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Abstract: Shortwave infrared radiation (SWIR) is the 

portion of the electromagnetic spectrum from approxi-

mately 900 nm to 2500 nm. Recent advances in imaging 

systems have expanded the application of SWIR emitters 

from traditional fields in materials science to biomedi-

cal imaging, and the new detectors in SWIR opened an 

opportunity of deep tissue imaging. Achieving deep pho-

ton penetration while maintaining high resolution is one 

of the main objectives and challenges in bioimaging used 

for the investigation of diverse processes in living organ-

isms. The application of SWIR emitters in biological set-

tings is, however, hampered by low quantum efficiency. 

So far, photoluminescent properties in the SWIR region 

have not been improved by extending concepts that 

have been developed for the visible (400–650  nm) and 

near-infrared (NIR, 700–900  nm) wavelengths, which 

indicates that the governing behavior is fundamentally 

different in the SWIR. The focus of this minireview is 

to examine the mechanisms behind the low efficiency 

of SWIR emitters as well as to highlight the progress in 

their design for biological applications. Several common 

mechanisms will be considered in this review: (a) the 

effect of the energy gap between the excited and ground 

state on the quantum efficiency, (b) the coupling of the 

excited electronic states in SWIR emitters to vibrational 

states in the surrounding matrix, and (c) the role of envi-

ronment in quenching the excited states. General strate-

gies to improve the quantum yields for a diverse type of 

SWIR emitters will be also presented.

Keywords: SWIR; Optical Window; exNIR; imaging; nano-

particles; UCNP; SWCNT; quantum dots.

1   Background

Achieving deep photon penetration is one of the main 

objectives in bioimaging with optical systems. Rapid deep-

tissue imaging has historically been performed using 

ionizing radiation, typically X-rays or γ-rays. However, 

ionizing radiation poses a risk to biological tissue and 

only addresses anatomical alterations. Thus, low energy 

photons are preferred. The use of visible light is con-

venient but only feasible for superficial tissues, such as 

skin, due to strong absorption and scattering from tissue 

components.

In the last 20 years, near-infrared (NIR, 700–900 nm) 

fluorescent contrast agents, small molecules, and nano-

particles for in vivo imaging of live tissue have domi-

nated the preclinical and clinical research landscape 

[1–6]. Reduced scattering by the tissue; low absorption 

from tissue endogenous chromophores such as water, 

lipids, proteins, and hemoglobin; and negligible auto-

fluorescence has led to the selection of the NIR range as 

an optical window. Along with the availability of conven-

tional silicon-based NIR enhanced CCD cameras and inex-

pensive light sources (i.e. 785 nm lasers), research has led 

to an explosion of publications, patents, and reviews from 

many laboratories related to NIR contrast agents  [7–10] 

including from our group [11–13]. This explosion grew 

out of a well-developed understanding of the chemistry 

and biology of NIR fluorophores. From organic molecules 

to nanoparticles, early acceptance of NIR technology by 

the biological community has also led to the commercial 

development and clinical trials of many types of contrast 

agents. Today, more than 20  NIR contrast agents, which 

can be either free or conjugated to monoclonal antibodies, 

have been used in clinical trials, and dedicated imaging 

systems have emerged such as FLARE [14], NIR goggles 

[15], Spy Elite (Novadaq) [16], da Vinci (Intuitive Surgical) 

[17] for clinical diagnostics, as well as image- and robotic-

guided surgeries [18, 19]. The field is well established.
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Despite the progress in the NIR technology, the major 

drawback of shallow tissue penetration has remained 

the limiting factor and restricts applications to primarily 

small animal preclinical models (mice, small rats) [20, 

21] or to assessing subcutaneous (breast, skin) [22, 23] 

and optically accessible tissues (i.e. esophagus, colon) 

[24, 25] in humans. Although not as strong in the NIR as 

under visible light, scattering continues to be the key 

obstacle in deep tissue imaging. Thus, deeper tissue 

penetration requires using wavelengths greater than 

900 nm.

The importance of imaging in shortwave infrared 

radiation (SWIR) comes from the requirement to provide 

diagnostic tools for preclinical studies in larger animals 

(i.e. rabbits, dogs, and pigs, as their anatomy and physi-

ology are more similar to human beings than rodents) 

[26, 27]. The importance of SWIR imaging also stems from 

its potential translatability to humans to replace or com-

plement high-energy imaging modalities [such as X-ray, 

positron emission tomography (PET), or single-photon 

emission computed tomography (SPECT)].

Imaging solutions that go further into the red region 

than 900 nm, such as SWIR, or extended NIR (exNIR) have 

long been proven difficult to develop, primarily due to the 

lack of sensitive detectors. Commonly utilized silicon-

based sensors are inefficient beyond 1100 nm, resulting in 

low signal [28]. Beyond 1100 nm, the Si material becomes 

transparent to photons as the corresponding photon 

energy drops below the band gap energy of this semicon-

ducting material [29]. Operating at longer wavelengths 

requires coating the Si sensor with a wavelength shifting 

phosphor, which reduces quantum efficiency. Detectors 

based on germanium (Ge), indium antimonide (InSb), or 

mercury cadmium telluride (HgCdTe) are more sensitive 

but still suffer from low quantum efficiency in the SWIR 

range [30]. Thankfully, indium gallium arsenide (InGaAs) 

sensors, with their high quantum efficiency in the 900–

1600 nm range, have appeared. These sensors were used 

mostly for military applications, such as to minimize the 

scattering effect of clouds or fog, a problem similar to the 

in vivo imaging challenge.

The development of InGaAs-based diode array detec-

tors, research grade 2D cameras, and SWIR light sources 

(conventional quartz bulbs, temperature stabilized LEDs, 

laser diodes, and supercontinuum lasers [31]) sparked 

interest in using this technology in biology, and soon 

researchers recognized that in addition to the NIR, there 

were other optical windows in the SWIR [31–37]. Using the 

new detectors, several groups have demonstrated signifi-

cantly higher transparency of tissue in SWIR compared to 

the traditional NIR range, with some of the most promi-

nent bands of transparency at 1300 and 1550 nm [35, 37] 

(Figure 1). Even higher transparency may be possible 

at longer wavelengths (i.e. 1800  nm and 2200  nm) [36] 

where most of the current InGaAs detectors have low sen-

sitivity but can rely on InSb imaging detectors for longer 

wavelengths.

Further steps toward the development of SWIR-

based optical imaging will require more efficient contrast 

agents. To date, the development of biological imaging 

techniques utilizing absorption and emission in SWIR 

(SWIR→SWIR) has been limited, primarily because of 

the lack of efficient biocompatible emitters in this range 

[38]. Most of the organic SWIR dyes and many types of 

nanomaterials that have been developed for lasers and 

the telecommunication industry [39] were unsuitable 

for SWIR imaging due to their low (<0.1%) quantum effi-

ciency, poor water solubility, and potential systemic tox-

icity. To be considered in biology, early materials, such as 

polymethine dyes, carbon nanotubes, quantum dots, and 

Figure 1: Transparency of biological tissue in SWIR.

The metric is based on a spatial contrast of Michelson (with permission [37]).
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upconverting nanoparticles, required some sophisticated 

modifications to ensure sufficient bioavailability, excre-

tion, and low toxicity. One of the successful examples is 

shown in Figure  2 [40]. However, once modified, these 

materials demonstrated even lower quantum yield in 

aqueous media and poor imaging performance. The low 

quantum yield necessitated long light exposures, which 

are potentially damaging to tissue.

Over the last 10 years, the photoluminescent proper-

ties of contrast agents for biological agents in the SWIR 

have been substantially improved. However, they are still 

far below the level of visible contrast agents with 80–100% 

quantum efficiency. It has been realized that the govern-

ing behavior is fundamentally different in the SWIR com-

pared to the visible region. Understanding the mechanism 

of low efficiency in the SWIR and demonstrating progress 

and potential ways to improve the signal is the focus of 

this minireview.

2   Mechanisms of low emission

Significant efforts have been put forth for both under-

standing the origins of low efficiency in current SWIR 

emitters and developing methods to minimize quenching 

effects. Out of the many pathways behind the quenching 

of SWIR emission, we will consider the common mecha-

nisms that are shared by several types of contrast agents. 

These mechanisms include (a) the effect of the energy gap 

between the excited and ground states, (b) the presence 

of vibrational states in the surrounding matrix and their 

coupling with the excited electronic states, and (c) the 

role of environment on emitter stability and brightness. 

Individual specific mechanisms, such as those caused by 

structural defects (i.e. in SWCNs [41]), will be mentioned 

only briefly.

2.1   Energy gap law

The energy gap law is a fundamental constraint that 

states that radiationless transitions at longer wavelengths 

increase due to vibrational overlap between the ground 

and excited states [42] (Figure 3). These overlaps cause 

a decrease in the photoluminescent efficiency of organic 

and organometallic fluorophores [43] and also seem to be 

unavoidable in nanocrystals. This law radically restricts 

the number of luminescent dyes beyond 1000 nm where 

the overlap is almost inevitable.

Experimental verification of the energy gap law was 

established several decades ago, primarily for organic dye 

molecules emitting in the visible and NIR range. Those 

850–900 nm (NIR-I) 1300–1400 nm (NIR-IIa)
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Figure 2: Imaging of deep tissue using a dual NIR-SWIR probe based on the dye IR800CW attached to single-walled carbon nanotubes 

(SWCNs): (A) C57Bl/6 mouse head with hair removed; (B) fluorescent images of the same mouse at 850–900 nm, (C) 1300–1400 nm.

Red arrows point to specific locations in the brain that can be resolved (with permission from [40]).
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Figure 3: Illustration of the low energy gap law.

Longer wavelength of emission comes with stronger overlap that 

weakens the emission. S
0
 and S

1
 are the energy levels of the ground 

and excited states, respectively; v
n
 indicates vibrationally excited 

levels; green arrows indicate absorption; and red arrows indicate 

radiative (dashed) or non-radiative relaxation (curved).
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include aromatic hydrocarbons [44]; linear polyenes, includ-

ing carotenoids [45]; organometallic complexes [46]; and 

large polymeric molecules [47]. In many of these studies, a 

logarithmic dependence of the non-radiative constant upon 

the energy gap was demonstrated. The non-radiative decay 

rate (k
nr

) increases exponentially with decreasing energy 

separation between the excited and the ground states [48].

A critical aspect of the energy gap law is the mech-

anism of energy transfer from the excited state. It has 

been agreed in general that the excited state serves as a 

donor that provides energy to the vibrational modes of 

the acceptors within the same molecule or nearby solvent 

molecules. However, questions about the nature of the 

acceptors remain largely under discussion. In fact, there is 

an unsettled debate over whether the critical “accepting” 

modes (the vibrational modes into which the majority of 

the excited-state energy is disposed) is C-H or C-C stretch-

ing in character. Are there solvent molecules involved? For 

organic molecules, the experimental results demonstrate 

that C-C stretching modes play a major, if not the domi-

nant, role in the process [49].

2.2   The nature of vibrational modes in tissue

The excitation energy of the SWIR emitter might be trans-

ferred radiatively or non-radiatively to the tissue compo-

nents. In the radiative process, the emitted photons are 

reabsorbed by the tissue through the overlap between the 

emission band of the emitter and the absorption bands 

of the tissue components. The efficiency of this process 

depends upon the wavelength of emission and thickness 

of the tissue. In the non-radiative pathway, the energy 

dissipation occurs via Förster resonance energy transfer 

(FRET) without emitting a photon. Because of the short, 

nanometer-range nature of this effect, the process is pri-

marily governed by the nearest layer of ligands or tissue 

molecules through their absorption bands.

Absorption bands seen in SWIR in biological tissue 

components such as water, lipids, proteins, etc. (Figure 4) 

are the overtones and combination bands of their corre-

sponding fundamental vibrations (tones). The overtone 

and combination bands are considerably blue-shifted 

with respect to the tones. The latter are typically observed 

at mid-infrared (400–4000  cm−1 or 2500–25,000  nm) by 

IR or Raman spectroscopy. Overtone and combination 

bands are due to the anharmonicity of the vibration that 

is the deviation from an ideal harmonic oscillator, such 

as seen in a bond with two identical atoms. The anhar-

monicity increases when the bond connects atoms with 

dramatically different masses, such as in the case of X-H 

bonds where X is C, O, or N. Because of the anharmonic-

ity of tissue components, the SWIR range is dominated by 

signals from bonds involving hydrogen atoms such as O-H 

(water, carbohydrates), C-H (lipids), and N-H (proteins).

The radiative energy transfer or photon reabsorption 

cannot be avoided, as the emitter in the deep tissue is sur-

rounded by a large number of tissue molecules. The non-

radiative process, however, can be efficiently controlled as 

was first proposed and demonstrated by Guyot- Sionnest 

et al. [50] and later confirmed by Aharoni et al. [51]. In their 

seminal paper, Guyot-Sionnest et al. have demonstrated that 

the direct near-field energy transfer of the electronic excita-

tion to vibrational absorption by ligand or matrix is a predict-

able quantifiable effect; it is fast and applies to any transition 

[50]. For example, the non-radiative recombination of exci-

tons, defined as bound electron-hole pairs, in quantum dots 

results from coupling to C-H vibrations in the surface-bound 

ligands, which have characteristic frequencies in the wave-

length region of interest. Placing an inorganic spacer trans-

parent to SWIR photons or modifying the surface ligands is 

an example of promising strategies to minimize the probabil-

ity of non-radiative de-excitation (vide infra).

2.3   Role of vibrational modes in quenching 
of SWIR emitters

The mechanisms by which photoexcitations are coupled to 

vibrational modes are graphically summarized by Figure 5. 

The accepted opinion is that a resonant energy transfer 

mechanism, akin to Förster energy transfer, is the process by 
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Figure 4: Absorption spectra of major endogenous tissue chromo-

phores: water, hemoglobin, protein (represented here by albumin), 

and lipids (with permission from [35]).
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which the exciton couples to ligand vibrations (Figure 5A) 

[50–53]. For quantum dots, it has been proposed that the 

energy transfer proceeds via polaron states formed by 

strong coupling of vibrational modes to surface trap states 

(Figure 5B) [54]. In our opinion, coupling of photoexcita-

tions to vibrational states is one of the primary causes of 

low quantum yield. This hypothesis is consistent with the 

experimental observations of a number of researchers [50–

57]. For example, InAs nanocrystals with peak emission at 

1200 nm showed significantly higher efficiency in halogen-

ated solvent compared to toluene [51]. In the range of the 

C-H vibrations (1150–1200  nm), the  photoluminescence 

lifetime was approximately three times longer in the halo-

genated solvent compared to toluene, indicating that exci-

tons were coupled more strongly to C-H stretch modes [51]. 

In another example, when HgTe nanocrystals emitting at 

1060 nm were transferred from H
2
O to D

2
O, the quantum 

yield increased from 5% to 20% [54].

2.4   Other mechanisms affecting quantum 
efficiency

Solvent molecules might stabilize or destabilize the excited 

states of SWIR emitters. For example, polymethine dye 

molecules are known to have high sensitivity to solvent 

polarity, which significantly affects quantum efficiency 

[58, 59]. Considering that the SWIR absorption bands in 

polymethine dyes arise from electronic transition involv-

ing the π electrons along the polymethine chain, the 

cations in the ground state of the polymethine dyes reso-

nate between two limiting canonical structures. Based on 

NMR and crystallography studies of NIR dyes, the ground 

state of the cyanines are predominantly in all-trans con-

figurations [60, 61]. In the excited state, the bond order 

lowers and reduces the electron density in the double 

bonds along the polymethine chain, making the molecule 

more sensitive to the surrounding molecules and ions.

The change in bond order facilitates vibrational rota-

tions and allows the molecule to twist during its lifetime 

in the excited state. The twisted conformation is likely to 

undergo trans-cis isomerization, leading to non-radiative 

decay. A polar medium facilitates trans-cis transforma-

tion, effectively decreasing the quantum efficiency, while 

a non-polar environment stabilizes the excited state, 

thereby increasing the quantum yield as well as fluores-

cence lifetime and photostability. Formation of a micro-

environment (polymeric or silica) around the emitter is 

a known strategy to increase the quantum efficiency of 

polymethine dyes and has been explored in many NIR 

contrast agents [62, 63].

2.5   Strategies to decrease quenching

Reabsorption of photons by the tissue absorbers cannot 

be eliminated or even minimized and is entirely depend-

ent on the tissue thickness. In contrast, non-radiative 

quenching can be effectively controlled through the 

architecture of the ligands surrounding the emitter. The 

partial contribution from each of the pathways is difficult 

to evaluate, but based on published work, we believe that 

non-radiative emission dominates the quenching process. 

Thus, eliminating non-radiative quenching might signifi-

cantly increase quantum efficiency of the contrast agent.

A set of rules to minimize the effect of quenching of 

the emitter from the media or ligands was originally estab-

lished by Hasegawa et al. for SWIR emitting lanthanides 

[64] but can also be expanded to other classes of SWIR emit-

ters. The rules suggest to (i) avoid hydrogen-rich solvent 

molecules in the first coordination sphere; (ii) eliminate 

O-H groups around the emitting core, as these groups are 

the most efficient quenchers; and (iii) minimize the pres-

ence of C-H groups. Although the effects of C-H oscillators 

are smaller than those of O-H, C-H bonds are abundant 

in the biological media. Some of the successful examples 

Figure 5: Exciton relaxation pathways in quantum dots photolumi-

nescent in the SWIR.

(A) Resonant energy transfer. (B) Polaronic quenching. 

(C) Photoemission.
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of using these strategies are based on replacing hydrogen 

atoms with deuterium or fluorine.

Deuteration or fluorination of ligands coordinating 

SWIR emitters has been demonstrated in a number of 

studies, primarily in lanthanides. As deuterium is twice 

as heavy as hydrogen, such substitution (from C-H to C-D, 

and O-H to O-D) decreases the strength of the oscillator. 

This decrease leads to a decline in absorbance band inten-

sities from the vibrational state and diminishes the influ-

ence of the overtones on emission. Hence, deuteration of 

ligands has been demonstrated to increase the quantum 

yield in a number of SWIR emitting complexes, including 

Er3+, Nd3+, and Yt3+ emitters [65, 66]. Fluorine is even larger 

than deuterium, so the effect is stronger and is considered 

to be more efficient than deuteration [67]. Complete fluor-

ination might be quite complex and require substantial 

synthetic efforts; instead, partial fluorination can be used. 

This partial fluorination of ligands has led to a significant 

improvement of the quantum efficiency of Er3+ complexes 

emitting at 1535 nm [68, 69].

Encapsulation of the emitter within an inorganic 

matrix transparent to SWIR photons follows the same 

idea. The matrix shields the emission core by increasing 

the distance between the donor and the acceptor. Given 

that energy transfer is inversely proportional to the dis-

tance as 1/r6, several nanometers of the layer might be 

sufficient. Consistent with this idea, PbS quantum dots 

protected with As
2
S

3
 shells showed a significant increase 

in the quantum efficiency [70].

3   Emitters in SWIR

Today, there are several classes of SWIR emitting dyes and 

nanomaterials that have been or can potentially be used 

in SWIR imaging (Figure 6). Reported compounds include 

cyanine dyes [74], lanthanide complexes [75], Pt com-

plexes [73], certain types of quantum dots [76], small gold 

nanoparticles [77], and single-walled carbon nanotubes 

(SWCNTs) [32, 33]. We will briefly describe some of these 

most common contrast agents while focusing on strate-

gies to improve quantum efficiency.

3.1   Organic dyes

Historically, organic dyes were the first small molecules 

developed in early 1980s to emit in the SWIR range, pri-

marily as the media for tunable dye-based lasers [78, 79]. 

Organic dyes that are fluorescent in the SWIR, such as 

IR-26, IR-1048 or IR-1061, are stable but highly hydropho-

bic and suffer from extremely low quantum yield – less 

than 0.05% [52, 80]. In addition to a significant overlap 

Figure 6: SWIR emitters: commercially available SWIR dyes emitting at >1000 nm IR-26, IR-1048, IR-1061.

Schematics of single-walled carbon nanotubes (with permission from [71]), upconverting nanoparticles (with permission from [72]), 

 nanowire formed by self-assembly of a Pt complex (with permission from [73]), and quantum dots.
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between the excited and ground states (low energy gap) 

and quenching by vibrational states of solvent molecules, 

the emission of these dyes is strongly influenced by 

solvent polarity.

Encapsulation of the hydrophobic SWIR dye IR-1061 

into a water-soluble polymer nanoparticle with a hydro-

phobic cavity has led to a relatively high quantum yield, 

enabling real-time imaging of hind-limb hemodynam-

ics [81]. A recent development in using organic dyes was 

achieved with a new SWIR dye, CH1055, conjugated to PEG 

for facilitated bioavailability and excretion [82].

3.2   Single-walled carbon nanotubes

SWCNTs are SWIR-emitting materials that have been 

extensively investigated for sensing in biological media in 

vitro [83, 84] and in vivo [32, 85]. Due to their sharp multi-

ple SWIR spectral features across a broad bandwidth from 

800 to 1600  nm, SWCNTs also showed the potential for 

in vivo hyperspectral imaging [86, 87]. However, photon-

conversion efficiency of SWCNTs is relatively low (<0.1%) 

[88], which makes SWCNTs suboptimal for demanding 

bioimaging applications.

Theoretical and experimental studies suggest that 

carbon nanotube photoluminescence is inefficient 

because of low-lying dark excitons that enhance non-

radiative transmission [71, 89]. Various structural defects 

that develop during their synthesis or processing can 

accumulate over the relatively long length (100–1000 nm) 

of the nanotubes [41, 90]. Studying the decay rate of the 

fluorescence from individual SWCNTs, Wang et  al. sug-

gested that the low fluorescence quantum yield is con-

trolled by quenching from the structural defects [41]. The 

structural defects can also react with oxygen to form a 

hydroperoxide carbocation in a process known as hole 

doping [91], which further decreases the quantum yield. 

Nanotube aggregation has also been reported as a cause 

of quenching [92].

Several strategies have been published to improve the 

quantum efficiency of nanotubes. Minimizing the oxida-

tive defects by hole passivation with reducing agents [93] 

and oxygen-excluding surfactants [94] has improved the 

quantum yield. Purification of the nanotubes through 

gradient centrifugation and minimizing the aggregation 

has also been fruitful for increasing the efficiency to 20% 

[94]. Another breakthrough came from covalent func-

tionalization of SWCNTs with a controlled number of aryl 

functional groups that produced a new and bright photo-

luminescence peak through introduction of a bright defect 

state [95].

3.3   Lanthanide nanoparticles

Lanthanide-based nanomaterials have [96] emerged 

relatively recently for optical imaging due to their high 

stability and low toxicity [97]. The most common lantha-

nide-based nanoparticles are based on the photon upcon-

version effect, in which at least two incident photons of 

relatively low energy are absorbed and converted into one 

emitted photon with higher energy [98]. Typical upcon-

verting nanoparticles (UCNPs) are oxides or fluorides, 

i.e. NaYF
4
 doped with lanthanides, such as Yb3+ ions that 

work as sensitizers and co-doped with Er3+ or Tm3+ ions 

that serve as emitters (activators). In the most common 

designs of UCNP NaYF
4
:Yb/Er, Tm, the excitation occurs at 

ca. 980 nm due to the absorption by Yb3+. The long-lived 

metastable energy state of the excited Yb-ions allows addi-

tional photons to be absorbed. The absorbed multiphoton 

energy is then transferred from the sensitizer to the acti-

vator, resulting in emission at shorter wavelengths. For 

example, Tm3+ emits at 474 nm and 798 nm [96] while Er3+ 

emits at 410, 520, 540, and 660 nm [96].

Ideally, deep tissue imaging requires excitation and 

emission in SWIR (SWIR→SWIR). In reality, this is difficult 

to achieve with the currently developed UCNPs. The exci-

tation of most UCPNs occurs in SWIR (980 nm), but their 

emission lies in the Vis or NIR range (SWIR→Vis, NIR). 

Similarly structured nanoparticles, such as lanthanide-

based downconverting nanoparticles (DCNPs), absorb 

in the visible range and emit in the SWIR (Vis →SWIR). 

For example, LaF
3
 nanoparticles doped with Nd3+, Ho3+, or 

Er3+ emit at 1330, 1450, and 1525 nm correspondingly but 

require an excitation with a 513-nm laser to achieve good 

signal [99, 100].

Addressing this challenge, photon downconversion 

has been accomplished using a NIR laser (802  nm) to 

achieve NIR→SWIR [101]. Recently Kamimuro et al. used 

PEGylated Y
2
O

3
:Yb, Er nanoparticles to show a strong 

signal at 1550 nm in vivo upon irradiation with a 980-nm 

laser, thus realizing SWIR→SWIR imaging [102]. Further-

more, Naczynski et  al. developed a library of rare earth 

nanoreporters with tunable, discrete SWIR emission over 

the broad range of 1000–2300 nm.

The luminescence efficiency of UCNPs and DCNPs 

emitting in SWIR is generally low. Several strategies 

have been devised to improve the quantum efficiency. To 

suppress the vibrational quenching caused by the O-H 

groups from water on the surfaces of NdF
3
 nanoparticles, 

they were coated with silica [103]. This treatment led to 

a 1.6 times higher intensity than that of bare NdF
3
. In a 

similar strategy, Chen et al. grew a thin layer of NaGdF
4
 

shells on top of NaGdF
4
:Nd3+ of nanocrystals to prepare 
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highly efficient DCNPs with an absolute quantum yield 

of 40% [104].

3.4   Quantum dots

Synthetic protocols for known materials that have band 

gaps appropriate for emission in the SWIR were estab-

lished a relatively long time ago [105, 106]. Today, there 

are quantum dots composed of different types of semicon-

ductors including InAs and InP, PbSe and PbS, HgTe, Ag
2
S 

and Ag
2
Se, CuInS

2
, and CuInSe

2
. Photoluminescent semi-

conductor nanocrystals are in general much brighter than 

other SWIR emitters such as dyes, SWCNTs and DCNPs, 

in which their brightness, in part, stems from high molar 

absorptivities. In the context of bioimaging applications, 

the quantum yield values that have been demonstrated to 

date are still rather low – less than 10% at a peak wave-

length of 1550  nm when measured in an inert, air-free 

environment.

A major problem in using SWIR quantum dots in 

a biological setting is their notorious instability in 

aqueous media. Virtually all known quantum dots mate-

rials degrade in the presence of water and air [107, 108]. 

For example, PbS and PbSe quantum dots are prone to 

oxidation and other reactions (i.e. etching, photobleach-

ing) resulting in the loss of emission [109, 110]. Thus, 

the principal challenge is to develop a robust shell that 

protects the emitting core. While for the visible emit-

ting quantum dots composed of CdSe, the growth of a 

passivating shell such as CdS/ZnS has been well estab-

lished, with the quantum yield reaching unity [111], this 

approach has been proven to be more difficult for SWIR 

emitters. There are only a handful reports that have been 

able to show the application of SWIR quantum dots in 

bioimaging [112].

Robust inorganic shells to chemically isolate the core 

emitter from the biological environment present a prom-

ising approach. Benayas et  al. used two layers of pro-

tection to develop bright water-dispersible core/shell1/

shell2 PbS/CdS/ZnS quantum dots [113]. Similarly, using 

multiple layers of protection, Aharoni et  al. prepared 

InAs/CdSe/ZnSe nanoemitters [114].

Oxide coatings on quantum dots are known to exhibit 

excellent chemical stability that can be applied to protect 

the core [115]. A key challenge with metal oxide coatings is 

to ensure they are free from OH groups, which are expected 

to exacerbate vibrational PL quenching. Addressing this 

challenge, Yin et  al. developed a high-precision method 

of coating quantum dots using an atomic layer deposition 

technique to improve the photoluminescence stability 

[116]. Although the method has been demonstrated on 

visible quantum dots, it could potentially be expanded to 

SWIR emitters as well.

4   Concluding remarks

The last decade saw the emergence of SWIR emitting 

small molecules and nanoparticles that have great 

potential in the field of bioimaging. A great number of 

synthetic procedures have been developed; however, for 

most of the compounds, the quantum efficiency remains 

low. Hence, significant effort has been spent to develop 

and deploy biocompatible small molecules and nanoma-

terials that are bright in the SWIR. Protection of the emit-

ters from aggressive biological media and/or minimizing 

energy transfer from the emitter to tissue chromophores 

in order to retain high quantum efficiency presents a 

significant challenge. Other critical barriers that limit 

biological applications include (i) relatively low repro-

ducibility and scalability; (ii) poor long-term stability 

in aqueous media, buffers, and biological media; (iii) 

difficulty in attaching targeting groups; (iv) potential 

immunogenicity; and (v) limited clinical translation that 

requires no toxic metals in the formulation regardless of 

the product stability.

Given that the synthesis of bright emitters, espe-

cially nanoparticles, involves a complex compositional 

space, computational approaches, such as those based on 

machine learning and data mining, may be of great value 

in the search for new material systems. In the field of emit-

ters, such an approach has the potential to quickly predict 

the brightest stable and non-toxic nanoparticles with the 

desired properties as a function of size, composition, and 

heterostructure. Accurate modeling of the photophysics 

and photochemistry of SWIR nanoemitters will facilitate 

and accelerate the synthetic procedures to identify high-

performance, nontoxic materials.

Overall, the progress in the development of SWIR 

emitters has been dramatic and exciting. Further progress 

in this field will require innovative strategies to not only 

enhance the radiative-transition rate of SWIR-emitting 

species but also make them highly biocompatible.
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