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A M E R I C A N  J O U R N A L  O F  B O T A N Y

N E W S  &  V I E W S

                      Anyone who has written a species description knows the slow pro-
cess of measuring the length and width of plant parts with a ruler 
and ocular micrometer, counting hairs or branches, or assessing 
the color of fruits. Anyone who has studied plant communities has 
counted seedlings, measured leaf area, or laid out plots and counted 
their contents. Until recently, however, optimizing the speed of the 
process has not been a high priority. If it takes an hour to measure 
one herbarium specimen, how might that be reduced to minutes? 
If it takes 10 undergraduates a week to record plant communities 
along a transect, how might one undergraduate accomplish the same 
work in an at ernoon? 

 Lower-cost, automated and semiautomated methods for data 
acquisition and analysis are now being developed, enabled by 
inexpensive cameras and computers with open-source sot ware. 
Most recent applications have been in crops and model organisms, 
but the tools can be extended to systematics and ecology, i elds 
that ot en require huge amounts of specimen data. In this essay we 
describe a few available tools to encourage readers to consider 
ways to increase the throughput of their own research. While the 
term high-throughput phenotyping could apply to any morpho-
logical, physiological, or biochemical phenotype, here we focus on 
morphology or other phenotypes (e.g., drought response) that can 
be captured using images. “High throughput” was defined by 
 Fahlgren et al. (2015a)  as “hundreds of plants per day”, but for 
many projects even tens of plants per day would be a massive leap 
forward. 

 DATA ACQUISITION 

 h e appropriate method of image acquisition is determined i rst by 
the biological question and scale (macroscopic or microscopic) and 
second by the budget. Dif erent camera types can provide dif erent 
information ( Fahlgren et al., 2015a ). For example, shape and size 
of a herbarium specimen can be captured with a digital camera 

recording visible light. Conversely, drought response may be better 
investigated with near-infrared imaging. State-of-the-art imaging 
technologies are being assessed in the i eld by the ARPA-E TERRA-
REF project (http://terraref.org/), a major goal of which is to deter-
mine what additional biological information can be gained from 
pricey (e.g., hyperspectral and thermal) cameras compared to basic 
RGB cameras. Regardless of camera type, speed, or scale of data, 
the measurement needs to i t the scientii c question. In addition, 
enough experimental and image metadata must be captured for 
downstream data analysis. Standards for metadata to include 
with phenotyping experiments have been established by two large 
European networks, transPLANT (Transnational Infrastructure 
for Plant Genomic Science) and EPPN (European Plant Phenotyping 
Network) ( Ćwiek-Kupczyńska et al., 2016 ), and are summarized 
on the miappe website (Minimum Information About a Plant Phe-
notyping Exeriment;  http://www.miappe.org/ ;  Ćwiek-Kupczyńska 
et al., 2016 ). The North American Plant Phenotyping Network 
(NAPPN) held its inaugural meeting in 2016 and prioritized review-
ing and improving data standards. h e NAPPN is still in a formative 
stage and would greatly benei t from more members from ecology 
and systematics, i elds that were largely unrepresented among the 
geneticists, engineers, and computational biologists at the inaugural 
meeting. 

 Budget also dictates methods. Large-scale, custom high-
throughput phenotyping platforms are of ered for the i eld and 
laboratory by companies such as LemnaTec, Phenokey, PhenoSpex, 
Photon System Instruments, Wiwam, and We Provide Solutions. 
In the herbarium, conveyor belts can speed acquisition of specimen 
images ( Tegelberg et al., 2014 ). Such commercial systems can 
require facility managers, annual maintenance, and a steady user 
pool, and thus may be too expensive for many researchers and 
institutions. Do-it-yourself solutions, for which tools and resources 
are increasingly available, are much cheaper. For example, an ordi-
nary digital camera on a copy stand over a light box can be attached 
to a remote computer and photos taken directly onto the hard drive 
( Chitwood et al., 2014 ). Using this approach, 9500 leaf images were 
captured by two people in 3 days (D. Chitwood, personal commu-
nication). h e Maker Movement, a culture interested in open-source 
homemade technology, has made good use of low-cost micro-
controllers (i.e., Arduinos, Teensy, BeagleBone) and computers 
(i.e., Raspberry Pi) that allow amateur technologists to build and 
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prototype tools for many applications. h ese Maker Technologies 
can control familiar equipment such as l at-bed scanners and digi-
tal cameras (see http://maker.danforthcenter.org/). Anyone comfort-
able doing Web searches is well equipped to set up a Raspberry Pi 
computer and camera, and online forums (and other laboratories!) 
are more than willing to lend a hand. We have guided very young 
researchers (ages nine and up) to set up their own time-lapse imag-
ing stations, so we estimate that it would take a novice Maker an 
at ernoon to set up a Raspberry Pi camera for time-lapse or other 
sorts of imaging. h e PhenoTiki project is one recent example, 
using the Raspberry Pi to capture and analyze leaf shape, growth, 
color and number for plants in a growth chamber ( Minervini et al., 
2017 ). In many cases, image acquisition is no longer the bottleneck 
in a plant phenotyping project. Instead, image analysis is more 
ot en the area where researchers may need to develop computational 
skills or i nd an appropriately skilled collaborator. Currently avail-
able programs vary in accessibility for new users. 

 DATA ANALYSIS 

 Image analysis is an active and challenging i eld of computer sci-
ence that is rapidly providing tools applicable to biological problems. 
A common i rst step in manipulating a photograph is extracting the 
relevant portion of the image (e.g., a plant, leaf, or spikelet) from 
the background, which can be done in programs such as ImageJ 
( Schneider et al., 2012 ), PlantCV ( Fahlgren et al., 2015b ), or MatLab 

(MathWorks). The first two of these are open source, whereas 
MatLab is a commercial product. Basic use of ImageJ is relatively 
simple and can be extended with macros. MatLab is a programming 
language of its own, and PlantCV requires some programming 
skill in Python. h e latter two are particularly l exible in the kinds 
of images that can be handled and the information that can be 
extracted. 

 In ImageJ or landmark-based approaches such as TPSDig ( http://
life.bio.sunysb.edu/morph/sot -dataacq.html ), traits can be mea-
sured without necessarily extracting the target portions of the 
image first, and both are faster than recording measurements by 
hand. We have used both tools on photographs of grass spikelets 
(C. A. McAllister [Principia College] and E. A. Kellogg, unpub-
lished data) ( Fig. 1 ).  While arranging the spikelets for imaging 
was decidedly low throughput, standard measurements were 
captured reliably and rapidly by two undergraduates. If human 
intervention is necessary to measure or capture data, as in this 
spikelet example, crowdsourcing can be an option ( Ellwood et al., 
2015 ). For example, the Microplants project from the Field Museum 
( http://microplants.fieldmuseum.org/ ) is a citizen science proj-
ect that focuses on labeling image data. More broadly, Amazon’s 
Mechanical Turk platform ( https://www.mturk.com/mturk/welcome ) 
can be used to increase throughput. Further, manually labeled 
images are a necessary first step for training machine learning 
algorithms to automate the process. Sot ware built specii cally for 
large-scale high-throughput processing of images includes the Inte-
grated Analysis Platform ( Klukas et al., 2014 ), ImageHarvest 

( Knecht et al., 2016 ), and PlantCV 
( Fahlgren et al., 2015b ). A her-
barium specimen analyzed with 
PlantCV is shown in  Fig. 2 ,  
from which leal et length, color, 
and area, as well as other mea-
surements can be retrieved (see 
 http://plantcv.readthedocs.io/en/
latest/output_measurements/ ). 
PlantCV and ImageHarvest are 
available through Github, where 
developers can get a unique doc-
ument identii er (doi number) and 
thus cite the code as a research 
product; in addition, Github of-
fers a built-in means for the com-
munity to add code. 

 Reproducibility, precision, 
and accuracy are also impor-
tant considerations. Automated 
image analysis is repeatable and 
reproducible, reducing human bias 
and increasing precision. Images 
can be reanalyzed if improved ana-
lytical methods become available. 
However, accuracy needs to be 
evaluated for each application. In 
 Fig. 2 , for example, the semiauto-
mated measurements miss small 
sections of the leaflets, and the 
length of the terminal leaflets 
might not exactly follow the mid-
vein; it is up to the user to decide 

  FIGURE 1  Spikelets of  Andropogon l oridanus  ( Godfrey 79233 , MO), photographed in the herbarium of the 

Missouri Botanical Garden using a standard digital camera on a stand. Specimen is labeled on the left, and 

scale is on the right. Yellow lines indicate the length of the awns, and the inserted table lists the measurements 

calculated by ImageJ ( Schneider et al., 2012 ). Photo by Sarah Clewell and Christine McAllister.   
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  FIGURE 2  Herbarium specimen of  Solanum lycopersicum  analyzed with PlantCV ( Fahlgren et al., 2015b ). The outermost margins of the leal ets are out-

lined, showing that they have been identii ed from the surrounding objects and plant structures. The terminal leal ets are distinguished from the 

others by blue outlines. Perpendicular red lines indicate the length and width of the bounding rectangle of the leal et, and intersect at the center of 

mass. The convex hull of the terminal leal et is also outlined in red. Lengths of the terminal leal ets are 3.88, 4.44, and 4.49 (average 4.3) cm, and areas 

7.93, 7.67, and 9.20 (average 8.3) cm 2 . Specimen image retrieved from Tropicos.org (Missouri Botanical Garden, 07 March 2017, http://www.tropicos.

org/Image/100123249).   
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if these inaccuracies are a problem and to adjust accordingly. In this 
context, comparison of traditional methods of data capture with 
high-throughput methods is dii  cult because the entire workl ow 
dif ers. For example, the measurement data for the spikelets in  Fig. 1  
can be captured manually with a dissecting microscope and ocular 
micrometer in about 15 min. However, it is hard to do this kind of 
measuring for more than a few hours a day (ca. 8–12 specimens), 
and the microscopist must be familiar with plant structure so the 
task requires training and supervision. 

 In principle, image i les can be mined for phenotypes other than 
those for which they were collected, but this may not be true in 
practice. For example, the image in  Fig. 2  contains a good quality 
specimen in which the leaves are not overlapping, representing an 
ideal layout for image analysis. If subsequent specimens were laid 
out in the same approximate position, the same analysis pipeline 
could be used. However, large alterations in layout would require 
alterations in image analysis and/or modii cations of the pipeline. 
Identifying analysis sot ware before beginning a project will allevi-
ate later challenges if particular image layouts, i le structure, or for-
mats are needed during data acquisition. A valuable online resource 
for commercial and open-source plant image analysis sot ware can 
be found at the Plant Image Analysis website ( http://www.plant-
image-analysis.org/ ;  Lobet et al., 2013 ), which lists tools that mea-
sure whole plants or organs as well as ones that focus on analyzing 
anatomical and histological images. 

 DATA STORAGE 

 An unsolved problem is how to store and index accumulating image 
data for further public use. Image i les are large and not easily com-
pressed. Furthermore, it can be hard to find images without 
a central repository. Besides Morphbank ( Morphbank: Biological 
Imaging, 2017 ;  www.morphbank.net/ ), Morphobank ( O’Leary and 
Kaufman, 2012 ;  https://www.morphobank.org/ ), iDigBio ( https://
www.idigbio.org ), NEON ( www.neonscience.org/ ), and BisQue on 
Cyverse ( www.cyverse.org/bisque ), large image data sets are indexed 
at an online database at www.plant-image-analysis.org/dataset 
( Lobet et al., 2013 ). A major goal of the NAPPN, like the EPPN or 
IPPN (International Phenotyping Network), will be to unify the com-
munity around sets of standards that will allow indexing and 
searching of data. 

 PROSPECTS FOR THE FUTURE 

 Increasingly powerful tools are available for high-throughput data 
acquisition and analysis, especially for those willing to make their 
own equipment and apply open-source sot ware. Using the latest 
phenomics sot ware can require some comfort at the command-
line, which can be a barrier for some researchers, but this type of 
impediment is true of genomics tools as well. Also like genomics, 
some ability to write computer code can be helpful. A growing 
community with diverse backgrounds will help to ensure that the 
tools and tutorials meet the needs of a greater pool of researchers. 
Many tools and approaches developed for crops (see for example, 
 Hawkesford and Lorence, 2017 ) can be applied more or less directly 

to plots of wild plants. h e example in  Fig. 2  shows that a tool such 
as PlantCV can be applied to specimens with minimal manual 
input. Speed of data capture and analysis can now be considered in 
early project design, and approaches originally designed for agri-
cultural and translational research can be extended to the many 
other i elds that make up plant biology. 
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