
PRUNE: A Preserving Run Environment
for Reproducible Scientific Computing

Peter Ivie
University of Notre Dame

pivie@nd.edu

Douglas Thain
University of Notre Dame

dthain@nd.edu

Abstract—Computing as a whole suffers from a crisis of
reproducibility. Programs executed in one context are aston-
ishingly hard to reproduce in another context, resulting in
wasted effort by people and general distrust of results produced
by computer. The root of the problem lies in the fact that
every program has implicit dependencies on data and execution
environment which are rarely understood by the end user. To
address this problem, we present PRUNE, the Preserving Run
Environment. In PRUNE, every task to be executed is wrapped
in a functional interface and coupled with a strictly defined
environment. The task is then executed by PRUNE rather than
the user to ensure reproducibility. As a scientific workflow evolves
in PRUNE, a growing but immutable tree of derived data is
created. The provenance of every item in the system can be
precisely described, facilitating sharing and modification between
collaborating researchers, along with efficient management of
limited storage space. We present the user interface and the
initial prototype of PRUNE, and demonstrate its application in
matching records and comparing surnames in U.S. Censuses.

I. INTRODUCTION

Reproducibility of results has become a major concern in
scientific computing [1], [2], [3]. The challenge lies largely
in the complexity of software and environments. A scientist’s
productivity can be reduced due to time spent getting shared
software working, and the integrity of science becomes suspect
due to the difficulty in verifying claims. A large part of the
problem is implicit dependencies, such as configuration files,
supporting libraries, scripting languages, an OS kernel, and
suitable hardware [4]. The standard command line interface is
not designed to encourage reproducibility.

One common solution is to use virtual machines (or con-
tainers) to store the full context available to an application.
This can result in excessive overhead, so another common
technique is to trace only dependencies that are actually used,
such as with CDE [5], PTU [6], ReproZip [7], and Parrot [4].
The next step is to capture the evolution of the application
over time, or the data flowing between multiple containers for
large scale applications.

PRUNE is a computing system designed to support scien-
tific reproducibility from the ground up.1 PRUNE expects all
data, software, and environment dependencies to be explicitly
registered with the system and directly computes the tasks
that make up an application, rather than recording the system

1PRUNE was briefly introduced (along with a few other utilities) in a paper
at iPres 2015 [8]. This is the first detailed presentation of the architecture,
performance, and applications of the system.

calls or merely the end results of user executed commands.
As various execution paths are explored, the user builds up a
large graph of data, software, and environments used.

PRUNE bears some similarity to a distributed version control
system like Git [9], except that it records a tree of continuous
derivation information consisting of immutable files and com-
putations, rather than a tree of periodic commits consisting
of line changes in a directory of mainly textual files. This
allows the end user to understand the precise provenance of
any generated results. PRUNE is also similar to the Nectar [10]
datacenter management system, except that it supports dis-
tributed de-duplication of storage and computation, rather than
relying on a centralized system. This distributed provenance of
computation facilitates flexible collaboration using export/im-
port operations directly between individual scientists.

We have implemented a prototype of PRUNE (version 1)
that exploits distributed execution, allowing it to scale to
a large number of tasks. As a case study, we show how
PRUNE is used to manage a data analysis workflow based
on US censuses, developing a repository that preserves 34.5
terabytes of workflow data representing 3.9 million executions,
3.9 million files, and 2 different execution environments. To
characterize the performance of this prototype, we measure
the overhead of system operations in the context of this large
repository. We show the wall clock time consumed is 101%
compared to native execution (or 1% overhead).

II. A PRESERVE-FIRST STRATEGY

Preservation is often perceived as an activity undertaken
after research has been completed. [11] But, by the time
the results based on a scientific workflow are accepted for
publication, the authors have moved on to other work, students
may have graduated, or the environment in which the work was
done has been changed, upgraded, or destroyed. The funding
that supported the research may have expired, and so it is hard
to justify any post-facto effort in preservation. Even when such
an effort is made, the focus is often only on repeatability [12],
and more work is needed to fill in gaps in the preserved form
of the research [13]. This process is shown in Figure 1a.

In contrast, we advocate a preserve-first strategy for re-
producible computational research as shown in Figure 1b. We
argue that researchers should first (before any computation)
preserve (at least locally) the components they wish to use.
Automated execution based on the preserved components can

Design

Execute

Observe

Share/Publish

Preserve Later

Preserve

Preserve

Execute

Unpreserve

Design

Share/Publish

Preserve First

a) b)

Observe

Fig. 1: Preserve-First or Preserve-Later?
We propose a preserve-first strategy, in which digital items are
preserved before use, so there is no ambiguity about results.

then ensure all necessary dependencies are included, otherwise
the execution fails. Once the desired research results are
obtained, it is then trivial to publish them with full provenance
in a public repository. Then others can build upon the same
work with a high probability of success.

Adopting this strategy requires additional user and computer
overhead. But we believe with this approach, PRUNE moves
towards greater structure and oversight such as with the adop-
tion of: block-structured programming [14]; graph-structured
Make files [15]; and rigorous version control [9].

III. OVERVIEW OF PRUNE

A. User’s Perspective

An end user begins by creating their own private PRUNE
repository, which may simply exist on their own laptop. The
user describes a workflow which explicitly adds (into the
repository) any input data and tasks that should be performed
to derive some result. When the user submits this description,
PRUNE detects portions of the workflow that are already in the
repository, and records and then adds the remainder. Observing
the results, the user may submit a revised workflow, expanding
the graph in the repository. If space consumption becomes
a problem, PRUNE will automatically delete derived results,
because it retains the ability to re-create them on demand.

Other users or organizations may operate their own repos-
itories. When a user has a result of interest to be shared,
he/she asks PRUNE to export the appropriate meta-data into a
portable package. The package can contain all the meta-data
necessary to describe how the result was obtained, so that
a receiving user can examine, re-execute, or build upon that
result within their own repository. The most interesting results
can be widely disseminated through a public repository.

B. Repository Structure

A PRUNE repository contains a graph of immutable objects
describing the data and computational elements needed to ex-
ecute a workflow. The following 4 basic objects constitute the
nodes of the graph: Files, Tasks, Results, and Environments.
Once a workflow has been described in terms of these objects,

Hardware

Kernel

Operating System

Software

Command: ‘do < in.txt in.dat > out.txt o2.txt’

Data

arguments: [file_id1, file_id2]
parameters: [‘in.txt’, ‘in.dat’]

returns: [‘out.txt’, ‘o2.txt’]
results: [file_id3, file_id4]

 ’’’’’’

 t E
nvironm

ent

V
irt

ua
l M

ac
hi

ne
 /

C
on

ta
in

er

P
ru

ne

Task

resu
environment: envi_id1

Fig. 2: Tasks and Environments
Data and software can be handled in a Task or Environment.

The Environment describes down to the hardware layer.

the objects can be shared with collaborators or published as a
complete and reproducible description of the workflow.

A File is an immutable string of bytes, identified by a hash
of the content of the File. Any data that the user wishes to
use must first exist as a File within a repository.

A Task is a program to be executed, represented as a brief
JSON document that describes a command line, the input
Files, and the Environment in which the Task should run.

A Result object contains information about the completed
execution of a Task, including identifiers for the output files
(which were not known until the Task completed) along with
the time and resources consumed during execution.

An Environment is an explicit statement of the hardware
and software needed to execute a Task. An Environment can
take many forms, depending on the technology used and the
priority placed on reproducibility compared to convenience.

For example, an Environment could be a virtual machine
image with instructions for creating and using a virtual ma-
chine for executing Tasks. Such an Environment may be more
likely to be reproduced in 10 years than an Environment which
is a reference to a virtual machine image in Amazon EC2 or a
container image in a public Docker Hub. However, a reference
to Amazon EC2 might be more convenient in the short term.
An Umbrella [16] Environment can choose an efficient mode
when available, but include backup modes if needed. However,
even a tarball of software needed on top of an assumed
operating system can be considered an Environment.

We assume that an Environment is something created in-
frequently by working closely with a system administrator, in
the same way that a physical machine’s operating system is
infrequently changed and constantly re-used.

Figure 2 illustrates how a Task relates to an Environment. To
execute a Task, the Environment is used to create a temporary
sandbox. Any input File arguments are mapped to local path-
names within the sandbox ["in.txt","in.dat"] where
they can be accessed via the running command. After the
command is executed, the output files are retrieved from their
expected location ["out.txt","o2.txt"] where they
can be extracted and stored within the PRUNE repository as
Files and a Result. The remainder of the sandbox is discarded.

F1 = file_add(filename=‘./observed.dat’)

export([T7[1]], filename=‘./plot.jpg’)

T6 = task_add(
 args=[T4[0]], params=['input_data’],
 cmd=‘analyze < in_data > out_data’,
 returns=[‘out_data'], environment=E2)

E2 = envi_add(type=‘EC2’, image=‘hep.stable’)

T7 = task_add(cmd=‘plot in1 in2 out1 out2’,
args=[T5[0], T6[0]], params=[‘in1’,‘in2’],
returns=[‘out1’,‘out2’], environment=E2)

User space

E1 = envi_add(type=‘EC2’, image=‘hep.beta’)

Compute Resources

E1
Simulate

Analyze T3
(E1)

F2

F7F6F3F4

PRUNE space User interface

T2
(E1)

T5
(E2)

T6
(E2)

T1
(E1)

Plot

E2
T4
(E2)

F5F1

F9F8

T7
(E2)

F4 F3

File

Environment

Task

T5 = task_add(args=[F1], ...)
(remaining arguments the same as above)

T4 = task_add(cmd=‘simulate > output’,
returns=[‘output'], environment=E1)

Workflow Version #2

Fig. 3: Overview of a PRUNE repository
Files, Tasks and Environments are used to explicitly describe an evolving workflow from the beginning to the current state.

C. Interface

Prune has six fundamental operations:

id = file_add(filename);
id = task_add(task-description);
id = envi_add(type, image);
execute(available_resources);
export(id-list, filename, options);
import(filename);

Three operations add to the repository: file_add adds a
file to the repository from the local filesystem, and returns
an identifier for it’s File object. task_add adds a Task to
be executed to the repository and then immediately returns an
identifier. The Task is queued for execution and the results will
become available when time and resources permit. envi_add
adds a new Environment to the repository, specifying the type
of the environment (VMWare, Amazon, Docker, TGZ, etc)
and the name of the image.

The execute command specifies what resources can be
used to execute Tasks, and when they are to be used. The
export operation creates a package which includes a sub-
graph of the repository. It expects of a query anchor (a
list of ids as a starting point) and optionst that describe which
direction(s) to follow derivation lines and which object types
to include in the package. The import operation adds new
objects into the repository from such a package. Because
task_add returns an identifier before executing the Task, it
is possible that an export will request File objects that do not
yet exist. It is a matter of preference whether such a request
will block or require the user to poll until objects are available.

D. Example

A snapshot of a workflow is illustrated in Figure 3. Here, we
show a common workflow pattern in high energy physics. A
researcher runs several simulations that mimic the behavior

of a device like the Large Hadron Collider. The behavior
of simulations and observations are analyzed separately. The
analyses are then plotted together to produce a publishable
graphic. Each step of this process may be repeated many times
with different parameters, and then adjusted and retried as the
user refines the workflow.

The left side of Figure 3 shows a graph stored in a
PRUNE repository, while the middle of the figure shows some
operations used to add new items to the repository. The dotted
line divides the objects into separate versions of the workflow.
F1 (on the dotted line) is the observed data and is used in both
revisions of the workflow. Initially, the user ran simulation T1
in Environment E1 to produce synthetic data F2, which was
analyzed by T3, producing F4. Then, some actual data was
imported as F1 and analyzed by T2, producing F3.

Suppose that the user realizes that the (crossed out) Files F3
and F4 are invalid results, due to some bug in the supporting
libraries found in Environment E1. To remedy this, the user
prepares a second Environment E2 with new libraries, and
then runs T4, T5 and T6 to simulate and analyze the same
data again. Finally, the simulated and real data are combined
into a single plot (T7) that produces files suitable for graphing.

Figure 4 shows some examples of export being used for
collaboration. Export can be used to retrieve how a result
was generated (lineage) or what objects were derived from
an anchor object (progeny).

E. Naming

The issue of naming in computing has long been a chal-
lenge and various approaches have been proposed to resolve
the disconnect between computer and human naming. [17]
PRUNE uses two types of identifiers for objects: content-based
identifiers and derivation-based identifiers.

A content based identifier (CBID) is the fundamental name
for all Files, Tasks, and Environments. It is generated by

Modify the Simulate stage
export([T4], ‘out.prune’, progeny=INF)
 --> [T4, E2, (W4), T6, (W6), F6, T7, (W7)]
(Includes all objects needed execute the workflow

or estimate the cost of execution)

Modify only current stage of processing
export([T7], ‘out.prune’, lineage=1)

--> [T7, E2, F6, F7]
(F6,F7 link to T5,T6 - Request if needed)

Publish results from a paper:
export([T7[1]], ‘out.prune’, lineage=INF)
 --> [F9, T7, E2, (F6), (F7), T5, T6, F1, (F5), T4]

(Intermediate Files (F5,F6,F7) are optional)

F7F6

PRUNE space User interface

T5
(E2)

T6
(E2)

Plot

E2

T4
(E2)

F5

F9F8

T7
(E2)

F1

Fig. 4: Export Example
Different options determine which objects are shared.

computing a hash function of either the content of the object,
which is the binary data of a File, or the JSON document
representing a Task or an Environment. Care must be taken to
ensure the ordering of JSON elements (alphanumeric or fixed
order keys) so that a CBID does not change as the item is
shared among repositories.

PRUNE also stores some auxiliary meta-data about each
object type, such as owner, creation time, resources consumed,
etc. This meta-data is excluded from the checksum so that the
CBID can be used to detect if an object is logically unique.

A derivation-based identifier (DBID) is used to identify files
that have not yet been generated. It consists of the CBID of
a Task, followed by a subscript that selects one of the results
of the Task. DBIDs can be used as arguments to later tasks,
so that multiple Tasks can be chained together before the
intermediate Files have even been generated.

For example, suppose that Task T consumes files A and B
(which exist in the repository) and produces files X and Y. The
CBIDs for Files A and B are used in the JSON document that
describes Task T. The CBID for Task T is simply the checksum
of its JSON document (38b1d). When Files X and Y are
produced, they can be addressed using the CBIDs computed
from their checksums. But they may also be addressed as
38b1d[0] and 38b1d[1], which indicate they are the first
and second output Files of Task T respectively.

Task: (A,B)! T ! (X,Y)
CBID: 18f23, a3f91! 38b1d ! 93d8a, 413ca
DBID: ! 38b1d[0], 38b1d[1]

Result objects record the mapping between DBIDs and
output CBIDs (once the Task has been executed). Keeping this
information separate from the Task allows the Task to remain
immutable. Sometimes generated Files are deleted to make
room for other Files as mentioned in section III-A. If those
Files are needed again, the Task is re-executed, generating
an additional Result object for the Task. If derived Files are

deleted, the checksums in the Result can be used to validate
re-generated output Files.

F. Non-Determinism

If a Task is non-deterministic, multiple executions of the
Task can generate Files that are bitwise different, but logically
equivalent for a given scientific domain. PRUNE is unable to
detect such logical equivalence. For example, this can happen
with the Monte Carlo simulations used in high energy physics
workflows. In these cases a single DBID can refer to multiple
CBIDs. Since the input File identifiers are part of a Task’s
checksum, equivalent Tasks could end up with (any number
of) different Task CBIDs.

In an effort mitigate this issue while still allowing the
workflows to be fully specified before execution, PRUNE
encourages, when possible, the use of DBIDs throughout. This
enhances the ability to effectively collaborate and de-duplicate,
which is discussed in later sections, but CBIDs can also be
used where the user feels it is more appropriate.

IV. STORAGE MANAGEMENT

One of the challenges with preserving a workflow is the
amount of storage space required. We observe (and assume)
that, in general, the largest portion of the storage requirement
for a scientific workflow consists of Files generated during
the execution of a workflow. These derived Files can be leaf
Files (not used as an argument for any Task) or intermediate
Files (used as an argument in one or more Tasks). We propose
treating derived Files as a disposable portion of a workflow as
detailed in section IV-A. We assume that the second largest
portion of the storage requirement is typically root Files
(external input data directly imported into a Prune repository).
We discuss ways to address this challenge in section IV-B.
The smallest portion of the storage requirement is the data
describing the Tasks needed to get from the root Files to the
leaf Files. Reducing the storage requirements in this category
is covered in section IV-C.

A. Derived File Cache

Derived Files can be deleted to save disk space without
limiting reproducibility, since all the information needed to
recreate them is found in the Tasks, root Files, and Envi-
ronments. In a sense, these derived Files can be treated as
a temporary cache. The Result objects remain in the database
for consumed resource statistics and checksum validation.

The priority used to determine which derived Files to evict
first could be as simple as evicting the oldest derived File.
However, more advanced algorithms could be based on File
sizes and their position in the repository graph. The same
algorithms used to follow lineage and progeny in the export
operation could also be useful in deciding which derived Files
are the least likely to be used. The cost (financial or otherwise)
of reproducing a File should also be considered.

B. External Objects

Since root Files cannot be re-generated, they must be set
apart from the derived Files to prevent the system from dis-
posing of them. An advanced implementation of PRUNE could
extend Tasks to allow input files specified as URLs rather
than restricting them to Files only. In such a case, additional
rules (based on the bandwidth, reliability and longevity of the
external resource) would be needed to determine whether the
results of such Tasks could be generated again in the future.

For very large workflows, a smaller repository could treat
derived Files from another repository as rooted files, but also
include a Task that refers to the full repository for additional
lineage. This permits flexibility in constructing repositories
appropriate for a given researcher, while still ensuring full
preservability (spanning multiple repositories) back to the
root Files. In some cases there should be overlap between
repositories for added replication and availability, but for
others it would be sufficient to simply have a well defined
line between repositories.

This is in line with large central data approaches like
IVOA [18], IRIS [19], the LHC [20], etc., but any changes
to the data by the managing organization must be detectable
and/or avoidable in the interest of ensuring reproducibility.

C. Workflow merging

Recording each workflow DAG individually in a PRUNE
repository satisfies the need for preservation. However, this
can cause unnecessary duplication of Task objects and their
executions. Even with the assumption that Task objects are
small compared to File objects, eliminating duplication at this
level can result in more efficient use of both storage and
execution resources.

We observe that as a researcher creates a workflow, there
is generally a gradual evolution of that workflow while ad-
justments are made. Only a portion of the PRUNE objects
describing the workflow will change with each evolution.
Especially for changes made closer to the leaf Files, or
by extending from leaf Files, only a small portion of the
objects will differ from a previous version of the workflow.
To merge a new workflow into a repository, PRUNE identifies
the duplicates and effectively grafts the new objects onto a
merged repository graph.

The expanded graph after de-duplication describes both the
old and the new workflows simultaneously with shared objects
defining the earlier portions of the workflow. As the workflow
continues to evolve the graph continues to expand. This
expanded graph approach makes up a more efficient PRUNE
repository. The ability to detect duplicate Tasks coupled with
the ability to treat their generated results as a cache enables
memoization. This optimization technique reduces the time it
takes to execute a workflow which already includes generated
Files in the repository.

In order to support queries (such as those for the export
operation) on a merged repository graph, tracing the lineage
of the query anchor forward can be enabled by attaching a
workflow identifier to each new object added to the graph.

However, since any existing duplicate objects are immutable,
they cannot be updated with a list of workflows they were used
in. When tracing the progeny of the query anchor backwards,
there may be multiple paths that could be traversed. This could
happen, for example, if two Tasks achieve identical results, but
reached those results using a different approach. In order to
ensure that the progeny of a result matches how the result was
achieved, an identifier based on the workflow needs to be used
in addition to a CBID and DBID.

V. PROTOTYPE

PRUNE v1 is written in Python and uses SQLite3 to keep
track of all workflows submitted to it. The user creates a
Python script which uses a PRUNE v1 client library to expose
PRUNE v1 operations inside of the Python script. The client
library translates API commands into SQLite3 queries to
preserve new workflow objects and ignore duplicate objects
when detected. The client library can also export or import
entire workflows or portions of workflows.

A PRUNE v1 repository is a database of workflow objects
recorded over time. It is divided into 3 parts; persistence,
cache, and status. Both the cache and status portions can be
re-created by PRUNE v1, but the persistence portion contains
objects that contain irreplaceable information. The cache por-
tion stores generated Files. The persistence portion stores the
remaining objects. The status portion tracks the progress of
Tasks that still need to be executed and which of those are
ready to execute immediately as compared to those that depend
on Files which are not yet available in the cache.

SHA1 checksums are computed on object content to create
the CBIDs. When the content is in JSON format (Tasks, Envi-
ronments, and Results), the keys are sorted alphanumerically
to keep the CBIDs consistent.

DBIDs use a ‘:’ character after the Task CBID, followed
by an index number to distinguish between outputs of a given
Task. To encourage meaningful variable names in Python
task_add returns the list of DBIDs instead of the CBID
for the Task. The CBID prefix is still available if needed.

PRUNE v1 treats 2 Tasks which are identical except the
Environment, as separate Tasks in the database. Each Task
must be executed, and each Result stored, but if the generated
Files are identical, they are only stored once (using the CBID
and first DBID).

An export in PRUNE v1 creates a single file with all relevant
objects embedded. This file can be shared with other users of
PRUNE v1 either directly or via the internet.

If any Files requested in the export command have not been
generated or were evicted from the cache, the user receives a
message indicating that Files are not yet available. The user
may then repeat the request until the results are available.

A. Compute Resources

Prune can either spawn local worker processes to execute
Tasks, or start a Work Queue [21] master to coordinate Task
execution on remote workers. In local mode, input Files are
linked into Task sandboxes, with the assumption that Tasks

#!/bin/bash

Sort stage ######
sort nouns.txt > sorted_nouns.txt
sort verbs.txt > sorted_verbs.txt

Merge stage ######
sort -m sorted_*.txt > merged.txt

#!/usr/bin/env python
from prune import client
prune = client.Connect() #Connect to SQLite3

Import sources stage ######
E1 = prune.env_add(type=`EC2', image=`ami-b06a98d8')
D1, D2 = prune.file_add(`nouns.txt', `verbs.txt')

Sort stage ######
D3, = prune.task_add(returns=[`output.txt'],

env=E1, cmd=`sort input.txt > output.txt',
args=[D1], params=[`input.txt'])

D4, = prune.task_add(returns=[`output.txt'],
env=E1, cmd=`sort input.txt > output.txt',
args=[D2], params=[`input.txt'])

Merge stage ######
D5, = prune.task_add(

returns=[`merged_out.txt'], env=E1,
cmd=`sort -m input*.txt > merged_out.txt',
args=[D3,D4], params=[`input1.txt',`input2.txt'])

Execute the workflow
prune.execute(worker_type='local', cores=8)

Export ######
prune.export(D5, `merged.txt') # Final data
prune.export(D5, `wf.prune', lineage=2) # Workflow

#Environment object
{
 "body": {
 "engine": "EC2",
 "ami": "ami-b06a98d8"
 },
 "cbid": "da39...0709",
 "size": 49,
 "type": "environment"
}

#Task object
{
 "body": {
 "args": ["f908...deef:0", "3194...3b31:0"],
 "cmd": "sort -m input*.txt > merged_out.txt",
 "env": "da39...0709",
 "params": ["input1.txt", "input2.txt"],
 "returns": ["merged_out.txt"]
 },
 "cbid": "e828...481a",
 "size": 322,
 "type": "task"
}

D

p

p

 ami

(a) Original Workflow script (b) Prune workflow (with Python client library) (c) Prune objects

#File object
{
 "cbid": "29ae...8cca",
 "size": 144,
 "type": "file"
}
time
person
year
way ...

Fig. 5: Example Workflow
An example workflow (a) is shown using PRUNE commands (b), with a few of the individual objects that are recorded (c).

will “play nice” and not modify those files. This is how
files are treated when executing commands outside of PRUNE,
and is appropriate for the high energy physics and census
workflows we considered. In remote mode, Files must be
transmitted over the network, making it more appropriate for
computationally intensive Tasks with small inputs.

PRUNE v1 puts all submitted Tasks (which don’t have their
output files in the cache) into the status portion of the database.
These Tasks are eagerly evaluated whenever a prune worker is
running. When the command for a locally run Task returns an
error code, the sandbox is left in tact so the user can see what
modifications would be needed to submit a corrected Task.

PRUNE v1 currently allows Tasks to run without a specified
environment (meaning that the default available environment
should be used), with a Wrap environment, or with a local
Umbrella [16] environment. A Wrap environment runs an open
command to prepare the environment for command execution
(then an optional close command). A Wrap environment
was used to extract a tarball with software needed for the
workflows used in evaluating PRUNE v1.

B. Example Workflow

Consider the shell script shown in figure 5a designed to take
two input files and efficiently produce a new file with all lines
merged and sorted.

The Python script in figure 5b will preserve and execute
a workflow equivalent to figure 5a. The last line exports the
minimum objects needed to reproduce the workflow, and saves
these objects in the “merge sort.prune” file.

The PRUNE v1 client library converts the script at figure 5b
into the PRUNE v1 (slightly abbreviated) objects at figure 5c
which are not exposed directly to the user. These objects are
what is stored in the PRUNE v1 repository.

This may seem verbose compared to the original workflow.
But we claim that the benefits of adopting a preservation-first
strategy (beyond just the preservation benefits) can outweigh

the added complexity. The following section evaluates some
of those benefits.

VI. EVALUATION

In order to evaluate the storage management abilities, com-
putational overhead, and scalability of PRUNE v1, it was used
to manage workflows doing some analyses on U.S. Census
records. The U.S. Census [22] for years 1850 to 1940 consume
23 GB using 7-Zip compression. In a “Matching” workflow,
the censuses are searched for instances where identical at-
tributes occur exactly once in a pair of censuses, indicating a
high probability both records refer to the same person in real
life. Due to spelling, transcription, and other errors, a workflow
with exact matching achieves very few matches.

To improve the matching results, a “Comparison” workflow
creates a list of the most frequent surnames in all censuses and
compares it against the list of all surnames to obtain lists of
possible alternate spellings. The goal is to use these alternate
spellings to feed fuzzy matching (rather than exact matching)
into the Matching workflow. The Matching workflow is broken
down into the following 7 stages:

Matching workflow stages
1 Decompress

(7-Zip unpacking)
2 Normalize

(Standardize field inclusion, names, and order)
3 Map key split

(Split into blocks that will include matches)
4 Summarize year

(Merge into 1 file per year per block)
5 Merge pairs

(Merge each pair of years together)
6 Group by key

(Make groups based on block key)
7 Find 1-1 matches

(Find unique matches - exactly 1 entry per year)

(a) (b) (c)

Fig. 6: When changes to a workflow occur in later stages, PRUNE (a) avoids duplicate execution, (b) avoids extra disk space
used to specify the workflow, (c) avoids extra disk space used for generated Files.

Importing original files into PRUNE v1 is more a part
of PRUNE v1 behavior than that of the workflow, so we
consider this Stage 0. Stages 0-2 are identical between the two
workflows. The “Comparison” workflow has 6 unique stages:

Comparison workflow stages
3 Count attributes

(Count appearances of field-attribute pairs)
4 Summarize year

(One file per year summarizing pairs in that year)
5 Summarize all

(A single file for summarizing pairs across all years)
6 Filter by field

(A separate file for each field type)
7 Sort by frequency

(Most frequently occurring attribute on top)
8 Similar attributes

(Score similar alternates for most frequent surnames)

A. Collaboration

PRUNE v1 can be used to facilitate evolutionary changes
by multiple users concurrently. Take for example a situation
where one user finds an interesting match and wants to share
those results with another user. One of the result files in the full
comparison workflow was chosen as an export query anchor.
The exported package with all tasks and root and intermediate
files resulted in a 1.5TB file and took 1 hour and 25 minutes.
But it only took 3 seconds to create a 2.6GB package with
only the root Files and the Tasks, and it took 5 minutes and 30
seconds to read the package and recreate the query anchor File
on a separate machine. In 4 seconds, another 2.6GB package
was created with the Tasks, root Files, and the anchor File. The
anchor didn’t need to be generated on a separate machine, but
all information was available to reproduce the File if desired.

Re-importing any of these exports back into the original
repository has no effect as PRUNE v1 detects duplicates and
ignores them. However, consider a situation where slight
changes are made to the workflow by the collaborator. Im-
porting a new export received from the collaborator, would

still result in the detection and ignoring of duplicate objects,
and then any new portions of the workflow would be added
to the repository.

B. Conservation

A common approach to preservation is to create a separate
folder for each snapshot of all scripts and files each time a
paper is published or some other milestone. In figures 6a, 6b,
and 6c comparisons are made between this situation where two
versions of the Comparison workflow are in separate folders
(upper line) compared to a situation where only one version
of the workflow exists (lower line).

The line in the middle shows the resources consumed by
storing both workflow versions in PRUNE v1, after making a
change to the workflow stage number indicated on the x-axis.

In figure 6a, the wall time improvements due to mem-
oization are modest in the first stage since it is not very
CPU intensive. The normalization stage is more significant
computationally. The final stage is the next most significant
one in terms of computation. Doing an all-pairs match on
surnames using the Jaro-Winkler algorithm [23] is computa-
tionally expensive, so even changes to only that final stage
still require a significant amount of work.

The measurements in figures 6a, 6b, and 6c were taken
after doing comparisons on only 100 of the 11,400,952 unique
surnames in the censuses. Executing more comparisons is
covered in the following sections.

In figure 6b File content (but not metadata) is ignored.
A workflow change in the first 3 stages results in a larger
database because of the large number of files generated by
those stages. The later stages have a more negligible affect
on the database size. This indicates PRUNE v1 might be most
effective when evolutionary changes to a workflow are made
at the leaves of the workflow rather than at the roots.

Figure 6c shows the intermediate File space. The decom-
press stage creates large files with duplicate and extraneous
(in this context) fields. This data is included in the graph even
though it is only stored once in the PRUNE v1 database.

TABLE I: Wall clock time overhead

Preserve workflow

Prepare Execution

Execute Tasks

Checksum results

Preserve executions

Total Time

Wall clock time overhead

Total # of Tasks/Files

Space (MB)

Import sources 1:21 - - - - 1:21 100% 168 24.37
Decompress ˜0 0:10 1:41:33 5:19:36 0:25 7:01:43 315% 168 609,984

Normalize ˜0 0:12 10:16:11 52:30 1:48 11:10:42 9% 167 86,234
Count attributes ˜0 0:01 5:41:12 0:18 ˜0 5:41:33 ˜0% 167 4,799
Summarize year ˜0 ˜0 22:05 0:03 ˜0 22:08 ˜0% 10 819

Summarize all ˜0 ˜0 4:22 0:01 ˜0 4:24 ˜0% 1 407
Filter by field ˜0 ˜0 0:07 0:01 ˜0 0:09 24% 16 407

Sort by frequency ˜0 ˜0 2:02 0:02 ˜0 2:04 1% 16 407
Similar attributes 0:25 2:52 544:18:38 8:26 3:00 544:37:39 ˜0% 10,000 102,689

Total 1:47 7:16 562:26:11 6:20:57 5:13 569:01:43 1% 10,713 830,114

The normalize stage then strips much of that out and
produces smaller files. All other stages have comparatively
small intermediate Files. This is great for PRUNE v1 because
the unpacked data becomes a better candidate for eviction from
the cache since the normalized data will be used more often
than the raw unpacked data.

However, all the data depicted in figure 6c is a candidate for
eviction. In extreme cases, intermediate files could be deleted
as soon as they are consumed by later tasks.

C. Overhead

To measure the overhead of PRUNE, the Comparison work-
flow was executed to produce a list of similar surnames for
each of the 10,000 most frequent surnames (Stage 8). This
workflow was executed using only local workers because the
files were large compared to the compute resources needed to
process them for these stages. The execution time, wall clock
time overhead and data storage requirements for each stage is
shown in table I.

Stage 0 (the “import sources” stage) is included here as
100% overhead, since PRUNE v1 must make a copy of all
the original data, whereas in preserve later system, the files in
user space would be used directly. It is interesting to note
that checksumming the files after the decompression stage
is more than 3 times more computationally expensive than
just decompressing the files. Two options are available to
address this issue. Option 1) Skipping a checksum of Files
altogether (perhaps when Files are large) would result is less
computational time, but the system might have to transfer and
store duplicate copies of the data. This might not be bad since
this data is intermediate and can be evicted from the cache
anyway. Option 2) Checksumming in the background could
both avoid the immediate delay and the duplicate storage.
However, when Tasks are executed remotely (see the Scaling
section below), the data still has to be transferred twice.

However, while this overhead seems significant when look-
ing at that one stage, the overall overhead is only around
1%. The low overhead in the CPU intensive final stage
(with a relatively small input file) makes the overhead in the
decompress stage much less significant.

PRUNE v1 chooses to always do duplicate elimination as
in some cases this can also lead to avoiding the re-execution

Fig. 7: Tasks running over time
3 million Tasks were executed within 10 days with a

concurrency of O(10k).

of later stages if the duplicate is caught early on. Also, this
overhead is likely to only occur for the first evolution of the
workflow. Only a change in the environment for stage 1 or a
change to the files in stage 0 would result in having to perform
these checksums again.

D. Scaling

For the scaling evaluation, the earlier stages of the workflow
are mostly disk intensive, so they were performed using
16 local processes on the server to avoid network transfer
congestion and delays. The final stage is more CPU intensive,
so a Work Queue master in Prune with O(10k) remote workers
was used to bring the total number of surname comparisons to
3 million. Figure 7 shows the concurrency of Tasks running for
about 9 days. The total storage space for the entire workflow
after these 3 million+ Tasks was about 28TB.

E. Storage Quota

In any storage-constrained system, it is important to keep the
intermediate data within those constraints. While executing an
additional ˜864k Tasks of the workflow, PRUNE v1 was given
a quota of 30TB. Prune v1 appropriately removed Files from
the repository cache whenever it observed that new generated
Files caused the repository to go over quota.

Figure 8 shows that Prune stayed within about 700MB
of the quota after reaching the quota. This was done in the
background to avoid interference with the remote workers.

Fig. 8: Virtual vs. actual storage with quota
A storage quota system held disk consumption close to 30TB

during an additional ˜864k tasks.

F. Reproducibility

We do not have permission to share the root Files for the
census workflows, so the full workflows cannot be shared in
their entirety. However, we simulated some census data so
that it could be used as root files for Stage 3 and beyond (no
need for unzipping or normalizing the simulated data). PRUNE
and example workflows (including the simulated census and a
high energy physics workflow using Umbrella [16]) can be
downloaded and executed by following the instructions at:
http://ccl.cse.nd.edu/software/prune/

VII. RELATED WORK

PRUNE builds on, and derives from, many existing technolo-
gies. It combines capabilities from revision control systems,
workflow management systems, and tools for hardware/soft-
ware reproducibility. Other systems that combine such capa-
bilities were also considered and drawn from.

Revision control systems like Git[9], CVS[24], and
Subversion[25] track changes a user makes to files in a
directory tree rather than a tracking a graph of task provenance.
“Git and Org-Mode”[26] augments Git to be more applicable
for workflow preservation. However, there is also normally an
underlying assumption that a repository is small enough that
making a full copy of both the current state and state history
is not a problem. These revision control systems expect the
user to decide when something should be committed. This is
more efficient and leads to cleaner histories, but runs the risk
of the user forgetting to commit important states.

A user might attempt to include portions of the needed
environment, such as a compiler, with a repository, but more
often than not, the necessary environments are merely implied.
In a ”preserve-first” source code version control system, every
time a user wanted to check if a change to source code is
working, the changes would first be committed (just in case
the changes are “good”), and the system would automatically
compile or test the code, and then present the results (or errors)
to the user, with the assumption that “bad” commits can later
be removed, if needed.

Management systems such as Pegasus [27], Swift [28],
Galaxy [29], and Nextflow [30] are specifically geared towards
workflows. They vary widely on their support of reproducibil-
ity, collaboration, resource constraints, and preservation. Pe-

gasus focuses on automating compute and storage resource
consumption while facilitating recovery and debugging of
failures. Swift uses implicit parallelism in it’s programming
model to automatically scale workflows while requiring min-
imal programming expertise. Galaxy is designed specifically
for biomedical research and uses a web interface to facilitate
collaboration. Nextflow uses streams (based on Unix pipes) to
automate concurrency for any programming language.

A few systems track workflows over time. VisTrails [31]
tracks workflows that generate images. An Eidetic System [32]
tracks and records the evolution of the file system on a single
machine and can replay previous events. Nectar [10] central-
izes computations performed in a datacenter in connection
with their results and supports treating result data as a cache
similar to the data reuse feature in Pegasus. [27]

CDE [5], PTU [6], ReproZip [7], and Parrot [33] are ways
of capturing an Environment designed to execute a specific
Task (but maybe not a more generic one). Transparent result
caching [34] was designed to continuously and automatically
record all dependencies over time on a single machine.

Preserving a full Environment (designed for a generic
category of Tasks) is made possible with Docker [35], Um-
brella [36], and virtual machine images. They can create an
instance of an entire software stack for Tasks which have been
modified from their original execution.

GridDB [37], Apt [38], Taverna [39], dataref ver-
suchung [40], and Paper Mâché [11] are also related. With
GridDB and Apt, the user directly executes operations in
the workflow and the system assumes they will preserve
how the execution was performed. GridDB includes detailed
specifications for intermediate data allowing automatic paral-
lelization between operations. Taverna is designed to assist
bioinformaticians using web services to share sequence anal-
ysis methods online. Dataref versuchung and Paper Mâché
encourage automation of the full publication life-cycle when
it can be contained on a single machine.

VIII. CONCLUSION

The PRUNE framework is designed to facilitate reproducible
work, by capturing dependencies in a way that is easily shared,
but also easily modified, extended, and understood. This seems
in line with modern research directions [41] encouraging
collaboration across traditional boundaries such as applied vs.
basic research and engineers vs. scientists vs. designers.

With a proven concept, a few important qualities in Prune
could be applied to other systems. An existing workflow
system could adopt a preserve-first strategy by exporting all
executed tasks (at any granularity) into a common repository
which can then be queried as needed or pruned down to only
the most relevant information, if necessary.

If the generated results are included in the exported data,
those results can be saved and the workflow system can check
the repository for cached results before executing anything.
Such a system could use derivation or content based identifiers,
or a combination of the two (as in Prune), or a full database
implementation might have some advantages also.

Of course, technology is only one piece of the repro-
ducibility puzzle. The problem of reproducibility encompasses
publication practices, intellectual property, incentive systems,
and many other issues [42]. But we hope that by reducing
the technical burden of reproducibility, we can stimulate the
erosion of other barriers to scientific progress.

IX. ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under grants PHY-1247316 and OCI-1148330, and
the Department of Education under grant P200A120206.

REFERENCES

[1] J. P. Ioannidis, “Why most published research findings are false,” PLoS
Med, vol. 2, no. 8, p. e124, 2005.

[2] L. P. Freedman, M. C. Gibson, S. P. Ethier, H. R. Soule, R. M. Neve,
and Y. A. Reid, “Reproducibility: changing the policies and culture of
cell line authentication,” Nature methods, vol. 12, no. 6, pp. 493–497,
2015.

[3] B. Nosek, G. Alter, G. Banks, D. Borsboom, S. Bowman, S. Breckler,
S. Buck, C. Chambers, G. Chin, G. Christensen, et al., “Promoting
an open research culture: Author guidelines for journals could help
to promote transparency, openness, and reproducibility,” Science (New
York, NY), vol. 348, no. 6242, p. 1422, 2015.

[4] H. Meng, M. Wolf, P. Ivie, A. Woodard, M. Hildreth, and D. Thain,
“A Case Study in Preserving a High Energy Physics Application with
Parrot,” in Journal of Physics: Conference Series (CHEP 2015), 2015.

[5] P. J. Guo and D. R. Engler, “Cde: Using system call interposition to
automatically create portable software packages.,” in USENIX Annual
Technical Conference, 2011.

[6] Q. Pham, T. Malik, and I. Foster, “Using provenance for repeatability,”
in Presented as part of the 5th USENIX Workshop on the Theory and
Practice of Provenance, 2013.

[7] F. Chirigati, D. Shasha, and J. Freire, “Reprozip: Using provenance to
support computational reproducibility,” in Presented as part of the 5th
USENIX Workshop on the Theory and Practice of Provenance, 2013.

[8] D. Thain, P. Ivie, and H. Meng, “Techniques for Preserving Scientific
Software Executions: Preserve the Mess or Encourage Cleanliness?,” in
12th International Conference on Digital Preservation (iPres), 2015.

[9] J. Loeliger, “Collaborating with git,” Linux Magazine, June, 2006.
[10] P. K. Gunda, L. Ravindranath, C. A. Thekkath, Y. Yu, and L. Zhuang,

“Nectar: Automatic management of data and computation in datacen-
ters.,” in OSDI, vol. 10, pp. 1–8, 2010.

[11] G. R. Brammer, R. W. Crosby, S. J. Matthews, and T. L. Williams, “Pa-
per mâché: Creating dynamic reproducible science,” Procedia Computer
Science, vol. 4, pp. 658–667, 2011.

[12] T. Proebsting and A. M. Warren, “Repeatability and benefaction in
computer systems research,” 2015.

[13] K. Belhajjame, C. Goble, S. Soiland-Reyes, and D. De Roure, “Fos-
tering scientific workflow preservation through discovery of substitute
services,” in E-Science (e-Science), 2011 IEEE 7th International Con-
ference on, pp. 97–104, IEEE, 2011.

[14] E. W. Dijkstra, “Letters to the editor: go to statement considered
harmful,” Communications of the ACM, vol. 11, no. 3, pp. 147–148,
1968.

[15] S. I. Feldman, “Make – A program for maintaining computer programs,”
Software: Practice and experience, vol. 9, no. 4, pp. 255–265, 1979.

[16] H. Meng and D. Thain, “Umbrella: A portable environment creator for
reproducible computing on clusters, clouds, and grids,” in Proceedings
of the 8th International Workshop on Virtualization Technologies in
Distributed Computing, VTDC ’15, (New York, NY, USA), ACM, 2015.

[17] A. Asserson, K. G. Jeffery, and A. Lopatenko, “Cerif: past, present and
future: an overview,” 2002.

[18] T. McGlynn, G. Fabbiano, A. Accomazzi, A. Smale, R. L. White,
T. Donaldson, A. Aloisi, T. Dower, J. M. Mazzerella, R. Ebert, et al.,
“Providing comprehensive and consistent access to astronomical obser-
vatory archive data: the nasa archive model,” in SPIE Astronomical Tele-
scopes+ Instrumentation, pp. 99100A–99100A, International Society for
Optics and Photonics, 2016.

[19] M. van Driel, A. Hutko, L. Krischer, C. Trabant, S. Stähler, and
T. Nissen-Meyer, “Syngine: On-demand synthetic seismograms from
the iris dmc based on axisem & instaseis,” in EGU General Assembly
Conference Abstracts, vol. 18, p. 8190, 2016.

[20] C. Lynch, “Big data: How do your data grow?,” Nature, vol. 455,
no. 7209, pp. 28–29, 2008.

[21] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain, “Work
Queue+Python: A framework for scalable scientific ensemble applica-
tions,” in Workshop on Python for High Performance and Scientific
Computing at SC11, 2011.

[22] FamilySearch.org, ““United States Census, 1850-1940.” Database.” Cit-
ing NARA microfilm publication T626. Washington, D.C.: National
Archives and Records Administration, 2002.

[23] W. Cohen, P. Ravikumar, and S. Fienberg, “A comparison of string
metrics for matching names and records,” in Kdd workshop on data
cleaning and object consolidation, vol. 3, pp. 73–78, 2003.

[24] P. Cederqvist, R. Pesch, et al., “Version management with cvs,” 1992.
[25] B. Collins-Sussman, “The subversion project: buiding a better cvs,”

Linux Journal, vol. 2002, no. 94, p. 3, 2002.
[26] L. Stanisic, A. Legrand, and V. Danjean, “An effective git and org-mode

based workflow for reproducible research,” ACM SIGOPS Operating
Systems Review, vol. 49, no. 1, pp. 61–70, 2015.

[27] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, et al., “Pegasus: A
framework for mapping complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237, 2005.

[28] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633–652, 2011.

[29] B. Giardine, C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah,
Y. Zhang, D. Blankenberg, I. Albert, J. Taylor, et al., “Galaxy: a platform
for interactive large-scale genome analysis,” Genome research, vol. 15,
no. 10, pp. 1451–1455, 2005.

[30] R. Garcia and M. T. Valente, “Nextflow: Business process meets
mapping frameworks,”

[31] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva,
and H. T. Vo, “Managing the evolution of dataflows with vistrails,” in
Data Engineering Workshops, 2006. Proceedings. 22nd International
Conference on, pp. 71–71, IEEE, 2006.

[32] D. Devecsery, M. Chow, X. Dou, J. Flinn, and P. M. Chen, “Eidetic
systems,” in 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 14), pp. 525–540, 2014.

[33] D. Thain and M. Livny, “Parrot: An Application Environment for Data-
Intensive Computing,” Scalable Computing: Practice and Experience,
vol. 6, no. 3, pp. 9–18, 2005.

[34] A. Vahdat and T. E. Anderson, “Transparent result caching,” in USENIX
Annual Technical Conference, 1998.

[35] D. Merkel, “Docker: lightweight linux containers for consistent devel-
opment and deployment,” Linux Journal, vol. 2014, no. 239, p. 2, 2014.

[36] H. Meng and D. Thain, “Umbrella: A Portable Environment Creator for
Reproducible Computing on Clusters, Clouds, and Grids,” in Workshop
on Virtualization Technologies in Distributed Computing (VTDC) at
HPDC, 2015.

[37] D. T. Liu and M. J. Franklin, “Griddb: a data-centric overlay for
scientific grids,” in Proceedings of the Thirtieth international conference
on Very large data bases-Volume 30, pp. 600–611, VLDB Endowment,
2004.

[38] R. Ricci, G. Wong, L. Stoller, K. Webb, J. Duerig, K. Downie, and
M. Hibler, “Apt: A platform for repeatable research in computer sci-
ence,” ACM SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 100–
107, 2015.

[39] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R. Pocock, P. Li,
and T. Oinn, “Taverna: a tool for building and running workflows of
services,” Nucleic acids research, vol. 34, no. suppl 2, pp. W729–W732,
2006.

[40] C. Dietrich and D. Lohmann, “The dataref versuchung: Saving time
through better internal repeatability,” ACM SIGOPS Operating Systems
Review, vol. 49, no. 1, pp. 51–60, 2015.

[41] B. Shneiderman, The New ABCs of Research: Achieving Breakthrough
Collaborations. Oxford University Press, 2016.

[42] J. Myers, M. Hedstrom, D. Akmon, S. Payette, B. A. Plale, I. Kouper,
S. McCaulay, R. McDonald, I. Suriarachchi, A. Varadharaju, et al.,
“Towards sustainable curation and preservation: The sead project’s
data services approach,” in e-Science (e-Science), 2015 IEEE 11th
International Conference on, pp. 485–494, IEEE, 2015.

