Conducting Reproducible Research with Umbrella:
Tracking, Creating, and Preserving
Execution Environments

Haiyan Meng
and Douglas Thain
Department of Computer
Science and Engineering
University of Notre Dame
Notre Dame, IN 46556, USA
Email: hmeng,dthain@nd.edu

Abstract—Publishing scientific results without the detailed
execution environments describing how the results were collected
makes it difficult or even impossible for the reader to reproduce
the work. However, the configurations of the execution environ-
ments are too complex to be described easily by authors. To solve
this problem, we propose a framework facilitating the conduct
of reproducible research by tracking, creating, and preserving
the comprehensive execution environments with Umbrella. The
framework includes a lightweight, persistent and deployable
execution environment specification, an execution engine which
creates the specified execution environments, and an archiver
which archives an execution environment into persistent storage
services like Amazon S3 and Open Science Framework (OSF).
The execution engine utilizes sandbox techniques like virtual
machines (VMs), Linux containers and user-space tracers, to cre-
ate an execution environment, and allows common dependencies
like base OS images to be shared by sandboxes for different
applications.

We evaluate our framework by utilizing it to reproduce three
scientific applications from epidemiology, scene rendering, and
high energy physics. We evaluate the time and space overhead
of reproducing these applications, and the effectiveness of the
chosen archive unit and mounting mechanism for allowing
different applications to share dependencies. Our results show
that these applications can be reproduced using different sandbox
techniques successfully and efficiently, even through the overhead
and performance slightly vary.

I. INTRODUCTION

Computational science has accelerated research progress in
a broad spectrum of fields and provided the ability to do
important research in silico. However there have been fewer
fundamental advances in our methods for sharing scientific
knowledge [1]. Experimental results may be plotted into
beautiful figures and presented in an academic conference
or published in a journal, however descriptions of the actual
procedures by which results were achieved are often superficial
and imprecise. Authors may mention the platform configu-
ration used for their experiments in the Evaluation section
- CPU, memory, network and disk, but seldom include the

Alexander Vyushkov
Center for Research Computing
University of Notre Dame
Notre Dame, IN 46556, USA
Email: avyushko@nd.edu

Matthias Wolf
and Anna Woodard
Department of Physics
University of Notre Dame
Notre Dame, IN 46556, USA
Email: mwolf3,awoodard @nd.edu

details of the software stack, such as software version, dataset
source, and analysis scripts.

Without a complete description of the execution environ-
ment used by the original authors, it may be difficult or
even impossible to reproduce scientific work. A 2015 study
of the repeatability in computer systems research examined
402 papers from ACM conferences and journals whose results
were backed by code, and found that only 85 of the papers
provided links to their codes in the paper itself. The study
also showed that only the codes of 32.3% of the papers can
be rebuilt within 30 minutes, the codes of another 16% of the
papers can be rebuilt with extra effort, and it was difficult to
rebuild the codes of the remaining 51.7% of the papers [23].

The execution environments utilized in computational re-
search are complex, including hardware configuration, network
topology, OS, software, data and environment variable settings.
There are frequent updates and modifications in both software
and hardware. Investigators may not even be aware of all the
details of the software stack used for their experiments [24]
and documenting the complex web of dependencies that
are common in modern software environments would be a
daunting task. Unless the full execution environment can be
preserved in a timely manner, even the original authors will
eventually have no way to reproduce their experiments.

Various attempts have been made to enhance traditional
scholarly publication and make scientific results reproducible.
Research Objects [2] was proposed to aggregate the data,
methods, and people involved in an experiment to facilitate
the reproducibility of scientific results. However, Research
Objects only bundle together the necessary resources and are
not directly executable. Dynamic documents [9], [20] and
reproducible papers [8] were designed to integrate the text,
code, data and other auxiliary materials to make it easier
to reproduce the computations. However, it mainly focuses
on software and data dependencies, and does not include the
hardware, kernel and OS dependencies. Virtual machines [15]
and virtual appliances [11] were used to wrap up the whole

software stack of an experiment into a virtual machine image
(VMI), which can then be used to reproduce the experiment.
However, this method may fail when the software stack is
too large [16] and is not space-efficient, because common
dependencies (e.g., shared libraries) are archived into different
VMIs redundantly.

In this paper, we extend our previous work Umbrella [17],
and propose a framework to help the researchers track, create
and preserve their execution environments. Umbrella focuses
on the reconstruction of computing execution environments for
the purpose of portability and scalability on clusters, clouds
and grids. The framework proposed in this paper includes
three parts - the Umbrella specification, execution engine and
archiver. The Umbrella specification allows the user to specify
all the details of a comprehensive execution environment -
including hardware, kernel, OS, software, data, environment
variables, command, and output - through a lightweight, per-
sistent and deployable JSON-format file. The Umbrella execu-
tion engine creates the execution environment specified in an
Umbrella specification file using sandbox techniques like vir-
tual machines (VMWare [32]), Linux containers (Docker [19])
and user-space tracers (Parrot [30]), and computing resources
from the local machine and cloud computing services like
Amazon EC2. The Umbrella execution engine also allows
common dependencies like base OS images to be shared
by different sandboxes concurrently. The Umbrella archiver
allows the users to archive their execution environments into
persistent storage services like Amazon S3 and OSF.

It is worth noting that an Umbrella specification says noth-
ing about how to create the specified execution environment -
where to create and which sandbox technique to use. Separat-
ing specifying execution environments from creating execution
environments makes the specification generic, persistent and
stable in spite of the evolution of sandbox techniques used to
create execution environments.

With this framework, the original author can make an
experiment reproducible by archiving its software and data
dependencies using the Umbrella archiver (written in Python
2.6), and sharing the Umbrella specification which specifies
all the dependencies and how these dependencies should be
combined together during runtime. Any other researchers hav-
ing the Umbrella specification, the proper access permission
to the involved resources, and the Umbrella execution engine
(written in Python 2.6) can easily reproduce the experiment.

We evaluate our framework by utilizing it to reproduce
three applications from epidemiology, scene rendering, and
high energy physics. For each application we evaluate the size
of the Umbrella specification, the time and space overhead
of creating execution environments using Umbrella, and the
storage effectiveness of Umbrella for allowing dependencies
to be shared by multiple execution environments. We also
illustrate how an archival system, curateND, can be used
to archive the dependencies of an application, create a DOI
for the application, and provide an overview page including
references to the Umbrella specification, experiment output
and other auxiliary materials.

In summary, our contributions in this paper are two-fold:

o We introduce a lightweight, persistent and deployable
specification to specify the execution environment of
an experiment from hardware, kernel and OS all the
way up to software, data and environment variables. The
specification is deployable and can be used to reproduce
an experiment easily. The specification is not tied to
any specific sandbox technique, and is persistent in spite
of the evolution of sandbox techniques used to create
execution environments.

o Instead of storing a whole software stack of an ex-
periment including OS, software and data as a single
piece, Umbrella expects the archive unit of preserved
dependencies to be basic OS image, software and data,
and combines all the dependencies of an experiment at
runtime using mounting mechanisms. This saves the stor-
age space of both the archival system and the computing
node by allowing different experiments to share a single
copy of common dependencies.

In this paper we focus on improving the reproducibility of
single-machine applications. The framework proposed here is
not applicable to distributed applications, which often involve
multiple software stacks and the communications between
them. However, we plan to extend our framework in the future
work to facilitate reproducing distributed applications.

Our framework aims to reproduce an experiment and get the
same output, may not be applicable to reproduce performance-
focused applications for two reasons: first, the CPU and
memory fields in an Umbrella specification specify the min-
imal requirements, not the exact requirements; second, the
Umbrella specification does not cover the parameters vital
to performance-focused applications, such as CPU frequency,
disk speed, and network performance.

II. WHY IS IT SO DIFFICULT
TO REPRODUCE EXPERIMENT RESULTS?

To understand why it is so difficult to reproduce the exper-
iment results published in an academic paper, let us examine
the typical workflow of scientific research.

The computing resources used by most research institu-
tions are maintained by professional system administrators,
who install and upgrade the OS and system-level software
and manage the user accounts. As a researcher, when Alice
joined her new research group, she was given access to the
computing resource, let us say, a server with the hostname
of 1ab0l.phy.research.org. As a non-root user, Alice
installed software provided by some software community
into her home directory, configured some environment vari-
ables for her convenience, wrote her own analysis script,
named analysis.py, using /usr/bin/python, which
happened to be Python 2.7. Then she downloaded the datasets
from the Internet and kept them locally under the directory
/home/alice/data, ran the experiment and got the ex-
periment results, which were converted into beautiful figures.
Finally, these figures were put into her academic paper and
submitted to an academic conference.

Once the paper was accepted, Alice was happy and moved
on to the next challenge in her research. Everything looked
great until three months later another researcher, Bob, emailed
her and wanted more instructions of how to reproduce the
experiment published in her paper. Telling Bob that she ran the
experiment on 1ab0l.phy.research.org does not help
anything, because it would be unrealistic to give the access to
every researcher who wants to reproduce her experiment.

Alice searched her file system for the Python script,
analysis.py, and was relieved to find it. She shared
analysis.py with Bob and expected him to tell her that
the experiment can be reproduced successfully. However, the
news from Bob was both disappointing and surprising. The
problems Bob encountered during his attempt of running
analysis.py are:

e analysis.py depends on the setting of the environ-
ment variable STMCOUNT;

e analysis.py expects an input
/home/alice/data/filel;

e« analysis.py attempts to utilize an executable named
sim_sort;

« the output of running analysis.py overflows Bob’s
memory and disk;

e /usr/bin/python on Bob’s machine is Python 3.0,
which is not backwards compatible with Python 2.7.

Unfortunately, Alice forgot to preserve the SIMCOUNT
setting used for her paper, and deleted the directory
/home/alice/data by accident. sim_sort is software
under version control via Git and can be found, however, Alice
forgot the commit id used for her paper. As for the memory
and disk overflow, Alice realized she should have told Bob the
experiment requires 6GB memory and 20GB disk space.

Although bad enough, these are only the problems relevant
to the dependencies directly configured by Alice. In the
background, the system administrators need to update, some-
times even upgrade, the kernel, OS and system-level software
periodically. Every several years, the hardware equipment may
become obsolete enough to be replaced. What’s more, Alice’s
experiment may count on some network resources from third-
party websites. Any change about these local and remote
dependencies may result in the failure of reproducing Alice’s
experiment, no matter by herself or others.

Poor Alice! Can we do something to help her?

file located at

III. A FRAMEWORK FOR CONDUCTING
REPRODUCIBLE RESEARCH

Given the importance of preserving the comprehensive
execution environment of an experiment for its reproducibility
and the complexity of figuring out all the details about
the environment, we propose a framework to help scientific
researchers improve the reproducibility of their research. Our
framework achieves this through three mechanisms:

« allows the user to specify all the necessary details about

a comprehensive execution environment - from the hard-
ware all the way up to software and data (section III-A);

{
"description": "A ray-tracing application which creates video frames.",
"hardware": {
"arch": "x86_64",
“"cores": "1",
"memory": "1GB",
"disk": "3GB"

"kernel": {
"name": "li
"version":

"os": {
"name": "redhat",
"version": "
"mountpoint": "/,
"source": ["http://ccl.cse.nd.edu/.../redhat-6.5-x86_64.tar.gz"],
"format": "tgz",
"action": "unpack"”,
"checksum": "669ab5ef94af84d273f8f92a86b7907a",
"size": "633848940",
"uncompressed_size": "1743656960",

"ec2": {
"ami": "ami-2cf8901c",
"region": "us-west-2",

"user": "ec2-user"
}
h
"software": {
"povray-3.6.1-redhat6-x86_64": {
"mountpoint": "/software/povray-3.6.1-redhat6-x86_64",
"source": ["http://ccl.cse.nd.edul/.../povray-3.6.1-redhat6-x86_64.tar.gz"],
"format": "tgz",
"action": "unpack",
"checksum": "b02ba86dd3081a703b4b01dc463e0499",
"size": "1471452",
"uncompressed_size": "3010560"

}

h
"data": {
"4_cubes.pov": {

"mountpoint": "/tmp/4_cubes.pov",
"source": ["http://ccl.cse.nd.edul/.../4_cubes.pov"],
"format": "plain",
"action": "none",
"checksum": "c65266cd2b672854b821ed93028a877a",

"size": "1757"
h
”énviron": {
"PWD": *ftmp"

h
"cmd": "povray +l/tmp/4_cubes.pov +O/tmp/frame000.png +K.0 -H50 -W50",
"output": {

"files": ["/tmp/frame000.png"],

"dirs": ["/tmp/output”]

Fig. 1. Umbrella Specification Example - povray.umbrella

« creates the specified execution environment using sand-
box techniques like VMs, Linux containers and user-
space tracers (section III-B);

o helps the user archive important data and software de-
pendencies in the first place (section III-C).

A. Tracking Execution Environment: Umbrella Specification

Umbrella allows a user to specify a comprehensive execu-
tion environment through a JSON-format file independently of
any deployment technology. The whole execution environment
is specified through multiple sections, each section corre-
sponds to a special aspect of the environment and may further
include several subsections. Within each (sub)section, various
attributes can be specified through key:value pairs. The
hardware section specifies the requirements about the CPU
architecture, the core number, the memory and disk consump-
tion. The kernel section specifies the required kernel name
and version. The os section specifies the name and version

TABLE I
RESOURCE URLS SUPPORTED BY UMBRELLA SPECIFICATIONS

Resource Example URL

Local Filesystem /home/hmeng/data/input

HTTP http://www.data.com/index.html
HTTPS https://lab.cse.nd.edu/index.html
Amazon S3 s3-+https://s3.aws.com/.../cubes.pov

Open Science Framework
Git Repository
CernVM File System

osf+https://files.osf.io/v1/...7559¢3a
git+https://github.com/.../cctools.git
cvmfs://cvmfs/cms.cern.ch

of the required OS image, which includes the basic root
filesystem except the kernel. The software section and the
data section specify respectively the required software and
data dependencies, which may include multiple subsections,
each corresponding to a single dependency. The environ
section allows the user to specify the environment variable
settings. The cmd section specifies the command line used to
run the experiment. The output section specifies the location
of the generated experiment results. Figure 1 illustrates the
Umbrella specification for a Povray ray tracing application.

The os section and each subsection under the software
and data sections provide detailed information about the
resource location (source), the fixity of the resource
(checksum, size, uncompressed_size), how to
use the resource (format, action), and the mountpoint
at runtime (mountpoint). The format attribute specifies
whether the resource is a plain file (plain) or a gzipped tar
file (tgz). The action attribute specifies how the resource
should be used during runtime - used directly (none) or
uncompressed first (unpack).

The source attribute provides a list of resource URLs of
each dependency. The resources may come from local filesys-
tems, public web servers, Amazon S3, OSF, Git Repositories,
or CernVM File System (CVMES) [3] (Table I). Resources
from local filesystems can be utilized directly. Resources from
public web servers are downloaded via HTTP or HTTPS
protocol. URLSs for resources from Amazon S3, OSF and Git
Repositories, may have public or private access permissions,
and are identified through their special prefixes - s3+, osf+,
and git+. When private resources from these three sources
are specified in an Umbrella specification, the user needs to
provide correct authentication information. Resources from
CVMES can be accessed via the FUSE module or a user-space
mount toolkit, Parrot [30].

Not all the sections are required in an Umbrella specifica-
tion. If an experiment does not require any input data file,
the data section can be ignored. The author of an Umbrella
specification may add new sections, new subsections or new
attributes according to his own needs. For example, an ec2
attribute is added to specify an VMI from Amazon EC2 within
the os section of Figure 1.

As for the software preservation format, Umbrella expects
each software dependency is of binary format, not of source-
code format. This decision is based on the following three
observations: first, sometimes it is difficult to obtain the source

code, especially of commercial software; second, building soft-
ware from source code is time-consuming; third, a successful
building procedure requires special compilation toolchain and
building configuration. In case the software building procedure
needs to be reproduced, an Umbrella specification can be
composed to track the compilation environment.

To make it easy to compose an Umbrella
specification, we implement a web portal
(http://umbrella.basicuserinterface.com/)
which allows the user to specify an execution environment by
filling a form online and automatically compute the metadata
information of a dependency once its source attribute is
provided. The portal also provides a specification validator
to help diagnose the syntax errors within a specification.
Currently, the Umbrella execution engine responds to check
the semantic errors within a specification before creating
the specified execution environment. In addition, Umbrella
specifications are often the collaborative outcome between the
researchers and system administrators. System administrators
focus on the configurations of hardware, kernel and base OS
image. The researchers can focus on the software, data and
all the other experiment-specific configurations.

B. Creating Execution Environment: Umbrella Execution En-
gine

-
3. Umbrella downloads all the missing | ! 4. Umbrella creates a sandbox to run

dependencies ! 1 the experiment
!

2. Umbrella reads and parses
povray.umbrella

5. Umbrella returns the experiment
results

1. User starts Umbrella:
$ umbrella run povray.umbrella

User’s Duty

6. User checks and analyzes the
experiment results

Fig. 2. Workflow of Umbrella Execution Engine

Figure 2 illustrates the workflow of the Umbrella execution
engine. Once an Umbrella specification is ready, either com-
posed from scratch or downloaded from the Internet, the user
can start an Umbrella job (step 1) and wait for the experiment
results to be returned by Umbrella. Umbrella is responsible for
parsing the specification (step 2), downloading all the missing
dependencies from the locations specified in the source
attributes (step 3), creating the execution environment by
mounting all the dependencies into a unified file system to run
the experiment (step 4), and returning the experiment results
to the location specified by the user (step 5). After this, the
user can check and analyze the experiment results (step 6).

According to the matching degree between the requirements
specified in the hardware, kernel and os sections of an
specification and the hardware, kernel and OS configurations
of an execution node, different sandbox techniques can be used
to create execution environments. The higher the matching

TABLE II
SANDBOX TECHNIQUES FOR CREATING EXECUTION ENVIRONMENTS

Hardware | Kernel | OS Sandbox Techniques
Yes Yes Yes Utilize the current OS directly (section III-B1)
Yes Yes No OS-level Virtualization - Docker, Parrot (section II11-B2)
Yes/No No No | Hardware Virtualization - VirtualBox, VMWare, EC2 (section III-B3)

degree is, the lighter-weight the employed sandbox techniques
can be. Table II shows the available sandbox techniques for
each matching degree.

1) Sandbox Technique - Utilize the Current OS Directly:
When the current node meets the hardware, kernel and OS
requirements, it can be utilized directly to create the execution
environment and every dependency will be put directly into the
path specified by its mountpoint attribute. This method is
fast because there is no virtualization layer being involved.
However, the local filesystem may be polluted in two ways.
When the mountpoint of a dependency has not existed
yet, Umbrella should create the mountpoint before putting
the dependency there. If the mountpoint already exists,
Umbrella should first check whether the existing version is
correct. In case the existing version is not the required one,
the user needs to be consulted about which version to keep.
Due to the lack of isolation mechanisms, this method does
not block any damage which may be introduced by the
experiment. Therefore, it is only feasible when the behavior of
the experiment is safe or the execution node is easy to recover,
such as a virtual machine.

2) Sandbox Technique - OS-Level Virtualization: If the
hardware and kernel configurations of the execution node
satisfy the requirements but the OS does not, OS-level vir-
tualization techniques can be utilized to create the execution
environment. OS-level virtualization allows multiple OS in-
stances to run simultaneously on top of a single OS kernel.
Compared with hardware virtualization, this has lower execu-
tion overhead because no hardware-level instruction translation
is needed. The implementation of OS-level virtualization may
only deploy file system isolation (such as chroot and Parrot)
or isolate file system and network, and set limits about memory
and CPU usage (such as Docker). By isolating the root
filesystem of each OS instance, OS-level virtualization avoids
the risk of ruining the file system of the execution node.

Umbrella Spec - Povray Umbrella Spec - CMS

os: redhat 6.5 os: redhat 6.5
software: povray 3.6.1 software: cmssw 5.2.5

data: 4_cubes.pov data: analysis.sh

Umbrella Local Cache

Sandbox - Povray Sandbox - CMS

software software
povray
L povray 3.6.1 -7~ " =--4- cmssw5.25 J
data data

analysis.sh]

Fig. 3. Umbrella Local Cache - Allowing Dependency Sharing

This isolation also makes it possible to share the common

dependencies between sandboxes for different applications, as
illustrated in Figure 3. The two applications - Povray and CMS
- share the same OS image (redhat 6.5), each has its own
software and data dependencies. Umbrella downloads all the
distinct dependencies into its own local cache, and mounts
the dependencies into each sandbox during runtime. In this
scenario, the Umbrella local cache only keeps a single copy
of the OS image, which will be shared by the two sandboxes.
Within each sandbox, the data mounted from the Umbrella
local cache can not be modified. All the modifications during
runtime should be written to the mountpoint mounted from a
location outside of the Umbrella local cache.

3) Sandbox Technique - Hardware Virtualization: When the
hardware or kernel configurations of the execution node do
not satisfy the requirements, hardware virtualization can be
used to simulate the target computing environment in a virtual
machine (VM), and create the execution environment within
the VM. Compared with OS-level virtualization, Hardware
virtualization involves more execution overhead because each
instruction within the VM needs to be translated into the
instruction on the host via a virtual machine monitor. However,
since the virtual machine already satisfies the hardware, kernel
and OS requirements, the sandbox can be constructed directly
inside it, as discussed in section III-B1.

Local Machine EC2 Instance

f 4. Umbrella sends the E H 5. Umbrella starts the 1
! Umbrella job to the EC2 Umbrella job on the EC2 2—
| instance via scp instance via ssh '

_______________________ "'Gi'fr']e"E'C"z""
________________________ instance runs ;
7. Umbrella fetches the the Umbrella

i
i
i
VT i
il H il '
| -
! | results from the EC2 2<——' job directly as !
| i
b ‘ i
i
i

3. Umbrella starts an

Amazon EC2 instance)) Fd ;
instance via scp +illustrated in
i

: Section M-B1 i
; and Figure 3 !

8. Umbrella returns the
experiment results

1
2. Umbrella reads and H
parses povray.umbrella |

1. User starts Umbrella: 9. User checks and analyzes
$ umbrella run povray.umbrella the results
UsersDuy | [Umbrella’s Duty - Local

Fig. 4. Workflow of Executing An Umbrella Job via Amazon EC2

This sandbox technique can be implemented in two ways
depending on where a virtual machine is hosted. If the current
execution node has a hypervisor - such as VirtualBox [33]
or VMWare - installed, it can be used directly to launch the
required VM and finish the Umbrella job within it. If the
current execution node has not installed any hypervisor, or
the user prefers not to do the test locally, cloud computing
platforms such as Amazon Elastic Computing Cloud (EC2)

and Google Compute Engine (GCE) can be utilized. The com-
posers of Umbrella specifications should specify the required
cloud platform and virtual machine image, as illustrated by the
ec?2 subsection under the os section in Figure 1. Umbrella
responds to communicate with the cloud platform to start a
VM, send the Umbrella job to the VM, launch the Umbrella
job on the VM locally. Then the VM creates the execution
environment and finishes the job. Finally, the experiments
results will be sent back to the local machine, and then put into
the user-specified location. Figure 4 illustrates how Umbrella
can utilize Amazon EC2 to finish a job.

C. Preserving Execution Environment - Umbrella Archiver

Once the researchers figure out the final experiment settings,
it is time to archive the involved dependencies, especially those
dependencies from unreliable sources, such as local disks and
some third-party websites. The Umbrella archiver is designed
to help the researchers to archive the dependencies specified
in a specification into persistent storage services. It accepts
the researchers’ user credentials for the target storage services
from its command line options and communicates with the
target storage services via their Python bindings. By default,
all the dependencies specified in a specification are archived
into the storage system. The researchers may mark off the
already-archived dependencies with a JSON field, upload:
false. Once the archiving process is done, Umbrella will
update the resource URLs of all the relevant dependencies to
the reliable ones and generate a new Umbrella specification.

Currently, Umbrella supports two persistent storage service:
Amazon S3 and OSF. Archiving an execution environment to
Amazon S3 creates a new S3 bucket, uploads each unreliable
dependency into the bucket, and finally uploads the updated
Umbrella specification into the bucket. Then the researcher
can publish and share the S3 link of the new Umbrella spec-
ification. Archiving an execution environment to OSF creates
a new OSF project, archives each unreliable dependency as
an OSF file under the OSF project, and finally uploads the
updated Umbrella specification into the OSF project. Then the
researcher can publish and share the OSF URL of the new
Umbrella specification. The archiving procedure also allows
the researcher to set the access permission of the uploaded
OSF and S3 resources.

IV. EXAMPLE WORKFLOWS

In this section, we describe two typical scenarios where Um-
brella can be used to facilitate the reproducibility of scientific
research, and provide the detailed workflow of how to use
Umbrella to achieve this. In both cases, Alice is the original
author of the experiment, and Bob is another researcher who
wants to reproduce Alice’s work.

In the first scenario, Alice conducts her experiment on
her local machine, with all the dependencies from the local
machine. Alice first composes an Umbrella specification,
povray_local.umbrella in Figure 5, to describe the
execution environment of her experiment. Then Umbrella is
used to create the specified execution environment and execute

1. Alice composes and tests povray_local.umbrella
povray_local.umbrella

using local dependencies

=

os: /home/alice/redhat_6.5

software: /home/alice/povray_3.6.1

data: /data/4_cubes.pov

2. Alice uses Umbrella to

:> l OSF Umbrella_Povray_Project |
archive local deps to OSF

redhat_6.5.tar.gz
povray_3.6.1.tar.gz

1 povray_osf.umbrella

3. Alice publishes the OSF
URL of
povray_osf.umbrella

OSF URL of povray_osf.umbrella:
https:/ffiles.osf.iol.../povray_osf.umbrella

=

povray_osf.umbrella

4. Bob downloads os: osf+https:/ffiles.osf.iol.../redhat_6.5.tar.gz

povray_osf.umbrellato
his machine, and reproduces
Alice’s work.

software: osf+https:/ffiles.osf.iol.../povray_3.6.1.tar.gz

data: osf+https://files.osf.io/.../4_cubes.pov

Fig. 5. Conducting Reproducible Research Using Umbrella - Local + OSF

the experiment. Whenever Alice wants to tune the experiment
settings, she always first updates the execution environment
specification. By tracking the execution environment as the
research process goes and even before every real execution
starts, Alice is always sure about the environment config-
urations of a successful execution. After Alice finishes her
experiment, she uses Umbrella to creates a new OSF project
and upload all the local dependencies into the OSF project.
Umbrella also creates a new specification with all the depen-
dencies from OSF, povray_osf.umbrella, which is also
uploaded into the OSF project. Then Alice attaches the OSF
URL of povray_osf.umbrella to her paper. If Bob reads
Alice’s paper and wants to reproduce the experiment, he can
download povray_osf.umbrella using the OSF URL in
the paper and reproduce Alice’s work. Figure 5 illustrates the
whole workflow.

In the second scenario, Alice wants to conduct her ex-
periment using Amazon EC2. To avoid downloading de-
pendencies from the outside Internet to her EC2 instance,
Alice stores the software and data dependencies inside
Amazon S3. Alice composes an Umbrella specification,
povray_ec2_s3.umbrella in Figure 6, to describe the
execution environment of her experiment. Then Alice uses
Umbrella to communicate with AWS and executes the experi-
ment using an EC2 instance (section III-B3). During runtime,
all the dependencies are downloaded from Amazon S3 into the
EC2 instance and then used to create the execution environ-
ment. When Alice is ready to publish her experiment result,
she just needs to put povray_ec2_s3.umbrella into
Amazon S3, and publishes its S3 link in her paper. By doing
so, Bob can obtain a copy of povray_ec2_s3.umbrella
easily and reproduce Alice’s work.

In both scenarios, Bob can first read the Umbrella specifi-
cation file shared by Alice to understand the hardware and
software requirements of the experiment, and then decide
where to reproduce it and which sandbox mode to use to

83 link of povray_ec2_s3.umbrella: https://s3 y/p

y_ec2_s3.umbrella

povray_ec2_s3.umbrella

os: ami-2cf8901c¢ (redhat 6.5)
software: s3+https://s3.amazonaws.com/povray/povray_3.6.1.tar.gz
data: s3+https://s3.amazonaws.com/povray/4_cubes.pov

N

download

Amazon S3
Umbrella_Povray_Bucket

Sandbox - Povray
EC2 Instance of ami-2cf8901c

<EC2 instance root dir>

software
— povray 3.6.1

data
L 4_cubes.pov

—{ povray_ec2_s3.umbrella \

povray_3.6.1.tar.gz
4_cubes.pov

download

Fig. 6. Conducting Reproducible Research Using Umbrella - EC2 + S3

reproduce it. This helps Bob avoid the time overhead of asking
Alice about the environment variable settings and input files,
running out of memory and disk space by accident, and the
failure caused by incompatible versions of Python.

V. EVALUATION

We have implemented Umbrella supporting the features
described above - tracking, creating, and preserving execu-
tion environments of scientific research - using Python?2. 6.
As for creating execution environments, four sandbox tech-
niques are currently supported by our implementation:
destructive, which utilizes the current OS directly;
parrot and docker, which are two examples of OS-level
virtualization; ec2, which is an example of hardware virtual-
ization utilizing Amazon EC2 (ec2 and destructive are
used together: the local Umbrella uses ec?2 to start an VM and
the remote Umbrella running on the VM uses destructive
to run the experiment).

We evaluate our framework by utilizing it to reproduce three
scientific applications from epidemiology, scene rendering, and
high energy physics (section V-A). We evaluate the Umbrella
specification file sizes (section V-B), the space and time
overhead of creating execution environments using different
sandbox techniques (section V-C), and the effectiveness of
the Umbrella local cache for allowing dependencies to be
shared by multiple execution environments (section V-D). Our
evaluation results show that, with the help of Umbrella, an
experiment can be reproduced successfully by the original
author and others with different sandbox techniques, even
though the overhead and performance may vary slightly.

A. Applications Evaluated

Three applications were used to evaluate our framework:
OpenMalaria from epidemiology, Povray ray tracing applica-
tion, and CMS from high energy physics.

OpenMalaria aims to develop a model to simulate the
potential effects of the introduction of pre-erythrocytic malaria
vaccines [26]. It uses individual-based stochastic simulations
of malaria epidemiology to predict the impacts of interventions
on infection, morbidity, mortality, health services use and
costs. The OpenMalaria application used here does a VecNet
baseline simulation with increased population size for more

TABLE III
SIZES OF APPLICATION DEPENDENCIES

Application | OS Deps Software Deps | Data Deps
OpenMalaria | CentOS 6.6 openMalaria xml
(69MB/218MB) | (2.9MB/13MB) | (28KB)
.rpm packages .csv
(209MB) (<1KB)
epel.repo xsd
(<1KB) (196KB)
Povray RedHat 6.5 povray .pov
(605MB/1.8GB) | (1.5MB/2.9MB) | (1.8KB)
.inc
(28KB)
CMS RedHat 6.5 cmssw .sh
(605MB/1.8GB) | (1.3GB) (<1KB)
parrot
(23MB/71MB)

The size info of a plain-format dependency is in the format of
(size). The size info of a gzipped tar file dependency is in the
format of (compressed_size/uncompressed_size).

precise results. The application takes an xml-format input file
which describes the place being simulated - human population
distribution, entomology of vectors, effectiveness of health
system in the area and optionally interventions applied to
control malaria. The outputs of the application include a file
with the size of 39KB capturing every timestep of a simulation
(ctsout.txt) and a file with the size of 51KB aggregating
data into configurable-size lumps (output .txt).

Povray is a ray tracing program which renders 3D graphics
from text-based scene descriptions that describes all the details
of a scene, including the camera, lights, plane and objects.
All povray objects are described by mathematical functions
and represented internally using their mathematical definitions.
The povray application used here has two data dependencies: a
scene description file (. pov) and a include file containing the
mathematical functions of Rubik’s Cube (.inc). The output
of the application is a png file with the size of 16MB.

The Compact Muon Solenoid (CMS) experiment investi-
gates the most basic building blocks of matter by observing
collisions of protons at near light-speed. Large numbers of
collisions must be simulated and analyzed statistically to
develop accurate models of the underlying physical processes.
We applied the Umbrella framework to a step in this simulation
process, in which collisions between protons are simulated.
The results of each collision are generated, based on the
model under test, and recorded. The input consists of a python
configuration file describing the process to be investigated,
and the output is a 96MB enhanced ROOT file containing the
recorded particle descriptions. Due to metadata recorded at
runtime which includes timestamps, all outputs will differ in
a non-deterministic way. Because the psuedorandom seed is
fixed, however, the physics content of the generated output of
a given configuration will always be identical.

Table III illustrates the dependencies of each application and
the size of every dependency. Two archive formats are used for
the preservation of these dependencies: plain (e.g., epel.repo)
and gzipped tar file (e.g., CentOS 6.6). Both the compressed

TABLE IV
UMBRELLA SPECIFICATION FILE SIZES
Application OpenMalaria | Povray | CMS
Umbrella Spec Size 33KB | 24KB | 1.9KB

and uncompressed size of a gzipped tar file dependency are
listed in Table III. All the dependencies are archived in a
campus archival system, curateND.

Although only the evaluation results for three applications
are shown in this paper, the framework does not bind itself
with any specific field, and is applicable to the applications
from other fields.

B. Umbrella Specification File Sizes

The execution environment for each application is tracked
via an Umbrella specification file, which specifies the hard-
ware, kernel, OS, software dependencies, data dependencies,
environment variables, analysis command, and application
output. Table IV illustrates the Umbrella specification file sizes
for these three applications. An Umbrella specification only
includes resource identifiers and other metadata information,
rather than the real contents of any dependencies. Therefore,
in contrast with the dependency sizes shown in Table III, an
Umbrella specification file itself is a few kilobytes. To allow
these applications to be reproduced with different sandbox
techniques, the os section of each specification specifies an
Amazon Machine Image (AMI) for the ec2 sandbox mode
and an OS image in the format of gzip tar file for the parrot
and docker sandbox modes.

C. Overheads of Creating Execution Environments

Umbrella can create the execution environment specified
in an Umbrella specification file with different sandbox tech-
niques. Table V illustrates the time and space overheads
of reproducing these three applications using three sandbox
techniques - parrot, docker and ec2. Even if the time
and space overheads of reproducing each application vary
according to the sandbox techniques and computing resources
used, they all generate the correct output.

The time overheads of different sandbox modes vary for two
main reasons. First, sandbox techniques based on hardware
virtualization (ec?2) involve higher overheads than sandbox
techniques based on OS-level virtualization (parrot and
docker). Furthermore, the overheads of different OS-level
virtualization techniques vary according to the isolation degree
and the implementation details. Second, Umbrella allows the
hardware and kernel requirements to be specified as a range,
not limited as a single value. For example, the user can specify
the CPU core number to be at least 2, the memory space
to be at least 3GB. This feature makes it possible for an
AWS user to reproduce an application using multiple instance
types. We made this design decision because, from a long-
term perspective, the aim of reproducibility is first to get the
correct result, then to care about the performance.

The space overhead of the parrot sandbox mode covers
the total size of plain-format dependencies and gzipped tar
file dependencies (both compressed version and uncompressed
version). This should be identical to the summary of the
dependency sizes listed in Table III. The space overhead of the
docker sandbox mode covers all the dependencies listed in
Table III and an extra hard copy of the OS image dependency,
which needs to be copied from the Umbrella local cache into
the storage backend of Docker. The ec2 sandbox mode only
needs to download software and data dependencies into the
Umbrella local cache on the EC2 instance, whose OS image
already satisfies the requirement.

Comparing with Povray and CMS, creating the execution
environment of OpenMalaria has a special step of installing
several rpm packages via the package manager, yum, which
requires the root authority. The parrot sandbox mode is
based on a user-space mount toolkit, Parrot, therefore can not
be used to create the execution environment of OpenMalaria.
On the contrary, both docker and ec2 sandbox modes can
gain the root authority and can be used here.

In summary, the decision of choosing the right sandbox
technique to reproduce an application depends on the fol-
lowing three factors - whether the user has root authority
on an execution node, where the user wants to reproduce an
application (locally or remotely), and whether the application
itself involves privileged operations.

D. Effectiveness of Umbrella Local Cache

Umbrella tries to cache a dependency into its local cache
when it is first required, so that the following experiments
can reuse the local copy inside the local cache without
downloading it repeatedly from the Internet. This saves both
the time and economic cost of reproducing an experiment.
Table VI shows the changes of the Umbrella local cache size as
different experiments or different software/data dependencies
are tested. The CMS experiment and the Povray experiment
are used here, which share the same OS image dependency.

Originally, the Umbrella local cache is empty. When
the CMS experiment is tested, all its dependencies, totally
2.39GB, are downloaded into the Umbrella local cache. Next,
when the Povray experiment is tested, only its software and
data dependencies are missing and added into the cache, totally
4.4MB. When the researcher wants to rerun any of these two
experiments, all the required dependencies have existed in the
local cache, and no new dependencies are needed. If the user
wants to test a new software or data dependency, only the new
dependencies will be downloaded from the Internet and added
into the cache. Rerunning these experiments does not greatly
reduce the execution time, because the execution node and the
curateND archival system are on the same campus network,
and the downloading speed from curateND to the execution
node is about 30MB/s.

E. Last Step to Enhance Reproducibility

Our framework described above facilitates the reproducibil-
ity of scientific research. To go further, we created a DOI for

TABLE V
TIME AND SPACE OVERHEADS OF CREATING EXECUTION ENVIRONMENTS

Application OpenMalaria Povray CMS | Permission | Location
Parrot N/A | 65min (2.40GB) | 79min (2.39GB) non-root locally
Docker 57min (1.53GB) | 68min (4.11GB) | 82min (4.19GB) root locally

ec2 - m3.medium | 113min (225MB) | 130min (4.4MB) | 211min (94MB) non-root | remotely
ec2 - m3.large 58min (225MB) 65min (4.4MB) | 108min (94MB) non-root | remotely

The parrot and docker sandbox modes are tested on the same machine (hardware: x86_64, kernel: Linux 2.6.32, OS: redhat 6.7).

TABLE VI
EFFECTIVENESS OF UMBRELLA LOCAL CACHE
Application (Deps Size) Cache Size | Delta (Newly Added Deps) | Time
CMS (2.39GB) 2.39GB 2.39GB (all deps) 79min
CMS - rerun 2.39GB 0 78min
Povray (2.40GB) 2.40GB 4.4MB (software & data) 64min
Povray - rerun 2.40GB 0 64min
Povray - new software deps 2.40GB 4.4MB (software) 64min
Povray - new data deps 2.40GB 28KB (data) 64min

The initial size of the Umbrella local cache is 0. All the tests here were done with the parrot sandbox mode on the same machine

(hardware: x86_64, kernel: Linux 2.6.32, OS: redhat 6.7).

TABLE VII
DOIS FOR THE EVALUATED APPLICATIONS TO ENHANCE
REPRODUCIBILITY

Application DOI URL
OpenMalaria | http://dx.doi.org/doi:10.7274/RO3F4AMH3
Povray http://dx.doi.org/doi:10.7274/ROBZ63ZT
CMS http://dx.doi.org/doi: 10.7274/RO765C7T

each evaluated application, as shown in Table VII, using the
campus archival service provided by our university library,
curateND. Each DOI points to an overview page hosted by
curateND, which includes the Umbrella specification file, the
links to the Umbrella installation documentation and user
manual, all the dependencies, and the experiment results. The
original authors can decide when to publish and share their
work by setting the proper access rights to the resources
referred in the overview pages. Using curateND, anyone
having the proper access rights can download the Umbrella
specification for an experiment, install the Umbrella binary,
reproduce the experiment, verify the published experiment
results, and even extend the original experiment.

VI. RELATED WORK

In general, there are two approaches of preserving scientific
software executions: preserving the mess and encouraging
cleanliness [29].

Preserving the mess allows an application to be preserved,
distributed, and shared in a self-contained package. Disk
cloning [13] and virtual machine image [4], [14] are two com-
mon techniques to achieve this, which are easy to reuse, but
are less feasible for complex applications with large software
stacks with the size of TB level. To decrease the space over-
head of preserved applications, Parrot-package toolkit [18],
CDE [10], PTU [22] and ReproZip [6] trap the system calls
of an application and only preserve the actually used files.

However, these solutions focus only on the local dependencies
and do not preserve any network dependency. Furthermore,
there are two main drawbacks of preserving the mess. First,
the context and structure of the preserved applications are
not usually clear enough for the new user to repurpose the
application, therefore limiting their potential usage. Second,
shared dependencies are redundantly preserved into multiple
packages, which wastes the storage space of archival systems.

Encouraging cleanliness tries to specify an execution envi-
ronment in a structured and cleanly way, archive dependen-
cies of an application separately, and recreate the execution
environment by mounting all the dependencies together into
a unified sandbox. Software configuration management sys-
tems [7], like Puppet [31], Chef [27] and CFEngine [5], allow
system administrators to specify the desired configuration for
each managed device without considering the heterogeneity
and complexity of the devices. This increases the scalability of
system configuration by avoiding repetitive tasks, and reduces
errors introduced by manual configuration through automation.
However, software configuration systems do not consider the
key problems of reproducible research, like data provenance,
context description and access right [28]. Research Objects [2]
can aggregate the data, methods and people involved in an
experiment to facilitate the reproducibility of scientific results.
However, Research Objects only bundle together all the nec-
essary resource references, but are not deployable. Dynamic
documents [9], [20] and reproducible papers [8] were designed
to integrate the text, code, data and other auxiliary materials
to make it easier to reproduce the computations. However, it
mainly focuses on software and data dependencies, and does
not include the hardware, kernel and OS dependencies.

Our work in this paper focuses on how to reproduce a single
task. Researches focusing on improving the reproducibility
of Scientific workflows, such as Prune [12], can utilize the
framework proposed in this paper to reproduce each single

task in a scientific workflow.

Researches on data provenance [25] and semantic web [21]
have been active to facilitate the management and reuse of
scientific data. Our work focuses on how to specify and create
the comprehensive execution environments of scientific appli-
cations. We have started working together with data archive
services, such as curateND and OSF, to further improve the
reproducibility of scientific applications.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a framework facilitating the
conduct of reproducible research by tracking, creating and
preserving the comprehensive execution environments for their
experiments with Umbrella. Using this framework, the re-
searchers can make their experiments reproducible by speci-
fying their execution environments in a lightweight, persistent
and deployable execution environment specification, which
can then be easily shared, expanded or repurposed. The
researchers can also utilize the framework to archive their
execution environments into persistent storage services like
Amazon S3 and OSF to facilitate the sharing and publication
of their experiments. The framework also provides an execu-
tion engine which allows the original researchers and any other
researchers to (re)create the specified execution environments
using sandbox techniques like VM, Docker and Parrot.

In the future work, we plan to explore the challenges
involved in reproducing distributed applications, especially
scientific workflows, compare different preservation degrees
of workflow management systems, and extend our framework
to facilitate the reproducibility of scientific workflows.

ACKNOWLEDGMENTS
This work was supported in part by National Science Foun-
dation grants PHY-1247316 (DASPOS), OCI-1148330 (SI2)
and PHY-1312842. The University of Notre Dame Center
for Research Computing scientists provided critical technical
assistance throughout this research effort.

REFERENCES

1] S. Bechhofer, J. Ainsworth, J. Bhagat, et al. Why Linked Data is
Not Enough for Scientists. In e-Science (e-Science), 2010 IEEE Sixth
International Conference on, pages 300-307. IEEE, 2010.

[2] S.Bechhofer, D. De Roure, M. Gamble, et al. Research objects: Towards
exchange and reuse of digital knowledge. Nature Precedings (2010),
2010.

[3] J. Blomer, P. Buncic, and T. Fuhrmann. CernVM-FS: delivering
scientific software to globally distributed computing resources. In
Proceedings of the first international workshop on Network-aware data
management, pages 49-56, New York, NY, USA, 2011. ACM.

[4] P. Buncic, C. A. Sanchez, J. Blomer, et al. CernVM-a virtual software
appliance for LHC applications. In Journal of Physics: Conference
Series, volume 219, page 042003. IOP Publishing, 2010.

[5] M. Burgess and O. College. Cfengine: a site configuration engine.
USENIX Computing systems, 8(3):309-337, 1995.

[6] F. Chirigati, D. Shasha, and J. Freire. ReproZip: Using Provenance

to Support Computational Reproducibility. In Proceedings of the 5th

USENIX Workshop on the Theory and Practice of Provenance, Berkeley,

CA, 2013. USENIX Association.

T. Delaet, W. Joosen, and B. Van Brabant. A Survey of System Con-

figuration Tools. In Proceedings of the 24th International Conference

on Large Installation System Administration, pages 1-8, Berkeley, CA,

USA, 2010. USENIX Association.

3

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]
[23]
[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

J. Freire. Making computations and publications reproducible with
vistrails. Computing in Science & Engineering, 14(4):18-25, 2012.

R. Gentleman and D. T. Lang. Statistical analyses and reproducible
research. Journal of Computational and Graphical Statistics, pages 1—
23, 2012.

P. J. Guo and D. R. Engler. CDE: Using System Call Interposition
to Automatically Create Portable Software Packages. In Proceedings of
the 2011 USENIX Conference on USENIX Annual Technical Conference,
pages 21-21, Berkeley, CA, USA, 2011. USENIX Association.

B. Howe. Virtual Appliances, Cloud Computing, and Reproducible
Research. Computing in Science Engineering, 14(4):36—41, 2012.

P. Ivie and D. Thain. Prune: A preserving run environment for
reproducible scientific computing. In e-Science (e-Science), 2016 IEEE
12th International Conference on, 2016.

E. Jeanvoine, L. Sarzyniec, and L. Nussbaum. Kadeploy3: Efficient and
Scalable Operating System Provisioning for Clusters. USENIX; login:,
38(1):38-44, 2013.

G. Juve, E. Deelman, K. Vahi, et al. Scientific workflow applications on
Amazon EC2. In E-Science Workshops, 2009 5th IEEE International
Conference on, pages 59—66. IEEE, 2009.

I. Krsul, A. Ganguly, J. Zhang, et al. VMPlants: Providing and Managing
Virtual Machine Execution Environments for Grid Computing. In Su-
percomputing, 2004. Proceedings of the ACM/IEEE SC2004 Conference,
pages 7-7. IEEE, 2004.

H. Meng, R. Kommineni, Q. Pham, et al. An invariant framework for
conducting reproducible computational science. Journal of Computa-
tional Science, 9:137-142, 2015.

H. Meng and D. Thain. Umbrella: A portable environment creator for
reproducible computing on clusters, clouds, and grids. In Proceedings
of the 8th International Workshop on Virtualization Technologies in
Distributed Computing, pages 23-30. ACM, 2015.

H. Meng, M. Wolf, P. Ivie, et al. A case study in preserving a high
energy physics application with Parrot. volume 664, page 032022. IOP
Publishing, 2015.

D. Merkel. Docker: Lightweight Linux Containers for Consistent
Development and Deployment. Linux Journal, 2014(239):2, 2014.

J. P. Mesirov. Computer science. Accessible reproducible research.
Science, 327(5964):415-416, 2010.

J. Myers, M. Hedstrom, D. Akmon, et al. Towards sustainable curation
and preservation: The sead project’s data services approach. In e-Science
(e-Science), 2015 IEEE 11th International Conference on, pages 485—
494, Aug 2015.

Q. T. Pham. A framework for reproducible computational research. PhD
thesis, The University of Chicago, 2014.

T. Proebsting and A. M. Warren. Repeatability and Benefaction in
Computer Systems Research. Technical report, 2015.

C. Ruiz, O. Richard, and J. Emeras. Reproducible software appliances
for experimentation, pages 33—-42. Springer, 2014.

Y. L. Simmhan, B. Plale, and D. Gannon. A survey of data provenance
in e-science. SIGMOD Rec., 34(3):31-36, Sept. 2005.

T. Smith, N. Maire, A. Ross, et al. Towards a comprehensive sim-
ulation model of malaria epidemiology and control. Parasitology,
135(13):1507-1516, 2008.

D. Spinellis. Don’t Install Software by Hand. IEEE Software, 29(4):86—
87, 2012.

R. Tansley, M. Bass, and M. Smith. DSpace as an open archival
information system: Current status and future directions. In Research
and advanced technology for digital libraries, pages 446-460. Springer,
2003.

D. Thain, P. Ivie, and H. Meng. Techniques for Preserving Scientific
Software Executions: Preserve the Mess or Encourage Cleanliness? Pro-
ceedings of the 12th International Conference on Digital Preservation
(iPres 2015), 2015.

D. Thain and M. Livny. Parrot: An application environment for data-
intensive computing. Scalable Computing: Practice and Experience,
6(3):9-18, 2005.

S. Walberg. Automate system administration tasks with puppet. Linux
Journal, 2008(176):5, 2008.

C. A. Waldspurger. Memory resource management in VMware ESX
server. ACM SIGOPS Operating Systems Review, 36(S1):181-194, 2002.
J. Watson. Virtualbox: bits and bytes masquerading as machines. Linux
Journal, 2008(166):1, 2008.

