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ARTICLE INFO ABSTRACT

Article history: Estimating crop biophysical and biochemical parameters with high accuracy at low-cost is imperative for
Received 17 April 2017 high-throughput phenotyping in precision agriculture. Although fusion of data from multiple sensors is a
Received in revised form 18 August 2017 common application in remote sensing, less is known on the contribution of low-cost RGB, multispectral

Accepted 10 October 2017 and thermal sensors to rapid crop phenotyping. This is due to the fact that (1) simultaneous collection of

multi-sensor data using satellites are rare and (2) multi-sensor data collected during a single flight have
not been accessible until recent developments in Unmanned Aerial Systems (UASs) and UAS-friendly sen-
sors that allow efficient information fusion. The objective of this study was to evaluate the power of high
spatial resolution RGB, multispectral and thermal data fusion to estimate soybean (Glycine max) biochem-
ical parameters including chlorophyll content and nitrogen concentration, and biophysical parameters
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Data Fusion including Leaf Area Index (LAI), above ground fresh and dry biomass. Multiple low-cost sensors inte-
Extreme Learning Machine (ELM) grated on UASs were used to collect RGB, multispectral, and thermal images throughout the growing sea-
Extreme Learning Machine based son at a site established near Columbia, Missouri, USA. From these images, vegetation indices were
Regression (ELR) extracted, a Crop Surface Model (CSM) was advanced, and a model to extract the vegetation fraction

was developed. Then, spectral indices/features were combined to model and predict crop biophysical
and biochemical parameters using Partial Least Squares Regression (PLSR), Support Vector Regression
(SVR), and Extreme Learning Machine based Regression (ELR) techniques. Results showed that: (1) For
biochemical variable estimation, multispectral and thermal data fusion provided the best estimate for
nitrogen concentration and chlorophyll (Chl) a content (RMSE of 9.9% and 17.1%, respectively) and RGB
color information based indices and multispectral data fusion exhibited the largest RMSE 22.6%; the high-
est accuracy for Chl a + b content estimation was obtained by fusion of information from all three sensors
with an RMSE of 11.6%. (2) Among the plant biophysical variables, LAl was best predicted by RGB and
thermal data fusion while multispectral and thermal data fusion was found to be best for biomass esti-
mation. (3) For estimation of the above mentioned plant traits of soybean from multi-sensor data fusion,
ELR yields promising results compared to PLSR and SVR in this study. This research indicates that fusion
of low-cost multiple sensor data within a machine learning framework can provide relatively accurate
estimation of plant traits and provide valuable insight for high spatial precision in agriculture and plant
stress assessment.
© 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier
B.V. All rights reserved.

1. Introduction

Low-cost, high-throughput phenotyping is increasingly used to
estimate plant traits including chlorophyll content, nitrogen (N)
concentration, Leaf Area Index (LAI) and biomass (Gonzalez-Dugo
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et al.,, 2015; Saberioon et al., 2014; Salami et al., 2014; Singh et al.,
2016; Thoele and Ehlert, 2010). Leaf Chlorophyll content generally
is positively related with photosynthetic rate and plant productiv-
ity and provides valuable information about the physiological sta-
tus of plants (Demmigadams and Adams, 1992; Gamon and Surfus,
1999). As such, it is a trait of interest for analyzing vegetation
stress, nutrient cycling, growth stages, yield and diseases
(Gitelson et al., 2006; Martinelli et al., 2015; Peng et al., 2011;
Verrelst et al., 2012a). Leaf N concentration is a reflection of soil
N availability, and in the absence of fertilization, N availability
often limits plant growth, biomass production, and seed yield
(Fichtner and Schulze, 1992; Gastal and Lemaire, 2002;
Masclaux-Daubresse et al., 2010; Prasertsak and Fukai, 1997). Bio-
physical traits such as LAl and biomass are a reflection of growing
conditions and management practices, and commonly are posi-
tively associated with yield (Liu et al., 2010; Serrano et al., 2000;
Wang et al., 2017b). High-throughput and increased spatial preci-
sion in assessing these traits can aid in evaluating different geno-
types throughout the growth season in field evaluations.

Traditionally, chlorophyll content and N status of leaf samples
have been determined using extract-based, and digestion- or
combustion-based approaches in the laboratory, whereas LAI and
biomass measurements have been mainly based on destructive
measurements which are accurate but relatively time and resource
intensive (Lichtenthaler, 1987; Mistele and Schmidhalter, 2008;
Mora et al., 2016; Richardson et al., 2002). More recently, alterna-
tive, non-destructive approaches including hand-held instruments
based on optical methods have become more popular for the deter-
mination of chlorophyll content, N concentration (i.e., SPAD-502,
Dualex 4 Scientific, and CCM-200 chlorophyll meter) and LAI (i.e.,
LI-Cor 2000/2200, AccuPAR LP-80) (Breda, 2003; Cartelat et al.,
2005; Cerovic et al., 2012; Munoz-Huerta et al., 2013).

In contrast to traditional analyses, remote sensing provides a
rapid estimation of plant biochemical and biophysical parameters
for large areas in field-scale trials (Furbank and Tester, 2011; Li
et al,, 2014). Recent developments in Unmanned Aerial Systems
(UASs) and sensors have resulted in low-cost and flexible solutions
that can provide images at high spatial, temporal, and spectral res-
olution. Equipped with multiple imaging sensors, autopilots, and
GPS systems, UASs have become one of the most competitive
remote sensing tools offering great possibilities for precision agri-
culture (Hunt et al., 2005; Primicerio et al., 2012; Schirrmann et al.,
2016) and high-throughput phenotyping (Haghighattalab et al.,
2016; Sankaran et al., 2015; Shi et al., 2016). In addition, UASs
can complement ground-based robots by increasing throughput
and frequency of non-destructive plant monitoring (Shi et al.,
2016).

Based on the types of sensors mounted on UASs, different agro-
nomic parameters and phenotypic traits have been reported in pre-
vious studies. First, steady color cameras that acquire true color
(i.e., RGB) digital photographs in the Visible (VIS) Spectrum are
some of the most commonly used sensors that are relatively
cost-efficient and light-weight (Hunt et al., 2008). Color informa-
tion from RGB images can be utilized to estimate leaf chlorophyll
content and N concentration (Li et al., 2015; Schirrmann et al.,
2016), LAI (Chianucci et al., 2016; Corcoles et al., 2013; Mathews
and Jensen, 2013), plant height and biomass (Bendig et al., 2014;
Schirrmann et al., 2016; Zarco-Tejada et al., 2014). Further, 3D
geometry derived from RGB image allows Crop Surface Model
(CSM) generation and plant height estimation (Bendig et al.,
2014). Second, low-cost multispectral sensors in VIS and Near
Infrared (NIR) spectral regions allow extraction of both physiolog-
ical and geometric properties of vegetation (Houborg and Boegh,
2008) as well as accurate estimation of chlorophyll content, N con-
centration and yield for a variety of crops (Caturegli et al., 2016;
Rey-Carames et al., 2015). Third, relatively expensive hyperspectral

sensors with hundreds to thousands of contiguous spectral bands
have been proven very effective for estimation of chlorophyll con-
tent (Uto et al,, 2013), carotenoid content (Zarco-Tejada et al.,
2013), N concentration, biomass (Honkavaara et al., 2013), plant
height, LAI (Kalisperakis et al., 2015), and yield (Gonzalez-Dugo
et al., 2015). In addition to passive optical sensors, Light Detection
and Ranging (LiDAR), which is capable of providing three-
dimensional information on canopy structure (Hofle, 2014), has
been used to derive canopy height, fractional cover, and above
ground biomass (Wang et al., 2017a). Fourth, thermal sensors pro-
vide plant canopy temperature, which has been used to detect
water stress (Berni et al., 2009; Zarco-Tejada et al., 2012). It is
worth noting that LiDAR-derived height information is critical for
scaling leaf level traits to canopy (Gokkaya et al., 2015) and
LiDAR-optical data fusion can overcome saturation problems
inherent in optical remote sensing (Wallace, 2013).

Fusion of images collected from a UASs integrated with multiple
sensors have become popular in recent years because data fusion
improves plant trait estimation by combining advantages of rich
spectral, spatial, structural and thermal information contained in
diverse sensor systems. For instance, spectral and LiDAR structural
data fusion was applied for biomass estimation (Marshall and
Thenkabail, 2015; Tilly et al., 2015; Wang et al., 2016); spectral
indices and plant height from CSM based on RGB imagery were
combined for biomass estimation and crop yield (Bendig et al.,
2014, 2015; Geipel et al., 2014; Li et al., 2016); and spectral infor-
mation from a multispectral sensor and canopy temperature infor-
mation from a thermal sensor was utilized for chlorophyll
concentration estimation (Elarab et al., 2015). It is evident from
these studies that data fusion is able to improve estimations
(Elarab et al., 2015; Reddersen et al., 2014; Tilly et al., 2015),
potentially resolving saturation problems often observed with
VIS-NIR sensor data, especially for higher density vegetation
(Thenkabail et al., 2000; Tilly et al., 2015).

Thermal properties of plant leaves impact their photosynthetic
ability, and consequently influences leaf nutrients status such as N
and chlorophyll concentration (da Luz and Crowley, 2010; Salvucci
and Crafts-Brandner, 2004; Sharkey, 2005). Thermal data has
potential to elucidate the biophysical or biochemical characteris-
tics of vegetation, complementing other remote sensing data to
some extent (Ullah, 2013). Plant canopy temperature has been
used to assess plant transpiration for many years (Ehrler, 1973;
Sepulcre-Canté et al., 2006; Virlet et al., 2014; Zarco-Tejada et al.,
2012); however, compared with optical multispectral and hyper-
spectral remote sensing, only few studies have examined the appli-
cation of thermal remote sensing for chlorophyll concentration
(Elarab et al.,, 2015), N concentration, biomass, yield (Du et al.,
2011; Gonzalez-Dugo et al., 2015; Guo et al., 2016; Tattaris et al.,
2016), and LAI estimation (Neinavaz et al., 2016). Additionally,
the potential integration of thermal remote sensing in the context
of data fusion for UAS aerial plant phenotyping is little understood.

A number of statistical methods exist for modelling plant traits
based on UAS imagery data, including Multiple Linear Regression
(MLR), Partial Least Squares Regression (PLSR) (Araus and Cairns,
2014; Rischbeck et al., 2016), and Machine Learning (ML) algo-
rithms (Cipollini et al., 2001; Elarab et al., 2015; Hassan-Esfahani
et al,, 2015; Singh et al., 2016; Verrelst et al., 2012b). Nevertheless,
it still remains to be established if ML methods are more powerful
for parameter estimation in remote sensing applications (Verrelst
et al,, 2012b). Many ML methods (e.g., Supper Vector Machine
(SVM)) (Cortes and Vapnik, 1995; Moser and Serpico, 2009) con-
tain large computational complexity, such as tuning learning
parameters that may impact the robustness of the model. More-
over, processing an enormous volume of remote sensing data
requires considerable training time for a ML algorithm that also
necessitates considerable computational power. Among ML
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algorithms, Extreme Learning Machine (ELM) (Huang et al., 2006)
is an efficient and rapid learning algorithm for regression and clas-
sification analysis (Huang et al., 2012) that outperformed many
other ML methods for many practical applications (Alom et al.,
2016; Chen et al.,, 2016; Moreno et al.,, 2014; Savojardo et al.,
2013; Sidike et al., 2017). Two distinct properties of ELM include:
(1) hidden node parameters are randomly generated instead of
iterative tuning, thus enhancing computational efficiency; (2) only
a single parameter (i.e., the number of hidden nodes) is required
for tuning in the basic ELM. Several studies (Huang et al., 2006;
Zhang et al., 2016) have shown that ELM provides similar or even
better generalization performance than SVMs and Back-
Propagation algorithms (Williams and Hinton, 1986).

The primary objective of this study was to estimate soybean
chlorophyll a (Chl a), chlorophyll b (Chl b), and chlorophyll a + b
(Chl a + b) contents, N concentration, above ground fresh and dry
biomass, and LAI by combing low-cost RGB, multispectral, and
thermal data acquired by UASs using both empirical statistical
PLSR and selected ML methods. To that end, the contribution and
potential of data from each individual sensor (RGB, multispectral,
and thermal) to phenotype estimation within the framework of
data fusion along with ML were evaluated.

2. Materials
2.1. Field site and crop management

To evaluate the potential of low-cost UAS sensors on plat phe-
notype estimates, a comprehensive field campaign aimed at col-
lecting UAS-based RGB, multispectral, and thermal images, as
well as ground-truth phenotype metrics was conducted at an
experimental soybean field located at the Bradford Research Center
near Columbia, Missouri (38.8N, 92.2W). Soybean was grown on a
Mexico silt loam (fine, smectitic, mesic Vertic Epiaqualf) soil with a
pH of 6.5. After tillage, soybean cultivars ‘Pana’, ‘Dwight’, and
‘AG3432’ were planted at 2.5-cm depth in rows 0.76 m apart to a
density of 40 seed per m? on May 25, 2016. The field was laid
out in four replications each with irrigated and rainfed main plots
and Pana and Dwight as split-plots measuring 15 x 24 mor 9 x 24
m. To separate irrigated and rainfed plots, buffers were planted
with AG3432 as illustrated in Fig. 1. No fertilizers were applied
and weeds were controlled by application of the pre-emergence
herbicide sulfentrazone at a rate of 0.3kg ai ha~! and post-
emergence herbicide sethoxydim at a rate of 2.6 kg ha~'. Due to
abundant rainfall during most of the season, only one irrigation
of 2.5 cm was applied using an overhead linear move lateral sys-
tem on June 25, 2016. Because of unexpected rainfall within hours
of irrigation and continued abundant precipitation, no differences
between rainfed and irrigated treatments materialized. Soybean
harvest was conducted on October 15, 2016 with a small-plot
research combine. Temperatures as measured by the on-farm
weather station during the growing season averaged 16.85 °C in
May, 24.68 °C in June, 24.64 °C in July, 23.61 °C in August, 20.96
°C in September, and 16.02 °C in October. Monthly precipitation
recorded by the same weather station was 81 mm in May, 29
mm in June, 274 mm in July, 149 mm in August, 142 mm in
September, and 25 mm in October.

2.2. Data acquisition

2.2.1. Ground data

For precise ground truthing of UAS data, sampling locations
within each plot were marked with wood sticks for the duration
of the experiment (Fig. 1). Seventy days after the plantation (on
August 4, 2016), biophysical and biochemical measurements were

taken simultaneously during the UAS flights. The LAl was mea-
sured nondestructively using LAI-2200C Plant Canopy Analyzer
(LI-COR Inc., Lincoln, NE, USA) which allows users to operate under
full sun condition without further requirements for sun angle.
Measurements were conducted along a diagonal transect between
the row marked with the stakes and a neighboring row using the
45° view restrictor to hide the user from the sensor Field of View
(FOV). Between two above canopy reading at the beginning and
end of the rows, five below canopy readings were taken along
the transect at even spacing by placing the sensor on the ground
to assure maximum coverage of the soybean canopy was in the
sensor FOV.

Non-destructive measurement of biochemical pigments were
obtained on the uppermost, fully expanded, mature trifoliate leaf
at each sampling point using a DUALEX 4 Scientific (Force-A, Orsay,
France) hand-held sensor that calculates leaf chlorophyll index
(Chl), flavonol index (Flv) and a Nitrogen Balance Index (NBI) by
chlorophyll fluorescence screening and differential transmittance
methods (Bilger et al., 2001; Cerovic et al., 2012; Goulas et al.,
2004). These measurements were taken from a plant within the
sampling location. Leaf chlorophyll index was calculated using
(Tgso — T710)/T710, Where T is the leaf transmittance, and the sub-
scripts are wavelengths in nanometers (nm). NBI was determined
using [(Chlap + Chlag)/2]/(Flvap + Flvag), where the Flv was
expressed as log(FRFg/FRFyy) using the far-red Chl fluorescence
(FRF) emission excited by Red (R) or Ultra-Violate (UV) light. The
subscripts AD and AB stand for adaxial and abaxial sides of the leaf,
respectively. In this study, NBI was used as measure of the plant N
concentration.

To get a better estimate of leaf chlorophyll contents, 1.168 cm?
circular samples were excised from the same leaves used for DUA-
LEX 4 measurements and circular samples were placed in a glass
vial containing 5 mL of 95% ethanol. Following 24 h of incubation
at room temperature, the vials were shaken and 200 pL of super-
natant was transferred to 96-well plates for absorbance measure-
ments at 664.1 and 648.6 nm using a Scanning Monochromatic
Spectrophometer (BioTek PowerWave X 340 Microplate Reader,
BioTek U.S. VT, USA). The contents of chlorophyll a and b were cal-
culated using the following equations (Lichtenthaler and
Buschmann, 2001) and expressed on a leaf area basis (g cm™2):

Chl a (chlorophyll a) = 13.36¢64.1 — 5.19%us6 (1)
Chl b (Cthl'Ophyll b) = 27.436486 — 8.12664. (2)
Chla+b=Chla+Chlb 3)

where A is the absorbance of the extract solution, and the numeric
subscripts are wavelengths in nanometers (nm).

Plant height was measured for five sampling locations (five
plants) in a row and averaged for further analysis. On the same
day, above ground plant biomass samples were collected by cut-
ting the stems approximately 2 cm above the soil over 1 m row
length from each of two rows (1.52 m?) (Fig. 1). After fresh weight
determination, plants were oven-dried at 60 °C until weights stabi-
lized, and dry samples were weighed to obtain above ground dry
biomass. The descriptive statistics of measured biochemical and
biophysical plant traits shows in Table 1.

2.2.2. UAS imagery

On August 4, 2016, ground and UAS field campaign was con-
ducted from 10:30AM through 3:00 PM local time. RGB color ima-
gery was acquired using a Sony Alpha ILCE-7R RGB camera
mounted on a DJI S900 hexacopter (Fig. 2a). The DJI S900 frame
weighs 3.3 kg with a maximum takeoff weight of 8.2 kg. Under
optimal weather conditions, the S900 vehicle is capable of a max-
imum flight time of 18 min at a takeoff weight of 6.8 kg operating
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Table 1

Descriptive statistics of biochemical and biophysical parameters.
Parameters Mean Max. Min. SD CV (%)
Chl a (pgcm™2) 37.69 46.86 23.39 5.25 13.99
Chl b (ug cm™2) 16.86 30.98 7.41 4.71 27.93
Chla+b (pg cm=2) 54.55 71.16 31.68 8.48 15.54
N 30.95 59.50 12.40 11.71 37.83
LAI 4.76 6.20 2.10 1.21 25.40
FB (gm~2) 1533.58 2144.00 802.00 334.71 21.83
DB (g m—) 333.58 463.00 208.00 64.97 19.48

LAI: leaf area index; FB: fresh weight of biomass in grams per square meter; DB: dry weight of biomass in grams per square meter; N: nitrogen concentration which is
represented by Nitrogen Balance Index (NBI); SD: standard deviation; CV: coefficient of variation.

on a 6S 12,000 mAh battery. The camera was mounted to the S900
frame on a Ronin 3-axis gimbal to stabilize image capture. Sony’s
Alpha ILCE-7R camera employs a 36.8 megapixel 35 mm full frame
Exmor® CMOS sensor and images in this study were captured in
0.04 m pixel resolution.

Multispectral (MSI) and Thermal (TR) images were acquired
using a Parrot Sequoia multispectral sensor and an ICI 8640 P-
series thermal camera, respectively. The sensors were mounted
on a DJI S1000 + octocopter frame (Fig. 2b). The DJI S1000 + frame
weighs 4 kg with a max takeoff weight of 11 kg. Under optimal
weather conditions, the S1000 is capable of a maximum flight time
of 15 min as powered by a 6S 15,000 mAh battery at a takeoff
weight of 9.5 kg. The Parrot Sequoia multispectral and accompany-
ing sunshine radiance sensors were hard mounted to the frame
while the ICI thermal camera was mounted on a custom designed
two-axis gimbal (Fig. 3c). The gimbal mount was constructed from
ABS plastic printed on an Afinia H800 3D printer and utilized two
Lumenier brushless gimbal motors controlled by a BaseCam Sim-
pleBGC gimbal controller. The Parrot Sequoia camera imaged with
one 16 megapixel rolling shutter RGB camera at 4608 x 3456 pixel

resolution and four 1.5 megapixel global-shutter single band cam-
eras imaging at 1280 x 960 pixel resolution in the green (550 nm),
red (660 nm), red-edge (735 nm) and near infrared (790 nm) spec-
tral bands. The Parrot Sequoia sunshine sensor recorded the inten-
sity of light emanating from the sun in the same four bands of light.
The ICI 8640 P-series thermal camera imaged at a 640 x 512 pixel
resolution in the 7-14 nm spectrum range and a temperature
range of —40 °C to 500 °C.

All flight systems were equipped with a 3D Robotics Pixhawk
autopilot controller enabling user-defined autonomous waypoint
flight operations. Flight missions were planned utilizing Mission
Planner, an open source full-featured ground station application
for UAS autopilot systems. All missions were planned at a flight
altitude of 30 m with an intended overlap of 90% and sidelap of
80% to ensure image redundancy for post-processing. Flight mis-
sions remained constant throughout the study period to ensure
consistency in data collection. Ground truth measurements for
georeferencing imagery were acquired at the center and the four
corners of the field, using a Trimble R8 GNSS Rover (Fig. 2d) with
access to the Missouri Statewide Real Time GNSS Network.
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Fig. 2. UAS systems and integrated sensors. Sony Alpha ILCE-7R camera is mounted on a S900 hexacopter (a), Parrot Sequoia irradiance sensor on DJI S1000+ integrated with
3D Robotics Pixhawk autopilot controller (b), ICI thermal and Sequoia multispectral sensors on the bottom of DJI S1000+ UAS (c), and Trimble R8 GNSS Rover (d).
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Fig. 3. Plant height estimation map showing entire field (a), 3D view of plant height distribution (b), and scatter plot of field measured and estimated plant height (c).

2.3. Image pre-processing

Images gathered by the Parrot Sequoia Multispectral sensor
generated datasets for each flight that included Green, Red, Red-
edge, and NIR reflectance. The Parrot Sequoia Multispectral sensor
is a self-calibrating system that incorporates an integrated irradi-
ance sensor. The irradiance sensor allows sunlight information to
be logged and captured throughout the flight. Utilizing these irra-
diance values the system automatically calibrates all output
images along with assigning geolocation information from the Par-
rot Sequoia’s onboard GPS, IMU, and Magnetometer. Raw thermal
infrared imagery gathered by the ICI 8640 P sensor generated a
dataset of jpeg images containing Digital Number (DN) values that
represent emitted radiant energy intensity. To access true temper-
ature values from the imagery, the raw images were radiometri-

cally calibrated using proprietary software from ICI and
transformed into degrees Celsius utilizing factory calibration data
and radiative transfer equations. These calibrated images were
then saved in 32-bit Tagged Image Format File (TIFF) so that true
temperature values can be retained. Once the corrected tempera-
ture values were generated, geolocation data was assigned to each
image using information obtained from the UAS'’s flight log.
Radiometrically calibrated images were then mosaicked using
the Pix4Dmapper software package (Pix4D SA, Lausanne, Switzer-
land). The Pix4Dmapper software is specifically designed to pro-
cess UAS data and utilizes techniques rooted in both computer
vision and photogrammetry to overcome the lack of precise sensor
information such as GPS and IMU (Inertial Measurement Unit)
information common in UAS data (Chao et al., 2010; Turner
et al., 2012). To improve the accuracy of the final mosaics, camera
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information such as sensor dimensions, principal points, pixel size,
and focal length, along with survey grade Ground Control Points
(GCPs) were incorporated. Utilizing a combination of input data,
the software searches and creates matching points by analyzing
all images. A bundle block adjustment was then used to recon-
struct the exact position and orientation of the sensor for every
acquired image. From this reconstruction the matching points
were verified and their resulting 3-D coordinates were calculated
based on each image’s GPS information. This 3-D point cloud was
then interpolated to create a Triangulated Irregular Network
(TIN) that was in turn used to form a Digital Surface Model
(DSM). Finally, the resulting DSM was used to project each pixel
and calculate the orthomosaic (Strecha et al., 2012). To finalize
the data products, generated orthomosaics for Red, NIR, Red-
edge, Green, and thermal bands were geo-referenced to NAD
1983 UTM Zone 15N creating a unified imagery dataset.

3. Methods
3.1. Feature extraction from imagery

3.1.1. Vegetation index extraction

A set of vegetation indices was extracted from orthorectified
RGB, MSI and TR images (Table 2). Average pixel values were cal-
culated within 1 m (row length direction) by 1.52 m (two row
widths) square buffer around each sampling point for each index
to relate them to the phenotypic and agronomic measurements.
Pearson correlation analysis, which is one of the widely used meth-
ods for indicating correlation between variables, is employed in
our study. We first calculated Pearson correlation coefficients
between vegetation indices and in-situ data, and then selected
indices showed relatively strong and significant correlation for fur-
ther modelling analysis (Rey-Carames et al., 2015; Rischbeck et al.,
2016). However, Pearson correlation may not be a good indicator of
the association between the spectral variables and the biophysical
parameters when a machine learning method is applied to learn
patterns in a multidimensional space. This is because it only
assumes a linear relationship between variables, it is thus likely
misinterprets relationship between the variables that are in non-
linear form (Hauke and Kossowski, 2011). In addition to single
band information, normalized indices were used because they
are comparatively less sensitive to changes in illumination and
viewing geometry (Galvao et al., 2013).

3.1.2. Plant height estimation and calibration

Plant height extracted from RGB imagery is critical for biomass
and yield estimation (Geipel et al., 2014; Tilly et al., 2015). 4 cm
resolution DSMs (Digital Surface Models; also regarded as CSM)

was derived using Pix4Dmapper’s point cloud generation and 3D
scene reconstruction tool, which is based on Structure from Motion
(SfM) technique using Very High Resolution (VHR) RGB orthoim-
ages (Rose et al., 2015; Su et al., 2016). In order to georeference
the DSMs and increase the accuracy, 5 GCPs measured using differ-
ential GPS units were imported into Pix4D Mapper, and, prior to 3D
scene generation, were manually placed on 5 corresponding
images to project the remaining images automatically (Lucieer
et al., 2014). A one meter resolution LiDAR-derived Digital Eleva-
tion Model from the USGS National Elevation Dataset (USGS,
2016) was registered to our DSM, and plant height was estimated
as the difference between the DSM and DEM (Bendig et al., 2015;
Geipel et al., 2014). The DSM and DEM subtraction based plant
height was validated and calibrated based on comparison of plot
level average plant height with the ruler-based field surveyed
ground truth (Fig. 3).

3.1.3. Vegetation fraction estimation

Vegetation Fraction (VF) is defined as the percentage of green
vegetation area per ground surface area, which provides important
crop density and structural (i.e., LAI) information (Schirrmann
et al., 2016). We extracted vegetation area from ultra-high resolu-
tion RGB images using SVM based classifier. Consequently, sunlit
and shaded soil was identified and excluded (Fig. 4) from further
processing for biochemical traits Chl a, Chl b, Chl a + b and N con-
centration estimation. Vegetation fraction was then calculated by
dividing pixels that were classified as vegetation in each plot by
all pixels in that plot (Torres-Sanchez et al., 2014). The classifica-
tion result was tested using randomly selected 1500 training sam-
ples with an overall accuracy of 99.59% and Kappa coefficient of
0.993.

3.2. Modelling methods

3.2.1. Feature fusion and representation

Regression model in ML domain typically utilizes one or a set of
discrete attributes or features that represent objects of interest,
and then a linear or nonlinear relationship can be found stochasti-
cally between the input features and the observation. Generally,
the extracted features from a single sensor may not provide rich
or sufficient information to find that relationship, thus it is highly
recommended to integrate features from multiple sensors into a
united one to better represent the objects of interest. In this work,
we propose to combine various features that are extracted from
RGB, MSI, and TR images, and then verify the benefits of using
information from various sensors to estimate phenotypic parame-
ters. Table 3 shows detailed data information used in our
experiments.

Table 2
List of Vegetation Indices extracted from visible, multispectral, and thermal images.
Image Index Acronym Equation References
RGB Red R R /
Green G G /
Blue B B /
Color intensity INT (R+G+B)/3 Ahmad and Reid (1996)
Kawashima index IKAW (R - B)/(R+B) Kawashima and Nakatani (1998)
Principal component analysis index IPCA 0.994|R — B| +0.961|G — B| + 0.914|G — R| Saberioon et al. (2014)
MSI Green Band Green Green /
Red Band Red Red /
Red-edge Band RE RE /
Near-infrared Band NIR NIR /
Normalized difference vegetation index NDVI (NIR — R)/(NIR +R) Rouse (1974)
Green Normalized difference vegetation index GNDVI (NIR — G)/(NIR + G) Gitelson et al. (1996)
Normalized difference red edge NDRE (NIR — RE)/(NIR + RE) Barnes et al. (2000)
TR Canopy Temperature Tc Tc /
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Fig. 4. Vegetation fraction and soil and shadow removal. (a) shows the entire field, (b) is a close-up RGB image, and (c) shows the corresponding vegetation and shadow/soil

map of the close-up view.

Table 3

Image type with the corresponding futures. R, G, and B represent red, green, and blue
bands of RGB sensor, respectively. INT is color intensity index, IKAW is Kawashima
index, IPCA is principal component analysis index, PH is plant height, VF is vegetation
fraction; Green, Red, RE and NIR represent green, red, red-edge and near-infrared
bands of multispectral sensor, respectively. NDVI is normalized difference vegetation
index, GNDVI is green normalized difference vegetation index, NDRE is normalized
difference red-edge index; Tc is plant canopy temperature.

Image Type Information Type Corresponding features
RGB Color info. (DN) R, G, B, INT, IKAW, IPCA
Physical structure info. PH, VF
MSI Spectral info. (Ref.) Green, Red, RE, NIR, NDVI,
GNDVI, NDRE
TR Thermal info. (°C) Tc

Note: DN: Digital number; Ref.: Reflectance.

Considering potential contributions of various features for the
prediction of bio-physicochemical parameters, the abovementioned
features are combined and then fed into ELM based Regression (ELR).
Consequently, each sampling point in the data set contains a set of
variables, which are obtained by concatenating all the features from
three different sensors, mathematically expressed as:

Xi = [X1,X2,...,Xd), fOfi:l,Z,...,N (4)
where ¥; is input feature vector for each data sample,d is the total
number of extracted features, and N is the total number of sampling
points in the data set.

3.2.2. Feature learning and prediction using ELR

Extreme Learning Machine (ELM) can be used for classification
and regression applications. We denote ELM based regression as
ELR. The classic ELM is a Single-hidden Layer Feedforward Neural
network (SLFN) that contains a single input layer, one hidden layer,
and one output layer. In ELM, the weights of the hidden layer can
be randomly generated without iterative optimization (Huang
et al., 2006), leading to significantly less computational time to
train the model. Previously, Moreno et al. (2014) showed that

ELM provides excellent performance for soybean classification.
Here, we utilize ELM for regression analysis, i.e., ELR model to pre-
dict plant phenotypes from UAS imagery. To the best of our knowl-
edge, this is the first time that ELR has been implemented for
predicting UAS imagery based plant phenotyping traits with
clearly demonstrating the benefits of various data fusion. Fig. 5
shows the algorithmic flow using the extracted multiple data fea-
tures implemented in this study.

To build the model, pairs of distinct samples {x;,y;}}, are
selected from a given training set of N input vectors x; € R¢ with
the corresponding N output values {y,—}ﬁr The goal of using ELM
is to find a relationship between input x; and the desired output
¥;. To achieve this, the following cost function for L hidden nodes
is minimized as

N L 2
min y; = il = min (yi = > pihy(w; -2+ b;)) (5)
i-1 =1
where y; is the predicted output. The jth output weight vector,
denoted as f; is the output weight links the jth hidden node and
the output node. R(x;) = g(j, bj, ;) is the output of the jth hidden
node with respect to the input x;, g(-) is a nonlinear piecewise con-
tinuous function (e.g., Sigmoid function), ; € R? is the weight vector
connecting jth hidden node and the input nodes, and b; is the bias of
the jth hidden node. Traditionally, in order to train a SLFN, hidden
layer parameters(;, b;) are optimized throughout gradient-descent
or global search methods. In contrast, those parameters are ran-
domly generated without iteratively tuning in ELM, and only the
output weights p;(j =1,2,...,L) are optimized using least-square
error analysis. Consequently, ELM is capable of processing large
amount of data with a faster learning speed. For N number of train-
ing samples, a compact form can be written by as

HE=Y (6)

,yn]" is the desired output values, H refers to
., B)" is the vector

where Y = [y,,y,,...
the hidden-layer output matrix, and g = [, B, . -
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Fig. 5. Block diagram utilized for feature fusion based regression process.

of the output weights, which can be obtained by the minimal least
square method (Huang et al., 2006; Rao and Mitra, 1971). Accord-
ingly, the estimated value for the ith input is obtained by

$i = R@E)HT <% + ’H‘HT> qy (7)

where p a user-specified parameter and [ is an identity matrix.
More details of ELM can be found in (Huang et al., 2006, 2012).

3.2.3. Quantitative evaluation

To quantitatively assess the performance of the proposed model
for predicting biophysical and biochemical parameters, various
popular elevation metrics, such as Root Mean Square Error (RMSE),
relative Root Mean Square Error (RMSE%), and Nash-Sutcliffe effi-
ciency coefficient (E), were computed. These evaluation metrics
have been widely used to estimate the predicative power of regres-
sion models (Elarab et al., 2015; Yi et al., 2014). The computation of
RMSE, RMSE%, and E are given in Egs. ((8)-(10)), respectively:

S (5 _ v\
RMSE = Zi:lg’l yi) (8)

RMSE

RMSE% = 100 x

9)

S (5 v)\2
o o

where y; and y; are the measured and the predicted parameters,
respectively. y; is the mean of measured parameters, and S is the
total number of testing samples. Smaller values of RMSE, RMSE%,
and larger values of E(co < E < 1) indicate better precision and
accuracy of the prediction model.

To validate the effectiveness of ELR, we compared its perfor-
mance with two popular regression methods: Support Vector
Regression (SVR) (Scholkopf and Smola, 2002; Smola and
Scholkopf, 2004) and Partial Least Squares Regression (PLSR)
(Geladi and Kowalski, 1986; Hansen and Schjoerring, 2003). For
SVR, Sequential Minimal Optimization (SMO) (Fan et al., 2005)
was used to solve quadratic programming, and we considered
the linear SVR model since ELR was also implemented without
any kernel function in our experiments. In PLSR, choosing the
Number of Components (NC) is a key step to obtain a successful
model, thus we varied the NC from 1 to 6 based on available input
variables (features) in the data, and then determined the optimal
NC to estimate bio-physicochemical parameters. Results indicated
that better accuracy for predicting LAI, FB, and DB was achieved
with NC =3, but NC=6 was a better choice for retrieving Chl a,
Chl b, Chl a + b, and N when considering all combinations of data

features. Finally in ELR, the regularization parameter and the num-
ber of hidden nodes were tuned empirically from the range
(272,272, ..., 2% 2%°} and {20, 40, 60, ..., 200}, respectively. In
addition, the sigmoid function f(x) = 1/(1 + e*) was used as the
activation function in ELR for all experiments. The performance
of all models was evaluated with averaged RMSE, RMSE% and E
over ten different trials.

All the methods were implemented in MATLAB R2016b and run
on a 3-GHz desktop computer with an Intel Xeon CPU and 256-GB
RAM. Except the implementation code of ELR is the from the ELM
website (http://www.ntu.edu.sg/home/egbhuang/elm_codes.html), all
other competing methods are from the associated MATLAB
packages.

4. Results
4.1. Correlations between plant phenotypes and vegetation indices

Table 4 summarizes the relationships between soybean pheno-
typic traits and remote sensing indices extracted from UAS ima-
geries using Pearson coefficients (r) available with IBM SPSS
software (version 24, IBM Corp., Armonk, NY, US). Correlation coef-
ficients varied between 0.213 and 0.842 (p <.05), indicating from
moderate to strong correlations between data from field measure-
ments and UAS imagery-based indices. In general, vegetative
parameters were negatively correlated with individual red (R),
green (G), and blue (B) bands and calculated color indices based
on the RGB Sony camera, as well as red and green bands based
on the MSI Parrot Sequoia. In contrast, spectral indices calculated
from MSI Parrot Sequoia bands generally were positively corre-
lated with vegetative parameters. Moreover, very similar correla-
tion pattern were observed for red and green bands of RGB Sony
and MSI Parrot Sequoia cameras, yet the red and green bands from
the RGB Sony camera tended to be more strongly correlated
(higher r values) with related soybean parameters than those from
the MSI Parrot Sequoia. One exception was that the Sony green
band was relatively well correlated with DB (r = —0.501, p <.01),
while there was no significant correlation between the MSI Parrot
Sequoia green band and DB. For Chl q, the highest r value (r = 0.675,
p <.01) was found for GNDVI, though NDRE and the Sony camera G
band were still highly correlated with Chl a (r = 0.646, p <.01 and r
=-0.617, p <.01, respectively). Relatively low correlations (0.20 <
r < 0.44) were observed between Chl b and UAS data, and the most
highly correlated index with Chl b was IPCA (r = —0.436, p <.01).
When Chl a and Chl b were combined, GNDVI was the most
strongly correlated with Chl a+ b (r < 0.604, p <.01). Regarding N
concentration, while the RGB Sony blue and red band did not show
strong correlations (r < 0.3), all other UAS indices were strongly
correlated with N and the best performance was observed for
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Table 4

Pearson’s correlation coefficient (r) between vegetation parameters and indices. R, G, and B represent red, green, and blue bands of RGB sensor, respectively. INT is color intensity
index, IKAW is Kawashima index, IPCA is principal component analysis index, PH is plant height, VF is vegetation fraction; Green, Red, RE and NIR represent green, red, red-edge
and near-infrared bands of multispectral sensor. NDVI is normalized difference vegetation index, GNDVI is green normalized difference vegetation index, NDRE is normalized

difference red-edge index; Tc is plant canopy temperature.

Sensor/Info. Types Indices Biochemical Parameters Biophysical Parameters
Chla Chl b Chla+b N LAI FB DB
Color Info. R —-0.592" ~0.306" —-0.537" -0.592" —-0.842" -0.623" NS
G -0.617" -0.317 —-0.558" —0.746" —0.664 —0.687 —0.501
B -0.398" NS —0.282" -0.289" -0.703" NS NS
INT ~0.560" -0.248" -0.484" -0.588" -0.791" -0.620" NS
RGE IKAW ~0317" ~0.355 0394 ~0562" NS ~0477 ~0616
IPCA 0549 ~-0.436 —0.583" —0617" ~0.805 —0.696 —0.598"
Structural Info. PH / / / / 0.664" 0.736" 0.669"
VF / / / / 0.811 0.583 NS
Green ~0.520" -0.282" —0.479" ~0.766 -0.503 ~0.595" NS
Red —-0.540 -0.213 —0.453 —-0.645" -0.608" —0.434 NS
RE NS NS NS —0.265" 0.557 NS NS
MSI (Spectral info.) NIR 0.5511 0.245 f 0.477 0.5941 0.809‘1 NS NS
NDVI 0.577 0.255 0.499 0.639 0.758 NS NS
GNDVI 0.675" 0334 0.604" 0.765" 0.727 0517 NS
NDRE 0.646" 0.347" 0.593" 0.872" 0.579" 0.520" 0.448
Thermal (Temperature Tc —0.407" -0.275 —0.405" -0.410 —-0.707 -0.725 —0.588
Info.)

Info. represents information; NS represents not significant correlation with p-value <.05. “/” means PH and VF were not used as input features for the biochemical parameters

estimation.
™ Correlation is significant at the .01 level.
* Significant at the .05 level (2-tailed).

MSI Parrot Sequoia green, GNDVI and NDRE with r values greater
than 0.7 (p <.01). LAI correlated (r > 0.55) with all indices except
for IKAW, and the Sony red band had the strongest correlation with
LAI (r = —0.842, p <.01). Evidently, less frequent yet strong correla-
tions were observed for biomass related parameters such as FB and
DB.

Plant height estimated from RGB imagery showed the highest r
value to both FB and DB (r=0.73, p<.01 and r=0.669, p <.01,
respectively). Vegetation fraction extracted from RGB imagery
showed strong correlations with LAl and FB, and the correlation
relationship with DB is not statistically significant. RGB imagery
based structural information plant height and vegetation fraction
were not used as input features for plant biochemical traits estima-
tion in this study, so their correlation relationship were not
evaluated.

4.2. Modelling and validation of phenotypes

Extreme Learning Machine based Regression (ELR), SVR and
PLSR methods were employed in phenotype estimation based on
extracted vegetation indices from either RGB, MSI, or TR as well
as from different combinations of sensors as shown in Tables 5
and 6. To assess the predictive capabilities of the models, RMSE,
RMSEY%, and E were calculated for all of the modelling results. Over-
all, in comparison with SVR and PLSR, the ELR method provides
more accurate estimation of soybean traits in terms of RMSE,
RMSE% and E values when considering multi-sensor data fusion
(Tables 5 and 6). Support Vector Regression (SVR) and PLSR
showed varying estimating performances for different phenotypes
and data fusions.

Based on ELR estimates of biochemical plant traits, the MSI data
provided the better results for Chl a, Chl a+b and N estimation
than the other individual sensors, followed by the RGB sensor
(Table 5). However, RGB data, which not only includes color infor-
mation but also structural information, dramatically improved the
estimation results for LAI, FB and DB compared to individual MSI
and TR sensor data (Table 6). Examination of different sensor com-
binations for data fusion showed that the combination of MSI and

TR sensors resulted in the best estimate for Chl a (smallest RMSE% -
9.9%) and the RGB color information based indices and MSI data
fusion exhibited the largest RMSE of 22.6% for Chl b estimation.
The most accurate estimates of Chl a + b were obtained from fusion
of data from all three sensors (RMSE% - 11.6%) (Table 5). For N con-
centration estimation, MSI and TR sensor combination provided
the best result (smallest RMSE% - 17.1%). However, compared to
each individual sensor data, the improvement achieved by sensor
fusion was not significant. For plant biophysical traits, the RGB
(including both color and structural information based indices)
and TR sensor combination provided the smallest RMSE (5.96%)
for LAl estimation. For FB and DB estimation, the MSI and TR sensor
combination exhibited the best results with minimum RMSE value
of 11.3% and 10.2%, respectively. The advantage of MSI and TR data
fusion was significant for biomass estimation compared to any sin-
gle sensor data or any combination of other sensors’ data as
demonstrated by its smallest RMSE and largest E value (Table 6).

Phenotype estimates from the best model with the best predic-
tion were compared with corresponding measured values using
1:1 scatterplots (Fig. 6). As expected from the low RMSE% and high
E values, Chl a, FB, DB, and N estimates from imagery and the
ground-based measurements were closely related. Similarly, esti-
mated LAI corresponded very well with the measured values (close
to 1:1 line). However, the relationships of estimated and ground-
based Chl b and Chl a + b data revealed some biases and inferior
relationships.

4.3. Mapping plant traits

Plant biophysical and biochemical variables were mapped using
the best prediction model for each plant trait (Fig. 7). Visually, the
maps of the predicted phenotypes showed good agreement with
the RGB map of vigorous growth and high density vegetation,
low vegetation areas and bare soil patches. In addition, estimation
maps show overall good association with different soybean geno-
types, i.e., Pana, Dwight and the commercial cultivar. Compared
to Pana and Dwight, the commercial check demonstrated overall
greater values for the different phenotypes. Estimated Chlorophyll
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Table 5
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Estimated biochemical plant phenotypes using multi-sensor data fusion. Chlorophyll a, b, a + b, and nitrogen concentration are represented by Chl a, Chl b, Chl a + b, and N; RMSE,
RMSE%, and E are root mean square error, relative RMSE and Nash-Sutcliffe efficiency coefficient, respectively; ELR is Extreme Learning Machine based Regression, SVR is Support
Vector Regression, PLSR is Partial Least Squares Regression, RMSE is Root Mean Square Error, RMSE% is relative Root Mean Square Error, E is Nash-Sutcliffe efficiency coefficient.

The boldface represents the best performance.

Sensor type No. of Features Metrics Chla Chl b Chla+b N
ELR SVR PLSR ELR SVR PLSR ELR SVR PLSR ELR SVR PLSR
RGB 6 RMSE 4.025 4.462 4.465 3.863 4.261 4.230 6.711 7.071 6.979 7.836 7.805 7.872
RMSE%  10.771 11929 11.938 23.150 25.536 25356 12417 13.081 12901 25.654 25572 25.797
E 0.394 0.255 0.255 0.282 0.120 0.131 0.337 0.251 0.268 0.537 0.532 0.526
MSI 6 RMSE 3.783 5.425 3.802 4.345 4.647 4.685 6.698 8.746 6.893 5.309 12.528 5.589
RMSE%  10.112 14518 10.164 26.056 27.889 28.096 12388 16.204 12.745 17322 40.835 18.242
E 0.454 -0.077  0.450 0.088 -0.041 -0.068 0.329 -0.110 0.284 0.789 -0.154 0.766
TR 1 RMSE 4.585 4.692 4.646 4.402 4.472 4.464 7.396 7.541 7.490 8.299 9.061 9.044
RMSE% 12267 12559 12430 26.398 26.803 26.771 13.688 13.963 13.861 27.183 29.678 29.619
E 0.228 0.192 0.203 0.068 0.039 0.042 0.204 0.173 0.181 0.482 0.381 0.384
MSI + TR 7 RMSE 3.715 4.670 3.781 4.163 4.470 4.667 6.391 7.537 6.683 5.227 9.008 5.595
RMSE%  9.930 12498 10.107 24949 26.794 27974 11.818 13955 12357 17.070 29.503 18.257
E 0.475 0.199 0.453 0.163 0.039 —0.055 0.389 0.174 0.328 0.795 0.388 0.765
RGB + TR 7 RMSE 3.782 4.439 4.504 3.805 4.249 4.235 6.415 7.105 7.054 7.052 7.603 7.658
RMSE% 10113 11.867 12.043 22.809 25467 25384 11.861 13.141 13.041 23.088 24.920 25.100
E 0.459 0.264 0.242 0.302 0.126 0.128 0.388 0.241 0.253 0.623 0.557 0.550
RGB + MSI 7 RMSE 3.938 4.444 4.299 3.778 4.260 4.396 6.564 7.079 6.817 7.599 7.777 6.515
RMSE% 10535 11.881 11494 22.634 25528 26356 12.142 13.096 12.604 24.878 25480 21.339
E 0.422 0.261 0.302 0.311 0.121 0.056 0.363 0.249 0.299 0.562 0.536 0.678
RGB+MSI+TR 13 RMSE 3.774 4.429 4.497 3.797 4.245 4.234 6.294 7.104 7.049 6.613 7.570 7.611
RMSE%Z  10.095 11.841 12.024 22.752 25443 25379 11.639 13.140 13.032 21.640 24.812 24.952
E 0.465 0.267 0.244 0.305 0.127 0.129 0.409 0.242 0.254 0.672 0.560 0.555
Table 6

Estimated biophysical plant phenotypes using multi-sensor data fusion. Leaf area index, above ground fresh biomass and dry biomass are represented by LAI, FB and DB; RMSE,
RMSE%, and E are root mean square error, relative root mean square error and Nash-Sutcliffe efficiency coefficient, respectively. ELR is Extreme Learning Machine based

Regression, SVR is Support Vector Regression, PLSR is Partially Least Square Regression.

Sensor type No. of features Metrics LAI FB DB
ELR SVR PLSR ELR SVR PLSR ELR SVR PLSR
RGB 8 RMSE 0.305 0.721 0.583 200.150 289.681 318.917 40.907 62.164 62.260
RMSE% 6.428 15.298 12.377 13.234 19.114 21.082 12.188 18.443 18.472
E 0.895 0.444 0.569 0.452 -0.282 -0.616 0.369 -0.426 -0.722
MSI 7 RMSE 0.742 1.257 0.834 253.632 303.166 324.209 54.978 62.333 66.266
RMSE% 15.613 26.901 17.556 16.753 20.074 21.392 16.313 18.512 19.740
E 0.288 -0.555 0.151 0.121 -0.229 -0.514 -0.156 -0.477 -0.784
TR 1 RMSE 0.866 0.956 0.922 204.676 298.457 233.188 51.419 60.860 59.224
RMSE% 18.375 20.376 19.526 13.558 19.754 15.526 15.231 18.053 17.604
E 0.119 0.019 -0.027 0.409 —-0.197 0.198 —-0.024 —0.484 —0.457
MSI + TR 8 RMSE 0.621 0.947 0.735 170.904 298.448 235.879 34.229 60.858 53.508
RMSE% 13.118 20.181 15.517 11.341 19.754 15.718 10.229 18.053 15.941
E 0.549 0.047 0.339 0.573 -0.197 0.176 0.538 —0.484 -0.230
RGB + TR 9 RMSE 0.284 0.755 0.583 207.290 289.000 320.482 41.625 62.248 63.887
RMSE% 5.961 16.028 12.361 13.673 19.073 21.185 12.376 18.474 18.934
E 0.882 0.410 0.57 0.394 -0.277 -0.632 0.377 -0.428 —1.000
RGB + MSI 15 RMSE 0.305 0.722 0.583 187.710 290.124 318.921 40.755 62.178 62.260
RMSE% 6.402 15.311 12.377 12.377 19.144 21.082 12.138 18.448 18.472
E 0.876 0.446 0.569 0.463 —-0.286 -0.616 0.423 —-0.426 -0.722
RGB + MSI+TR 16 RMSE 0.314 0.755 0.583 207.547 289.476 32048 36.044 62.282 63.886
RMSE% 6.585 16.023 12.361 13.700 19.106 21.185 10.718 18.483 18.934
E 0.857 0410 0.570 0.373 —0.280 —0.632 0471 —0.429 —1.000

content and N concentration maps exhibited very similar patterns.
Not surprisingly, FB and DB maps also resembled each other.

5. Discussion

Partial Least Squares Regression (PLSR) is one of the popular
methods used in estimating plant biophysical and/or biochemical
variables (Hansen and Schjoerring, 2003; Rischbeck et al., 2016).
In recent years, regression methods based on machine learning

techniques (e.g., SVR, neural network) has become attractive due
to its robustness in various regression analysis (Camps-Valls
et al., 2006; Elarab et al., 2015; Tuia et al., 2011; Walthall et al,,
2004). This contribution applied ELR, a relatively new machine
learning algorithm and in phenotype traits estimation for the first
time, and compared its advantages against most common conven-
tional regression methods including PLSR and SVR. Relative to PLSR
and SVR methods, ELR is more capable to handle complex data
from various sensors based on the experimental results in this
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Fig. 7. Plant phenotyping traits estimation map using ELR based multi-sensor data fusion.

study. Extreme Learning Machine based Regression (ELR) not only
tends to reach the minimum training error but also the smallest
norm of weights, which ensures ELR has better generalization per-
formance (Ding et al., 2015; Huang et al., 2012). Another reason for
using ELR is the fast learning property achieved by randomly
assigning the input weights and hidden layer biases, which makes
it suitable for real-time training (Huang et al., 2006). For these rea-
sons, our discussion below will focus on the results of ELR based
estimation.

RGB and MSI data both provide spectral information in the VIS
region. Additionally, Parrot Sequoia MSI data also cover NIR and
red-edge bands, and the TR sensor provides information from the
8 to 14 um range. Comparison of single sensor phenotype esti-
mates revealed that MSI data performed better for chlorophyll
and N prediction than RGB data (Table 5). This may be due to the
contribution of NIR spectral information in biochemical traits esti-
mation, because NIR band contains information on both the phys-
iological status and the geometric properties of vegetation
(Cozzolino et al., 2001; Curran, 1989; Houborg and Boegh, 2008;
Knipling, 1970). This was consistent with previous studies that
reported the importance of NIR information for plant trait estima-
tions (Berni et al., 2009; Lebourgeois et al., 2012; Zaman-Allah
et al., 2015; Zhang and Kovacs, 2012). However, the RGB data,
which includes VIS spectral and canopy structural information,
outperformed MSI data for LAl and biomass estimation (Table 6).
This could be due to the saturation issue associated with VIS-NIR

sensor for dense vegetation. Our results showed that coupled spec-
tral and structural information could overcome saturation issue to
some extent, which was consistent with the conclusion of previous
studies (Huete et al., 2002; Thenkabail et al., 2000; Tilly et al.,
2015; Wang et al., 2016). Further, although thermal data based
estimation did not outperform RGB and MSI data, the estimation
capability based on TR sensor data was comparable to RGB and
MSI data for at least some of the plant traits (Tables 5 and 6). This
is not surprising since variations in leaf chlorophyll concentration
and N concentration can result in differences in canopy tempera-
ture (da Luz and Crowley, 2010; Elarab et al., 2015). In addition,
bare soil and vegetation fraction in crop fields also contributes to
canopy temperature variance (Kustas and Norman, 1999; Mo
et al,, 1982; Neinavaz et al., 2016). Clearly, canopy temperature
is strongly influenced by a broad range of environmental condi-
tions, including water availability (Blum et al., 1982), and much
additional research is needed to better understand the relation-
ships of canopy temperature and various plant traits with respect
to a variety of factors including plant developmental stage, diurnal
responses, environmental conditions and their interactions.
Phenotype estimations were also obtained based on data fusion
from different sensor combinations (MSI+ TR, RGB + TR, RGB +
MSI, and RGB + MSI + TR) and were compared to the estimates
based on single sensor data. Overall, the accuracies of sensor fusion
based phenotype estimates were greater than phenotype estimates
based on data from single sensors. Data fusion based on all three
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sensors simultaneously outperformed combination of any two sen-
sors only for prediction of Chl a + b (Table 5). This may be associ-
ated with information redundancy issues caused by the fusion of
multiple sources of data (Pohl and Van Genderen, 1998).

Data fusion based on the different two-sensor combinations
generally resulted in very similar performance. RGB and MSI have
similar information in the VIS spectral region that would lead to
information overlap and further impact the predicting capability
(Dong et al., 2009; Luo et al., 2015), but nonetheless provided the
best estimation for Chl b (Table 5). RGB and MSI fusion also outper-
formed any single sensor in predicting biophysical traits (Table 6),
which may due to mutual complementation of both structural and
spectral information (Reddersen et al., 2014; Schaefer and Lamb,
2016; Schirrmann et al., 2016).

MSI and TR fusion which includes VIS-NIR spectra and canopy
temperature information provided the best estimates for Chl q, N,
FB and DB. Compared to MSI and RGB, MSI and thermal fusion suf-
fer less information overlap such that thermal data better comple-
ment information derived from MSI data (Elarab et al., 2015;
Prashar and Jones, 2014). RGB and thermal fusion, which combines
color, canopy structure and temperature information, resulted in
the best prediction for LAI (Table 6). This is likely due to the min-
imized saturation effect of optical remote sensing by canopy struc-
tural and temperature information, which complements spectral
information for the estimation of LAI (Chianucci et al., 2016;
Manninen et al., 2009; Mathews and Jensen, 2013).

Consistent with previous studies (Luo et al.,, 2017; Muharam
et al., 2015; Schaefer and Lamb, 2016; Wang et al., 2016), coupling
structural and spectral information improved the accuracy of LAI
and biomass estimation in this study. Combining thermal with
RGB or MSI data outperformed spectral and structural information
fusion from RGB and MSI for LAI, biomass, Chl a, and N prediction.
This finding implies that thermal data provides value that has not
been fully explored for biochemical and biophysical plant trait
estimations.

6. Conclusion

Rapid advances in sensor technology, unmanned aerial systems,
and computing power have facilitated exponential growth in
remote sensing applications with multi-sensor data fusion. One
of these development frontiers is automated high-throughput crop
phenotyping using low-cost aerial images for estimating biophys-
ical and biochemical plant parameters. This paper evaluated the
contribution of RGB, multispectral, and thermal data and fusions
of different combinations of these data to estimate crop biochem-
ical (chlorophyll content and N concentration) and biophysical
(LAI fresh and dry biomass) traits. The main conclusions resulting
from this study include:

1) In prediction of the soybean traits from multi-sensor data
fusion, ELR demonstrates relatively superior performance
compared to PLSR and SVR in this study.

2) Multispectral and thermal data fusion provided the best
estimate for N concentration and chlorophyll a. In contrast,
RGB color information based indices and multispectral data
fusion exhibited the largest RMSE% (22.6%). Fusion of all
three sensors outperformed combination of any two sensors
as well as single sensors for prediction of Chl a + b (smallest
RMSE% - 11.6%).

3) Among the plant biophysical traits, RGB and thermal data
fusion, which combines color, canopy structure and temper-
ature information, resulted in best prediction for LAI while
multispectral and thermal data fusion was found to be best
for biomass estimation.

The results from this study demonstrate that fusion of low-cost
multiple sensor data within a machine learning framework can
provide relative accurate estimation of plant phenotypes. It is
worth mentioning that data fusion can improve the accuracy of
phenotype estimates; however, to identify the most accurate and
efficient combination sensor data for fusion, more comprehensive
studies are necessary, including studies on different crop species.
In addition, data fusion does not always improve prediction accu-
racy dramatically. Thus, a tradeoff between accuracy improvement
and cost of using multiple sensors should be considered for a speci-
fic application.
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