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Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the
fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a
novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion
events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly,
a detection and tracking method is developed to extract image patch sequences containing potential
fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch
sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity
change features introduced by GMM and the visual appearance features embedded in some key moments
of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence
into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the
performance of our method on 9 challenging datasets that have been annotated by cell biologists, and
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our method achieves better performances when comparing with three previous methods.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Vesicle exocytosis is an essential cellular trafficking process,
by which materials (e.g., transporters, receptors and enzymes) are
transported from one membrane-bounded organelle to another or
to the plasma membrane for growth and secretion. Vesicle exocy-
tosis needs to be highly regulated since its dysregulation is related
to many human diseases (e.g., neurodegenerative disease, cancer
and diabetes) (Hou et al., 1997; Jahn et al., 2012). Different modes
of vesicle exocytosis have been found and characterized in mam-
malian cells. These include the full fusion where a vesicle collapses
completely when it fuses with the plasma membrane, and the par-
tial fusion or “kiss-and-run” fusion where a vesicle transiently fuses
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with the plasma membrane without the full collapse (Rizzoli et al.,
2007; Xu et al., 2011). In cell biology research, it is of great impor-
tance to detect vesicle fusion events and also to classify different
modes of vesicle exocytosis. Because the quantitative analysis of
these biological processes can provide insights into cellular behav-
iors in normal and disease conditions.

Total Internal Reflection Fluorescence Microscopy (TIRFM),
which illuminates the aqueous phase immediately adjacent to a
glass interface with an exponentially decaying excitation (about
100 nm in z-axis), has been used widely to visualize single vesicle
exocytosis at the cell surface (Axelrod et al., 1981; Schneckenburger
et al., 2005). A pH-sensitive mutant of GFP, pHluorin, was devel-
oped and expressed to visualize vesicle exocytosis (Gero et al.,
1998). Usually, pHluorin is targeted to the lumen of the vesicle,
which is quenched and non-fluorescent in acidic environment,
but becomes brightly fluorescent when the vesicle exposes to the
extracellular neutral environment as the vesicle fuses with the
plasma membrane (Xu et al., 2011, 2016). In this study, we imaged
a variety of vesicle exocytosis in different types of mammalian
cells. These include constitutive exocytosis (transferrin receptor-
pHIuorin exocytosis in endothelial cells and 3T3-L1 adipocytes) and
regulated exocytosis (VAMP2-pHIluorin labeled insulin granule in
MIN-6 cells and VAMP2-pHlurin labeled GLUT4 vesicle in 3T3-L1
adipocytes). Quantitative analysis of the vesicle exocytosis in these
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typical examples will strengthen our understanding of how vesicle
exocytosis is regulated and how its dysregulation triggers human
disease (e.g., insulin resistance and diabetes) (Bornemann et al.,
1992; Leney et al., 2009; Xu et al., 2011).

Usually, the membrane fusion between pHluorin labeled vesi-
cles and the plasma membrane can be represented by 2 significant
stages in a continuous video sequence, as illustrated in Fig. 1.
In stage 1, the vesicle is invisible in the pre-appearance frame
(quenched), and then suddenly appears in the first-appearance
frame as a brightly fluorescent circle spot. In stage 2, after being
immobilized for some frames (from about 100 ms to a few seconds),
the vesicle will either fuse completely with the plasma membrane
with a visible bright “halo” (full fusion event), or remain its cir-
cular shape and gradually fade (partial fusion event), which can
be observed in the last appearance frame, respectively. At the end
of this process, the vesicle under the full or partial fusions will
disappear in the disappearance frame. Note that, since the moving
trajectory of vesicles during the exocytosis process is almost per-
pendicular to the cell membrane, the trajectory projected onto the
cell surface (i.e., the image plane in the TIRFM) only has a small
spatial displacement. In this movement process, the appearance
variation pattern of the vesicle fusion event is a critical character-
istic that is able to generate representative features to distinguish
the vesicle fusion event from the background. Specially, the pre-
appearance frame, first-appearance frame, last-appearance frame and
disappearance frame are the 4 key moments of the vesicle fusion
event, which represent the significant appearance change of a given
fusion event.

A typical time-lapse TIRFM movie consists of thousands of
individual frames with hundreds of vesicle fusion events. Unfor-
tunately, so far the vesicle fusion detection and classification
are performed mainly in a manual manner, which is a very
time-consuming process, and likely to introduce personal biases.
Therefore, there is a great demand to develop effective compu-
tational tools to automatically extract the vesicle fusion event
information in TIRFM video sequences, which will aid the quan-
titative analysis on the vesicle exocytosis process.

1.1. Related work

When the computer-based microscopy image analysis is used
to relieve human from the tedious manual labeling (Basset et al.,
2014, 2015; Godinez et al., 2009), it is unsurprising that lots of
challenges, such as the uncontrollable noise interference of TIRFM
images and the high variability of fusion events’ properties (e.g.,
intensity profiles, lifetime length and movement patterns), hinder
the automated image processing. Furthermore, some of the bright
spots (endocytic vesicles or vesicles from other non-acidic com-
partments) in TIRFM image sequences are moving in and out of
the TIRFM field, which is a great challenge for designing automated
algorithms for vesicle fusion detection. In order to detect fusion
events, one needs to use specific detection algorithms considering
both spatial and temporal features of individual objects.

Based on the bright circular appearance of vesicle fusions under
the TIRFM, some approaches have been proposed to perform auto-
mated fusion identification, such as the pixel intensity thresholding
methods in Huang et al. (2007), Yuan et al. (2015) and the inten-
sity distribution analysis methods in Smith et al. (2011), Dosset
et al. (2015). However, these methods are sensitive to the varia-
tion of vesicle fusion intensity profiles (shown in Fig. 2(a-c)). In
order to improve the tolerance to the variation, some automated
approaches were developed to model the moving process of fusion
events. Based on both the temporal and spatial features, a template
matching method was proposed to identify the fusion events with
high correlation to a standard fusion event template in Vallotton
et al. (2007). In another study, a Gaussian model was used to fit

typical fusion events in Bai et al. (2007), where the parameters in
the Gaussian model are used to classify fusion events. However,
due to the frequent background intensity fluctuations (as shown in
Fig. 2(d-f)) introduced by the TIRFM system and intracellular activ-
ities, it is hard to build a standard template or a general model to
represent all fusion events.

Because of the large variations of the fusion events’ properties
(e.g., intensity profiles, lifetime length and movement patterns)
and frequent background fluctuations, the robustness of a vesi-
cle fusion detection and classification method is highly important.
A robust detection method was proposed in Lorenz et al. (2010),
which first detects candidate fusion events that suddenly appear in
the TIRFM field. Then, a diffusive model is developed to analyze the
intensity distribution variation pattern of the fusion event for the
classification. Based on the visible “puff’ phenomenon of the full
fusion event, the diffusive fusion model effectively distinguishes
full fusion events from non fusion regions, leaving a large amount
of partial fusion events unrecognized. In addition, a Layered Proba-
bilistic Approach was proposed in Godinez et al. (2012) to identify
full fusion events by exploring three abstractions: the intensity
over time, the underlying temporal intensity model and the high
level behavior. Each of these three abstractions corresponds to a
layer and these layers are represented via stochastic hybrid sys-
tems and hidden Markov models. However, partial fusion events
are not considered in this work.

Unlike the full fusion event, which can be distinguished by its
“puff”/spread signal, the partial fusion event is resembled to other
bright spots (Fig. 2(d-f)) on the background, which is problematicin
most of the existing detection and classification methods. In order
to reveal the unique variation pattern of the fusion events, a learn-
ing based method was developed in our previous work (Li et al.,
2015). An adaptive detection and tracking method is first applied to
TIRFM images to search for potential fusion patches through video
frames, then a Gaussian Mixture Model (GMM) is fitted on each
individual fusion event. Using the estimated parameters of this
model as features, a classifier is trained to distinguish full fusion
events, partial fusion events and non-fusion events. However, in
this GMM-based method, the handcrafted features ignore the dis-
criminative appearance information from the 4 key moments of
a fusion event, which leads to miss-detection problems in short
fusion events (shown in Fig. 2).

1.2. The major challenges

According to the observation of our own datasets and the review
of previous works, the major challenges to the task of detecting and
classifying vesicle fusion events are summarized as follows:

The high variability of the vesicle fusion events. Some typical
partial fusion events and full fusion events are shown in Fig. 2(a)
and (b) respectively, from which we can observe the characteris-
tics of vesicle fusion events. For example, normally partial fusion
events present the momentary appearance and disappearance, and
full fusion events present a sudden appearance and a gradual dis-
appearance with their signals fading away. However, in practical
cases, the vesicle fusion event has large variations in its intensity
profile, lifetime and movement pattern. For instance, compared
with a typical full fusion event in Fig. 2(b), the full fusion event
in Fig. 2(c¢) has a much shorter lifetime and a much more blurry
intensity profile. These variations yield challenges in modeling the
various visual patterns of fusion events.

Complex background interferences. Besides vesicle fusion
events, there exist a large amount of other bright circular spots on
the background, which are challenges for automated fusion event
detection and classification. For instance, the circular background
intensity fluctuation (Fig. 2(d)) is similar to a partial fusion event.
Some moving bright spots, which are temporarily immobile near
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Fig. 1. The 2 significant stages of vesicle fusion processes and the related 4 key moments. 3T3-L1 adipocytes were transfected with VAMP2-pHIluorin to label the GLUT4
vesicles. pHluorin is a pH-sensitive fluorescent protein that is invisible in the lumen of acidic vesicles, which becomes much more fluorescent when a vesicle fuses with the
plasma membrane and exposes to a neutral environment. After a vesicle touches the cell membrane, it either fully collapses and fuses with the plasma membrane ((a) Full
fusion event), or partially fuses with the plasma membrane and then is retrieved rapidly by the clathrin-dependent process ((b) Partial fusion event).
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Fig. 2. Some samples of partial fusion event (a), full fusion events (b and c), and non-fusion events (d-f). (a) A typical partial fusion event; (b) A typical full fusion event with
the “puff” phenomenon; (c) A short full fusion event is characterized by its “puff” phenomenon; (d) A bright circular object caused by the background intensity fluctuation; (e)
A moving bright spot, which only moves in the first several frames then stays immobile, is similar to a partial fusion event when it stops moving; (f) A background fluctuation,
which is really similar to standard full fusion events in the early stage, then gradually moves out of the field of view.

the cell membrane for several frames (Fig. 2(e and f)), can be mis-
takenly classified as partial fusion events. These interferences yield
challenges in selecting effective features to build discriminative
classifiers.

1.3. Our proposal and contributions

Rather than designing handcrafted visual models or features,
Convolutional Neural Networks (CNN) that can learn the discrim-
inative features from big training data have been widely used in
different real world classification tasks, such as image recogni-
tion (Krizhevsky et al., 2012; Lawrence et al., 1997), video analysis
(Yue-Hei et al., 2015; Karpathy et al., 2014) and natural language
processing (Hu et al., 2014; Kim et al., 2014). CNN is a promis-
ing learning based method to handle classification challenges on
microscopy images, such as cell detection (Mao et al., 2016a,b).
Therefore, in order to enhance the tolerance to the variation of
fusion events and the unpredictable background interferences,
we propose to develop a novel CNN-based application which
applies a Hierarchical Convolutional Neural Network (HCNN) to
explore both appearance features and temporal cues for the vesicle
fusion event classification. First, we extract fusion event candi-
date sequences and their appearance features from the input video
data by using a newly developed iterative tracking algorithm. Sec-
ondly, a center-surrounded Gaussian Mixture Model (GMM) is fit
on each patch of the patch sequence using the RANSAC algorithm
(Martin et al., 1981) to remove outliers during the fitting process.
The patch sequences are aligned with the same time length and
time-series intensity change features corresponding to the Gaus-
sian models’ parameters are extracted over time. Thirdly, based
on the time-series parameters from Gaussian Mixture Models and
4 key moments of the fusion event candidate sequence, a HCNN
is developed to automatically select discriminative temporal and
appearance features for the classification of the fusion event can-

didates in challenging datasets with low Signal-to-Noise-Ratio and
frequent background fluctuations.

Our contributions in this paper include: (1) A novel applica-
tion is proposed to detect and classify vesicle fusion events. The
Hierarchical Convolutional Neural Network (HCNN) is utilized to
learn discriminative appearance features from 4 key moments of
a fusion event and combine them with the temporal features from
the parametric Gaussian Mixture Models over time; (2) A center-
surrounded Gaussian Mixture Model is used to model the intensity
profile change of a fusion event in its entire lifetime; (3) A newly
developed vesicle fusion event tracking algorithm is applied for the
appearance feature extraction.

The rest of this paper is organized as follows: in Section 2, we
briefly introduce our newly developed vesicle fusion event track-
ing algorithm, which contributes to appearance feature extraction
for fusion event classification; in Section 3, the classification of the
fusion event candidates by HCNN is presented; in Section 4, we
validate our method on 9 challenging datasets and compare it with
the previous methods and other neural network architectures. The
paper concludes with Section 5.

2. Detection and tracking algorithm

Based on our preliminary work on detecting and tracking vesi-
cle candidates in video sequences (Li et al., 2015), we improved the
tracking algorithm to accurately measure the lifetimes of vesicle
fusion events, which is important for the feature extraction task in
fusion event classification. The major goal of our new tracking algo-
rithm is to find the first-appearance frame and the last-appearance
frame of a potential fusion event and every patch center between
the first-appearance frame and the last-appearance frame. We utilize
Fig. 3 to illustrate how to iteratively search in the forward direc-
tion to find the last-appearance frame (the search in the backward
direction to find the first-appearance frame is similar).
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Fig. 3. An example to search the candidate patch sequence S in the forward temporal direction.

Assume we find the pixel (x*, y°) with the local maximum of
local contrast as the center of the potential fusion event and crop
an n x n image patch around it. Since we use fixed size patches,
we only need to record the coordinates of the patch center in the
fusion event candidate patch sequence, which are denoted as S =
{x*,y;‘ It € [thrst tlast]} where tgg and ty,5 denote the first and last
frame index of the patch sequence, respectively. At the beginning,
tarse = tiast = to. During each iteration, we search the last-appearance
frame in a sliding temporal window of D frames. Three situations
are considered during the iterative search:

Situation 1, if the maximums of the local contrast in all D
frames around location (x;‘ldst, y;*lm) are larger than ¢, so we can

update S = {x}, ¥{It € [tfirst, tigst] } DY Setting tigs <— tigse + D. Then,
we continue the search from frame tj, + 1 to frame t;q5 +D.

Situation 2, if not all of the maximums of the local contrastin D
frames around location (x;‘lm , y:ms[) are larger than ¢, while e x > 1
(ais a decay rate on the threshold), we update t,; as the last frame
within the D frame whose maximal local contrast is larger than
€ and the patch centers are updated accordingly. The threshold is
updated as & «— ¢ x . Then, we continue the search from frame
tigse + 1 to frame tyqq + D.

Situation 3, if not all of the maximums of the local contrastin D
frames around location (x;‘last , y;‘las[) are larger than ¢ and e x ¢ <1,
we update the patch sequence similar to situation 2, then we stop
the iteration.

By applying this iterative tracking algorithm to the TIRFM
image sequence, we can obtain the whole lifetimes of potential
fusion events in the format of candidate patch sequences, each of
which records the coordinates of the patch center from the first-
appearance frame to the last-appearance frame. For each potential
fusion event, we compute the pairwise Euclidean distance between
each consecutive pair of patch centers within the candidate patch
sequence. If any of these distances is larger than the neighborhood
size n, this candidate patch sequence is highly possible to be a non-
fusion event caused by a moving object from the background, and
we remove it from the candidate list.

3. Classification of fusion event candidates

In this section, we will introduce the classification of fusion
event candidates by using a novel Hierarchical Convolutional
Neural Network (HCNN). Compared with the Support Vector
Machine-based classification method in Li et al. (2015), HCNN is
able to automatically select discriminative features which can pro-
vide the comprehensive representation of the fusion event. In order
to enhance the tolerance to the variation of fusion events and
the unpredictable background interferences, the proposed HCNN
architecture considers both spatial and temporal information. The

input of our HCNN consists of the time-series parametric infor-
mation from the Gaussian Mixture Model fitting, and the visual
appearance information from the 4 key moments of the fusion
event candidate. The former is aiming at revealing the unique
hidden variation pattern of the vesicle fusion event in its entire
lifetime. The latter is proposed to extract the extraordinary visual
appearance features of the vesicle fusion event. Moreover, the hier-
archical architecture is able to exploit the high-level abstraction of
intensity profiles of individual frames and the high-level temporal
features from the entire fusion event lifetime to accurately distin-
guish fusion events from the other similar circular bright spots in
Fig. 2.

3.1. Data preparation

Because of the frequent background interferences in the TIRFM
video data, directly thresholding the candidate patch sequence
might not be a good option to present its intensity profile vari-
ation. Therefore, we adopt the data preparation strategy in our
previous work (Li et al., 2015). First, a robust Gaussian Mixture
Model (GMM), which consists of two center-surrounded 2D Gaus-
sian models (Areap and Areayin Fig. 4), is adopted to fit the intensity
profile of each fusion event candidate, where a Random Sample
Consensus algorithm (Martin et al., 1981) is applied to robustly
estimate the parameters of Gaussian models without the outlier
effect. Second, since most of the fusion events have their lifetimes
less than 24 frames in the datasets we used in this study, we extract
24 image patches from each fusion event candidate starting from
the first-appearance frame. For those fusion event candidates whose
lifetimes are shorter than 24 frames, we will zero-padding them.
For those fusion event candidates with longer lifetimes, they will
be cut into the time length. Third, for each fusion event candi-
date, there are 24 extracted image patches in the patch sequence,
where each image patch is represented by a set of GMM parameters
(Apeak’» Mpeakr Opeak Of Areap, and Agqy, igqt, Ofiqr Of Areay). Thus, the
time-series intensity profile change of a vesicle fusion event candi-
date, which is represented by 24 sets of GMM parameters, can be
utilized for fusion event classification.

3.2. The variation pattern in GMM image

In order to explore the hidden correlations among the image
patches in each fusion event candidate, we generalized the vector-
ization process in our previous work (Li et al., 2015) by transforming
the parameter sets of a fusion event candidate into a 2D image,

3 ) is the weighting coefficient of each Gaussian component in the GMM.
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Fig. 5. Transforming the time-series Gaussian fitting parameter sets to a 2D array (Gaussian Mixture Model image, GMM image). In the GMM image, each cell represents a
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image, which contains 24 cells, is a 12 x 12 matrix.

which concatenates the time-series parameter sets into a 2D array
in a special order, as shown in Fig. 5. We call this 2D array of Gaus-
sian Mixture Model fitting parameters as GMM image that allows
the HCNN to discover the hidden correlation among the parame-
ter sets. Furthermore, in Fig. 5, we design the GMM image to be a
square image, so each parameter set has more chances to be neigh-
boring to other parameter sets. For example, given 24 parameter
sets to stitch, if they are concatenated into a 24 x 1 matrix pattern,
there is no 4- or 8-connected neighborhood relationship among
the parameter sets. However, if we stitch them into a 12 x 2 matrix
pattern, the relationship among the parameter sets will increase
a little. Thus, in this work, we concatenate the 24 parameter sets
into a 4 x 6 matrix pattern, many 4- or 8-connected neighborhood
relationships can be built among the parameter sets.

3.3. The visual appearance in 4 key moments

In addition to the GMM image, which contains the high-level
abstraction of intensity profiles of individual frames, we also con-
sider the appearance features in the 4 key moments of a fusion
event candidate. As described in Fig. 1, the movement of vesicles
can be well represented in the 4 key moments: pre-appearance
frame, first-appearance frame, last-appearance frame and disappear-
ance frame. By using our newly developed vesicle fusion event
tracking method, the whole entire of each fusion event candidate is
able to be obtained. Therefore, for each candidate, we extract image
patches in these 4 key moments. The first-appearance frame patch
and last-appearance frame patch are extracted from the first frame
and the last frame in the fusion event lifetime, respectively. The pre-
appearance frame patch is extracted from the previous frame of the
first-appearance frame. The disappearance frame patch is extracted
from the next frame of the last-appearance frame. Both the para-
metric information from the GMM image and the 4 image patches
of the 4 key moments will be input to the HCNN.

3.4. The architectures of our HCNN

The overall architecture of our Hierarchical Convolutional Neu-
ral Network (HCNN) is shown in Fig. 6. In the first layer, the inputs
of the first 4 Convolutional Neural Networks CNN’1 (Jel1, 4]) are
the cropped image patches from 4 key moments, which provide the
detailed visual appearance information of fusion event candidates.
Each of these four CNNs takes a single cropped image patch. The
input of the CNN? is the GMM image which provides the time-series
intensity change information of the fusion process (a high-level
abstraction using the parameters from Gaussian Mixture Model
fitting). In the second layer of our HCNN, we design the CNNg to

learn joint features of the CNN’l (j € [1, 4]), which indicate the cor-
relation of fusion event patches in the 4 key moments. In the third
layer, the combined appearance and time-series intensity change
features are fed into the CNNJ to make the final prediction. In our

notation of CNN]i, i denotes the layer in our HCNN and j indexes the
CNN out of the total 7 CNNs in our proposed HCNN architecture.
The design of our proposed HCNN architecture has three moti-
vations. First, the intensity variation pattern of a fusion event,
which is different from other bright circular spots in TIRFM image
sequences, is a significant characteristic to classify fusion events.
Instead of directly using the consecutive image patch sequence to
provide this time-series intensity change information, the time-
series parameter sets from Gaussian Mixture Model fitting, which
can avoid outlier pixels with undesired intensity fluctuations, are
more reliable and the proposed GMM image can further explore
hidden relations among the time-series parameters. Second, the
characteristics of a fusion event’s appearances can be well rep-
resented in the 4 key moments, thus utilizing these appearance
characteristics and the correlation among the 4 key moments
should boost the classification performance. Third, our proposed
HCNN architecture is able to learn the correlation among the 4 key
moments before combing the appearance and temporal features,
which can reveal the unique variation pattern of the fusion event.
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Fig. 6. The overall architecture of our proposed Hierarchical Convolutional Neural Network (HCNN).
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The first layer of our HCNN contains 5 CNNs (CNNj1,j e [1,5)]).

The first 4 CNNs (CNN’1,j € [1, 4]), each of which takes a cropped
image patch (13 x 13) of the fusion event in one of the 4 key
moments as the input, share the same architecture as shown in
Fig. 7. In the architecture of CNN]1 (j € [1, 4]), there are two Con-
volutional Layers where each of them is connected to a Rectified
Linear Unit (ReLU) for sparse representations. The first Convolu-
tional Layer is followed by a 2 x 2 Max Pooling Layer with stride
2. The major goal of adding Max Pooling Layer is to enhance the
robustness of the classifier by bringing invariance to the training
process. We add a Drop-out Layer (Srivastava et al., 2014) between
the two Fully Connected Layers to avoid the over-fitting.

The CNN3, whose architecture is shown in Fig. 8, learns the
high-level time-series features from the intensity variation pattern
introduced by the GMM image. There are 3 Convolutional Layers,
where each Convolutional Layer is followed by a Rectified Linear
Unit (ReLU) for sparse representations. Compared with the other
4 CNNs in the first layer, there is no Max Pooling Layer in CNN?.
Because we do not expect to loss any time-series variation infor-
mation during the convolution. To avoid the over-fitting, we add
one Drop-out Layer between the Fully Connected Layer 1 and Fully
Connected Layer 2.

The architecture of the CNNs in the second and last layer of our
HCNN (CNN;3 and CNN;) is shown in Fig. 9. The input feature layer
to CNNg is the combined feature from the Fully Connected Layer 2
of CNN]1 (j € [1, 4]). The design of CNNg is to study the correlation
information among the 4 key moments before combining appear-
ance features and time-series variation features. The input features
to CNN? is the combined features of the time-series intensity vari-
ation features from the Fully Connected Layer 2 of CNN?, and the
visual appearance features from the Fully Connected Layer 2 of
CNNS. Between the Fully Connected Layer 1 and Fully Connected
Layer 2, we add a Drop-out Layer to avoid the over-fitting.

4. Experiments

In this section, first we describe our datasets, experimental
design and evaluation metrics. Then, we validate the effectiveness
of our fusion event candidate extraction. Thirdly, we compare our
method with the state-of-the-arts and our previous methods in Li
et al. (2015). Finally, we validate our HCNN design by comparing it
with 11 alternative neural network designs.
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Fig. 8. The architecture of CNN? in the first layer of our HCNN. The input of this architecture is the GMM image. In the Convolutional Layer 1, we set the number of the 5 x 5
kernels as 42. In the Convolutional Layer 2, we set the number of the 3 x 3 kernels as 72. In the Convolutional Layer 3, we set the number of the 3 x 3 kernels as 126. The
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Fig. 9. The architecture shared by CNNg in the second layer and CNN; in the third layer. In CNN$, the input feature layer contains the high-level appearance feature, which
is extracted from the 4 key moments. In CNN;, the input feature layer consists of visual and temporal information.

Input Feature
Layer

(a) Architecture of HCNN-4KM (c) Architecture of HCNN-4KM-GMM
Pre
Full Fusion Pre
First CNN CNN Partial Fusion
Non-Fusion First
Last CNN
st Full Fusion
i as
Dis CNN Partial Fusion|
2 Non-Fusion
: Dis
(b) Architecture of CNN-GMM
Full Fusion
GMM CNN Partial Fusion GMM
Image Image
Non-Fusion

Fig. 10. The architectures of the HCNN-4KM (a), CNN-GMM (b) and HCNN-4KM-GMM (c).

4 Key : { (a) Architecture of SCNN-4KM b
132 Moments , Stitched 5() E
image patches ! - !
- — H A Full Fusion | !
1_ FirstJPl’e Input i ( I E
4 CNN Partial Fusion | i
. = Dis|Last E ] E
n i Non-Fusion | !
1
A\, 7
: | (b) Architecture of HCNN-SCNN-4KM A
: oMM | cnN
mage
| . : Y Full Fusion
n &{ CNN ]—~ Hybrid a[ CNN kPartial Fusion
features
Non-Fusion
B —p :

Fig. 11. The architectures of the SCNN-4KM (a) and HCNN-SCNN-4KM (b).

4.1. Datasets, experimental design and evaluation metric

Datasets. In the experiments, 9 TIRFM image sequences were
captured at 5 frame per second (fps), which consist of 15718 frames
and 1260 fusion events in total. The detailed information of our
datasets is summarized in Table 1. All image sequences were well
annotated by experienced cell biologists working in the field of
vesicle trafficking analysis using TIRFM.

Experimental design and evaluation metric The leave-one-out
strategy is adopted to evaluate the performance of our method, i.e.,
eight sequences are used for training while the last one is used for
testing (the parameters in the detection and tracking process and
the Gaussian Mixture Model (GMM) fitting are optimized by the 4-
fold cross-validation using the eight training sets). There are totally
9 leave-one-out experiments are performed on the datasets. The
average performance on the 9 experiments in terms of precision,
recall and F-score is utilized as the evaluation metrics.
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Table 1
The image size and the number of fusion events in each dataset.
DataSet 1 2 3 4 5
Full fusion event 118 169 31 132 48
Partial fusion event 28 64 56 6 10
Image size (pixels) 327 x 179 271 x 284 233 x 324 271 x 341 408 x 381
DataSet 6 7 8 9
Full fusion event 16 19 76 193
Partial fusion event 16 76 11 797
Image size (pixels) 382 x 338 241 x 211 478 x 412 485 x 299

Table 2

Comparing our method with 2 state-of-the-arts and our previous method on 9 challenging datasets: GMM-SVM (Li et al., 2015): Gaussian Mixture Model using Support
Vector Machine classifier; SGM (Bai et al., 2007): Single Gaussian Model; LPA-FullFusion (Godinez et al., 2012): Layered Probabilistic Approach for full fusion detection.

Full fusion Partial fusion
Precision Recall F score Precision Recall F score
Our method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%
GMM-SVM (Li et al.,, 2015) 76.9% 79.3% 78.1% 75.5% 76.0% 75.7%
SGM (Bai et al., 2007) 61.1% 64.7% 62.8% 64.6% 62.0% 63.3%
LPA-FullFusion (Godinez et al.,, 2012) 75.3% 72.3% 73.8% N/A N/A N/A
T The structure of P emm— both the full fusion event and the partial fusion event in 9 datasets.
i [1(i| T~~.__each parameter Set/,—"’/ (1 (24 It validates that the automatically selected features from the time-
EARN 3 § ATZ123 series intensity change introduced by GMM images and the visual
. \\\ A peak| A fit ,/' appearance in 4 key moments by our HCNN architecture have a
B peak| B fat ’/' more comprehensive representation of the vesicle fusion event.
2 p G % Compared to the SGM (Bai et al.,2007) that only depends on the spa-
. ] e LD | g tial radius of the Single Gaussian fit to the bright blob, our method
— achieved better classification results, which proves that the pro-
231 1114 posed Gaussian Mixture Model has a more precise representation
24 12[13 to extract the intensity variation pattern of vesicle fusion events.
(a) 24-by-1 (b) 12-by-2 Compared yvith the Layered Probe.lbilistic Approach inGodinez et al.
GMM image GMM image (2012), which uses three abstractions of fusion events as the feature

Fig. 12. The structures of 24 x 1 GMM image (a) and 12 x 2 GMM image (b).

4.2. Effectiveness of the fusion event candidate extraction

By using our newly developed detection and tracking method,
we obtain 4642 candidate patch sequences on the 9 datasets. The
candidate pool contains all the 1260 ground-truth vesicle fusion
events from 15718 frames (i.e., our candidate sequence extraction
achieves 100% recall and 27% precision). Instead of exhaustively
selecting fusion event candidates from every volume of the TIRFM
video sequences, the proposed detection and tracking method not
only ensures all vesicle fusion events are included in the fusion
event candidate pool, but also effectively improves the efficiency
of the whole system. Note, data augmentation techniques (e.g., flip-
ping, rotation and translation) were applied on our positive training
samples to provide enough training data.

4.3. Comparison with the previous methods

Our algorithm is compared with the learning-based Gaussian
Mixture Model using Support Vector Machine classifier (GMM-
SVM, Li et al. (2015)), the intensity-based Single Gaussian Model
(SGM, Bai et al. (2007)) and the Layered Probabilistic Approach
(LPA-FullFusion, Godinez et al. (2012)). Note, the Layered Prob-
abilistic Approach cannot detect partial fusion events. All the
parameters in Bai et al. (2007), Godinez et al. (2012) and Li et al.
(2015) are optimized to ensure that they can achieve their best
performance in our TIRFM image sequences. As shown in Table 2,
compared with the GMM-SVM (Li et al., 2015) that uses handcrafted
features, our method achieved much better classification results for

for the classification, the temporal and spatial features extracted by
GMM in our previous method (Li et al., 2015) achieved better clas-
sification results on full fusion events. Furthermore, our proposed
HCNN architecture, which can automatically select the discrimina-
tive features from the whole lifetime of the fusion event, obtained
the best performance. In short, besides visual appearance features,
our HCNN based method can extract hidden variation patterns of
the fusion event, which are qualified for the task of accurate fusion
event classification. Fusion event classification samples of our pro-
posed method are presented in Figs. 15 and 16.

4.4, Comparison of different neural network designs

In this subsection, first we test different layouts in our overall
architecture (Fig. 6) and compare the performance. Second, we test
different input formats of the visual appearance features extracted
from 4 key moments and compare the performance. Third, we test
different input formats of the temporal features and compare the
performance. Last, we test different designs in our individual CNNs
(there are 7 CNNs in total, Fig. 6).

4.4.1. Comparison of alternative overall architecture designs

We designed the HCNN-4KM (Fig. 10(a)) that only considers
appearance features, and the CNN-GMM (Fig. 10(b)) that only
considers temporal features. As shown in Table 3, our HCNN archi-
tecture outperformed HCNN-4KM and CNN-GMM, which validates
that both appearance features and temporal features contribute
significantly to the fusion event classification task.

In order to show the importance of the CNNg in our pro-
posed HCNN architecture (Fig. 6), we designed HCNN-4KM-GMM
(Fig. 10(c)) by removing the CNNg from our HCNN, and compared
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Table 3

Comparing our HCNN with 3 alternative overall architecture designs on 9 challenging datasets, which include: HCNN-4KM (Fig. 10(a)): based on our HCNN, we remove the
CNN? and CNNg so only appearance features are used; CNN-GMM (Fig. 10(b)): based on our HCNN, we only use the temporal features in GMM images for the classification;

HCNN-4KM-GMM (Fig. 10(c)): based on our HCNN, we remove the CNNg.

Full fusion Partial fusion

Precision Recall F score Precision Recall F score
Our method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%
HCNN-4KM 79.3% 82.4% 80.8% 85.1% 84.7% 84.9%
CNN-GMM 84.8% 88.7% 86.7% 82.0% 85.6% 83.8%
HCNN-4KM-GMM 94.1% 95.0% 94.6% 90.0% 92.7% 91.3%
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Fig. 13. (a) The CNNj1 (j € [1, 4]) structure in our proposed HCNN; (b) The CNNj1 (j € [1, 4]) structure in HCNN-1CL-4KM; (c) The CNN‘;’ structure in our proposed HCNN; (d)

The CNN3 structure in HCNN-2CL-GMM.

the classification results. As shown in Table 3, our proposed HCNN
architecture achieved better classification results than HCNN-4KM-
GMM, which proves that it is important to learn the correlation
information among the 4 key moments before combining appear-
ance and temporal features.

4.4.2. Comparison of alternative appearance feature input
formats

In our HCNN architecture, we use 4 CNNs to learn the appear-
ance features from the 4 key moments, where each CNN takes a
single cropped image patch as input. In order to show the effec-
tiveness of this design, we compared our HCNN architecture with
SCNN-4KM (Fig. 11(a)), which is one single CNN whose inputs are
the stitched image patches from 4 key moments, and HCNN-SCNN-
4KM (Fig. 11(b)), which uses a CNN to learn appearance features
from stitched image patches of 4 key moments and then com-
bines with temporal features from GMM images for classification.
As shown in Table 4, our proposed method achieved better clas-
sification results than SCNN-4KM and HCNN-SCNN-4KM, which
validates the high-level appearance features extracted from 4 CNNs
are more reliable for the fusion event classification task.

4.4.3. Comparison of alternative temporal feature input formats

In our proposed HCNN architecture, each GMM image consists
of 24 parameter sets which are organized as a 4 x 6 matrix pat-
tern (Fig. 5) to allow the HCNN to discover the hidden correlation
among the parameter sets. In order to validate the effectiveness
of our GMM image design, we compared our proposed 4 x 6 GMM
image with the 24 x 1 GMM image (Fig. 12(a)) and the 12 x 2 GMM
image (Fig. 12(b)). As shown in Table 5, our proposed HCNN archi-
tecture with 4 x 6 GMM image inputs achieved better classification
results than HCNN-GMM(24 x 1) with 24 x 1 GMM image inputs
and HCNN-GMM(12 x 2) with 12 x 2 GMM image inputs. It proves

that the 4 x 6 matrix pattern GMM image, which contains many
4- or 8-connected neighborhood relationships, can provide com-
prehensive information to reveal the unique pattern of the fusion
event.

4.4.4. Comparison of alternative CNN designs

To validate the effectiveness of the individual CNNs in our
proposed HCNN architecture, we tested different number of Con-
volutional Layers and Fully Connected Layers and compared with
our proposed HCNN. Since it is unpractical to test all possible CNN
structures, we only tested some reasonable CNN designs in this
work. )

In our proposed HCNN architecture, the structure of CNNJ1 (e
[1, 4]) has 2 Convolutional Layers (Fig. 13(a)) and the structure of
CNN? has 3 Convolutional Layers (Fig. 13(c)). We designed HCNN-
1CL-4KM (Fig. 13(b)) by setting only 1 Convolutional Layer to the
structure of CNNJ1 (j € [1, 4]) in our proposed HCNN, where the
other CNNsin HCNN-1CL-4KM are exactly the same with the onesin
our proposed HCNN. We also designed HCNN-2CL-GMM (Fig. 13(d))
by setting only 2 Convolutional Layers to the structure of CNN? in
our proposed HCNN, where the other CNNs in HCNN-2CL-GMM are
exactly the same with the ones in our proposed HCNN. As shown
in Table 6, our proposed HCNN architecture outperformed HCNN-
1CL-4KM and HCNN-2CL-GMM, which validates the effectiveness
of the CNN]1 (j € [1, 5]) in our proposed HCNN architecture.

In our proposed HCNN architecture, the structure shared by
CNNS and CNN% has 2 Fully Connected Layers (Fig. 14(a)). We
designed HCNN-3FCL (Fig. 13(b)) by setting 3 Fully Connected Lay-
ers to the structure shared by CNN$ and CNN}, where the other
settings in HCNN-3FCL are the same with our proposed HCNN. We
also designed HCNN-1FCL (Fig. 13(c)) by setting only 1 Fully Con-
nected Layer to the structure shared by CNN$ and CNN?, where the
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Fig. 14. (a) The structure shared by CNN$ and CNN? in our proposed HCNN; (b) The structure shared by CNNS and CNN3 in HCNN-3FECL; (c) The structure shared by CNN$ and

CNN? in HCNN-1FCL.

Table 4

Comparison of different input formats of the appearance features on 9 challenging datasets, which include: SCNN-4KM (Fig. 11(a)): we stitch the image patches from 4 key
moments into an image, which will be the input to a CNN; HCNN-SCNN-4KM (Fig. 11(b)): based on our HCNN, instead of using 4 CNNs, we use a CNN to learn the appearance

features from stitched image patches for the classification.

Full fusion Partial fusion

Precision Recall F score Precision Recall F score
Our method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%
SCNN-4KM 93.7% 94.9% 94.3% 91.0% 93.2% 92.1%
HCNN-SCNN-4KM 94.8% 94.0% 94.4% 92.1% 91.7% 91.9%

Table 5

Comparison of 2 alternative GMM image designs on 9 challenging datasets, which include the 24 x 1 GMM image (Fig. 12(a)) in HCNN-GMM(24 x 1) and the 12 x 2 GMM image

(Fig. 12(b)) in HCNN-GMM(12 x 2).

Full fusion Partial fusion

Precision Recall F score Precision Recall F score
Our method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%
HCNN-GMM(24 x 1) 91.3% 94.0% 92.6% 92.3% 93.0% 92.7%
HCNN-GMM(12 x 2) 93.3% 93.5% 93.4% 92.3% 94.3% 93.3%

Table 6

Comparison of 4 alternative CNN designs in our proposed HCNN architecture on 9 challenging datasets, which include: HCNN-1CL-4KM, HCNN-2CL-GMM, HCNN-3FCL and

HCNN-1FCL. These architectures are described in Section 4.4.4 in details.

Full fusion Partial fusion

Precision Recall F score Precision Recall F score
Our method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%
HCNN-1CL-4KM 86.0% 84.1% 85.0% 82.9% 85.4% 84.1%
HCNN-2CL-GMM 82.7% 80.2% 81.4% 81.4% 80.3% 80.9%
HCNN-3FCL 94.8% 95.0% 94.9% 95.9% 96.3% 96.1%
HCNN-1FCL 91.0% 93.5% 92.2% 93.2% 95.2% 94.2%

other settings in HCNN-1FCL are the same with our proposed HCNN.
As shown in Table 6, our proposed HCNN architecture achieved the
best performance, which validates the effectiveness of the CNN$
and CNNZ in our proposed HCNN architecture.

4.5. Discussion

According to the classification results of our proposed method,
there are two main failure cases in our experiments. First, during
our data collection, the Total Internal Reflection Fluorescent Micro-
scope (TIRFM) sometimes was out of focus for several frames, as
shown in Fig. 17. Our proposed tracking method can still detect
the image patches while the TIRFM is out of focus, but the inten-
sity variation pattern of the fusion event is largely interfered by
the out-of-focus problem, which misleads the HCNN to make a
wrong classification. Second, some fusion events have extremely
short lifetimes which are as short as 2 frames. For the short event

process, the time-series intensity variation information from Gaus-
sian fitting and the patches from the key moments are not very
informative for the classification. Refining our current TIRFM hard-
ware and increasing the image acquisition rate will be our future
work to overcome the current drawbacks.

5. Conclusion

Accurately detecting and classifying vesicle-plasma membrane
fusion events from TIRFM images is an essential research problem
on cellular trafficking processes. In this paper, we proposed a novel
Hierarchical Convolutional Neural Network (HCNN) based appli-
cation to solve the fusion event detection and classification task.
An adaptive detection and tracking method is developed to extract
fusion event candidates and their time-series intensity variation
information. By using the time-series intensity variation pattern
introduced by Gaussian Mixture Models and the appearances in 4
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Fig. 15. Fusion event classification samples of dataset 1, 2, 3, 4 (yellow: full fusion; red: partial fusion; square: ground truth; circle: our result). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 16. Fusion event classification samples of dataset 5, 6, 7, 8, 9 (yellow: full fusion; red: partial fusion; square: ground truth; circle: our result). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

key moments of the process of a fusion event, a HCNN architecture two state-of-the-arts and eleven alternative neural network archi-
is proposed to classify fusion event candidates into three classes: tectures on nine challenging datasets with low signal to noise ratio
full fusion, partial fusion and non-fusion. Our method showed its and frequent background fluctuations.

competitive performance and outperformed our previous work,
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Lost Focus

Lost Focus

Fig. 17. The TIRFM image samples which are affected by out-of-focus.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at 10.1016/j.compmedimag.2017.04.003.
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