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Abstract

Phase Contrast (PC) and Differential Interference Con-
trast (DIC) microscopy are two popular non-invasive tech-
niques for monitoring live cells. Each of these two image
modalities has its own advantages and disadvantages to
visualize specimens, so biologists need these two comple-
mentary modalities together to analyze specimens. In this
paper;, we investigate a conditional Generative Adversar-
ial Network (conditional GAN), which contains one gener-
ator and two discriminators, to transfer microscopy image
modalities. Given a training dataset consisting of pairs of
images (source and destination) captured on the same set of
specimens by DIC and Phase Contrast microscopes, we can
train a conditional GAN, and with this well-trained GAN,
we can generate the corresponding Phase Contrast image
given a new DIC image, vice versa. The preliminary ex-
periments demonstrate that our approach outperforms one
state-of-the-arts method, and can provide biologists a com-
putational way to switch between microscopy image modal-
ities, so biologists can combine the advantages of different
image modalities to better visualize and analyze specimens
over time, without purchasing all types of microscopy image
modalities or switching between imaging systems back-and-
forth during time-lapse experiments.

1. Introduction

Live cells are normally transparent and invisible to hu-
man eyes under bright field microscopes. Though the flu-
orescence microscopy can stain them with chemical dyes
and radiate them with the specific wavelength light, the in-
vasive staining will do harm to the cell viability. Differ-
ential Interference Contrast (DIC) and Phase Contrast (PC)
microscopy, two noninvasive techniques, were invented to
visualize live cells without altering them in the last century
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Figure 1. Different microscopy image modalities. (a): Phase Con-
trast microscopy image. (b): Differential interference contrast mi-
croscopy image.

1.1. Motivation

DIC and Phase Contrast microscopy are usually simul-
taneously used to minotor living cells. Some cells imaged
by the Phase Contrast microscope are shown in Fig.1(a).
The Phase Contrast can image many internal cellular details
at a very high resolution. Unfortunately, some shade-off
and halo artifacts degrade the image, especially the halos
surrounding the periphery of the cell membrances, which
obscure the detailed information about intracellular con-
tacts within halo regions dramatically. Fig.1(b) presents the
same set of specimens with DIC optics, it does not suffer
from the halo artifacts, and presents the periphery of the
cellular membranes much more clearly than that with the
Phase Contrast microscope, though the internal cellular de-
tails are less obvious. In short, the DIC image can present
the close proximity of neighboring cells evidently, and the
Phase Contrast image can clearly show the internal details
of the cells, which renders that the DIC images are more
suitable for intercellular studies, such as contact inhibition,
while the Phase Contrast images are more suitable for the
internal cellular details analysis, such as autophagy.

Accordingly, both Phase Contrast and DIC have its own
strength and weaknesses to analyze cells (further thorough
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comparisons can be found from [3] and [4]), and these two
image modalities are complementary to each other. Usu-
ally, both of these two image modalities are used to moni-
tor the same specimens, which helps biologists to study the
specimens from different perspectives. Purchasing both of
these two microscopes in the laboratory is a feasible way to
get these two image modalities, but it is money consuming.
Moreover, when we need to perform high-throughput time-
lapse experiments on live cells over days or even weeks, it is
infeasible to switch the specimen culturing dish back-and-
forth between microscopes since it is too tedious and will
involve some technical challenges such as image registra-
tion between two image modalities.

These problems motivate us to think whether we can
transfer one microscopy image modality to the other by de-
veloping some computational algorithms, when only one
microscopy imaging system is available. In another word,
when only one microscope hardware is available, we aim
to create multi-model imaging capabilities in a software
way by transferring the captured microscopy image to other
modalities. Furthermore, by implementing the image trans-
fer, it is feasible to make a long-term multi-modal observa-
tion on the same specimens by monitoring the specimens
using one microscope system and then transfer the captured
time-lapse image sequence to other image modalities using
an efficient computational algorithm, which means the im-
age transfer can help us avoid swapping microscope imag-
ing systems back-and-forth when perform time-lapse multi-
modal observations on specimens.

1.2. Related Work

Generative Adversarial Nets (GANs) was first proposed
by Ian J. Goodfellow in 2014 [5], and has been attracting in-
creasing interests recently. Wang et al. proposed a style and
structure generative adversarial network, which contains a
style-GAN and a structure-GAN to generate new images
[6]. Dong et al. presented a general approach which based
on deep convolutional and conditional GANs to transform
an image from its original form to some synthetic forms [7].
Yoo et al. introduced an image-conditional image genera-
tion model based on the GANs to transfer an input domain
to a target domain in the semantic level, and generate the
target image in the pixel level [8]. Isola et al. investigated
conditional generative adversarial networks as a general-
purpose solution to image-to-image translation problems
[9].

The success of GANs motivates us to try to transfer the
microscopy image modalities with GANs, however, directly
adopting the previous methods cannot solve our problem
perfect because of some limitations of the DIC images.
Accordingly, we propose a new conditional GANs which
contains two discriminators to solve our microscopy image
modalities transfer problem.
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Figure 2. Generator G and discriminator D in the conditional
GANES.

1.3. Research Contributions

We investigate a new conditional Generative Adversarial
Network (conditional GAN) to transfer microscopy image
modalities.

e We improve the structure of the generator in the con-
ditional GAN, which can take more additional information
into consideration to generate better destination images.

e We introduce one more discriminator in the conditional
GAN, which makes the generated images be distinguished
more easily by these two discriminators if the generated im-
ages are not good enough.

e We apply the conditional GAN on the microscopy im-
age area, and prove that this technique can do a very good
job on transferring microscopy image modality.

2. Background

Generative Adversarial Nets (GANs) were introduced as
a novel way to train generative models which can generate
realistic images, while the conditional Generative Adversar-
ial Nets were proposed to extend the GANS to a conditional
version in which the generative models are conditioned on
some aditional information. The biggest difference between
GANSs and conditional GANSs is the input. GANs aim to
learn a mapping from a latent random noise vector z to out-
put image y, while conditional GANS try to learn a mapping
from a latent random noise vector z and an observed image
x to output image y. Both of these two generative models
contain two submodels: generator G and discriminator D.

In conditional GANS, the generator G is trained to take
latent random noise vector z and observed image x as the in-
put and try to generate realistic images y that cannot be dis-
tinguished from the real images by discriminator D (Fig.2
(a)). The discriminator D is trained to perform binary clas-



sification to try to differentiate the images generated by G
from the real images (Fig.2 (b)). In another word, generator
G and discriminator D act as two adversaries: generator G
is trained to generate images which will fool discriminator
D to classify the real images and generated images, while
D is trained to avoid being fooled by G.

The objective function of a conditional GAN can be for-
mulated as

LecaN (G> D) = Ea:,ywpdam(x,y) [logD(x, y)]"‘

Eprdata(x),ZNm(z) [log(1 — D(z,G(z]x))],
(D

where x is the real source image (e.g., DIC image), y
is the real objective image (e.g., Phase Contrast image),
G(z|x) is the generated objective image, D(x,y) is the
output of the discriminator when taking image pair (z,y)
as input. G 1is trained to minimize this objective function
and D is trained to maximize this objective function, i.e.,
(G*,D*) = argménmgxﬁcGAN(G,D).

3. Methodology

Conditional GANs can be used to do image to image
translation, so an intrinsic solution of our microscopy im-
age translation problem is using the conditional GANSs to
transfer DIC image to Phase Contrast image, or from Phase
Contrast image to DIC image. Some previous studies on
conditional GANs show that it benefits from combining the
GAN objective with a traditional loss function [10], e.g., a
{1 constraint defined as

‘651 (G) = EILIZ),yNPdam(JEl’ZEmy)[Hy - G(Z‘Il, xQ)Hellz)

and the final objective is

(G*, D*) =arg mén mgx (LCGAN (G, D) + /L[,gl (G)) R
3)
where p is a weight parameter. The reason why we prefer
the ¢; distance to the /5 distance is that {; encourages less
blurring than ¢5.

However, when the surrounding medium and the speci-
mens have very similar optical path lengths, and the cells’
optical path length has very small gradient, neither the DIC
image nor the Phase Contrast image can show detailed cell
structure and clear cell edges, which makes it very challeng-
ing to transfer the microscopy image perfectly, as shown in
Fig.7 and Fig.8.

3.1. Cell segmentation

Cell region segmentation can be regarded as the addi-
tional information for the conditional GANs to do image
translation. Jiang and Yin propose a motion-based DIC im-
age segmentation and restoration algorithm [11]. The tiny
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Figure 3. Microscopy image cell segmentation. (a): DIC image.
(b): cell mask of the DIC image. (c): Phase Contrast image. (d):
cell mask of the Phase Contrast image

motion of each cell pixel is magnified by filtering a time-
series of gradient signals on the pixel location using an ideal
bandpass filter, while the intensity variation on the back-
ground pixels is attenuated. The motion information of a
target image is further magnified by a weighted sum of a
series of motion images from time-lapse image sequences.
With the motion information of cell pixels, we can estimate
the cells mask of a DIC image, as shown in Fig.3.

3.2. Formulation

With the additional information of cell mask, we can for-
mulate our microscopy image translation problem as a new
conditional GAN

Legan(G, D1, Dy) =

Eey ympaata 1) 109D1 (21, y)]+

By ympaara(za.) 109D (22, y)]+

Eoti ~paara(@r) e () [10g (1 = Di(x1, G(z]w1, 22)) ]+
E

Ta~Pdata(T2),2~pz(2) [109(1 - DQ('%'Q’ G(Z‘Qh, .’132))],
4)

where x; is the real source image (e.g, DIC microscopy im-
age), ro is the beforehand obtained cell mask image with
the method in [ 1], and y is the real objective image (e.g.,
Phase Contrast microscopy image), GG is a generator which
takes the real source image x1, the cell mask image x-, and
a latent random noise vector z as the input, and generate
some objective images which are very similar to the real
ones and cannot be distinguished by the discriminators. D
and D» are two discriminators which try to differentiate the
generated objective images from the real ones by perform-
ing binary classification. The input of D; is an image pair
which is either a pair of real source image and real objective
image or a pair of real source image and generated objec-
tive image, D, is trained to output 1 when the input is a pair
of real source image and real objective image, and 0 other-
wise. The input of D is an image pair which is either a pair
of cell mask image and real objective image or a pair of cell
mask image and generated objective image. D is trained
to output 1 when the input is a pair of cell mask image and
real objective image, and O otherwise.

Adding the ¢; constraint to our formulation and we can
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Figure 4. We take the microscopy image transfer from DIC to Phase Contrast (PC) as an example to illustrate the structure of our conditional
GAN. Given the ground truth DIC image, cell mask image and uniform distributed noise z as input, the generator G is trained to generate
corresponding Phase Contrast image. The discriminator D, takes image pair of DIC image and generated Phase Contrast image, and image
pair of DIC image and real Phase Contrast image as input, and classify the generated one and real one. The discriminator D, takes image
pair of cell mask image and generated Phase Contrast image, and image pair of cell mask image and real Phase Contrast image as input,

and classify the generated one and real one.

get our final objective

(G*, D1, D;) =

5
(Lecan(@. D1 Do) + L0 (@),

argmin max
G D1,D>

The discriminators try to distinguish the realistic images
generated by G from the real ones by performing binary
classification, while the generator tries to generate images
not only fool the discriminators but also similar to the real
ones in an /1 manner. The structure of our conditional
GAN:s is shown in Fig.4.

3.3. Network Design

As the generator and discriminators in our conditional
GAN model are all neural networks, we describe their de-
signs in this section.

854

3.3.1 Generator Architecture

An encoder-decoder network architecture is adapted to de-
sign the generator of the conditional GANs in many previ-
ous works [12, 6, 10, 13]. In an encoder-decoder network,
the input information is sent to pass through a series of pro-
gressively downsampling layers. When the transmitting in-
formation encounters a bottleneck layer, the process will be
reversed, and the transmitting information will pass through
a series of progressively upsampling layers (Fig.5 (a)). As
we can see, the downsampling layers and the upsampling
layers in the encoder-decoder networks are usually symmet-
ric, and the input information will pass through all the lay-
ers, including the bottleneck layer.

In our problem, the source image and objective image
are DIC microscopy image and Phase Contrast microscopy
image that image the same set of specimens, therefore, the
source image and objective image should share the same un-
derlying image structure. Taking this constraint into consid-
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Figure 5. Comparison of Encoder-decoder and “U-Net ”. The only
difference is that there are skip connections between the symmetric
layers in the “U-Net “architecture.

eration, we add skip connections into the encoder-decoder,
and form a “U-Net”[14] structure for our generator (Fig.5
(b)). More specifically, suppose there are n layers in the
network, between each layer ¢ and layer n — ¢, an skip con-
nection is added, which concatenates all channels at layer ¢
with those at layer n—i. The structure of generator is shown
in Fig.6 and Tab.1. After the last layer of the decoder, we
apply a convolution to map to the number of output chan-
nels (3 in our problem), with a Tanh function followed. In
the encoder, all the ReLUs are leaky with a slope of 0.2,
while in the decoder ReL.Us are not leaky.

It is worth noting that we do not provide the noise vector
z in the very beginning layers of the generator in addition
to 1 and z9 as it is proved that the generator will simply
learn to ignore the noise. Instead, we add some noise only
to several layers of our generator in the form of dropout.

3.3.2 Discriminator architecture

The discriminators D7 and D5 in our conditional GANs are
multi-layer network architectures, and at the end of each
discriminator is a sigmoid function which converts the out-
put value into a [0, 1] range. We can do binary classification
easily by thresholding the output of the sigmoid function.

In our final objective function, we use an ¢; constraint
to force the generated image to be similar to the ground
truth. Unfortunately, the ¢; constraint cannot capture high-
frequency correctness perfectly, though it has good ability
to encourage low frequencies. This motivates us to find a
way to force the conditional GAN discriminator to model
the high-frequency structure of the image, based on the fact
that the /1 constraint can capture the low-frequencies.

In order to model the high-frequency information of the
image, we borrow the idea of PatchGAN from [9], in
which the discriminator only penalizes structure at the scale
of image patches. Specifically, the input of the discrimina-
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tor is a pair of image patches with size of N x N instead
of a whole image pair. The discriminator convolutionally
runs across a whole image, and all the responses are aver-
aged to provide a final output of this image. The structure
of the discriminator is shown in Tab.2. After the last layer
of each discriminator, we apply a convolution to map to a
one dimensional output, with a Sigmoid function followed.
All ReLUs in the discriminators are leaky with a slope of
0.2.

3.4. Optimization and inference

We follow the iterative, numerical approach from [5] to
optimize our conditional GAN, i.e., we alternate between
one gradient descent step on optimizing D; and D5, and one
gradient descent step on optimizing G. In our optimization
process, the minibatch Stochastic Gradient Descent (SGD)
is used, and the Adam solver is applied [15]. The optimiza-
tion process is summarized in Alg.1.

After the conditional GAN is trained, we apply the gen-
erator onto the source image (e.g., DIC image) to generate
the objective image (e.g., Phase Contrast image), achieving
our goal of transferring microscopy image modalities.

4. Experiments

To test the effectiveness of our proposed conditional
GAN model, we perform some experiments to transfer the
microscopy image from one image domain (e.g., DIC im-
age) to another image domain (e.g., Phase Contrast image)
on two datasets, and evaluate the quality of the generated
images qualitatively and quantitatively.

Dataset: We evaluate our algorithm on two datasets. For
each dataset, we collect 1,600 pairs of time-lapse DIC and
Phase Contrast images on the same set of specimens over
time, and obtain the corresponding 1,600 cell mask images
with the method in [11]. 800 triplets consisting with DIC
image, Phase Contrast image, and the corresponding cell
mask image are selected as the training set, another 400
triplets are chosen as the validation set, and the rest 400
triplets are regarded as the testing set. All images are pre-
sented at 256 x 256 resolution, and the image has pixel value
range [0, 255].

Evaluation Metric: Evaluating the quality of genera-
tive models is known to be very challenging. Here we use
the Normalized Root Mean Square Error (NRM SE) and
Structural Similarity Index (SSIM) [16] to quantitatively
evaluate our generative model. NRM SE is defined as

\/ﬁ 2211 Z?:l(y;’kj - yij)2
NRMSE(z,y) =

(6)

maxr — min

where max and min are the maximum and minimum inten-
sities of the ground truth (y;;), respectively. The normaliza-
tion denominators make this error metric insensitive to the
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Figure 6. Structure of the generator in our conditional GAN. e¢ stands for the ith layer of the encoder of the “U-Net ”, and dj represents
the jth layer of the decoder of the “U-Net . In the decoder, two symmetric layers are concatenated together. All convolutions are 4 x 4
spatial filters applied with stride 2. convolutions downsample bu a factor of 2 in the encoder of the “U-Net ”, and upsample by a factor of
2 in the decoder of the “U-Net”. Dropout noise is added to d1, d2, and d3.

| Layer [fclel [ e2 [ e3 [ e4 | o5 | e6 | e |

Module - |CR | CBR | CBR | CBR | CBR | CBR | CBR

Kernel Number | - | 64 | 128 | 256 | 512 | 512 | 512 | 512

Stride - | 2d 2d 2d 2d 2d 2d 2d
Layer dl d2 d3 \ d4 \ ds \ d6 \ d7 \ fc ‘
Module CDBR | CDBR | CDBR | CBR | CBR | CBR | CBR | -
Kernel Number 512 512 512 512 | 256 128 64 -
Stride 2u 2u 2u 2u 2u 2u 2u -

Table 1. Structure of the encoder and decoder in the generator. “fc “means fully connected layer, et stands for the ith layer of the encoder,
and dj represents the jth layer of the decoder. “CR “denotes Convolution-ReLU without BatchNorm, “CBR ”is Convolution-BatchNorm-
ReLU, “CDBR “denotes Convolution-BatchNorm-ReLU with a dropout rate of 50%. “2d “means filtering with stride 2 and downsampling,
and “2u “means filtering with stride 2 and upsampling.

[ Layer [fc [ DI | D2 | D3 | D4 | s(x,y) = 2253, Cr = (0.01% L)%, Cy = (0.03 % L)?,
Module - | CR | CBR | CBR | CBR and C3 = C%/2. g, [ty, Oz, 0y, and ozxy are the local
Kernel Number | - | 64 | 128 | 256 | 512 means, standard deviations, and cross-covariance for im-
Stride - | 2d 2d 2d 1 ages x and y. L is the specified Dynamic Range value of

the image.
Table 2. Structure of the discriminators D; and Dj. “fc “means
fully connected layer, Di stands for the ith layer of the discrim- Parameter Setup: In our experiments, we set batch size
inator. “CR “denotes Convolution-ReLU without BatchNorm, to 1, noting little difference between experimental results
“CBR 7is Convolution-BatchNorm-ReLU. “2d “means filtering  with different batch sizes as long as enough training iter-
with stride 2 and downsampling. ations. The number of training iterations is 300. We use
image value scale and image size. SSIM is defined as the Adam optimizer in our experiments, the learning rate
for Adam is 2e~%, and the exponential decay rate for the
SSIM(z,y) =U(z,y) . c(x,y) . s(x,y) (7) ~ moment estimate is 0.5. As we use PatchGAN, the size of
the input patch for the two discriminators is 70 x 70. We
where [(x,y) = %ﬂ;&, clz,y) = %, use 5-fold cross validation on the validation set to select the
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Algorithm 1 Training of conditional GAN

Require: Training set, weight parameter .
for number of training iterations do

e Sample minibatch of one noise sample {z} from noise prior p,(2).
e Randomly sample minibatch of one example {x1, z2, y} from training set.
e Update the discriminator D; by ascending its stochastic gradient with Adam optimizer:

Voo, [logD1(z1,y) + log(1 — Di(z1, G(2|z1,22))]

e Update the discriminator D5 by ascending its stochastic gradient with Adam optimizer:

Vo, [logDa(z2,y) + log(1 — Da(z2, G(2]z1, 22))]

e Update the generator GG by descending its stochastic gradient with Adam optimizer:

Vo [log(1 — Di(z1, G(z|21, 22)) + log(1 — Da(z2, G(2]21, 22))]

end for
Ensure: Trained generator (G, discriminators Dy and Ds.

weight paramater y in our final objective function as 100.

Evaluation and Discussion: Fig.7 shows the results of
transferring microscopy image modalities from DIC im-
age to Phase Contrast image, and Fig.8 presents the results
of transferring from Phase Contrast image to DIC image.
These two figures qualitatively evaluate the performance of
our conditional GAN compared with a previous state-of-
the-art method [9]. Fig.8 shows that our method generates
the comparable results with the method from [9]. We can
hardly distinguish which one is better. In Fig.7, it is easy to
see that our method outperforms the previous method from
[9], especially in the area marked by the red circles.

The quantitative evaluations of the proposed conditional
GAN and the one in [9] with NRMSD and SSIM are
summarized in Tab.3 and Tab.4, respectively. From these
two tables, we also can find that our method beats the previ-
ous one when transferring microscopy image from DIC to
Phase Contrast, and achieves almost the same performance
when transferring image from Phase Contrast to DIC.

The reason that our method cannot outperform the pre-
vous conditional GAN when transferring microscopy image
from Phase Contrast to DIC is that most of the Phase Con-
trast images in our dataset have very clear cell edges and the
cells can easily be segmented out of the background, which
means that the cell mask image cannot offer much useful
additional information to determine the cell region. When
transferring microscopy image from DIC to Phase Contrast,
some cell edges in the DIC images are not easy to be de-
tected, and some cell region cannot be segmented from the
background well. In this case, the cell mask images offer us
very useful additional information to detect the cell region,
and as a result, our conditional GAN based on one genera-
tor and two discriminators can benefit from these additional
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Direction [ DIC — PC | PC — DIC |
Method of [9] [ 0.0420 0.0942
Our method 0.0371 0.0912

Table 3. Quantitative evaluation with N RM SD.

| Direction | DIC — PC | PC — DIC |
Method of [)] [ 0.8686 0.8709
Our method 0.9056 0.8705

Table 4. Quantitative evaluation with SSIM.
information and generate better Phase Contrast images.

5. Conclusions

In this paper, we present a conditional GAN, which
contains one generator and two discriminators to do mi-
croscopy image modality transfer. The generator in the pro-
posed GAN can take additional object segmentation infor-
mation into consideration which helps to train the genera-
tor better. Two discriminators in the GAN can distinguish
the generated image from the real one with higher possi-
bility, which means the GAN is forced to generate images
much more similar to the real ones. It is worth noting that
our model can be generally extended to include more dis-
criminators, which will further help to train a better gener-
ator. We both qualitatively and quantitatively evaluate our
method on two datasets, and the preliminary experimental
results show that the proposed approach can do very well
on transferring the microscopy image modality.
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