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Abstract—Workflows are a widely used abstraction for
describing large scientific applications and running them on
distributed systems. However, most workflow systems have been
silent on the question of what execution environment each task
in the workflow is expected to run in. Consequently, a workflow
may run successfully in the environment it was created, but
fail on other platforms due to the differences in execution
environment. Container-based schedulers have recently arisen
as a potential solution to this problem, adopting containers
to distribute computing resources and deliver well-defined
execution environments to applications. In this paper, we con-
sider how to connect workflow system to container schedulers
with minimal performance loss and higher system efficiency.
As an example of current technology, we use Makeflow and
Mesos. We present five design challenges, and address them by
using four configurations that connecting workflow system to
container scheduler from different level of the infrastructure.
In order to take full advantage of the resource sharing schema
of Mesos, we enable the resource monitor of Makeflow to
dynamically update the task resource requirement. We explore
the performance of a large bioinformatics workflow, and
observe that using Makeflow, Work Queue and the Resource
monitor together not only increase the transfer throughput but
also achieves highest resource usage rate.
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I. INTRODUCTION

Workflows are a widely used abstraction in scientific com-
puting. A workflow is often described by a directed acyclic
graph (DAG), consisting of sequential tasks that are joined
together by the data that they create and consume. The DAG
as a whole can be treated as a single highly parallel program.
There exist a variety of workflow systems that share common
principles but are fall into several distinct communities and
use cases, including HPC machines, commercial clouds, and
grid computing systems [1], [2], [3], [4], [5], [6], [7], [8].

Most scientific workflows focuse on data interchange
among tasks, while not specifying what environment each
task of the workflow is expected to run in. A given task may
depend on a particular operating system, software installa-
tion, and available data to run. Normally, end users will build
workflows locally and test on a particular environment, and
then migrate workflows to another cluster only to find that
some tasks may fail because of incompatibilities with the

cluster environment, which results in arduous debugging.

A number of container-based scheduling platforms like
Amazon ECS [9], Google Kubernetes [10], and Apache
Mesos [11] have emerged. Through implementation details
vary, they share a same basic idea: containers can be used to
encapsulate the different environments and resources needed
by tasks. As one example, Mesos allows users to deploy
customized environments on a cluster by using Mesos con-
tainers or Docker containers. It employs a two level schedul-
ing model, which enables users to develop their customized
schedulers for their applications and allows master to assign
resource offers to proper applications in needs. By adopting
Mesos, end users can ship a relatively small container that
acts like a complete operating system with lower overhead,
and cloud vendors are able to deliver computing resources
to applications in a fine-grained manner.

Even though container schedulers have been widely
adopted to run commercial workflows, there are few use
cases about using them for large-scale scientific computa-
tions. Scientific workflows share many features with com-
mercial workflows, but also go beyond them. Therefore,
existing settings of workflow systems may be inadequate for
running large scientific workflows on container scheduler. In
this paper, we explore the possibility of running scientific
workflows on the container-based scheduling platform
with lower performance loss and higher system effi-
ciency. As an example, we use specific technologies of the
Makeflow [5] workflow engine, the Work Queue [12] execu-
tion system, and the Mesos [13] container-based scheduling
system. We highlight several challenges encountered, and
illustrate the general principles that can be applied across
technologies.

Specifically, we consider four different configurations of
running workflows on Mesos. (1) Launching workflows
directly on Mesos from Makeflow, which is straightforward
but has inefficient resource usage and low transfer through-
put. (2) Running Work Queue workers on the Mesos cluster,
and making these workers to execute tasks for Makeflow,
which reduce the data transfer overheads by reusing existing
TCP connections and relief the disk pressure by deleting
the intermediate data. The other two configurations rely



on the resource monitor to make the best use of Mesos’
fine-grained resource sharing feature. (3) Running Makeflow
directly on Mesos with the resource monitor enabled. (4)
Launching Makeflow with Work Queue on Mesos with
the resource monitor enabled. By using resource monitor,
Makeflow can dynamically updates the resource requirement
of each task during the runtime, which enable task to send
precise resource demands to Mesos master.

To evaluate these configurations, we launch a large bioin-
formatics workflow that consists of many short and few
long tasks. We choose this workflow because it contains a
highly parallel phase, which has 5079 concurrent tasks and
transfers 10148 small files. Based on the benchmark results,
we notice that Work Queue can help to avoid resource
starvation with fewer users involvements and increase the
average transfer throughput. And resource monitor can help
to increase the resource usage of Makeflow, which largely
reduces the overall execution time when the amount of
available resources is fixed.

II. BACKGROUND
A. Scientifc Workflows

A workflow is often represented as a Directed Acyclic
Graph (DAG) where the nodes of the graph are tasks to
execute, and the edges of the graph represented dependencies
between tasks. The dependency is usually in the form of a
file, created by one task and consumed by another.

In this paper, we use Makeflow to generate the DAG
for representing the structure of workflows. Makeflow is
a workflow description tool similar to classic Make build
tool [14]. Each task in the workflow is defined as a rule,
annotated with the output files it generates and the input
files it requires. For example, consider a task, the result
file is output.l, inputs are target.csfasta, seq.l.csfasta and
the executable file rmapper. The command is ./rmapper
seq.1.csfasta target.csfasta > output.1. In the Makeflow file,
one would write it as following:

output.l: seq.target subseq.l rmapper
./rmapper subseq.l seqg.target > output.l

Makeflow can launch the same workflow across many batch
systems, like HTCondor [15], Sun Grid Engine (SGE),
Torque, SLURM, Amazon EC2 and Work Queue. Regard-
less of the system in use, Makeflow expects them to work
as follows. For each task in the workflow, an independent
sandbox is created, the inputs are transferred into the sand-
box, the task is executed and the outputs are moved out
from the sandbox. This semantics make sure that files other
than the input dependencies would not presented in the
execution environment, and Makeflow dispatching tasks as
their dependencies are presented.

B. Container Schedulers

Recently, container-based scheduling platforms have been
widely adopted. Though the implementation details of dif-

ferent platforms may vary, they all use containers to encap-
sulate computing resources and deliver user-defined execu-
tion environment. Containers are implemented by mounting
filesystems on top of an existing operating system kernel,
which largely eliminating the overheads found in traditional
virtual machines. Recently various container runtimes have
been considerable developed in the Linux community by
combining the cgroups resource control framework and
the unionfs filesystem management to provide compre-
hensive isolation.

In this paper, we use Mesos as an example of cluster
container scheduler. As one of the most popular container-
based resource management systems, Mesos deliver resource
offers to tasks in need by using containers. Some con-
tainer schedulers apply monolithic resource scheduling ar-
chitecture, like Kubsernetes and Docker Swarm. Differently,
Mesos adopts a two-level scheduling model that enable
each application to have its own customized scheduler. This
scheduler receives resource offers from Mesos master and
try to find a matched task for the offer. If a task is found, it
will claim the offer and ask Mesos to launch the task on the
agent provide this offer. Since a long task can occupied many
offers, Mesos encourage frameworks to use short tasks.
This may be a limitation for running scientific workflows
on Mesos, because a scientific workflow normally contains
heterogeneous tasks that can be either short or long.

C. Work Queue

Work Queue is a master-worker execution engine for
distributed systems. The system includes a master process on
user side, and workers running on cloud that has an amount
specified by users. As an execution engine, Work Queue
can deploy workers across multiple clusters, clouds and grid
infrastructures. The master enable user to create tasks with a
command line to execute, a number of input files, and a set
of outputs. After tasks are created, the master would assign
them to available workers.

The worker run tasks as follows. A cache directory is
created by the worker. Input files transferred from the master
are stored in this directory. For each task, the worker create
a sandbox, links the inputs, executes the task, copies the
outputs to the cache directory, and then the outputs will
be transferred back to the master. This mechanism not
only allows each task having an independent namespace but
also enables different tasks sharing data through the cache
directory. Thus multiple tasks can be executed concurrently
by a single worker on a multicore machine.

D. Resource Monitoring

Users seldom have precise knowledge of the resources
(e.g., cores, memory, or disk) needed to execute a task. More
often, users are able to provide the size of a computational
node where a task is known to execute to completion as a
ballpark figure.



Makeflow can be directed to automatically manage the
computational resources assigned to tasks, refining the re-
sources allocated per task in order to minimize waste of
maximize throughput. This management is built as resource
feedback loop that considers the measurement of resources
used per task, the allocation and enforcement of resources,
and automatic retries on resource exhaustion.

Initially, tasks are run using a maximum allowable re-
source sizes (i.e., the ballpark figure provided). As tasks are
completed, their real usage is measured and recorded, and
allocations are computed for newly created tasks in order
to minimize waste or maximize throughput. Some tasks
may exhaust these computed allocations, and are retried
using the maximum allowable sizes. As we present the fully
details in [16], a small number of retries leads to substantial
increases in throughput and decreases in resource waste.

III. CHALLENGES WITH MESOS

Even though features of scientific workflows from dif-
ferent domains can vary largely, there are several common
ones. (1) Each task of workflows is tightly coupled, often
having intricate dependencies on other tasks. For example,
the input of one task may be produced by other tasks. Thus,
we usually divide a large workflow into several phases and
execute them sequentially. (2) Scientific workflows often
consist of heterogeneous tasks that can be either short or
long. Therefore, running scientific workflows requires a
more sophisticated resource management strategy that can
handle both short and long tasks at the same time. (3)
Large number of tasks are running concurrently and massive
amount of intermediate data is generated and consumed
during the lifecycle of workflows. This feature results in
high I/O throughput and requires the underlying systems to
have large storage space. (4) Resource demand of each task
is unclear before execution. Many large scientific workflows
are long-term, and require large amount of computing re-
sources. However, the resource demands are often coarse-
granularity, which results in low resource usage rate. These
features make scientific workflows different from commer-
cial workflows, which raise challenges for launching them on
platforms that originally developed for commercial environ-
ment. Followings are five design challenges we encountered
when try to connect Makeflow to Mesos.

First, a simple implementation of Mesos scheduler is not
capable of synchronizing the status of workflow between
Makeflow and Mesos. Due to the dependencies among
different phases of the workflows, some phases can not start
until they have collected inputs produced by other phases.
Thus a well-designed workflow scheduler must be aware of
the completion of tasks on Mesos side, and inform Makeflow
to dispatch tasks for next phase.

Second, if large amount of tasks are started concurrently,
all tasks will try to fetch inputs at the same time, which may
cause network congestion on the client side. Most scientific

workflows consists of many small tasks that can be launched
concurrently, and for each task running on a Mesos agent,
the agent-internal fetcher process will try to download the
task input files based on the URIs provided by the end user.
Even though all files requested by a single task are fetched
sequentially to reduce the risk of bandwidth issues, multiple
fetch operations can still be invoked simultaneously due
to launching multiple tasks concurrently. Normally, all the
input files of a workflow are located in a same host, which
requires the host to handle hundreds of fetching requests at
the same time. Thus the fetching procedure can become the
bottleneck of the whole system.

Third, workflows would suffer from starvation due to long
tasks. As mentioned in the original Mesos paper [13], Mesos
assumes that most tasks are short. And running workflows
that have long tasks can hurt other workflows running on
the same Mesos cluster, because long task might occupy
multiple slots that can be assigned to more short tasks. Some
scientific workflows consist of fairly long task that will hold
large amount of computing resources for a long time. This
phenomenon may causes other workflows to suffer from
resource starvation and greatly decreases the fairness of the
cloud.

Fourth, delayed garbage collection can cause disks be
filled up fast. By default, Mesos executors do not send results
back to user after the tasks complete. It temporarily stores
results in executors’ sandboxes and marks them as garbage,
which will be removed in the future. The default delay time
for garbage collection is 1 week, and the minimum delay
time can be set is 1 day. However, this is still too long for
the cluster has multiple scientific workflows running on it.
In our experience, 5 runs of SHRiMP workflows on Mesos
cluster that has 26 nodes can produce 83GB to 119GB of
intermediate data on each node in just one day. Normally,
there are far more than 5 workflows being launched on the
cluster every day, which can generate massive amount of
data that fill disks to full quickly. Even though the lifetime
of a sandbox can be set to shorter than 1 day by setting
a threshold of maximum disk usage, one should remember
that Mesos may serve other workflows that prefer to keep
results on the cluster at the same time. Thus simply shorten
the period of time between garbage collection cycles may
cause malfunction of other workflows.

Fifth, without providing a precise resource requirement
for each task, we can not take full advantage of the fine-
grained resource sharing feature of Mesos. Often, the re-
source requirement of each task of a scientific workflow does
not change during task lifetime, but it is unknown before
runtime. One of the common used resource schedulers
in HPC center is the monolithic coarse-grained scheduler,
which has one central resource manager that is responsible
for allocating resources for all applications. The resource
allocation policy of a coarse-grained scheduler is mainly
based on the task priority. That is to say, instead of assigning



proper amount of resources to each task before running, it
changes task priority at runtime, and preempt lower priority
tasks in favor of higher priority ones. Generally speaking,
a coarse-grained scheduler put priority on providing high
computing performance to workflows instead of optimizing
resource sharing across them in a fine-grained manner,
which might lead to inefficient resource use. One of the
key features of Mesos is the two level scheduling model,
which require users to provide resource demand for each
task before execution. For running a scientific workflows, an
experienced user may be able to provide a coarse-grained
resource usage prediction, but it is far from optimal for
Mesos master to assign resource offers to proper tasks.

IV. PROPOSED SOLUTIONS

To cope with above challenges, we consider four con-
figurations for launching scientific workflows on Mesos
with Makeflow and Work Queue. In order to take full
advantage of Mesos fine-grained resource sharing property,
we also try to use the resource monitor of Makeflow, which
keeps monitoring the resource consumption of each task and
provide a real-time resource usage evaluation.

A. Makeflow and Mesos

The simplest set up is directly connecting Makeflow to
Mesos. As shown in figure 1, we use a customized scheduler
to connect Makeflow to Mesos. Mesos will launch each
task with an independent executor on available agent. Two
daemon threads are spawned by Mesos scheduler, one is
responsible for polling the file that has information of ready
tasks, and another one start an HTTP server for handling file
fetching requests from executors. Since some of the tasks
share same inputs, to relief the network pressure, we enable
Mesos to cache inputs on agent nodes. But it is important
to note that the current version of Mesos can not refresh
the cache entry and it only uses URIs to decide whether the
files have been cached. Thus, if the contents of input files
have changed, tasks can fail due to the usage of stale input
data. We implement a batch job system specially for Mesos
that compatible to Makeflow. One would launch Makeflow
with Mesos by specifying the batch mode as Mesos. For
example, by executing this command:

makeflow -T mesos —-—mesos—-master=localhost:5050

user start the Makeflow with underlying batch system set
as Mesos. Then, Makeflow will try to connect to the Mesos
cluster with master located at the local host and listening on
port 5050.

The details of how Makeflow work with Mesos are
shown in figure 1: (1) Makeflow writes the information
of ready tasks to a file. (2) The task information monitor
get information of ready tasks from the file. (3) Mesos
scheduler get resource requests of each task. (4) Mesos
agents send resource offer to Mesos master. (5) Mesos

master advertise resource offers to schedulers. (6) Scheduler
matches offers with proper tasks, and launch an executor
on agents that provides offers. (7) Before running tasks,
executors retrieve inputs from client or fetch from cache
directory. (8) After tasks have completed, executors send
output URIs to scheduler. (9) Scheduler download outputs
from executors sandbox directory and ask executors to delete
the outputs. (10) Scheduler write information of finished
tasks to file. (9) Makeflow keeps checking whether there
are new finished tasks. If yes, Makeflow mark the tasks as
completed.

This configuration is straightforward and resolves some of
the design challenges mentioned above. It uses one daemon
thread with scheduler and one sub-process with Makeflow
to synchronize the Workflow status between Makeflow and
Mesos. To resolve the bandwidth issue, we implement a
HTTP server with a thread pool on scheduler side, which
handles each fetching request by an independent thread.
The HTTP server limits the number of threads to 30 and
maintains a request queue to cache the incoming requests
when there is no available threads. To avoid resource star-
vation, there are two options, one is not launching long
tasks on Mesos, but running tasks on local machine by using
Makeflow LOCAL mode, another way is preserved certain
amount of resources for short tasks, which requires user to
extend the default resource allocator. To prevent disks from
being filled up quickly, an customized executor is required,
which can delete intermediate results after the scheduler has
retrieved them. To match the task with resource offers, user
can classify tasks into various categories, and specify the
resource requirement of tasks in the same category.

Even though this configuration resolves the design chal-
lenges to some degree, it has two non-negligible drawbacks.
First, in order to avoid the resource starvation, users may
try not to execute long-running tasks on Mesos, or reserve
resources for short tasks. The first method requires users to
classify tasks as short or long. If a user failed to specify long
tasks, other workflows will still suffer from resource starva-
tion. And implementing a customized resource allocator re-
quires quite a bit of work. Second, to use this configuration,
end users must specify the resource requirement of each task,
which may be crude and imprecise. A conservative user may
provide a conservative resource evaluation, which leads to
longer execution time. Conversely, bold users always raise
greedy resource claims that can cause inefficient resource
usage.

Without knowing the features of each task, there is no
effective way to address the first problem. Thus we suggest
that user without full knowledge of workflows should not
adopt this configuration. To solve the second problem,
we use the resource monitor provided with Makeflow to
evaluate the resource consumption of workflow and provide
a prediction.
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B. Makeflow, Work Queue and Mesos

An alternative approach is to use Work Queue as the
workflow execution layer between Makeflow and Mesos,
the system structure is shown in figure 2. The main idea
is that using Work Queue factory to set up a master for
the workflow and have workers launched on Mesos that
work for the master. The Work Queue factory is a tool for
fast starting workers on different batch systems. It shares
the same batch job interface with Makeflow, thus we can
reuse the existing batch job system developed for Mesos.
To launch Work Queue on Mesos and connect Makeflow to
Work Queue, one would use following commands:

makeflow -T wg -N shrimp_workflow

work_queue_factory -M shrimp_workflow -T mesos
—-mesos-master=localhost:5050

First, we start Makeflow and specify the underlying batch
system as wq (i.e. Work Queue). We also define a project
name for this workflow. This project name will be used
later to match Work Queue to Makeflow through a catalog
server. Second, we run work_queue_factory and specify the
underlying system as Mesos. Then, Work Queue will try

to access the Mesos cluster through Mesos master that is
located at the local host and listens on port 5050.

The details of how this configuration work are shown as
follows: (1) After starting Makeflow, Work Queue factory
create a Work Queue master. (2) The Work Queue master
is linked to the Makeflow through our catalog server. (3)
Work Queue master writes information of the ready workers
to a file. (4) Worker monitor keeps polling the text file, get
information of ready workers. (5) Mesos scheduler submits
tasks of launching workers for Mesos master. (6) Mesos
agents send resource offers to Mesos master. (7) Mesos
master advertise resource offers to the scheduler. (8) The
scheduler matches resource offers to proper workers, and
then launches workers on the agent provided offers. Each
worker is treated as a task and run in an executor. (9) Work
Queue workers work for the master, execute tasks for the
workflow, and Work Queue master informs the Makeflow the
completion of tasks. (10) After the workflow has completed,
workers are deactivated and Mesos scheduler writes the
information of the workers to a file. (11) Worker status
monitor keeps checking the list of deactivated workers and
informs the factory to remove the idle workers



This approach not only overcomes the design challenges
but also addresses the weaknesses of the first configuration.
To resolve the resource starvation problem, Mesos can limit
the amount of resources available to each workflow by
starting workers with certain amount of resources, and assign
spare resources to workflows in need. Since Work Queue
extends the semantics of Makeflow, Mesos is transparent
to Makeflow and Work Queue can delete all intermediate
data for Makeflow, which does not require sophisticated
executors.

But this approach also presents new problems: how many
resources does each worker require? If the resource require-
ment of each task is unknown, how many tasks a worker can
run at the same time? Ignoring these two problems can cause
improper task arrangement. Imagining two bad use cases:
The number of tasks per worker is too small, which can
lead to inefficient resource usage and reduced throughput.
The number of tasks per worker is too large, which can
causes resource contention and reduced performance.

C. Enabling Resource Monitoring

Both configurations mentioned above are using coarse-
grained resource predictions to match tasks to resource
offers, which requires user to have full knowledge of the
workflow. While, the resource prediction provided by user
are often far from optimal, thus it is nearly impossible to
ensure full use of resources.

Therefore, we enable Makeflow’s resource monitor to
measure the resource usage at the runtime and update the
resource requirements of tasks dynamically. The system
works as usual except that each makeflow task will be run
with a resource monitor thread. At the beginning, we launch
several tasks with the maximum allowable resource size or
with 1 task per worker for collecting resource consumption
data. Based on the sample of resource usage, we apply
the Slow-peaks model [16] to predict the exact resource
requirements of tasks. If Work Queue is used, the accurate
resource requirements can help us to assign max number of
tasks to each worker without resource waste and exhaustion.

A sample Makeflow file with rules for resource monitor
is shown as following:

.MAKEFLOW CATEGORY local_split

subseq.1 subseq.5079: seq.inp splitreads.py
LOCAL python splitreads.py 5079 seq.inp

.MAKEFLOW CATEGORY remote_map
.MAKEFLOW MODE MIN_WASTE

output.l: seqg.target subseq.l rmapper
./rmapper subseq.l seqg.target > output.l

output.5079: seqg.target subseq.5079 rmapper
./rmapper subseqg.l seqg.target > output.l

.MAKEFLOW CATEGORY local_combine

output: output.l .. output.5079 combine.sh
LOCAL ./combine.sh

Stage 1

Stage 3

5079

|0utput.1 | |output.2 | |output.m | |output.n |

Ceombind)

combine

Figure 3: Shrimp Workflow

We classify tasks into three phases, (1) local_split, which
contains one task that splits the input sequence into 5079
sub-sequences. This phase is run locally without resource
reinforcement. (2) remote_map, which consists of 5079 tasks
with each aligning one of the sub-sequences to part of
the target sequence. We run this phase on Mesos with the
MIN_WASTE mode enabled, which will start a reinforce-
ment loop that uses a small number (100 by default) of tasks
to collect resource consumption data and update the resource
requirements at the runtime. If new resource requirements
do not suit the needs of tasks, the reinforcement loop will be
activated again. (3) local_combine, which combines all the
results of the second phases and generates the final output.

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

To evaluate both of the configurations, we implemented a
batch job system for mesos, connected it to Makeflow and
Work Queue and provided mesos mode as options within
Makeflow and Work Queue. we explore the performance of
running a large bioinformatics workflow with each configu-
ration on a Mesos cluster. The cluster contains twenty-four
8 core Intel Xeon E5620 CPUs each with 32 GB RAM, 12
2TB disks, 1GB Ethernet, running Red Hat Enterprise Linux
6.8 with Linux kernel 2.6.32-642.6.1.e16.x86_64 and Mesos
0.26.

Generally, there are three categories of scientific work-
flows, workflow that has mainly of long tasks, one that con-
tains many short tasks that can be launched simultaneously,
and one that includes both types of tasks. To emphasizes all
possible problems can be caused by ignoring the feature of
Mesos’ default resource allocation and garbage collection
policies, we chose SHRiMP workflow, which consists of
5081 tasks in total. SHRiMP is a genomic software package
for aligning genomic reads against a target genome.

The structure of the workflow is shown in Figure 3, which
contains 3 stages. Stage 1 has one long-running task that



sub-samples a 313 MB input file into 5079 parts. Stage 2
compares each sub-sequence with part of the target genome
that is 361 MB and generate outputs of approximately 650
KB each. The optimal task execution time of task in this
stage should be no more than 300 seconds. Stage 3 combines
all outputs and produces a single output file. Stage 2 is highly
parallel that consists of large amount of short-running tasks.
The size of intermediate results generate by each task of
stage 2 is approximate to 362 MB, that is 1.8 TB in total.
Thus without proper garbage collecting policy, the disk will
be filled up quickly.

In order to see how Work Queue and the resource monitor
affect the performance of the workflow, we consider four
configurations: (1) Makeflow and Mesos (2) Makeflow, the
resource monitor and Mesos (3) Makeflow, Work Queue and
Mesos (4) Makeflow, Work Queue, the resource monitor and
Mesos. And we expect the fourth configuration to achieve
best performance. To emphasizes the problem of inefficient
resource usage due to the coarse-grained estimation of re-
source consumption. We assume that a greedy user requires
4 cpus, 5120 MB of memory and 5120 MB disk for each
task, which is superfluous. For the same reason, when using
Work Queue, we assign 4 cpus, 5120 MB of memory and
5120 MB disk to each worker. We run each configuration
5 times and get approximate result for each run, thus we
select one of the five result sets to compare the performance
of different configuration.

B. Results and Analysis

Table I gives the key details of the total runtime, the
average execution time of each task, average transfer rate
between the Makeflow and the Mesos agent, and the average
CPU usage rate. To emphasizes the influence of different
data transfer methods on the workflow, we include the data
transfer time into the task execution time. Figure 4 presents
the task execution time histogram and transfer throughput
histogram with rows represent configuration one to four
respectively. The first column gives a histogram of individual
task execution time of the 5079 tasks of stage 2, and
the second column gives the histogram of transfer rate of
individual file between Makeflow and the Mesos agent. In
Figure 5, we show the histograms of the number of cores
being allocated and the number of cores being used. The
first column gives the CPU usage during the whole lifecycle
of the workflows. The second column shows the CPU usage
in the first 30 minutes of the workflows.

Running Makeflow directly on Mesos has the longest
overall execution time (11.17 hours) and a low average CPU
usage rate (0.500). As shown in the first column of the first
row in figure 5, across the whole life cycle of the workflow,
only half of the allocated cores are actually in use. The
average task execution time is 408 seconds, which is relative
long compares to the configurations that use Work Queue.
This is mainly due to the overheads of repeatedly setting

up TCP connections. After Mesos master assign a task to
an executor, the fetcher process of the executor will try to
fetch each input file of the task with an independent HTTP
request. And after the task is complete, the scheduler will
retrieve each output file with an HTTP get request. Since
there are large amount of small files (around 10150 and each
one is 70 bytes to 1 MB) transferred during the lifecycle of
the workflow, there are massive amount of TCP connections
set up. This can also explain why the average transfer rate
(43.11 MBY/S) is relative low.

As hypothesized, by using resource monitor, we increase
the resource usage rates from 0.5000 to 0.976, which help
us to achieve a better performance (6.7 hours). Be more
specifically, as shown in the second column of the second
row of figure 5, the number of cores in use is gradually in-
creased during the first 20 minutes, and finally approximate
to the number of allocated cores. Therefore, even though the
average task execution time is still long, we achieve 1.67x
overall performance improvement. By using Work Queue,
we achieve faster and more compact task execution times.
This is due to the fact that during the lifecycle of a Work
Queue worker, a single TCP connection is responsible for
handling all the data transfers between this worker and the
Work Queue master, which reduces the overheads of setting
up TCP connections repeatedly for each task and increase
the transfer throughput of the whole system. Even though
this configuration achieve a better overall performance, it
still pays a penalty due to the waste of resources. To
further improve the performance, we using Work Queue
and the resource monitor together. As expected, we gain
better performance in every aspect, which lead to the fastest
overall execution time (5.37 hours). The only downside
of adopting resource monitor is that a small file contains
resource consumption is generated for each task running on
the mesos agent. Then, these small files are retrieved by the
main process of makeflow, which causes the slight decrease
of the average transfer rate.

As can be seen, to take full advantage of a container
scheduling platforms, the selection of a strategy for man-
aging data transfers and claiming resource requirements has
a significant impact to the overall performance, primarily
due to the non-trivial expense of transferring large amount
of small files and the difficulty of precisely evaluating the
resource requirements of each tasks.

VI. RELATED WORK

There exist various of workflow systems that share sim-
ilar principles while addressing the needs of different user
communities and use cases. Examples include DAGMan [2],
Galaxy [3], Kepler [4], Pegasus [6], Swift [17], and Tav-
erna [8]. The general principles and considerations presented
in this paper could be applied to all of these systems.

With the growing adoption of container-based computing,
researchers have started to consider harnessing container
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Figure 4: Task Execution Time and Transfer Rate
In each row of the table, task execution time histogram and transfer throughput histogram of each configuration are presented.
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Each row shows the complete CPU usage timeline, and the CPU usage timeline of the first 30 minutes are presented. The
total number of available cores is 208. The solid line depict the number of allocated cores, and the dashed line depict the

number of cores in use.



Makeflow

Makeflow Makeflow . Makeflow Work Queue
Resource Monitor | Work Queue X
Resource Monitor
Total Exec Time (Hours) 11.17 6.7 8.97 5.37
Average Task Exec Time (Seconds) 408 445 327 355
Average Transfer Rate (MB/S) 43.11 26.88 106.87 104.66
Average CPU Usage (#used/#allocated) 0.500 0.976 0.501 0.975

Table I: Performance Summary of Each Configuration

runtimes for large-scale scientific computation. Many studies
have been done for measuring the performance of container
runtimes in cloud computing environment [18], [19], [20],
[21]. Some other projects focus on adopting container to
reduce the overheads of deploying customized computing
environment. Skyport [22] as an extension of AWS/Shock,
uses Docker container runtimes to automatically deploy
isolated execution environment with low overhead. And in
our previous work [20], we integrated Docker container
runtime into Makeflow and Work Queue, which enable the
tasks of a given workflow to have isolated environments
without loss of performance. In this paper, we exploit the
possibilities of connecting workflow system to a container
orchestration platform, which not only speed up the de-
ployment of execution environment but also improve the
efficiency of resource usage of the whole cloud.

There existing a large variety of resource scheduling
platforms. One popular model is the Centralized coarse-
grained scheduler. This kind of scheduler usually have a
central resource manager, which is responsible for assign-
ing resource to all applications, well-known systems like
Borg [23], TORQUE resource manager [24], old Hadoop
scheduler and SGE are all fall in this category. In our
previous work [5], we have enabled Makeflow to run on
SGE through the batch system interface. One drawback of
this implementation is that when cooperating with SGE,
Makeflow does not know the resource state of the whole
cluster, and can only submit tasks to the queuing system
that may lead to Head-of-line blocking. In this paper, we try
to connect Makeflow to Mesos, which adopts the Two-level
resource scheduling model. By using Mesos, frameworks
can have their own schedulers to claim customized resource
demands.

Other well known two-level schedulers include HTCon-
dor [15] and YARN [25]. These systems enable applications
to have their own task assignment semantics, which is more
flexible and allow different workloads to share resource
together.

VII. CONCLUSION AND FUTURE WORK

By adopting container-scheduler platform, users can set
up customized environment for distributed applications with
shorter deployment time and less overheads compare to
using platforms that adopt virtual machine technologies.
At the mean time, some of them, like Mesos, employ the

two-level resource scheduling model, which enables various
frameworks to share resource with each other. In this paper,
we exploit the possibility to run large scientific workflows on
Mesos. We list five design challenges and try to resolve them
by employing four configurations that use Makeflow and
Work Queue. We also use resource monitor to evaluate the
resource consumption of workflow and update the resource
requirement at the runtime, which makes good use of Mesos
fine-grained resource management service. To benchmark
the performance of the four configurations, we run a large
bioinformatics workflow with them. The experimental re-
sults show that with resource monitor enabled, we achieves
up to 2x performance and resource usage improvement,
even though the resource requirements given by users are
inaccurate. Therefore, we conclude that users without full
knowledge of workflows are recommended to use tools,
like resource monitor, to evaluate and update the resource
requirements at the runtime, and by adopting an existing
execution engine, like Work Queue, we reduce the risk of
I/O and bandwidth issues with more system scalability and
less labor.

We notices two opportunities to further improve the sys-
tem performance and stability. First, there exists a relation-
ship between the intervals of resource reinforcement loop,
maximum number of running tasks and overall execution
time. we intend to construct a model to achieve better
settings for these three parameters. Second, one of the
performance bottleneck of the current system is the limited
bandwidth between Makeflow and Mesos. In the future, we
plan to set up redundant services on Makeflow side by using
software like ZooKeeper [26], which can helps us to expand
the bandwidth and improve the system availability
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