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Abstract: Shortwave infrared radiation (SWIR) is the
portion of the electromagnetic spectrum from approxi-
mately 900 nm to 2500 nm. Recent advances in imaging
systems have expanded the application of SWIR emitters
from traditional fields in materials science to biomedi-
cal imaging, and the new detectors in SWIR opened an
opportunity of deep tissue imaging. Achieving deep pho-
ton penetration while maintaining high resolution is one
of the main objectives and challenges in bioimaging used
for the investigation of diverse processes in living organ-
isms. The application of SWIR emitters in biological set-
tings is, however, hampered by low quantum efficiency.
So far, photoluminescent properties in the SWIR region
have not been improved by extending concepts that
have been developed for the visible (400-650 nm) and
near-infrared (NIR, 700-900 nm) wavelengths, which
indicates that the governing behavior is fundamentally
different in the SWIR. The focus of this minireview is
to examine the mechanisms behind the low efficiency
of SWIR emitters as well as to highlight the progress in
their design for biological applications. Several common
mechanisms will be considered in this review: (a) the
effect of the energy gap between the excited and ground
state on the quantum efficiency, (b) the coupling of the
excited electronic states in SWIR emitters to vibrational
states in the surrounding matrix, and (c) the role of envi-
ronment in quenching the excited states. General strate-
gies to improve the quantum yields for a diverse type of
SWIR emitters will be also presented.
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1 Background

Achieving deep photon penetration is one of the main
objectives in bioimaging with optical systems. Rapid deep-
tissue imaging has historically been performed using
ionizing radiation, typically X-rays or y-rays. However,
ionizing radiation poses a risk to biological tissue and
only addresses anatomical alterations. Thus, low energy
photons are preferred. The use of visible light is con-
venient but only feasible for superficial tissues, such as
skin, due to strong absorption and scattering from tissue
components.

In the last 20 years, near-infrared (NIR, 700-900 nm)
fluorescent contrast agents, small molecules, and nano-
particles for in vivo imaging of live tissue have domi-
nated the preclinical and clinical research landscape
[1-6]. Reduced scattering by the tissue; low absorption
from tissue endogenous chromophores such as water,
lipids, proteins, and hemoglobin; and negligible auto-
fluorescence has led to the selection of the NIR range as
an optical window. Along with the availability of conven-
tional silicon-based NIR enhanced CCD cameras and inex-
pensive light sources (i.e. 785 nm lasers), research has led
to an explosion of publications, patents, and reviews from
many laboratories related to NIR contrast agents [7-10]
including from our group [11-13]. This explosion grew
out of a well-developed understanding of the chemistry
and biology of NIR fluorophores. From organic molecules
to nanoparticles, early acceptance of NIR technology by
the biological community has also led to the commercial
development and clinical trials of many types of contrast
agents. Today, more than 20 NIR contrast agents, which
can be either free or conjugated to monoclonal antibodies,
have been used in clinical trials, and dedicated imaging
systems have emerged such as FLARE [14], NIR goggles
[15], Spy Elite (Novadaq) [16], da Vinci (Intuitive Surgical)
[17] for clinical diagnostics, as well as image- and robotic-
guided surgeries [18, 19]. The field is well established.
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Despite the progress in the NIR technology, the major
drawback of shallow tissue penetration has remained
the limiting factor and restricts applications to primarily
small animal preclinical models (mice, small rats) [20,
21] or to assessing subcutaneous (breast, skin) [22, 23]
and optically accessible tissues (i.e. esophagus, colon)
[24, 25] in humans. Although not as strong in the NIR as
under visible light, scattering continues to be the key
obstacle in deep tissue imaging. Thus, deeper tissue
penetration requires using wavelengths greater than
900 nm.

The importance of imaging in shortwave infrared
radiation (SWIR) comes from the requirement to provide
diagnostic tools for preclinical studies in larger animals
(i.e. rabbits, dogs, and pigs, as their anatomy and physi-
ology are more similar to human beings than rodents)
[26, 27]. The importance of SWIR imaging also stems from
its potential translatability to humans to replace or com-
plement high-energy imaging modalities [such as X-ray,
positron emission tomography (PET), or single-photon
emission computed tomography (SPECT)].

Imaging solutions that go further into the red region
than 900 nm, such as SWIR, or extended NIR (exNIR) have
long been proven difficult to develop, primarily due to the
lack of sensitive detectors. Commonly utilized silicon-
based sensors are inefficient beyond 1100 nm, resulting in
low signal [28]. Beyond 1100 nm, the Si material becomes
transparent to photons as the corresponding photon
energy drops below the band gap energy of this semicon-
ducting material [29]. Operating at longer wavelengths
requires coating the Si sensor with a wavelength shifting
phosphor, which reduces quantum efficiency. Detectors
based on germanium (Ge), indium antimonide (InSh), or
mercury cadmium telluride (HgCdTe) are more sensitive
but still suffer from low quantum efficiency in the SWIR
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Figure 1: Transparency of biological tissue in SWIR.
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range [30]. Thankfully, indium gallium arsenide (InGaAs)
sensors, with their high quantum efficiency in the 900-
1600 nm range, have appeared. These sensors were used
mostly for military applications, such as to minimize the
scattering effect of clouds or fog, a problem similar to the
in vivo imaging challenge.

The development of InGaAs-based diode array detec-
tors, research grade 2D cameras, and SWIR light sources
(conventional quartz bulbs, temperature stabilized LEDs,
laser diodes, and supercontinuum lasers [31]) sparked
interest in using this technology in biology, and soon
researchers recognized that in addition to the NIR, there
were other optical windows in the SWIR [31-37]. Using the
new detectors, several groups have demonstrated signifi-
cantly higher transparency of tissue in SWIR compared to
the traditional NIR range, with some of the most promi-
nent bands of transparency at 1300 and 1550 nm [35, 37]
(Figure 1). Even higher transparency may be possible
at longer wavelengths (i.e. 1800 nm and 2200 nm) [36]
where most of the current InGaAs detectors have low sen-
sitivity but can rely on InSb imaging detectors for longer
wavelengths.

Further steps toward the development of SWIR-
based optical imaging will require more efficient contrast
agents. To date, the development of biological imaging
techniques utilizing absorption and emission in SWIR
(SWIR—SWIR) has been limited, primarily because of
the lack of efficient biocompatible emitters in this range
[38]. Most of the organic SWIR dyes and many types of
nanomaterials that have been developed for lasers and
the telecommunication industry [39] were unsuitable
for SWIR imaging due to their low (<0.1%) quantum effi-
ciency, poor water solubility, and potential systemic tox-
icity. To be considered in biology, early materials, such as
polymethine dyes, carbon nanotubes, quantum dots, and
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Figure 2: Imaging of deep tissue using a dual NIR-SWIR probe based on the dye IRBOOCW attached to single-walled carbon nanotubes
(SWCNSs): (A) C57Bl/6 mouse head with hair removed; (B) fluorescent images of the same mouse at 850-900 nm, (C) 1300-1400 nm.
Red arrows point to specific locations in the brain that can be resolved (with permission from [40]).

upconverting nanoparticles, required some sophisticated
modifications to ensure sufficient bioavailability, excre-
tion, and low toxicity. One of the successful examples is
shown in Figure 2 [40]. However, once modified, these
materials demonstrated even lower quantum yield in
aqueous media and poor imaging performance. The low
quantum yield necessitated long light exposures, which
are potentially damaging to tissue.

Over the last 10 years, the photoluminescent proper-
ties of contrast agents for biological agents in the SWIR
have been substantially improved. However, they are still
far below the level of visible contrast agents with 80-100%
quantum efficiency. It has been realized that the govern-
ing behavior is fundamentally different in the SWIR com-
pared to the visible region. Understanding the mechanism
of low efficiency in the SWIR and demonstrating progress
and potential ways to improve the signal is the focus of
this minireview.

2 Mechanisms of low emission

Significant efforts have been put forth for both under-
standing the origins of low efficiency in current SWIR
emitters and developing methods to minimize quenching
effects. Out of the many pathways behind the quenching
of SWIR emission, we will consider the common mecha-
nisms that are shared by several types of contrast agents.
These mechanisms include (a) the effect of the energy gap
between the excited and ground states, (b) the presence
of vibrational states in the surrounding matrix and their
coupling with the excited electronic states, and (c) the
role of environment on emitter stability and brightness.
Individual specific mechanisms, such as those caused by
structural defects (i.e. in SWCNs [41]), will be mentioned
only briefly.

2.1 Energy gap law

The energy gap law is a fundamental constraint that
states that radiationless transitions at longer wavelengths
increase due to vibrational overlap between the ground
and excited states [42] (Figure 3). These overlaps cause
a decrease in the photoluminescent efficiency of organic
and organometallic fluorophores [43] and also seem to be
unavoidable in nanocrystals. This law radically restricts
the number of luminescent dyes beyond 1000 nm where
the overlap is almost inevitable.

Experimental verification of the energy gap law was
established several decades ago, primarily for organic dye
molecules emitting in the visible and NIR range. Those
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Figure 3: lIllustration of the low energy gap law.

Longer wavelength of emission comes with stronger overlap that
weakens the emission. S and S, are the energy levels of the ground
and excited states, respectively; v_indicates vibrationally excited
levels; green arrows indicate absorption; and red arrows indicate
radiative (dashed) or non-radiative relaxation (curved).
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include aromatic hydrocarbons [44]; linear polyenes, includ-
ing carotenoids [45]; organometallic complexes [46]; and
large polymeric molecules [47]. In many of these studies, a
logarithmic dependence of the non-radiative constant upon
the energy gap was demonstrated. The non-radiative decay
rate (k ) increases exponentially with decreasing energy
separation between the excited and the ground states [48].

A critical aspect of the energy gap law is the mech-
anism of energy transfer from the excited state. It has
been agreed in general that the excited state serves as a
donor that provides energy to the vibrational modes of
the acceptors within the same molecule or nearby solvent
molecules. However, questions about the nature of the
acceptors remain largely under discussion. In fact, there is
an unsettled debate over whether the critical “accepting”
modes (the vibrational modes into which the majority of
the excited-state energy is disposed) is C-H or C-C stretch-
ing in character. Are there solvent molecules involved? For
organic molecules, the experimental results demonstrate
that C-C stretching modes play a major, if not the domi-
nant, role in the process [49].

2.2 The nature of vibrational modes in tissue

The excitation energy of the SWIR emitter might be trans-
ferred radiatively or non-radiatively to the tissue compo-
nents. In the radiative process, the emitted photons are
reabsorbed by the tissue through the overlap between the
emission band of the emitter and the absorption bands
of the tissue components. The efficiency of this process
depends upon the wavelength of emission and thickness
of the tissue. In the non-radiative pathway, the energy
dissipation occurs via Forster resonance energy transfer
(FRET) without emitting a photon. Because of the short,
nanometer-range nature of this effect, the process is pri-
marily governed by the nearest layer of ligands or tissue
molecules through their absorption bands.

Absorption bands seen in SWIR in biological tissue
components such as water, lipids, proteins, etc. (Figure 4)
are the overtones and combination bands of their corre-
sponding fundamental vibrations (tones). The overtone
and combination bands are considerably blue-shifted
with respect to the tones. The latter are typically observed
at mid-infrared (400-4000 cm™ or 2500-25,000 nm) by
IR or Raman spectroscopy. Overtone and combination
bands are due to the anharmonicity of the vibration that
is the deviation from an ideal harmonic oscillator, such
as seen in a bond with two identical atoms. The anhar-
monicity increases when the bond connects atoms with
dramatically different masses, such as in the case of X-H
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Figure 4: Absorption spectra of major endogenous tissue chromo-
phores: water, hemoglobin, protein (represented here by albumin),
and lipids (with permission from [35]).

bonds where X is C, O, or N. Because of the anharmonic-
ity of tissue components, the SWIR range is dominated by
signals from bonds involving hydrogen atoms such as O-H
(water, carbohydrates), C-H (lipids), and N-H (proteins).

The radiative energy transfer or photon reabsorption
cannot be avoided, as the emitter in the deep tissue is sur-
rounded by a large number of tissue molecules. The non-
radiative process, however, can be efficiently controlled as
was first proposed and demonstrated by Guyot-Sionnest
et al. [50] and later confirmed by Aharoni et al. [51]. In their
seminal paper, Guyot-Sionnest et al. have demonstrated that
the direct near-field energy transfer of the electronic excita-
tion to vibrational absorption by ligand or matrix is a predict-
able quantifiable effect; it is fast and applies to any transition
[50]. For example, the non-radiative recombination of exci-
tons, defined as bound electron-hole pairs, in quantum dots
results from coupling to C-H vibrations in the surface-bound
ligands, which have characteristic frequencies in the wave-
length region of interest. Placing an inorganic spacer trans-
parent to SWIR photons or modifying the surface ligands is
an example of promising strategies to minimize the probabil-
ity of non-radiative de-excitation (vide infra).

2.3 Role of vibrational modes in quenching
of SWIR emitters

The mechanisms by which photoexcitations are coupled to
vibrational modes are graphically summarized by Figure 5.
The accepted opinion is that a resonant energy transfer
mechanism, akin to Férster energy transfer, is the process by
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Figure 5: Exciton relaxation pathways in quantum dots photolumi-
nescent in the SWIR.

(A) Resonant energy transfer. (B) Polaronic quenching.

(C) Photoemission.

which the exciton couples to ligand vibrations (Figure 5A)
[50-53]. For quantum dots, it has been proposed that the
energy transfer proceeds via polaron states formed by
strong coupling of vibrational modes to surface trap states
(Figure 5B) [54]. In our opinion, coupling of photoexcita-
tions to vibrational states is one of the primary causes of
low quantum yield. This hypothesis is consistent with the
experimental observations of a number of researchers [50—
57]. For example, InAs nanocrystals with peak emission at
1200 nm showed significantly higher efficiency in halogen-
ated solvent compared to toluene [51]. In the range of the
C-H vibrations (1150-1200 nm), the photoluminescence
lifetime was approximately three times longer in the halo-
genated solvent compared to toluene, indicating that exci-
tons were coupled more strongly to C-H stretch modes [51].
In another example, when HgTe nanocrystals emitting at
1060 nm were transferred from H,0 to D,0, the quantum
yield increased from 5% to 20% [54].

2.4 Other mechanisms affecting quantum
efficiency

Solvent molecules might stabilize or destabilize the excited
states of SWIR emitters. For example, polymethine dye

E. Thimsen et al.: SWIR emitters for biological imaging = 1047

molecules are known to have high sensitivity to solvent
polarity, which significantly affects quantum efficiency
[58, 59]. Considering that the SWIR absorption bands in
polymethine dyes arise from electronic transition involv-
ing the m electrons along the polymethine chain, the
cations in the ground state of the polymethine dyes reso-
nate between two limiting canonical structures. Based on
NMR and crystallography studies of NIR dyes, the ground
state of the cyanines are predominantly in all-trans con-
figurations [60, 61]. In the excited state, the bond order
lowers and reduces the electron density in the double
bonds along the polymethine chain, making the molecule
more sensitive to the surrounding molecules and ions.

The change in bond order facilitates vibrational rota-
tions and allows the molecule to twist during its lifetime
in the excited state. The twisted conformation is likely to
undergo trans-cis isomerization, leading to non-radiative
decay. A polar medium facilitates trans-cis transforma-
tion, effectively decreasing the quantum efficiency, while
a non-polar environment stabilizes the excited state,
thereby increasing the quantum vyield as well as fluores-
cence lifetime and photostability. Formation of a micro-
environment (polymeric or silica) around the emitter is
a known strategy to increase the quantum efficiency of
polymethine dyes and has been explored in many NIR
contrast agents [62, 63].

2.5 Strategies to decrease quenching

Reabsorption of photons by the tissue absorbers cannot
be eliminated or even minimized and is entirely depend-
ent on the tissue thickness. In contrast, non-radiative
quenching can be effectively controlled through the
architecture of the ligands surrounding the emitter. The
partial contribution from each of the pathways is difficult
to evaluate, but based on published work, we believe that
non-radiative emission dominates the quenching process.
Thus, eliminating non-radiative quenching might signifi-
cantly increase quantum efficiency of the contrast agent.
A set of rules to minimize the effect of quenching of
the emitter from the media or ligands was originally estab-
lished by Hasegawa et al. for SWIR emitting lanthanides
[64] but can also be expanded to other classes of SWIR emit-
ters. The rules suggest to (i) avoid hydrogen-rich solvent
molecules in the first coordination sphere; (ii) eliminate
O-H groups around the emitting core, as these groups are
the most efficient quenchers; and (iii) minimize the pres-
ence of C-H groups. Although the effects of C-H oscillators
are smaller than those of O-H, C-H bonds are abundant
in the biological media. Some of the successful examples
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of using these strategies are based on replacing hydrogen
atoms with deuterium or fluorine.

Deuteration or fluorination of ligands coordinating
SWIR emitters has been demonstrated in a number of
studies, primarily in lanthanides. As deuterium is twice
as heavy as hydrogen, such substitution (from C-H to C-D,
and O-H to O-D) decreases the strength of the oscillator.
This decrease leads to a decline in absorbance band inten-
sities from the vibrational state and diminishes the influ-
ence of the overtones on emission. Hence, deuteration of
ligands has been demonstrated to increase the quantum
yield in a number of SWIR emitting complexes, including

Er**, Nd**, and Yt** emitters [65, 66]. Fluorine is even larger
than deuterium, so the effect is stronger and is considered
to be more efficient than deuteration [67]. Complete fluor-
ination might be quite complex and require substantial
synthetic efforts; instead, partial fluorination can be used.
This partial fluorination of ligands has led to a significant
improvement of the quantum efficiency of Er’** complexes
emitting at 1535 nm [68, 69].

Encapsulation of the emitter within an inorganic
matrix transparent to SWIR photons follows the same
idea. The matrix shields the emission core by increasing
the distance between the donor and the acceptor. Given
that energy transfer is inversely proportional to the dis-
tance as 1/r%, several nanometers of the layer might be
sufficient. Consistent with this idea, PbS quantum dots
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protected with As,S, shells showed a significant increase
in the quantum efficiency [70].

3 Emitters in SWIR

Today, there are several classes of SWIR emitting dyes and
nanomaterials that have been or can potentially be used
in SWIR imaging (Figure 6). Reported compounds include
cyanine dyes [74], lanthanide complexes [75], Pt com-
plexes [73], certain types of quantum dots [76], small gold
nanoparticles [77], and single-walled carbon nanotubes
(SWCNTSs) [32, 33]. We will briefly describe some of these
most common contrast agents while focusing on strate-
gies to improve quantum efficiency.

3.1 Organic dyes

Historically, organic dyes were the first small molecules
developed in early 1980s to emit in the SWIR range, pri-
marily as the media for tunable dye-based lasers [78, 79].
Organic dyes that are fluorescent in the SWIR, such as
IR-26, IR-1048 or IR-1061, are stable but highly hydropho-
bic and suffer from extremely low quantum yield — less
than 0.05% [52, 80]. In addition to a significant overlap
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Figure 6: SWIR emitters: commercially available SWIR dyes emitting at >1000 nm IR-26, IR-1048, IR-1061.
Schematics of single-walled carbon nanotubes (with permission from [71]), upconverting nanoparticles (with permission from [72]),
nanowire formed by self-assembly of a Pt complex (with permission from [73]), and quantum dots.
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between the excited and ground states (low energy gap)
and quenching by vibrational states of solvent molecules,
the emission of these dyes is strongly influenced by
solvent polarity.

Encapsulation of the hydrophobic SWIR dye IR-1061
into a water-soluble polymer nanoparticle with a hydro-
phobic cavity has led to a relatively high quantum yield,
enabling real-time imaging of hind-limb hemodynam-
ics [81]. A recent development in using organic dyes was
achieved with a new SWIR dye, CH1055, conjugated to PEG
for facilitated bioavailability and excretion [82].

3.2 Single-walled carbon nanotubes

SWCNTs are SWIR-emitting materials that have been
extensively investigated for sensing in biological media in
vitro [83, 84] and in vivo [32, 85]. Due to their sharp multi-
ple SWIR spectral features across a broad bandwidth from
800 to 1600 nm, SWCNTSs also showed the potential for
in vivo hyperspectral imaging [86, 87]. However, photon-
conversion efficiency of SWCNTs is relatively low (<0.1%)
[88], which makes SWCNTs suboptimal for demanding
bioimaging applications.

Theoretical and experimental studies suggest that
carbon nanotube photoluminescence is inefficient
because of low-lying dark excitons that enhance non-
radiative transmission [71, 89]. Various structural defects
that develop during their synthesis or processing can
accumulate over the relatively long length (100-1000 nm)
of the nanotubes [41, 90]. Studying the decay rate of the
fluorescence from individual SWCNTs, Wang et al. sug-
gested that the low fluorescence quantum yield is con-
trolled by quenching from the structural defects [41]. The
structural defects can also react with oxygen to form a
hydroperoxide carbocation in a process known as hole
doping [91], which further decreases the quantum yield.
Nanotube aggregation has also been reported as a cause
of quenching [92].

Several strategies have been published to improve the
quantum efficiency of nanotubes. Minimizing the oxida-
tive defects by hole passivation with reducing agents [93]
and oxygen-excluding surfactants [94] has improved the
quantum vyield. Purification of the nanotubes through
gradient centrifugation and minimizing the aggregation
has also been fruitful for increasing the efficiency to 20%
[94]. Another breakthrough came from covalent func-
tionalization of SWCNTs with a controlled number of aryl
functional groups that produced a new and bright photo-
luminescence peak through introduction of a bright defect
state [95].
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3.3 Lanthanide nanoparticles

Lanthanide-based nanomaterials have [96] emerged
relatively recently for optical imaging due to their high
stability and low toxicity [97]. The most common lantha-
nide-based nanoparticles are based on the photon upcon-
version effect, in which at least two incident photons of
relatively low energy are absorbed and converted into one
emitted photon with higher energy [98]. Typical upcon-
verting nanoparticles (UCNPs) are oxides or fluorides,
i.e. NaYF, doped with lanthanides, such as Yb** ions that
work as sensitizers and co-doped with Er** or Tm*" ions
that serve as emitters (activators). In the most common
designs of UCNP NaYF 4:Yb/ Er, Tm, the excitation occurs at
ca. 980 nm due to the absorption by Yb**. The long-lived
metastable energy state of the excited Yb-ions allows addi-
tional photons to be absorbed. The absorbed multiphoton
energy is then transferred from the sensitizer to the acti-
vator, resulting in emission at shorter wavelengths. For
example, Tm*" emits at 474 nm and 798 nm [96] while Er**
emits at 410, 520, 540, and 660 nm [96].

Ideally, deep tissue imaging requires excitation and
emission in SWIR (SWIR—SWIR). In reality, this is difficult
to achieve with the currently developed UCNPs. The exci-
tation of most UCPNs occurs in SWIR (980 nm), but their
emission lies in the Vis or NIR range (SWIR—Vis, NIR).
Similarly structured nanoparticles, such as lanthanide-
based downconverting nanoparticles (DCNPs), absorb
in the visible range and emit in the SWIR (Vis —-SWIR).
For example, LaF, nanoparticles doped with Nd**, Ho™, or
Er** emit at 1330, 1450, and 1525 nm correspondingly but
require an excitation with a 513-nm laser to achieve good
signal [99, 100].

Addressing this challenge, photon downconversion
has been accomplished using a NIR laser (802 nm) to
achieve NIR—SWIR [101]. Recently Kamimuro et al. used
PEGylated Y,0.:Yb, Er nanoparticles to show a strong
signal at 1550 nm in vivo upon irradiation with a 980-nm
laser, thus realizing SWIR—SWIR imaging [102]. Further-
more, Naczynski et al. developed a library of rare earth
nanoreporters with tunable, discrete SWIR emission over
the broad range of 1000-2300 nm.

The luminescence efficiency of UCNPs and DCNPs
emitting in SWIR is generally low. Several strategies
have been devised to improve the quantum efficiency. To
suppress the vibrational quenching caused by the O-H
groups from water on the surfaces of NdF, nanopatrticles,
they were coated with silica [103]. This treatment led to
a 1.6 times higher intensity than that of bare NdF.. In a
similar strategy, Chen et al. grew a thin layer of NaGdF,
shells on top of NaGdF,:Nd** of nanocrystals to prepare
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highly efficient DCNPs with an absolute quantum yield
of 40% [104].

3.4 Quantum dots

Synthetic protocols for known materials that have band
gaps appropriate for emission in the SWIR were estab-
lished a relatively long time ago [105, 106]. Today, there
are quantum dots composed of different types of semicon-
ductors including InAs and InP, PbSe and PbS, HgTe, Ag,S
and Ag,Se, CulnS,, and CulnSe,. Photoluminescent semi-
conductor nanocrystals are in general much brighter than
other SWIR emitters such as dyes, SWCNTs and DCNPs,
in which their brightness, in part, stems from high molar
absorptivities. In the context of bioimaging applications,
the quantum yield values that have been demonstrated to
date are still rather low — less than 10% at a peak wave-
length of 1550 nm when measured in an inert, air-free
environment.

A major problem in using SWIR quantum dots in
a biological setting is their notorious instability in
aqueous media. Virtually all known quantum dots mate-
rials degrade in the presence of water and air [107, 108].
For example, PbS and PbSe quantum dots are prone to
oxidation and other reactions (i.e. etching, photobleach-
ing) resulting in the loss of emission [109, 110]. Thus,
the principal challenge is to develop a robust shell that
protects the emitting core. While for the visible emit-
ting quantum dots composed of CdSe, the growth of a
passivating shell such as CdS/ZnS has been well estab-
lished, with the quantum yield reaching unity [111], this
approach has been proven to be more difficult for SWIR
emitters. There are only a handful reports that have been
able to show the application of SWIR quantum dots in
bioimaging [112].

Robust inorganic shells to chemically isolate the core
emitter from the biological environment present a prom-
ising approach. Benayas et al. used two layers of pro-
tection to develop bright water-dispersible core/shelll/
shell2 PbS/CdS/ZnS quantum dots [113]. Similarly, using
multiple layers of protection, Aharoni et al. prepared
InAs/CdSe/ZnSe nanoemitters [114].

Oxide coatings on quantum dots are known to exhibit
excellent chemical stability that can be applied to protect
the core [115]. A key challenge with metal oxide coatings is
to ensure they are free from OH groups, which are expected
to exacerbate vibrational PL quenching. Addressing this
challenge, Yin et al. developed a high-precision method
of coating quantum dots using an atomic layer deposition
technique to improve the photoluminescence stability
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[116]. Although the method has been demonstrated on
visible quantum dots, it could potentially be expanded to
SWIR emitters as well.

4 Concluding remarks

The last decade saw the emergence of SWIR emitting
small molecules and nanoparticles that have great
potential in the field of bioimaging. A great number of
synthetic procedures have been developed; however, for
most of the compounds, the quantum efficiency remains
low. Hence, significant effort has been spent to develop
and deploy biocompatible small molecules and nanoma-
terials that are bright in the SWIR. Protection of the emit-
ters from aggressive biological media and/or minimizing
energy transfer from the emitter to tissue chromophores
in order to retain high quantum efficiency presents a
significant challenge. Other critical barriers that limit
biological applications include (i) relatively low repro-
ducibility and scalability; (ii) poor long-term stability
in aqueous media, buffers, and biological media; (iii)
difficulty in attaching targeting groups; (iv) potential
immunogenicity; and (v) limited clinical translation that
requires no toxic metals in the formulation regardless of
the product stability.

Given that the synthesis of bright emitters, espe-
cially nanoparticles, involves a complex compositional
space, computational approaches, such as those based on
machine learning and data mining, may be of great value
in the search for new material systems. In the field of emit-
ters, such an approach has the potential to quickly predict
the brightest stable and non-toxic nanoparticles with the
desired properties as a function of size, composition, and
heterostructure. Accurate modeling of the photophysics
and photochemistry of SWIR nanoemitters will facilitate
and accelerate the synthetic procedures to identify high-
performance, nontoxic materials.

Overall, the progress in the development of SWIR
emitters has been dramatic and exciting. Further progress
in this field will require innovative strategies to not only
enhance the radiative-transition rate of SWIR-emitting
species but also make them highly biocompatible.
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