High-throughput phenotyping'
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Anyone who has written a species description knows the slow pro-
cess of measuring the length and width of plant parts with a ruler
and ocular micrometer, counting hairs or branches, or assessing
the color of fruits. Anyone who has studied plant communities has
counted seedlings, measured leaf area, or laid out plots and counted
their contents. Until recently, however, optimizing the speed of the
process has not been a high priority. If it takes an hour to measure
one herbarium specimen, how might that be reduced to minutes?
If it takes 10 undergraduates a week to record plant communities
along a transect, how might one undergraduate accomplish the same
work in an afternoon?

Lower-cost, automated and semiautomated methods for data
acquisition and analysis are now being developed, enabled by
inexpensive cameras and computers with open-source software.
Most recent applications have been in crops and model organisms,
but the tools can be extended to systematics and ecology, fields
that often require huge amounts of specimen data. In this essay we
describe a few available tools to encourage readers to consider
ways to increase the throughput of their own research. While the
term high-throughput phenotyping could apply to any morpho-
logical, physiological, or biochemical phenotype, here we focus on
morphology or other phenotypes (e.g., drought response) that can
be captured using images. “High throughput” was defined by
Fahlgren et al. (2015a) as “hundreds of plants per day”, but for
many projects even tens of plants per day would be a massive leap
forward.

DATA ACQUISITION

The appropriate method of image acquisition is determined first by
the biological question and scale (macroscopic or microscopic) and
second by the budget. Different camera types can provide different
information (Fahlgren et al., 2015a). For example, shape and size
of a herbarium specimen can be captured with a digital camera
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recording visible light. Conversely, drought response may be better
investigated with near-infrared imaging. State-of-the-art imaging
technologies are being assessed in the field by the ARPA-E TERRA-
REF project (http://terraref.org/), a major goal of which is to deter-
mine what additional biological information can be gained from
pricey (e.g., hyperspectral and thermal) cameras compared to basic
RGB cameras. Regardless of camera type, speed, or scale of data,
the measurement needs to fit the scientific question. In addition,
enough experimental and image metadata must be captured for
downstream data analysis. Standards for metadata to include
with phenotyping experiments have been established by two large
European networks, transPLANT (Transnational Infrastructure
for Plant Genomic Science) and EPPN (European Plant Phenotyping
Network) (Cwiek—Kupczyﬁska et al., 2016), and are summarized
on the miappe website (Minimum Information About a Plant Phe-
notyping Exeriment; http://www.miappe.org/; Cwiek-Kupczyrniska
et al., 2016). The North American Plant Phenotyping Network
(NAPPN) held its inaugural meeting in 2016 and prioritized review-
ing and improving data standards. The NAPPN is still in a formative
stage and would greatly benefit from more members from ecology
and systematics, fields that were largely unrepresented among the
geneticists, engineers, and computational biologists at the inaugural
meeting.

Budget also dictates methods. Large-scale, custom high-
throughput phenotyping platforms are offered for the field and
laboratory by companies such as LemnaTec, Phenokey, PhenoSpex,
Photon System Instruments, Wiwam, and We Provide Solutions.
In the herbarium, conveyor belts can speed acquisition of specimen
images (Tegelberg et al., 2014). Such commercial systems can
require facility managers, annual maintenance, and a steady user
pool, and thus may be too expensive for many researchers and
institutions. Do-it-yourself solutions, for which tools and resources
are increasingly available, are much cheaper. For example, an ordi-
nary digital camera on a copy stand over a light box can be attached
to a remote computer and photos taken directly onto the hard drive
(Chitwood et al., 2014). Using this approach, 9500 leaf images were
captured by two people in 3 days (D. Chitwood, personal commu-
nication). The Maker Movement, a culture interested in open-source
homemade technology, has made good use of low-cost micro-
controllers (i.e., Arduinos, Teensy, BeagleBone) and computers
(i.e., Raspberry Pi) that allow amateur technologists to build and
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prototype tools for many applications. These Maker Technologies
can control familiar equipment such as flat-bed scanners and digi-
tal cameras (see http://maker.danforthcenter.org/). Anyone comfort-
able doing Web searches is well equipped to set up a Raspberry Pi
computer and camera, and online forums (and other laboratories!)
are more than willing to lend a hand. We have guided very young
researchers (ages nine and up) to set up their own time-lapse imag-
ing stations, so we estimate that it would take a novice Maker an
afternoon to set up a Raspberry Pi camera for time-lapse or other
sorts of imaging. The PhenoTiki project is one recent example,
using the Raspberry Pi to capture and analyze leaf shape, growth,
color and number for plants in a growth chamber (Minervini et al.,
2017). In many cases, image acquisition is no longer the bottleneck
in a plant phenotyping project. Instead, image analysis is more
often the area where researchers may need to develop computational
skills or find an appropriately skilled collaborator. Currently avail-
able programs vary in accessibility for new users.

DATA ANALYSIS

Image analysis is an active and challenging field of computer sci-
ence that is rapidly providing tools applicable to biological problems.
A common first step in manipulating a photograph is extracting the
relevant portion of the image (e.g., a plant, leaf, or spikelet) from
the background, which can be done in programs such as Image]
(Schneider et al,, 2012), PlantCV (Fahlgren et al., 2015b), or MatLab

(MathWorks). The first two of these are open source, whereas
MatLab is a commercial product. Basic use of Image] is relatively
simple and can be extended with macros. MatLab is a programming
language of its own, and PlantCV requires some programming
skill in Python. The latter two are particularly flexible in the kinds
of images that can be handled and the information that can be
extracted.

In Image] or landmark-based approaches such as TPSDig (http://
life.bio.sunysb.edu/morph/soft-dataacq.html), traits can be mea-
sured without necessarily extracting the target portions of the
image first, and both are faster than recording measurements by
hand. We have used both tools on photographs of grass spikelets
(C. A. McAllister [Principia College] and E. A. Kellogg, unpub-
lished data) (Fig. 1). While arranging the spikelets for imaging
was decidedly low throughput, standard measurements were
captured reliably and rapidly by two undergraduates. If human
intervention is necessary to measure or capture data, as in this
spikelet example, crowdsourcing can be an option (Ellwood et al.,
2015). For example, the Microplants project from the Field Museum
(http://microplants.fieldmuseum.org/) is a citizen science proj-
ect that focuses on labeling image data. More broadly, Amazon’s
Mechanical Turk platform (https://www.mturk.com/mturk/welcome)
can be used to increase throughput. Further, manually labeled
images are a necessary first step for training machine learning
algorithms to automate the process. Software built specifically for
large-scale high-throughput processing of images includes the Inte-
grated Analysis Platform (Klukas et al.,, 2014), ImageHarvest
(Knecht et al., 2016), and PlantCV
(Fahlgren et al., 2015b). A her-
barium specimen analyzed with
PlantCV is shown in Fig. 2,
from which leaflet length, color,
and area, as well as other mea-
surements can be retrieved (see
http://plantcv.readthedocs.io/en/
latest/output_measurements/).
PlantCV and ImageHarvest are
available through Github, where
developers can get a unique doc-
ument identifier (doi number) and
thus cite the code as a research
product; in addition, Github of-
fers a built-in means for the com-
munity to add code.

Reproducibility, precision,
and accuracy are also impor-
tant considerations. Automated

[aArea [Mean [Min  [Max

[Angle  iength |

0.223 50.032 0.714 212.870 -29.010 9.169
0.197 73311 1.511 203.638 -79.095 8.092
0.169 28904 1.006 156.777 -55.305 6.915

FIGURE 1 Spikelets of Andropogon floridanus (Godfrey 79233, MO), photographed in the herbarium of the
Missouri Botanical Garden using a standard digital camera on a stand. Specimen is labeled on the left, and
scale is on the right. Yellow lines indicate the length of the awns, and the inserted table lists the measurements
calculated by ImageJ (Schneider et al., 2012). Photo by Sarah Clewell and Christine McAllister.
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image analysis is repeatable and
reproducible, reducing human bias
and increasing precision. Images
can be reanalyzed if improved ana-
lytical methods become available.
However, accuracy needs to be
evaluated for each application. In
Fig. 2, for example, the semiauto-
mated measurements miss small
sections of the leaflets, and the
length of the terminal leaflets
might not exactly follow the mid-
vein; it is up to the user to decide
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G. & K. Yatskievych 92-305
J. Harris

MISSOURI BOTANICAL GARDEN HERBARIUM (MO)

FIGURE 2 Herbarium specimen of Solanum lycopersicum analyzed with PlantCV (Fahlgren et al., 2015b). The outermost margins of the leaflets are out-
lined, showing that they have been identified from the surrounding objects and plant structures. The terminal leaflets are distinguished from the
others by blue outlines. Perpendicular red lines indicate the length and width of the bounding rectangle of the leaflet, and intersect at the center of
mass. The convex hull of the terminal leaflet is also outlined in red. Lengths of the terminal leaflets are 3.88, 4.44, and 4.49 (average 4.3) cm, and areas
7.93,7.67, and 9.20 (average 8.3) cm? Specimen image retrieved from Tropicos.org (Missouri Botanical Garden, 07 March 2017, http://www.tropicos.
org/Image/100123249).
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if these inaccuracies are a problem and to adjust accordingly. In this
context, comparison of traditional methods of data capture with
high-throughput methods is difficult because the entire workflow
differs. For example, the measurement data for the spikelets in Fig. 1
can be captured manually with a dissecting microscope and ocular
micrometer in about 15 min. However, it is hard to do this kind of
measuring for more than a few hours a day (ca. 8-12 specimens),
and the microscopist must be familiar with plant structure so the
task requires training and supervision.

In principle, image files can be mined for phenotypes other than
those for which they were collected, but this may not be true in
practice. For example, the image in Fig. 2 contains a good quality
specimen in which the leaves are not overlapping, representing an
ideal layout for image analysis. If subsequent specimens were laid
out in the same approximate position, the same analysis pipeline
could be used. However, large alterations in layout would require
alterations in image analysis and/or modifications of the pipeline.
Identifying analysis software before beginning a project will allevi-
ate later challenges if particular image layouts, file structure, or for-
mats are needed during data acquisition. A valuable online resource
for commercial and open-source plant image analysis software can
be found at the Plant Image Analysis website (http://www.plant-
image-analysis.org/; Lobet et al., 2013), which lists tools that mea-
sure whole plants or organs as well as ones that focus on analyzing
anatomical and histological images.

DATA STORAGE

An unsolved problem is how to store and index accumulating image
data for further public use. Image files are large and not easily com-
pressed. Furthermore, it can be hard to find images without
a central repository. Besides Morphbank (Morphbank: Biological
Imaging, 2017; www.morphbank.net/), Morphobank (O’Leary and
Kaufman, 2012; https://www.morphobank.org/), iDigBio (https://
www.idigbio.org), NEON (www.neonscience.org/), and BisQue on
Cyverse (www.cyverse.org/bisque), large image data sets are indexed
at an online database at www.plant-image-analysis.org/dataset
(Lobet et al., 2013). A major goal of the NAPPN, like the EPPN or
IPPN (International Phenotyping Network), will be to unify the com-
munity around sets of standards that will allow indexing and
searching of data.

PROSPECTS FOR THE FUTURE

Increasingly powerful tools are available for high-throughput data
acquisition and analysis, especially for those willing to make their
own equipment and apply open-source software. Using the latest
phenomics software can require some comfort at the command-
line, which can be a barrier for some researchers, but this type of
impediment is true of genomics tools as well. Also like genomics,
some ability to write computer code can be helpful. A growing
community with diverse backgrounds will help to ensure that the
tools and tutorials meet the needs of a greater pool of researchers.
Many tools and approaches developed for crops (see for example,
Hawkesford and Lorence, 2017) can be applied more or less directly

to plots of wild plants. The example in Fig. 2 shows that a tool such
as PlantCV can be applied to specimens with minimal manual
input. Speed of data capture and analysis can now be considered in
early project design, and approaches originally designed for agri-
cultural and translational research can be extended to the many
other fields that make up plant biology.
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