
Computerized Medical Imaging and Graphics 60 (2017) 22–34

Contents lists available at ScienceDirect

Computerized  Medical  Imaging  and  Graphics

j ourna l h  omepa ge: www.elsev ier .com/ locate /compmedimag

A  Hierarchical  Convolutional  Neural  Network  for  vesicle  fusion  event

classification

Haohan  Li a,1, Yunxiang  Mao a,1, Zhaozheng  Yin a,∗,1, Yingke  Xub,2

a Department of Computer Science, Missouri University of  Science and Technology, Rolla 65409, USA
b Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of  Cardio-Cerebral Vascular

Detection  Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China

a  r t i  c  l e  i  n f o

Article history:

Received 1 May  2016

Received in revised form 15 February 2017

Accepted 5 April 2017

Keywords:

Vesicle fusion event

TIRFM Image

Hierarchical Convolutional Neural Network

a  b  s  t  r a  c t

Quantitative  analysis  of vesicle  exocytosis  and classification of different modes of vesicle fusion from  the

fluorescence  microscopy  are  of primary importance  for  biomedical  researches. In  this paper,  we  propose a

novel  Hierarchical  Convolutional  Neural Network (HCNN) method to automatically  identify  vesicle  fusion

events  in time-lapse  Total  Internal  Reflection  Fluorescence  Microscopy  (TIRFM)  image  sequences.  Firstly,

a detection and  tracking method  is developed to extract  image  patch  sequences containing  potential

fusion  events.  Then, a Gaussian Mixture Model  (GMM) is applied  on each image  patch of the  patch

sequence  with  outliers rejected for  robust  Gaussian  fitting. By utilizing  the  high-level time-series  intensity

change  features introduced  by  GMM  and  the  visual appearance  features embedded  in  some  key  moments

of the  fusion  process, the  proposed  HCNN  architecture is able to classify  each  candidate patch sequence

into three  classes:  full  fusion  event,  partial fusion event and  non-fusion  event. Finally,  we validate the

performance  of our method on 9  challenging datasets  that  have  been annotated by  cell  biologists,  and

our  method  achieves  better performances when  comparing  with  three previous  methods.

©  2017 Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Vesicle exocytosis is  an essential cellular trafficking process,

by which materials (e.g., transporters, receptors and enzymes) are

transported from one membrane-bounded organelle to another or

to the plasma membrane for growth and secretion. Vesicle exocy-

tosis needs to be highly regulated since its dysregulation is related

to many human diseases (e.g., neurodegenerative disease, cancer

and diabetes) (Hou et al., 1997; Jahn et al., 2012). Different modes

of vesicle exocytosis have been found and characterized in mam-

malian cells. These include the full  fusion where a  vesicle collapses

completely when it fuses with the plasma membrane, and the par-

tial fusion or “kiss-and-run” fusion where a vesicle transiently fuses
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with the plasma membrane without the full collapse (Rizzoli et al.,

2007; Xu et al., 2011). In cell biology research, it is of great impor-

tance to detect vesicle fusion events and also to classify different

modes of vesicle exocytosis. Because the quantitative analysis of

these biological processes can provide insights into cellular behav-

iors in  normal and disease conditions.

Total Internal Reflection Fluorescence Microscopy (TIRFM),

which illuminates the aqueous phase immediately adjacent to a

glass interface with an exponentially decaying excitation (about

100 nm in  z-axis), has been used widely to visualize single vesicle

exocytosis at the cell surface (Axelrod et al., 1981; Schneckenburger

et al., 2005). A pH-sensitive mutant of GFP, pHluorin, was devel-

oped and expressed to visualize vesicle exocytosis (Gero et al.,

1998). Usually, pHluorin is targeted to the lumen of the vesicle,

which is  quenched and non-fluorescent in acidic environment,

but becomes brightly fluorescent when the vesicle exposes to the

extracellular neutral environment as the vesicle fuses with the

plasma membrane (Xu et al., 2011, 2016). In this study, we  imaged

a variety of vesicle exocytosis in  different types of mammalian

cells. These include constitutive exocytosis (transferrin receptor-

pHluorin exocytosis in endothelial cells and 3T3-L1 adipocytes) and

regulated exocytosis (VAMP2-pHluorin labeled insulin granule in

MIN-6 cells and VAMP2-pHlurin labeled GLUT4 vesicle in 3T3-L1

adipocytes). Quantitative analysis of the vesicle exocytosis in these

http://dx.doi.org/10.1016/j.compmedimag.2017.04.003
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typical examples will strengthen our understanding of how vesicle

exocytosis is regulated and how its dysregulation triggers human

disease (e.g., insulin resistance and diabetes) (Bornemann et al.,

1992; Leney et al., 2009; Xu et al., 2011).

Usually, the membrane fusion between pHluorin labeled vesi-

cles and the plasma membrane can be represented by 2 significant

stages in a continuous video sequence, as illustrated in Fig. 1.

In stage 1, the vesicle is  invisible in the pre-appearance frame

(quenched), and then suddenly appears in  the first-appearance

frame as a brightly fluorescent circle spot. In stage 2, after being

immobilized for some frames (from about 100 ms  to  a  few seconds),

the vesicle will either fuse completely with the plasma membrane

with a visible bright “halo” (full fusion event), or remain its cir-

cular shape and gradually fade (partial fusion event), which can

be observed in the last appearance frame,  respectively. At the end

of this process, the vesicle under the full or partial fusions will

disappear in the disappearance frame.  Note that, since the moving

trajectory of vesicles during the exocytosis process is almost per-

pendicular to the cell membrane, the trajectory projected onto the

cell surface (i.e., the image plane in the TIRFM) only has a small

spatial displacement. In this movement process, the appearance

variation pattern of the vesicle fusion event is a  critical character-

istic that is able to generate representative features to distinguish

the vesicle fusion event from the background. Specially, the pre-

appearance frame, first-appearance frame,  last-appearance frame and

disappearance frame are the 4 key moments of the vesicle fusion

event, which represent the significant appearance change of a  given

fusion event.

A typical time-lapse TIRFM movie consists of thousands of

individual frames with hundreds of vesicle fusion events. Unfor-

tunately, so far the vesicle fusion detection and classification

are performed mainly in a  manual manner, which is  a  very

time-consuming process, and likely to introduce personal biases.

Therefore, there is  a  great demand to develop effective compu-

tational tools to automatically extract the vesicle fusion event

information in TIRFM video sequences, which will aid the quan-

titative analysis on the vesicle exocytosis process.

1.1. Related work

When the computer-based microscopy image analysis is used

to relieve human from the tedious manual labeling (Basset et al.,

2014, 2015; Godinez et al., 2009), it is  unsurprising that lots of

challenges, such as the uncontrollable noise interference of TIRFM

images and the high variability of fusion events’ properties (e.g.,

intensity profiles, lifetime length and movement patterns), hinder

the  automated image processing. Furthermore, some of the bright

spots (endocytic vesicles or vesicles from other non-acidic com-

partments) in TIRFM image sequences are moving in  and out of

the TIRFM field, which is a great challenge for designing automated

algorithms for vesicle fusion detection. In order to detect fusion

events, one needs to  use specific detection algorithms considering

both spatial and temporal features of individual objects.

Based on the bright circular appearance of vesicle fusions under

the TIRFM, some approaches have been proposed to  perform auto-

mated fusion identification, such as the pixel intensity thresholding

methods in Huang et al. (2007),  Yuan et al. (2015) and the inten-

sity  distribution analysis methods in Smith et al. (2011),  Dosset

et al. (2015). However, these methods are  sensitive to the varia-

tion of vesicle fusion intensity profiles (shown in  Fig. 2(a–c)). In

order to improve the tolerance to the variation, some automated

approaches were developed to model the moving process of fusion

events. Based on both the temporal and spatial features, a  template

matching method was proposed to identify the fusion events with

high correlation to a  standard fusion event template in Vallotton

et  al. (2007).  In another study, a  Gaussian model was  used to fit

typical fusion events in  Bai et al. (2007),  where the parameters in

the Gaussian model are used to classify fusion events. However,

due to the frequent background intensity fluctuations (as shown in

Fig. 2(d–f)) introduced by the TIRFM system and intracellular activ-

ities, it is hard to build a  standard template or a general model to

represent all fusion events.

Because of the large variations of the fusion events’ properties

(e.g., intensity profiles, lifetime length and movement patterns)

and frequent background fluctuations, the robustness of  a  vesi-

cle fusion detection and classification method is  highly important.

A robust detection method was  proposed in Lorenz et al. (2010),

which first detects candidate fusion events that suddenly appear in

the TIRFM field. Then, a  diffusive model is developed to  analyze the

intensity distribution variation pattern of the fusion event for the

classification. Based on the visible “puff” phenomenon of the full

fusion event, the diffusive fusion model effectively distinguishes

full fusion events from non fusion regions, leaving a large amount

of partial fusion events unrecognized. In addition, a  Layered Proba-

bilistic Approach was  proposed in  Godinez et al. (2012) to identify

full fusion events by exploring three abstractions: the intensity

over time, the underlying temporal intensity model and the high

level behavior. Each of these three abstractions corresponds to a

layer and these layers are represented via stochastic hybrid sys-

tems and hidden Markov models. However, partial fusion events

are not considered in this work.

Unlike the full fusion event, which can be distinguished by  its

“puff”/spread signal, the partial fusion event is resembled to other

bright spots (Fig. 2(d–f)) on the background, which is  problematic in

most of the existing detection and classification methods. In order

to  reveal the unique variation pattern of the fusion events, a  learn-

ing based method was developed in our previous work (Li et al.,

2015). An adaptive detection and tracking method is first applied to

TIRFM images to search for potential fusion patches through video

frames, then a  Gaussian Mixture Model (GMM) is fitted on each

individual fusion event. Using the estimated parameters of this

model as features, a classifier is trained to distinguish full fusion

events, partial fusion events and non-fusion events. However, in

this GMM-based method, the handcrafted features ignore the dis-

criminative appearance information from the 4 key moments of

a fusion event, which leads to miss-detection problems in short

fusion events (shown in Fig. 2).

1.2. The major challenges

According to  the observation of our own datasets and the review

of previous works, the major challenges to the task of detecting and

classifying vesicle fusion events are summarized as follows:

The high variability of the vesicle fusion events. Some typical

partial fusion events and full fusion events are shown in  Fig. 2(a)

and (b) respectively, from which we  can observe the characteris-

tics of vesicle fusion events. For example, normally partial fusion

events present the momentary appearance and disappearance, and

full fusion events present a  sudden appearance and a  gradual dis-

appearance with their signals fading away. However, in  practical

cases, the vesicle fusion event has large variations in  its intensity

profile, lifetime and movement pattern. For instance, compared

with a  typical full fusion event in Fig. 2(b), the full fusion event

in  Fig. 2(c) has a much shorter lifetime and a much more blurry

intensity profile. These variations yield challenges in  modeling the

various visual patterns of fusion events.

Complex background interferences. Besides vesicle fusion

events, there exist a large amount of other bright circular spots on

the background, which are challenges for automated fusion event

detection and classification. For  instance, the circular background

intensity fluctuation (Fig. 2(d)) is similar to a  partial fusion event.

Some moving bright spots, which are temporarily immobile near
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Fig. 1. The 2 significant stages of vesicle fusion processes and the related 4 key moments. 3T3-L1 adipocytes were transfected with VAMP2-pHluorin to  label the GLUT4

vesicles. pHluorin is a pH-sensitive fluorescent protein that is invisible in the lumen of acidic vesicles, which becomes much more fluorescent when a  vesicle fuses with the

plasma  membrane and exposes to a  neutral environment. After a vesicle touches the cell membrane, it either fully collapses and fuses with the plasma membrane ((a) Full

fusion event), or partially fuses with the plasma membrane and then is  retrieved rapidly by the clathrin-dependent process ((b) Partial fusion event).

Fig. 2. Some samples of partial fusion event (a), full fusion events (b and c), and non-fusion events (d–f). (a) A typical partial fusion event; (b) A typical full fusion event with

the  “puff” phenomenon; (c) A short full fusion event is  characterized by its “puff” phenomenon; (d) A bright circular object caused by the background intensity fluctuation; (e)

A  moving bright spot, which only moves in the first several frames then stays immobile, is similar to a  partial fusion event when it stops moving; (f) A background fluctuation,

which is really similar to  standard full fusion events in the early stage, then gradually moves out  of the field of view.

the cell membrane for several frames (Fig. 2(e and f)), can be mis-

takenly classified as partial fusion events. These interferences yield

challenges in selecting effective features to build discriminative

classifiers.

1.3. Our proposal and contributions

Rather than designing handcrafted visual models or features,

Convolutional Neural Networks (CNN) that can learn the discrim-

inative features from big  training data have been widely used in

different real world classification tasks, such as image recogni-

tion (Krizhevsky et al., 2012; Lawrence et al., 1997), video analysis

(Yue-Hei et al., 2015; Karpathy et al., 2014)  and natural language

processing (Hu et al., 2014; Kim et al., 2014). CNN is a  promis-

ing learning based method to handle classification challenges on

microscopy images, such as cell detection (Mao  et al., 2016a,b).

Therefore, in order to enhance the tolerance to the variation of

fusion events and the unpredictable background interferences,

we propose to develop a  novel CNN-based application which

applies a Hierarchical Convolutional Neural Network (HCNN) to

explore both appearance features and temporal cues for the vesicle

fusion event classification. First, we extract fusion event candi-

date sequences and their appearance features from the input video

data by using a newly developed iterative tracking algorithm. Sec-

ondly, a center-surrounded Gaussian Mixture Model (GMM)  is fit

on each patch of the patch sequence using the RANSAC algorithm

(Martin et al., 1981)  to remove outliers during the fitting process.

The patch sequences are aligned with the same time length and

time-series intensity change features corresponding to  the Gaus-

sian models’ parameters are extracted over time. Thirdly, based

on the time-series parameters from Gaussian Mixture Models and

4 key moments of the fusion event candidate sequence, a  HCNN

is developed to automatically select discriminative temporal and

appearance features for the classification of the fusion event can-

didates in challenging datasets with low Signal-to-Noise-Ratio and

frequent background fluctuations.

Our contributions in  this paper include: (1) A  novel applica-

tion is proposed to detect and classify vesicle fusion events. The

Hierarchical Convolutional Neural Network (HCNN) is  utilized to

learn discriminative appearance features from 4 key moments of

a fusion event and combine them with the temporal features from

the parametric Gaussian Mixture Models over time; (2) A  center-

surrounded Gaussian Mixture Model is used to model the intensity

profile change of a fusion event in its entire lifetime; (3) A newly

developed vesicle fusion event tracking algorithm is applied for the

appearance feature extraction.

The rest of this paper is  organized as follows: in Section 2,  we

briefly introduce our newly developed vesicle fusion event track-

ing algorithm, which contributes to appearance feature extraction

for fusion event classification; in  Section 3,  the classification of the

fusion event candidates by HCNN is  presented; in Section 4, we

validate our method on 9 challenging datasets and compare it with

the previous methods and other neural network architectures. The

paper concludes with Section 5.

2. Detection and tracking algorithm

Based on our  preliminary work on detecting and tracking vesi-

cle candidates in video sequences (Li et al., 2015),  we improved the

tracking algorithm to accurately measure the lifetimes of  vesicle

fusion events, which is  important for the feature extraction task in

fusion event classification. The major goal of our new tracking algo-

rithm is to find the first-appearance frame and the last-appearance

frame of a  potential fusion event and every patch center between

the first-appearance frame and the last-appearance frame.  We utilize

Fig.  3 to illustrate how to iteratively search in the forward direc-

tion to find the last-appearance frame (the search in the backward

direction to find the first-appearance frame is similar).
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Fig. 3. An  example to search the candidate patch sequence S in the forward temporal direction.

Assume we find the pixel (x*, y*) with the local maximum of

local contrast as the center of the potential fusion event and crop

an n × n image patch around it. Since we  use fixed size patches,

we only need to record the coordinates of the patch center in  the

fusion event candidate patch sequence, which are denoted as S  =
{

x∗
t , y∗

t |t ∈ [tfirst,  tlast]
}

where tfirst and tlast denote the first and last

frame index of the patch sequence, respectively. At the beginning,

tfirst = tlast = t0.  During each iteration, we  search the last-appearance

frame in a sliding temporal window of D frames. Three situations

are considered during the iterative search:

Situation 1, if the maximums of the local contrast in all D

frames around location (x∗
tlast

, y∗
tlast

) are larger than ε, so we can

update S =
{

x∗
t , y∗

t |t ∈ [tfirst, tlast]
}

by setting tlast ←− tlast +  D. Then,

we continue the search from frame tlast +  1 to  frame tlast +  D.

Situation 2, if not all of the maximums of the local contrast in D

frames around location (x∗
tlast

, y∗
tlast

) are larger than ε, while ε ×  ̨ >  1

(  ̨ is a decay rate on the threshold), we update tlast as  the last frame

within the D frame whose maximal local contrast is  larger than

ε and the patch centers are updated accordingly. The threshold is

updated as ε ←− ε  × ˛. Then, we continue the search from frame

tlast + 1  to frame tlast +  D.

Situation 3, if not all of the maximums of the local contrast in D

frames around location (x∗
tlast

,  y∗
tlast

) are larger than ε and ε ×  ̨ ≤  1,

we update the patch sequence similar to  situation 2,  then we stop

the  iteration.

By applying this iterative tracking algorithm to  the TIRFM

image sequence, we can obtain the whole lifetimes of potential

fusion events in the format of candidate patch sequences, each of

which records the coordinates of the patch center from the first-

appearance frame to the last-appearance frame. For each potential

fusion event, we compute the pairwise Euclidean distance between

each consecutive pair of patch centers within the candidate patch

sequence. If any of these distances is  larger than the neighborhood

size n, this candidate patch sequence is highly possible to be a  non-

fusion event caused by a moving object from the background, and

we remove it from the candidate list.

3.  Classification of fusion event candidates

In this section, we will introduce the classification of fusion

event candidates by using a  novel Hierarchical Convolutional

Neural Network (HCNN). Compared with the Support Vector

Machine-based classification method in Li et al. (2015), HCNN is

able to automatically select discriminative features which can pro-

vide the comprehensive representation of the fusion event. In order

to enhance the tolerance to the variation of fusion events and

the unpredictable background interferences, the proposed HCNN

architecture considers both spatial and temporal information. The

input of our HCNN consists of the time-series parametric infor-

mation from the Gaussian Mixture Model fitting, and the visual

appearance information from the 4 key moments of  the fusion

event candidate. The former is aiming at revealing the unique

hidden variation pattern of the vesicle fusion event in  its entire

lifetime. The latter is proposed to  extract the extraordinary visual

appearance features of the vesicle fusion event. Moreover, the hier-

archical architecture is  able to exploit the high-level abstraction of

intensity profiles of individual frames and the high-level temporal

features from the entire fusion event lifetime to accurately distin-

guish fusion events from the other similar circular bright spots in

Fig. 2.

3.1. Data preparation

Because of the frequent background interferences in  the TIRFM

video data, directly thresholding the candidate patch sequence

might not  be a  good option to present its intensity profile vari-

ation. Therefore, we adopt the data preparation strategy in our

previous work (Li et al., 2015). First, a  robust Gaussian Mixture

Model (GMM), which consists of two  center-surrounded 2D Gaus-

sian models (Areap and Areaf in Fig. 4), is  adopted to  fit the intensity

profile of each fusion event candidate, where a  Random Sample

Consensus algorithm (Martin et al., 1981)  is applied to  robustly

estimate the parameters of Gaussian models without the outlier

effect. Second, since most of the fusion events have their lifetimes

less than 24 frames in  the datasets we  used in this study, we  extract

24 image patches from each fusion event candidate starting from

the first-appearance frame. For those fusion event candidates whose

lifetimes are shorter than 24 frames, we will zero-padding them.

For those fusion event candidates with longer lifetimes, they will

be cut into the time length. Third, for each fusion event candi-

date, there are 24 extracted image patches in the patch sequence,

where each image patch is  represented by a set of GMM  parameters

(�peak
3, �peak, �peak of Areap, and �flat, �flat,  �flat of Areaf). Thus, the

time-series intensity profile change of a  vesicle fusion event candi-

date, which is represented by 24 sets of GMM parameters, can be

utilized for fusion event classification.

3.2. The variation pattern in GMM image

In order to  explore the hidden correlations among the image

patches in each fusion event candidate, we generalized the vector-

ization process in our previous work (Li et al., 2015) by transforming

the parameter sets of a  fusion event candidate into a  2D image,

3 � is the weighting coefficient of each Gaussian component in the GMM.



26 H. Li et al. / Computerized Medical Imaging and Graphics 60 (2017) 22–34

Fig. 4. The Gaussian Mixture Model consists of a  5 ×  5 “peak area” and a 13  ×  13 “flat area”.

Fig. 5. Transforming the time-series Gaussian fitting parameter sets to a  2D array (Gaussian Mixture Model image, GMM  image). In the GMM  image, each cell represents a

parameter  set for one image patch of the fusion event candidate. In each cell, the 6 parameters are organized as a  3 ×  2 matrix (�peak ,  �flat;�peak , �flat;�peak ,  �flat). So the GMM

image,  which contains 24 cells, is a  12  ×  12 matrix.

which concatenates the time-series parameter sets into a  2D array

in a special order, as shown in  Fig. 5. We call this 2D array of Gaus-

sian Mixture Model fitting parameters as GMM  image that allows

the HCNN to discover the hidden correlation among the parame-

ter sets. Furthermore, in Fig.  5,  we design the GMM image to be a

square image, so each parameter set has more chances to  be neigh-

boring to other parameter sets. For example, given 24 parameter

sets to stitch, if they are concatenated into a  24 × 1 matrix pattern,

there is no 4- or 8-connected neighborhood relationship among

the parameter sets. However, if we stitch them into a  12 × 2 matrix

pattern, the relationship among the parameter sets will increase

a  little. Thus, in this work, we concatenate the 24 parameter sets

into a 4 × 6  matrix pattern, many 4- or 8-connected neighborhood

relationships can be built among the parameter sets.

3.3. The visual appearance in 4 key moments

In addition to the GMM  image,  which contains the high-level

abstraction of intensity profiles of individual frames, we  also con-

sider the appearance features in the 4 key moments of a  fusion

event candidate. As  described in  Fig. 1, the movement of vesicles

can be well represented in the 4 key moments: pre-appearance

frame, first-appearance frame,  last-appearance frame and disappear-

ance frame. By using our newly developed vesicle fusion event

tracking method, the whole entire of each fusion event candidate is

able to be obtained. Therefore, for each candidate, we extract image

patches in these 4 key moments. The first-appearance frame patch

and last-appearance frame patch are extracted from the first frame

and the last frame in the fusion event lifetime, respectively. The pre-

appearance frame patch is  extracted from the previous frame of the

first-appearance frame.  The disappearance frame patch is  extracted

from the next frame of the last-appearance frame.  Both the para-

metric information from the GMM  image and the 4 image patches

of the 4  key moments will be input to the HCNN.

3.4. The architectures of our HCNN

The overall architecture of our Hierarchical Convolutional Neu-

ral Network (HCNN) is shown in  Fig.  6. In the first layer, the inputs

of the first 4 Convolutional Neural Networks CNN
j
1

(j ∈ [1, 4]) are

the cropped image patches from 4 key moments, which provide the

detailed visual appearance information of fusion event candidates.

Each of these four CNNs takes a  single cropped image patch. The

input of the CNN5
1 is the GMM  image which provides the time-series

intensity change information of the fusion process (a high-level

abstraction using the parameters from Gaussian Mixture Model

fitting). In the second layer of our HCNN, we design the CNN6
2 to

learn joint features of the CNN
j
1

(j ∈ [1, 4]), which indicate the cor-

relation of fusion event patches in the 4 key moments. In the third

layer, the combined appearance and time-series intensity change

features are  fed into the CNN7
3 to make the final prediction. In our

notation of CNN
j

i
, i denotes the layer in our HCNN and j indexes the

CNN out of the total 7 CNNs in our  proposed HCNN architecture.

The design of our proposed HCNN architecture has three moti-

vations. First, the intensity variation pattern of a  fusion event,

which is  different from other bright circular spots in TIRFM image

sequences, is  a  significant characteristic to classify fusion events.

Instead of directly using the consecutive image patch sequence to

provide this time-series intensity change information, the time-

series parameter sets from Gaussian Mixture Model fitting, which

can avoid outlier pixels with undesired intensity fluctuations, are

more reliable and the proposed GMM image can further explore

hidden relations among the time-series parameters. Second, the

characteristics of a  fusion event’s appearances can be  well rep-

resented in  the 4 key moments, thus utilizing these appearance

characteristics and the correlation among the 4 key moments

should boost the classification performance. Third, our  proposed

HCNN architecture is  able to learn the correlation among the 4  key

moments before combing the appearance and temporal features,

which can reveal the unique variation pattern of the fusion event.
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Fig. 6. The overall architecture of our proposed Hierarchical Convolutional Neural Network (HCNN).

Fig. 7. The architecture of CNNs (CNN
j

1
, j ∈ [1,  4]) in the first layer. The  inputs of this architecture are image patches which are centered at the maximum intensity pixels

of  the fusion event in the 4 key moments respectively. In the Convolutional Layer 1, we  set the number of the 3  ×  3 kernels as 56. In the Convolutional Layer 2, we set the

number  of the 5 × 5 kernels as 134. In the  Max  Pooling 1, there is  a  2 × 2 max  pooling layer with stride 2. The number of neurons in each Fully Connected Layer is 1024.

The first layer of our  HCNN contains 5 CNNs (CNN
j
1
, j ∈ [1, 5]).

The first 4  CNNs (CNN
j
1
, j ∈ [1, 4]), each of which takes a  cropped

image patch (13 × 13) of the fusion event in one of the 4 key

moments as the input, share the same architecture as shown in

Fig. 7. In the architecture of CNN
j
1

(j  ∈ [1, 4]), there are two Con-

volutional Layers where each of them is connected to a  Rectified

Linear Unit (ReLU) for sparse representations. The first Convolu-

tional Layer is followed by  a 2 × 2 Max Pooling Layer with stride

2. The major goal of adding Max Pooling Layer is to  enhance the

robustness of the classifier by  bringing invariance to  the training

process. We  add a  Drop-out Layer (Srivastava et al., 2014) between

the two Fully Connected Layers to  avoid the over-fitting.

The CNN5
1, whose architecture is shown in Fig. 8, learns the

high-level time-series features from the intensity variation pattern

introduced by the GMM  image.  There are 3 Convolutional Layers,

where each Convolutional Layer is followed by a  Rectified Linear

Unit (ReLU) for sparse representations. Compared with the other

4 CNNs in the first layer, there is  no Max Pooling Layer in CNN5
1.

Because we do not  expect to loss any time-series variation infor-

mation during the convolution. To avoid the over-fitting, we add

one Drop-out Layer between the Fully Connected Layer 1 and Fully

Connected Layer 2.

The architecture of the CNNs in  the second and last layer of our

HCNN (CNN6
2 and CNN7

3) is shown in  Fig. 9. The input feature layer

to  CNN6
2 is the combined feature from the Fully Connected Layer 2

of CNN
j
1

(j ∈ [1, 4]). The design of CNN6
2 is to study the correlation

information among the 4 key moments before combining appear-

ance features and time-series variation features. The input features

to CNN7
3 is the combined features of the time-series intensity vari-

ation features from the Fully Connected Layer 2 of CNN5
1,  and the

visual appearance features from the Fully Connected Layer 2  of

CNN6
2. Between the Fully Connected Layer 1 and Fully Connected

Layer 2, we add a Drop-out Layer to avoid the over-fitting.

4. Experiments

In  this section, first we  describe our datasets, experimental

design and evaluation metrics. Then, we validate the effectiveness

of our fusion event candidate extraction. Thirdly, we  compare our

method with the state-of-the-arts and our previous methods in  Li

et al. (2015). Finally, we validate our HCNN design by comparing it

with 11 alternative neural network designs.
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Fig. 8. The architecture of CNN5
1 in the first  layer of our HCNN. The input of this architecture is the GMM image. In the Convolutional Layer 1, we set the number of the 5 × 5

kernels  as 42. In the Convolutional Layer 2, we set the number of the 3 × 3  kernels as 72. In the Convolutional Layer 3, we set the number of the 3 × 3  kernels as 126. The

number of neurons in each Fully Connected Layer is  1024.

Fig. 9. The architecture shared by CNN6
2 in the second layer and CNN7

3 in the third layer. In CNN6
2 ,  the input feature layer contains the high-level appearance feature, which

is  extracted from the 4 key moments. In CNN7
3 ,  the input feature layer consists of visual and temporal information.

Fig. 10. The architectures of the HCNN-4KM (a), CNN-GMM (b) and HCNN-4KM-GMM (c).

Fig. 11. The  architectures of the SCNN-4KM (a) and HCNN-SCNN-4KM (b).

4.1. Datasets, experimental design and evaluation metric

Datasets. In the experiments, 9 TIRFM image sequences were

captured at 5 frame per second (fps), which consist of 15718 frames

and 1260 fusion events in total. The detailed information of our

datasets is summarized in Table 1. All image sequences were well

annotated by experienced cell biologists working in  the field of

vesicle trafficking analysis using TIRFM.

Experimental design and evaluation metric The leave-one-out

strategy is adopted to evaluate the performance of our method, i.e.,

eight sequences are used for training while the last one is used for

testing (the parameters in the detection and tracking process and

the Gaussian Mixture Model (GMM)  fitting are optimized by  the 4-

fold cross-validation using the eight training sets). There are totally

9 leave-one-out experiments are  performed on the datasets. The

average performance on the 9 experiments in  terms of precision,

recall and F-score is  utilized as the evaluation metrics.
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Table 1

The image size and the number of fusion events in each dataset.

DataSet 1 2 3  4  5

Full fusion event 118 169 31  132 48

Partial  fusion event 28 64 56  6  10

Image size (pixels) 327 ×  179 271 × 284 233 × 324 271 × 341 408 × 381

DataSet 6 7 8  9

Full fusion event 16 19 76  193

Partial  fusion event 16 76 11  797

Image size (pixels) 382 ×  338 241 × 211 478 × 412 485 × 299

Table 2

Comparing our method with 2 state-of-the-arts and our previous method on 9 challenging datasets: GMM-SVM (Li et al.,  2015): Gaussian Mixture Model using  Support

Vector Machine classifier; SGM (Bai et al.,  2007): Single Gaussian Model; LPA-FullFusion (Godinez et al., 2012): Layered Probabilistic Approach for full fusion detection.

Full fusion Partial fusion

Precision Recall F  score Precision Recall F  score

Our method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%

GMM-SVM (Li et al., 2015) 76.9% 79.3% 78.1% 75.5% 76.0% 75.7%

SGM (Bai et al., 2007) 61.1% 64.7% 62.8% 64.6% 62.0% 63.3%

LPA-FullFusion (Godinez et al., 2012) 75.3% 72.3% 73.8% N/A N/A N/A

Fig. 12. The structures of 24 × 1  GMM  image (a) and 12  × 2  GMM image (b).

4.2. Effectiveness of the fusion event candidate extraction

By using our newly developed detection and tracking method,

we obtain 4642 candidate patch sequences on the 9 datasets. The

candidate pool contains all the 1260 ground-truth vesicle fusion

events from 15718 frames (i.e., our candidate sequence extraction

achieves 100% recall and 27% precision). Instead of exhaustively

selecting fusion event candidates from every volume of the TIRFM

video sequences, the proposed detection and tracking method not

only ensures all vesicle fusion events are included in the fusion

event candidate pool, but also effectively improves the efficiency

of the whole system. Note, data augmentation techniques (e.g., flip-

ping, rotation and translation) were applied on our  positive training

samples to provide enough training data.

4.3. Comparison with the previous methods

Our algorithm is  compared with the learning-based Gaussian

Mixture Model using Support Vector Machine classifier (GMM-

SVM, Li et al. (2015)), the intensity-based Single Gaussian Model

(SGM, Bai et al. (2007))  and the Layered Probabilistic Approach

(LPA-FullFusion, Godinez et al. (2012)). Note, the Layered Prob-

abilistic Approach cannot detect partial fusion events. All the

parameters in Bai et al. (2007),  Godinez et al. (2012) and Li et al.

(2015) are optimized to ensure that they can achieve their best

performance in our TIRFM image sequences. As shown in  Table 2,

compared with the GMM-SVM (Li et al., 2015) that uses handcrafted

features, our method achieved much better classification results for

both the full fusion event and the partial fusion event in 9  datasets.

It validates that the automatically selected features from the time-

series intensity change introduced by GMM  images and the visual

appearance in 4  key moments by our  HCNN architecture have a

more comprehensive representation of the vesicle fusion event.

Compared to  the SGM (Bai et al., 2007)  that  only depends on the spa-

tial radius of the Single Gaussian fit to the bright blob, our method

achieved better classification results, which proves that the pro-

posed Gaussian Mixture Model has a  more precise representation

to  extract the intensity variation pattern of vesicle fusion events.

Compared with the Layered Probabilistic Approach in Godinez et al.

(2012),  which uses three abstractions of fusion events as the feature

for the classification, the temporal and spatial features extracted by

GMM in our previous method (Li et al., 2015) achieved better clas-

sification results on full fusion events. Furthermore, our proposed

HCNN architecture, which can automatically select the discrimina-

tive features from the whole lifetime of the fusion event, obtained

the best performance. In short, besides visual appearance features,

our HCNN based method can extract hidden variation patterns of

the fusion event, which are qualified for the task of accurate fusion

event classification. Fusion event classification samples of our pro-

posed method are presented in  Figs. 15 and 16 .

4.4. Comparison of different neural network designs

In this subsection, first we test different layouts in our overall

architecture (Fig. 6) and compare the performance. Second, we  test

different input formats of the visual appearance features extracted

from 4 key moments and compare the performance. Third, we test

different input formats of the temporal features and compare the

performance. Last, we test different designs in  our individual CNNs

(there are 7 CNNs in total, Fig. 6).

4.4.1. Comparison of alternative overall architecture designs

We designed the HCNN-4KM (Fig. 10(a)) that only considers

appearance features, and the CNN-GMM (Fig. 10(b)) that only

considers temporal features. As shown in Table 3, our HCNN archi-

tecture outperformed HCNN-4KM and CNN-GMM, which validates

that both appearance features and temporal features contribute

significantly to the fusion event classification task.

In  order to  show the importance of the CNN6
2 in our  pro-

posed HCNN architecture (Fig. 6), we designed HCNN-4KM-GMM

(Fig.  10(c))  by removing the CNN6
2 from our HCNN, and compared
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Table  3

Comparing our HCNN with 3 alternative overall architecture designs on 9 challenging datasets, which include: HCNN-4KM (Fig. 10(a)): based on  our HCNN, we remove the

CNN5
1 and  CNN6

2 so only appearance features are used; CNN-GMM (Fig. 10(b)): based on our HCNN, we only use the temporal features in GMM  images for the classification;

HCNN-4KM-GMM (Fig. 10(c)): based on our HCNN, we  remove the CNN6
2 .

Full fusion Partial fusion

Precision Recall F  score Precision Recall F  score

Our method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%

HCNN-4KM 79.3% 82.4% 80.8% 85.1% 84.7% 84.9%

CNN-GMM 84.8% 88.7% 86.7% 82.0% 85.6% 83.8%

HCNN-4KM-GMM 94.1% 95.0% 94.6% 90.0% 92.7% 91.3%

Fig. 13. (a) The CNN
j

1
(j  ∈ [1, 4])  structure in our proposed HCNN; (b) The CNN

j

1
(j ∈ [1,  4]) structure in HCNN-1CL-4KM; (c) The  CNN5

1 structure in our proposed HCNN; (d)

The  CNN5
1 structure in HCNN-2CL-GMM.

the classification results. As shown in Table 3,  our  proposed HCNN

architecture achieved better classification results than HCNN-4KM-

GMM,  which proves that  it is important to  learn the correlation

information among the 4 key moments before combining appear-

ance and temporal features.

4.4.2. Comparison of alternative appearance feature input

formats

In our HCNN architecture, we  use 4 CNNs to learn the appear-

ance features from the 4 key moments, where each CNN takes a

single cropped image patch as input. In order to show the effec-

tiveness of this design, we compared our HCNN architecture with

SCNN-4KM (Fig. 11(a)), which is one single CNN whose inputs are

the stitched image patches from 4 key moments, and HCNN-SCNN-

4KM (Fig. 11(b)), which uses a  CNN to  learn appearance features

from stitched image patches of 4 key moments and then com-

bines with temporal features from GMM  images for classification.

As shown in Table 4,  our proposed method achieved better clas-

sification results than SCNN-4KM and HCNN-SCNN-4KM, which

validates the high-level appearance features extracted from 4 CNNs

are more reliable for the fusion event classification task.

4.4.3. Comparison of alternative temporal feature input formats

In our proposed HCNN architecture, each GMM image consists

of 24 parameter sets which are organized as a 4 × 6 matrix pat-

tern (Fig. 5)  to allow the HCNN to discover the hidden correlation

among the parameter sets. In order to  validate the effectiveness

of our GMM  image design, we compared our proposed 4 ×  6 GMM

image with the 24 × 1 GMM  image (Fig. 12(a)) and the 12 × 2 GMM

image (Fig. 12(b)). As shown in Table 5, our proposed HCNN archi-

tecture with 4 × 6 GMM  image inputs achieved better classification

results than HCNN-GMM(24 × 1) with 24 × 1 GMM  image inputs

and HCNN-GMM(12 × 2) with 12 ×  2 GMM  image inputs. It proves

that the 4 ×  6 matrix pattern GMM  image,  which contains many

4- or 8-connected neighborhood relationships, can provide com-

prehensive information to reveal the unique pattern of the fusion

event.

4.4.4. Comparison of alternative CNN designs

To validate the effectiveness of the individual CNNs in  our

proposed HCNN architecture, we  tested different number of  Con-

volutional Layers and Fully Connected Layers and compared with

our proposed HCNN. Since it is unpractical to test all possible CNN

structures, we only tested some reasonable CNN designs in this

work.

In our proposed HCNN architecture, the structure of CNN
j
1

(j  ∈

[1, 4]) has 2 Convolutional Layers (Fig. 13(a)) and the structure of

CNN5
1 has 3 Convolutional Layers (Fig. 13(c)). We designed HCNN-

1CL-4KM (Fig. 13(b)) by setting only 1 Convolutional Layer to  the

structure of CNN
j
1

(j ∈ [1, 4]) in  our proposed HCNN, where the

other CNNs in HCNN-1CL-4KM are  exactly the same with the ones in

our proposed HCNN. We  also designed HCNN-2CL-GMM (Fig. 13(d))

by  setting only 2 Convolutional Layers to the structure of  CNN5
1 in

our proposed HCNN, where the other CNNs in HCNN-2CL-GMM are

exactly the same with the ones in our proposed HCNN. As shown

in Table 6,  our proposed HCNN architecture outperformed HCNN-

1CL-4KM and HCNN-2CL-GMM, which validates the effectiveness

of the CNN
j
1

(j ∈ [1, 5]) in  our proposed HCNN architecture.

In our proposed HCNN architecture, the structure shared by

CNN6
2 and CNN7

3 has 2 Fully Connected Layers (Fig. 14(a)). We

designed HCNN-3FCL (Fig. 13(b)) by setting 3 Fully Connected Lay-

ers to  the structure shared by CNN6
2 and CNN7

3,  where the other

settings in HCNN-3FCL are  the same with our proposed HCNN. We

also designed HCNN-1FCL (Fig. 13(c)) by setting only 1 Fully Con-

nected Layer to the structure shared by CNN6
2 and CNN7

3, where the
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Fig. 14. (a) The structure shared by CNN6
2 and  CNN7

3 in  our proposed HCNN; (b) The  structure shared by  CNN6
2 and CNN7

3 in HCNN-3FCL; (c) The structure shared by CNN6
2 and

CNN7
3 in HCNN-1FCL.

Table 4

Comparison of different input formats of the appearance features on  9 challenging datasets, which include: SCNN-4KM (Fig. 11(a)): we  stitch the image patches from 4 key

moments  into an image, which will be the input to a CNN; HCNN-SCNN-4KM (Fig. 11(b)): based on our HCNN, instead of using 4  CNNs, we use a CNN to  learn the appearance

features from stitched image patches for the classification.

Full fusion Partial fusion

Precision Recall F  score Precision Recall F  score

Our method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%

SCNN-4KM 93.7% 94.9% 94.3% 91.0% 93.2% 92.1%

HCNN-SCNN-4KM 94.8% 94.0% 94.4% 92.1% 91.7% 91.9%

Table 5

Comparison of 2 alternative GMM  image designs on 9 challenging datasets, which include the 24 × 1  GMM image (Fig. 12(a)) in HCNN-GMM(24 ×  1) and the 12  ×  2 GMM  image

(Fig. 12(b)) in HCNN-GMM(12 ×  2).

Full fusion Partial fusion

Precision Recall F  score Precision Recall F  score

Our method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%

HCNN-GMM(24 × 1)  91.3% 94.0% 92.6% 92.3% 93.0% 92.7%

HCNN-GMM(12 × 2)  93.3% 93.5% 93.4% 92.3% 94.3% 93.3%

Table 6

Comparison of 4 alternative CNN designs in our proposed HCNN architecture on 9 challenging datasets, which include: HCNN-1CL-4KM, HCNN-2CL-GMM, HCNN-3FCL and

HCNN-1FCL. These architectures are described in Section 4.4.4 in details.

Full fusion Partial fusion

Precision Recall F  score Precision Recall F  score

Our method 95.2% 96.2% 95.7% 96.1% 96.7% 96.4%

HCNN-1CL-4KM 86.0% 84.1% 85.0% 82.9% 85.4% 84.1%

HCNN-2CL-GMM 82.7% 80.2% 81.4% 81.4% 80.3% 80.9%

HCNN-3FCL 94.8% 95.0% 94.9% 95.9% 96.3% 96.1%

HCNN-1FCL 91.0% 93.5% 92.2% 93.2% 95.2% 94.2%

other settings in HCNN-1FCL are the same with our proposed HCNN.

As shown in Table 6, our  proposed HCNN architecture achieved the

best performance, which validates the effectiveness of the CNN6
2

and CNN7
3 in our proposed HCNN architecture.

4.5. Discussion

According to the classification results of our proposed method,

there are two main failure cases in our experiments. First, during

our data collection, the Total Internal Reflection Fluorescent Micro-

scope (TIRFM) sometimes was out of focus for several frames, as

shown in Fig. 17.  Our proposed tracking method can still detect

the image patches while the TIRFM is out of focus, but the inten-

sity  variation pattern of the fusion event is largely interfered by

the out-of-focus problem, which misleads the HCNN to  make a

wrong classification. Second, some fusion events have extremely

short lifetimes which are as short as 2 frames. For  the short event

process, the time-series intensity variation information from Gaus-

sian fitting and the patches from the key moments are not very

informative for the classification. Refining our current TIRFM hard-

ware and increasing the image acquisition rate will be our future

work to overcome the current drawbacks.

5. Conclusion

Accurately detecting and classifying vesicle-plasma membrane

fusion events from TIRFM images is an essential research problem

on cellular trafficking processes. In this paper, we proposed a novel

Hierarchical Convolutional Neural Network (HCNN) based appli-

cation to solve the fusion event detection and classification task.

An adaptive detection and tracking method is  developed to  extract

fusion event candidates and their time-series intensity variation

information. By using the time-series intensity variation pattern

introduced by Gaussian Mixture Models and the appearances in  4
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Fig. 15. Fusion event classification samples of dataset 1, 2, 3, 4 (yellow: full fusion; red: partial fusion; square: ground truth; circle: our result). (For interpretation of the

references to color in this figure legend, the reader is referred to  the web version of this article.)
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Fig. 16. Fusion event classification samples of dataset 5,  6,  7, 8,  9 (yellow: full fusion; red: partial fusion; square: ground truth; circle: our result). (For interpretation of the

references to color in this figure legend, the reader is  referred to  the web  version of this article.)

key moments of the process of a fusion event, a  HCNN architecture

is proposed to classify fusion event candidates into three classes:

full fusion, partial fusion and non-fusion. Our method showed its

competitive performance and outperformed our previous work,

two state-of-the-arts and eleven alternative neural network archi-

tectures on  nine challenging datasets with low signal to noise ratio

and frequent background fluctuations.
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Fig. 17. The  TIRFM image samples which are affected by  out-of-focus.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in

the online version, at 10.1016/j.compmedimag.2017.04.003.
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