.jpg
ﬂ ﬂ n H convert -swirl 180 capitol.jpg capitol.180.jpg
El capitol.270.3jpg: capitol.jpg
convert -swirl 270 capitol.jpg capitol.270.jpg

capitol.360.jpg: capitol.jpg
convert -swirl 360 capitol.jpg capitol.360.3jpg

@006 O

H capitol.jpg: /usr/bin/curl

curl -o capitol.jpg http://ccl.cse.nd.edu/images/capitol.3pg

Figure 1: An Example Makeflow in DAG Figure 2: An Example Makefile: Image Rotation

reproduce single-machine scientific applications. Some popular solutions include virtual ma-
chines [9], Linux Containers (e.g., Docker [14]), and user-space ptrace-based tools (e.g., CDE [7]
and Parrot-packaging tool [13]). In spite of their differences, these solutions all emphasize the
importance of preserving the complete software stack (i.e., execution environment) of scientific
applications for conducting reproducible research [12].

However, many scientific applications are too big to be solved on a single machine, due to
their huge computing and storage requirements. To solve this, scientific workflows [16] were
designed to disseminate complex data transformations and analysis procedures into a set of
smaller and possibly independent tasks, which allows computing resources from clusters, grids
and clouds to be utilized. The tasks involved in a scientific workflow are often organized into a
directed acyclic graph (DAG), where nodes represents tasks and files, and edges represent data
flow and dependency relationship. Figure 1 shows a DAG including six tasks, which represents
the simple workflow example in Figure 2, written in the Makefile language [1]. A real scientific
workflow is usually more complex in both task number and task dependencies.

To make it easy for scientists to compose and execute scientific workflows, a variety of
scientific workflow systems have been developed [18], such as Taverna [15]|, Pegasus [4] and
Makeflow [1]. The end-users of these workflow systems only need to specify a DAG of tasks.
The workflow systems respond to communicate with execution engines, schedule tasks to the
underlying computing resources, manage data sets and deliver fault tolerance.

Ideally, scientific workflows should improve the reproducibility of scientific applications by
making it easier to share and reuse workflows between scientists. However, scientists often find
it difficult to reuse others’ workflows, which is known as workflow decay [8]. For example, a
study in 2012 of Taverna workflows on myExperiment [6], a social website allowing scientists to
share their workflows, shows that 80% of the workflows on the site cannot be reproduced [19].

Among the causes of workflow decay, the incompatible execution environments on execution
nodes is a recurring significant problem [3, 8, 5, 2]. This work aims to improve the reproducibility
of scientific workflows by bringing the incompatible execution environments to a minimum.

Depending on the scientific workflow system used, scientists have different levels of control
over the underlying execution environments on execution nodes. Pegasus [4] allows scientists
to compose abstract workflows without worrying about the details of the underlying execution
environments, which means sysadmins must respond to the cumbersome job of configuring
computing resources to meet all the requirements of different workflows. Makeflow [1] allows
executables to be specified in workflow specifications and delivered to execution nodes, such as
/usr/bin/convert in Figure 2. This is simple but not always correct, because executables may
be sent to execution nodes with incompatible execution environments. To fix this, Makeflow
allows scientists to specify a Docker image [14] containing the required execution environment,
and delivers the image to execution nodes [20]. This gives scientists more control over the
execution environments, but ends up with gigantic images which are expensive to store.

Facilitating the Reproducibility of Scientific Workflows with Execution Environment Specs = Meng and Thain

Workflow Specification Layer Attri-bute Description
Specification Parser Layer machine number 1'886
T hardware arch x86 64, 1686

ask Scheduler Layer V _ _ o _
___ kernel version Linux, Darwin, Windows NT
: Execution Engines : oS RHEL5, RHEL6, RHEL7, Mac9, Windows7
i [toal] [Hicondor] [SGE] [Wodkduewe] | RHEL versions 5.11, 6.5, 6.6, 6.7, 6.8, 7.0, 7.2
Computing Resource Layer CPU number 1, 2,4, 8,12, 16, 24, 32, 64
RHEL7 | [Centos7 | [Debian8s | [Windows8 | memory size Min: 1002MB, Max: 251GB
disk size Min: 9GB, Max: 4.7TB

Figure 3: Layers of Scientific Workflow Systems Table 1: Heterogeneity of the ND HTCondor Pool (Nov. 2016)

In this paper, we explore the challenges in reproducing scientific workflows, and propose a
framework for facilitating the reproducibility of scientific workflows at the task level by giving
scientists complete control over the execution environments of the tasks in their workflows
and integrating execution environment specifications into scientific workflow systems. Our
framework allows dependencies to be archived in basic units of OS image, software and data
instead of gigantic all-in-one images. We implement a prototype of our framework by integrating
Umbrella [11], an execution environment creator, into Makeflow [1], a scientific workflow system
which can utilize computing resources from a HTCondor pool [17].

To evaluate our framework, we use it to run two bioinformatics scientific workflows, BLAST
and BWA. The execution environment of the tasks in each workflow is specified as an Umbrella
specification file, and sent to the execution nodes in the Notre Dame HTCondor pool, where
Umbrella is used to create the environment to run the tasks. For each workflow we evaluate the
Umbrella specification file size, the time and space overheads of creating execution environments
using Umbrella, and the heterogeneity of execution nodes contributing to each workflow.

2 Challenges in Reproducing Scientific Workflows

The reproducibility of scientific workflows depends on how scientific workflow systems are de-
signed and implemented. In this section, we explore the characteristics of scientific workflow
systems, which make it challenging to reproduce scientific workflows.

e Complexity. Scientific workflow systems usually include multiple layers, as shown in
Figure 3. The complexity of different layers vary greatly. The workflow specification
layer simply includes workflow languages and workflow specifications, which can be easily
preserved. However, the task scheduler layer often communicates with multiple execution
engines to achieve maximal speedup. The computing resource layer includes multiple soft-
ware stacks (possibly thousands or even more), together with the networking connecting
them together, and requires much more efforts to be preserved and reproduced.

e Dynamics. The stability of different layers of scientific workflow systems vary a lot.
The workflow specification layer and the specification parser layer are usually very stable
and tightly coupled. Adding new syntax into a workflow language would require the
specification parser change accordingly. The task scheduler layer may add support for
new execution engines as new computing frameworks become popular. The computing
resource layer usually experiences more frequent changes, which is especially true for
opportunistic computing framework like HTCondor [17].

e Heterogeneity. The hardware and software configurations of machines in the computing
resource layer are often heterogeneous, both across different execution engines and within
a single execution engine. For example, Table 1 shows the statistics of machine configura-
tions of the Notre Dame HTCondor pool at November 2016, which is very different from

Facilitating the Reproducibility of Scientific Workflows with Execution Environment Specs = Meng and Thain

Executable (Shared Object Deps Num) RHEL5.11 RHELG6.8 RHEL7.0
convert from RHEL5.11 (23) v libMagick.so.10 libMagick.so.10
convert from RHEL6.8 (28) libMagickCore.s0.5 v liblems.so.1
convert from RHEL7.0 (28) libMagickCore.s0.5 libtiff.so0.5 v

Table 2: Software Incompatibility across Different RHEL Distributions

the statistics captured at Spring 2015 [11]. It is worth noting that currently the Notre
Dame HTCondor pool has 7 different versions of Red Hat Enterprise Linux (RHEL). Ma-
chines in cluster computing may start with homogeneous configurations, but would end
up with heterogeneous configurations due to hardware replacement and upgrade.

o Incompatible Execution Environments on Execution Nodes. Execution nodes
in the computing resource layer often do not have the correct execution environments
required by tasks. One possible solution is to ask sysadmins to install all the missing
dependencies on each execution node. However, this is not scalable due to the depen-
dency complexity and diversity of different scientific workflows. Another solution is to
allow scientists to specify executables and deliver them to execution nodes together with
tasks, as done in Makeflow [1]. However, this is not always correct, even if we consider
a very simple and common executable, /usr/bin/convert. Dynamically linked executa-
bles, such as convert, often have dozens of shared object dependencies, each of which
has its own version and further dependencies. The numbers and versions of shared object
dependencies of an executable on different OSes may vary a lot, as shown in the first
column of Table 2. Therefore, sending an executable itself to execution nodes with dif-
ferent OSes often does not work due to the missing of dependencies. We ran convert
from RHEL5-7 on RHEL5-7, and collected the results in Table 2. All the attempts of
running an executable on a different OS version failed. We showed the first incompatible
dependencies causing the failures in Table 2. The incompatible execution environment
problem gets worse for real scientific workflows.

e Hidden Network Dependencies. Scientific workflows often have some data depen-
dencies from third-party websites, which are obtained by curl-based or wget-based tasks,
such as T1 shown in Figure 2. When the workflow is tiny, these dependencies can be
easily tracked. However, when the task number of a scientific workflow reaches 100s or
1000s, these network dependencies will be buried in the middle of the huge workflow spec-
ification and difficult to track. This may cause workflow decay if some fragile network
dependencies are lost before being preserved properly.

3 A Framework Facilitating the Reproducibility of
Scientific Workflows

Given the challenges of reproducing scientific workflows and the characteristics of scientific
workflow systems, we propose a framework to facilitate the reproducibility of scientific work-
flows, which includes three parts:

e Tracking Network Dependencies. Instead of being hidden in the middle of scientific
workflow specifications, network dependencies should be collected and tracked in a sep-
arate mechanism. For example, a file which maps data dependencies to their retrieval
locations can be used to track the network dependencies as follows. This also makes it
easy to redirect these dependencies if needed.

Facilitating the Reproducibility of Scientific Workflows with Execution Environment Specs = Meng and Thain

4

input http://cse.research.org/blast/input
job .sched http://cse.research.org/blast/job.sched

e Specifying Execution Environments for Tasks. A task in a workflow does not sim-

ply equal to the command line from the workflow specification, it has its own requirements
of the underlying execution environment, which should include at least the information
about the hardware configuration (hardware architecture, CPU, memory and disk), kernel
type and version, OS name and version, the root filesystem image, software dependencies,
data dependencies, command line and environment variables. The hardware and kernel
information can be used to select the correct execution nodes from the underlying com-
puting resources. The root filesystem image, software, data and environment variables
information can be used to create the execution environment and execute the task in it.

If all the tasks in a workflow share the same OS and software dependencies, a single execu-
tion environment specification can be composed and used to run all the tasks. When the
dependencies of different tasks vary a lot in number or size, different execution environ-
ment specifications for different tasks can be used to avoid the space and time overheads
of creating a huge execution environment on every execution node. To avoid composing
a separate execution environment specification for every task, it is best to leave the in-
termediate data involved in a workflow out of execution environment specifications, and
allow them to be specified by the specification parser layer automatically at runtime.

Sending Execution Environment Specifications to Execution Nodes. To bring
the incompatible execution environments on execution nodes to a minimum and improve
the reproducibility of scientific workflows, instead of only sending the command line of
a task to execution nodes, the execution environment specification of the task, together
with the execution environment creator which can parse the specification and create the
correct execution environment from it, should also be sent to execution nodes.

To prepare executing a task, the execution environment creator obtains the root filesys-
tem image, the software and data dependencies specified in an execution environment
specification, creates a sandbox with sandbox techniques like virtual machines, Linux
Containers and user-space tracers, and attaches the intermediate data into it. By doing
this, instead of meet the execution environment requirements of different scientific work-
flows on all the execution nodes, scientific workflow systems only need to guarantee the
execution environment creator itself can work on every execution node. This facilitates
both the portability and reproducibility of scientific workflows.

An Implementation Prototype of The Framework

We implement a prototype of our framework by integrating Umbrella, an execution environment
creator, into Makeflow, a scientific workflow system which can utilize computing resources from
the local machine, SGE, Work Queue and HTCondor. To utilize Makeflow, scientists can
compose their workflows in a workflow specification language called Makefile which is similar
to make, as shown in Figure 2. In addition, a mount file which maps each network dependency
to its retrieval location is introduced to track network dependencies.

Umbrella accepts a user-specified execution environment specification in JSON (such as

blast.umbrella in Figure 4) and creates the specified environment using sandbox techniques like
the Amazon EC2, Docker [14] and Parrot [13]. Instead of storing all the dependencies of a

Facilitating the Reproducibility of Scientific Workflows with Execution Environment Specs = Meng and Thain

"hardware": { "cores": "1", "disk": "11GB",
"kernel": { "name": "linux", "version": ">
"os": { "nam centos”, "version" s
"size": "92295065", "format": "tgz",
"checksum": "1e50042e92396c3099097b4ce8670a64",
"source": ["http://cse.research.org/os/centos-6.8-x86_64.tar.gz"] },
"software": {
"blast-2.2.24-centos6-x86_64": {

“arch": "x86_64", memory":
.6.18" 3,

"1GB" 3},

output.1 error.1 total.1:
run_blast.sh 1

i
blast.makeflow

input.1

Master Node
(RHEL 7)

| "size": "7410183", "format": "tgz",
“checksum": "392fc7980c51ebfc546d57f186d3075¢" ,
"source": ["http://cse...org/blast-2.2.24-centos6-x86_64.tar.gz"]
blast.umbrella “mountpoint”: "/software/blast2.2.24" } },
"data": {
E ion N umbrella “blast_database": {
xecution Node umbrella-wrapped cmd line "size": "2866421495", "format": "tgz",

(REHL 7)

Sandbox - BLAST

"source":

"checksum": "43ede841f6f831d1178b7068c158bdba",

"mountpoint:

["http://cse.research.org/data/blast_database. tar.gz"1,
"/data/blast_database" } }

1 (centos-6.8-x86_64)

software
L blast22.24
data
L blast_database
workdir

input.1

./umbre.

11a --spec blast.umbrella --inputs "input.1" \
-output "output.l,error.1,total.1" run "run_blast.sh 1"

blast.makeflow: a scientific workflow specification written in the Makefile language;
makeflow: an executable for running scientific workflows written in Makefile;
blast.umbrella: an execution environment specification written in JSON-format;

umbrella: an execution environment creator;

Figure 4: Running BLAST with Makeflow and Umbrella

task into a gigantic all-in-one package, Umbrella suggests the basic units of OS image, software
and data. Relocatable software dependencies can be preserved and delivered as standalone
packages, and non-relocatable software dependencies can be installed into an OS image and
delivered with the OS image. This saves the storage space of archives and execution nodes by
allowing common dependencies to be shared by different tasks. This also allows an execution
environment to be specified in multiple sections like hardware, kernel and OS, which makes it
easy to understand and reuse the environment. On each execution node, Umbrella creates a
cache to store each unique dependency, allowing different tasks to share the same dependency
from the cache concurrently.

Figure 4 shows how our framework can facilitate the reproducibility of a bioinformat-
ics scientific workflow called BLAST, whose workflow specification is specified in a Makefile,
blast.makeflow. Each task is expressed in a Makefile rule occupying two lines: the first line is in
the format of <outputs>:<inputs>, and the second line <cmd>. Without our framework, sci-
entists need to specify the executables needed for a task (such as run_blast.sh) in the inputs
part of a rule, which is cumbersome and incomplete, because these executables may depend on
other libraries and executables. Using our framework, an Umbrella specification, blast.umbrella,
is composed to specify the execution environment information including hardware, kernel, OS,
software and data dependencies needed by the tasks. The workflow specification, blast.makeflow,
can focus on the inputs, outputs, and command line of each task.

Without our framework, the master node sends the command line of a task directly from
workflow specifications to execution nodes, such as run_blast.sh 1, without any information
about the expected execution environment. The tasks often fail on execution nodes due to
incompatible execution environments. With our framework, the command line is wrapped
into an Umbrella task, which brings together the execution environment specification, and the
inputs, outputs and command line information from the workflow specification. The umbrella-
wrapped command line, the execution environment specification, together with the execution
environment creator, umbrella, are then sent to each execution node.

Umbrella is written in Python2.6. To run umbrella-wrapped tasks on execution nodes,
the selection standards for the underlying computing resources should include the criteria for
Python2.6. On execution nodes, an umbrella-wrapped task brings all the dependencies together,
creates a sandbox, and runs the task inside it.

Facilitating the Reproducibility of Scientific Workflows with Execution Environment Specs = Meng and Thain

job.sched
gen_submit_file_split_inputs.pl

input.1
‘
bwa

— .
Cbwa_split_> inputibwt inputt.ann

I input.0.0 | I input.2.0 | I input.0.273 | I input.2.273 |

| error.0 | | total.0 | | output.0 | | error18 | | total. 18 | | output18 |

<>
Ca> G CaD

I error | I total | I output |

Figure 5: Workflow - BLAST Figure 6: Workflow - BWA

4.1 Why not Use Docker as the Execution Environment Creator?

We tried to use Docker as the execution environment creator and run each task as a Docker
container on execution nodes originally [20], and noticed the following limitations. First, run-
ning each task as a Docker container requires Docker to be installed on execution nodes and
workers on execution nodes have permission to use Docker, both of which need root permission.
Second, the size limit of a Docker container (by default is 10GB) exposes a limit on the storage
space used by a task. Third, the storage drivers used by Docker usually have size limitations
(e.g., 100GB used by devicemapper), which limits the number of Docker containers which can
run concurrently on an execution node. Fourth, in the case where two different tasks pull the
same Docker image or load Docker images from the same tarball, special concerns are required
to solve the potential race condition. Fifth, it is not easy to track the metadata information
of software and data dependencies, such as size, format and checksum, in Dockerfile. Sixth, a
Dockerfile does not provide clear information to a new user about the location of software and
data, who may want to run the Docker container with new software versions or date sets.

With Umbrella, each task can run as a Parrot job, which is a user-space ptrace-based tool
and requires no root permission [13]. Umbrella does not have size limits on each task, and the
total storage space Umbrella can utilize is only limited by the storage limit set by a worker.
Unlike Docker trying to collect all the Docker images into a centralized storage space, such
as /var/lib/docker/devicemapper, running each task as an Umbrella job only modifies the
working directory of each worker. Umbrella organizes an execution environment into different
sections (such as the software and data sections in Figure 4), each of which has its specific
purpose. This allows these dependencies to be archived separately, and makes it very easy for
a new user to test new software versions or new data sets.

5 Evaluation

To evaluate our framework, we specify the execution environments for two bioinformatics sci-
entific workflows, BLAST (Figure 5) and BWA (Figure 6), as Umbrella specification files, and
allow Makeflow to send the Umbrella specification files to execution nodes in the Notre Dame
HTCondor pool, where the execution environment creator, umbrella, can be used to create the
execution environment and run the task.

For each workflow we evaluate the size of the Umbrella execution environment specification,
the space and time overheads of creating execution environments using Umbrella, and the
heterogeneity of execution nodes contributing to each workflow.

Facilitating the Reproducibility of Scientific Workflows with Execution Environment Specs = Meng and Thain

Application OS Dependency Software Dependencies
BLAST CentOS 6.8 (66MB/203MB) perl (23MB/83MB), blast (7TMB/22MB)
BWA CentOS 6.8 (66MB/203MB) perl (23MB/83MB), bwa (216KB/604KB)

Table 3: OS and Software Dependencies of Evaluated Workflows

Application Umbrella Spec Size Space Overhead Time Overhead
BLAST 2.2KB 404MB <Imin
BWA 1.3KB 376 MB <1min

Table 4: Space and Time Overheads Introduced by Umbrella - OS and Software Deps

Except for the input and output dependencies embedded in workflow specifications, scien-
tists can specify the underlying execution environments - including at least OS and software
dependencies - for their workflows. Table 3 shows the OS and software dependencies of each
evaluated workflow. The size information of each dependency in Table 3 is in the format of
tgz_format_compressed_size/uncompressed_size. The relocatable software dependencies
can be preserved and delivered as standalone packages. The non-relocatable software depen-
dencies can be installed into the OS dependency via package managers and delivered as a fat
OS dependency.

Our framework allows execution environment dependencies to be archived in fine granularity
such as each basic root filesystem image, each software and each dataset, which saves the space
overhead of archiving dependencies. For example, both BLAST and BWA depend on the same
OS image and the same perl binary, as shown in Table 3. With our framework, the OS image
and the perl binary only need to be archived once. As the number of scientific workflows
depending on the same OS image or software binary increases, archiving dependencies in fine
granularity becomes more advantageous and even necessary.

The Umbrella Spec Size column in Table 4 shows the size of the Umbrella execution envi-
ronment specification file of each evaluated workflow, which is very tiny and should not cause
any communication problem between the master node and the execution node. The Space
Overhead column in Table 4 shows the space overhead of the OS and software dependencies
introduced by running each task as an Umbrella job on an execution node, which includes both
the compressed and uncompressed versions of each dependency. The Time Overhead column
shows the time overhead introduced by obtaining these dependencies, uncompressing them if
necessary, and integrating them into a unified sandbox. It is worth noting that the space and
time overheads shown in Table 4 does not include the overhead of delivering the input files
and the intermediate data of a scientific workflow to execution nodes, which are necessary even
without our framework.

We ran each evaluated workflow with the features supported by our framework on the com-
puting resources from the Notre Dame HTCondor pool. With our framework, the execution
nodes with incompatible execution environments can be utilized by creating the required exe-
cution environments based on the Umbrella execution environment specifications sent by the
master node. Table 5 shows the task number of each workflow, the number of tasks running
on RHELG, and the number of tasks running on RHEL7. Due to the preference settings on the
computing resources in the HTCondor pool, all the tasks were scheduled onto the execution
nodes with either RHEL6 or RHEL7. However, this does not mean these tasks can only run
on RHEL6 or RHEL7. With our framework, these tasks can run successfully on any execution
node satisfying the hardware and kernel requirements.

Facilitating the Reproducibility of Scientific Workflows with Execution Environment Specs = Meng and Thain

Application Total Task Number Tasks run on RHEL6 Tasks run on RHEL7
BLAST 23 15 8
BWA 825 366 459

Table 5: Heterogeneity of Execution Nodes Contributing to Each Workflow

6 Related Work

Different approaches have been utilized to facilitate the reproducibility of single-machine scien-
tific applications. Virtual machines [9] wrap the whole execution environment of an application
into a single file, which is easy to distribute but less feasible for complex applications with large
software stacks. To decrease the space overhead of preserved artifacts, user-space tracers, such
as CDE [7] and Parrot-packaging tool [13], trap the system calls of an application and only
preserve the really used files. However, the context and structure of the preserved artifacts
are not clear, which makes it difficult to reuse. To make it easy to reuse and extend scientific
applications, Umbrella [12] takes the method of archiving the dependencies in finer granular-
ity, and specifying the execution environments in an organized way. The specified execution
environments can be (re)created with different sandbox techniques like virtual machines, Linux
Containers (e.g., Docker [14]), and user-space tracers.

Due to the complexity of scientific workflows [5] and scientific workflow systems [16], the
challenges in reproducing scientific workflows include but are not limited to the ones in repro-
ducing single-machine scientific applications. Guidelines on how to design reproducible scientific
workflows were proposed in [8, 5] to combat the workflow decay [8] problem, and Research Ob-
jects [2] were used to provide detailed metadata information about workflows [8]. However,
these guidelines focus on the specification layer of scientific workflow systems and ignore the
other components of scientific workflow systems [18]. The decay-parameters of the jobs in a
scientific workflow are used to measure the possibility to reproduce the workflow and the cost
to make it reproducible [3]. In this paper, we focus on how to improve the reproducibility of
scientific workflows at the task level by giving scientists complete control over the execution en-
vironments of the tasks in their workflows and integrating execution environment specifications
into scientific workflow systems.

7 Conclusion and Future Work

In this paper, we explore the challenges in reproducing scientific workflows, and propose a
framework for facilitating the reproducibility of scientific workflows at the task level by inte-
grating execution environment specifications into scientific workflow systems. Our framework
improves the utilization of heterogeneous computing resources, and improves the portability
and reproducibility of scientific workflows.

In the future work, we plan to explore how to reproduce distributed computing frameworks
like HT'Condor and how to reproduce scientific workflow systems, which include the master node
scheduling the tasks and the underlying computing frameworks managing the worker nodes.

Acknowledgments
This work was supported in part by National Science Foundation grants PHY-1247316 (DAS-

POS), OCI-1148330 (SI2) and PHY-1312842. The Center for Research Computing at University
of Notre Dame provided critical technical assistance throughout this research effort.

Facilitating the Reproducibility of Scientific Workflows with Execution Environment Specs = Meng and Thain

References

(1

2]
3l

[4]
[5]
[6]
7l

(8]
(9]
[10]

[11]

[12]

[13]
[14]
[15]
[16]
(17]
[18]

[19]

[20]

10

M. Albrecht, P. Donnelly, P. Bui, and D. Thain. Makeflow: A portable abstraction for data
intensive computing on clusters, clouds, and grids. In Proceedings of the 1st ACM SIGMOD
Workshop on Scalable Workflow Ezxecution Engines and Technologies, page 1. ACM, 2012.

S. Bechhofer, D. De Roure, M. Gamble, et al. Research objects: Towards exchange and reuse of
digital knowledge. 2010.

A. BAanAati, P. Kacsuk, and M. Kozlovszky. Classification of scientific workflows based on repro-
ducibility analysis. In 2016 39th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO), pages 327-331, May 2016.

E. Deelman, J. Blythe, Y. Gil, et al. Pegasus: Mapping scientific workflows onto the grid. In Grid
Computing, pages 11-20. Springer, 2004.

Y. Gil, E. Deelman, M. Ellisman, et al. Examining the challenges of scientific workflows. Ieee
computer, 40(12):26-34, 2007.

C. A. Goble, J. Bhagat, S. Aleksejevs, et al. myExperiment: a repository and social network for
the sharing of bioinformatics workflows. Nucleic acids research, 38(suppl 2):W677-W682, 2010.
P. J. Guo and D. R. Engler. CDE: Using System Call Interposition to Automatically Create
Portable Software Packages. In Proceedings of the 2011 USENIX Conference on USENIX Annual
Technical Conference, pages 21-21, Berkeley, CA, USA, 2011. USENIX Association.

K. M. Hettne, K. Wolstencroft, K. Belhajjame, et al. Best Practices for Workflow Design: How
to Prevent Workflow Decay. In SWAT4LS, 2012.

B. Howe. Virtual Appliances, Cloud Computing, and Reproducible Research. Computing in
Science Engineering, 14(4):36-41, 2012.

H. Meng, R. Kommineni, Q. Pham, et al. An invariant framework for conducting reproducible
computational science. Journal of Computational Science, 9:137-142, 2015.

H. Meng and D. Thain. Umbrella: A portable environment creator for reproducible computing
on clusters, clouds, and grids. In Proceedings of the 8th International Workshop on Virtualization
Technologies in Distributed Computing, VITDC ’15, pages 23-30, New York, NY, USA, 2015.

H. Meng, A. Vyushkov, M. Wolf, et al. Conducting Reproducible Research with Umbrella: Track-
ing, Creating, and Preserving Execution Environments. In e-Science (e-Science), 2016 IEEE 12th
International Conference on, 2016.

H. Meng, M. Wolf, P. Ivie, et al. A case study in preserving a high energy physics application
with Parrot. volume 664, page 032022. IOP Publishing, 2015.

D. Merkel. Docker: Lightweight Linux Containers for Consistent Development and Deployment.
Linuz Journal, 2014(239):2, 2014.

T. Oinn, M. Addis, J. Ferris, et al. Taverna: a tool for the composition and enactment of bioin-
formatics workflows. Bioinformatics, 20(17):3045-3054, 2004.

I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields. Workflows for e-Science: Scientific
Workflows for Grids. Springer Publishing Company, Incorporated, 2014.

D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the Condor experi-
ence. Concurrency and computation: practice and experience, 17(2-4):323-356, 2005.

J. Yu and R. Buyya. A Taxonomy of Scientific Workflow Systems for Grid Computing. SIGMOD
Rec., 34(3):44-49, Sept. 2005.

J. Zhao, J. M. Gomez-Perez, K. Belhajjame, et al. Why workflows break - Understanding and
combating decay in Taverna workflows. In E-Science (e-Science), 2012 IEEE 8th International
Conference on, pages 1-9. IEEE, 2012.

C. Zheng and D. Thain. Integrating Containers into Workflows: A Case Study Using Makeflow,
Work Queue, and Docker. In Proceedings of the 8th International Workshop on Virtualization
Technologies in Distributed Computing, VIDC ’15, pages 31-38, New York, NY, USA, 2015.

