

Nickel-Catalyzed Reductive Cycloisomerization of Enynes with CO₂

Justin B. Diccianni, Tyler Heitmann, and Tianning Diao*

Department of Chemistry, New York University, 100 Washington Square East
New York, NY 10003
E-Mail: diao@nyu.edu

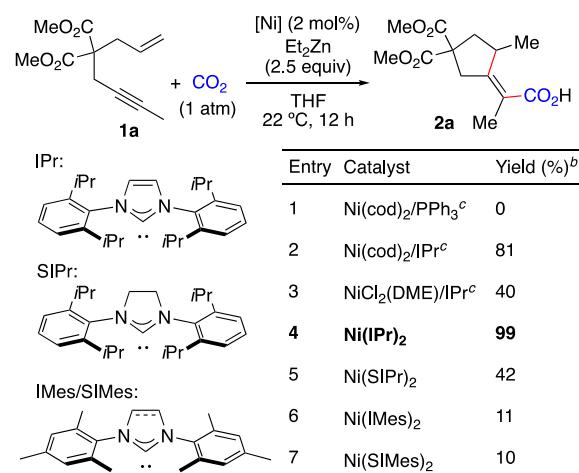
ABSTRACT

Carboxylate groups are ubiquitous in bioactive molecules. The syntheses of carboxylates from petroleum feedstock require a series of oxidation reactions. CO₂ represents a cheap and sustainable, pre-oxidized C1 source. Here, we describe a simple, selective, and mild procedure for the construction of (hetero)cyclic α,β -unsaturated carboxylic acids from 1,6- and 1,7-enyes and CO₂. Terminal 1,7-enyes and sterically hindered alkenes experience a unique change in regioselectivity and form unconjugated carboxylic acids. Mechanistic studies of the reductive cyclization suggest a hydride insertion pathway, explaining the change in regioselectivity caused by steric effects and distinguishing this work from previous reactions involving CO₂.

I. Introduction

The vast majority of chemicals are derived from petroleum products via a series of oxidation reactions to increase the oxidation state of carbon and install functional groups. Carbon dioxide represents a sustainable, inexpensive, and clean C1 source, in which the carbon center is already highly oxidized.¹ The advantages of CO₂ as a chemical feedstock underlie recent efforts to develop catalytic methods of incorporating CO₂ into organic molecules.² In particular,

functionalization reactions of alkenes and alkynes have provided new synthetic tools for the sustainable construction of molecules.³

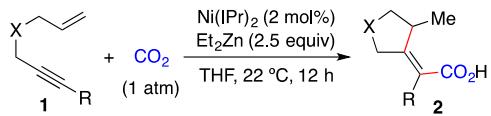

Cyclic molecules with α,β -unsaturated carbonyl functional groups are ubiquitous in bioactive molecules and synthetic intermediates.⁴ In light of the recent advances in the field of Ni catalyzed reductive functionalization of alkenes and alkynes,⁵ including work by Martin, Ma, and others, we sought to extend the scope of these reactions to the preparation of α,β -unsaturated cyclic compounds from CO₂. Here, we report a Ni-catalyzed reductive cycloisomerization of enynes⁶ that couples CO₂ to form α,β -unsaturated carboxylic acids. The simple and mild conditions provide high yields of a broad scope of cyclic and heterocyclic carboxylic acids. In addition, we have conducted mechanistic studies and evaluated possible pathways, including ones invoked in previous CO₂ coupling reactions. Our studies suggest that the reaction proceeds via a classic hydride insertion pathway, which is distinct from previous cyclization reactions to incorporate CO₂.³

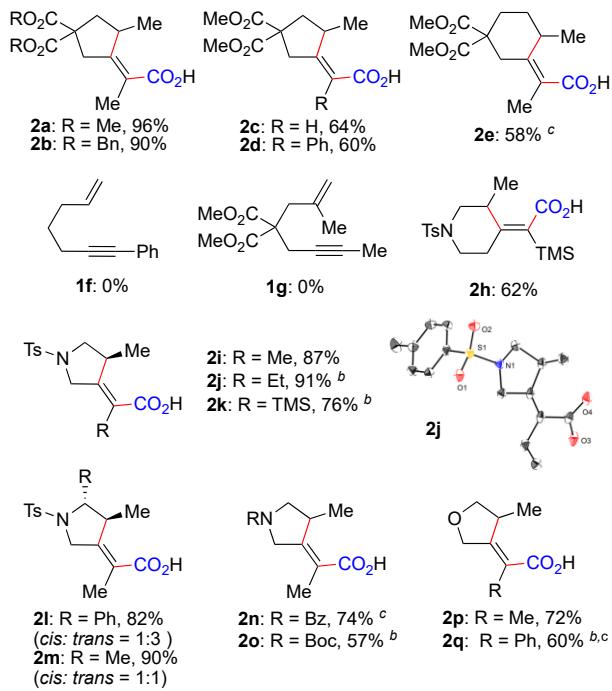
II. Results

We initiated our investigation using malonate derived enyne **1a** as a model substrate and evaluated various conditions for the reductive cycloisomerization with CO₂ (Table 1). Mori and coworkers utilized Ni(cod)₂ and PPh₃ to catalyze the cyclization of bis-dienes with CO₂.^{3b} This catalyst system exhibits no reactivity in the cyclization of **1a** in the presence of Et₂Zn as the reductant (Table 1, entry 1). Replacing PPh₃ with 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) resulted in the formation of the desired cyclic α,β -unsaturated acid **2a** in 81% yield (entry 2). The incorporation of CO₂ into the alkyne is highly selectively, exclusively forming the Z-isomer. The use of NiCl₂(DME) (DME = dimethoxyethane) as the Ni precursor generated **2a** in a lower yield (entry 3). Louie and coworkers discovered that the pre-generated Ni(IPr)₂

catalyst outperforms the mixture of $\text{Ni}(\text{cod})_2$ and IPr in their [2+2+2] cycloaddition reactions.^{3a} We prepared $\text{Ni}(\text{IPr})_2$ via an optimized literature procedure,⁷ and indeed $\text{Ni}(\text{IPr})_2$ was superior to the mixture of $\text{Ni}(\text{cod})_2$ and IPr , giving **2a** in 99% yield (entry 4). We then continued to investigate the stereo and electronic effects of the NHC ligands. Increasing the electron-donating ability of the carbene and decreasing its steric protection led to reduced yields (entries 5-7). We evaluated a variety of reductants as a replacement for Et_2Zn , including EtZnCl , AlEt_3 , and Et_3SiH , but they failed to produce the product. Ultimately, the optimal conditions for the cyclization were comprised of $\text{Ni}(\text{IPr})_2$ as the catalysts and Et_2Zn as the reductant.

Table 1. Development of the Conditions for the Cycloisomerization of Enyne **1a with CO_2^a**

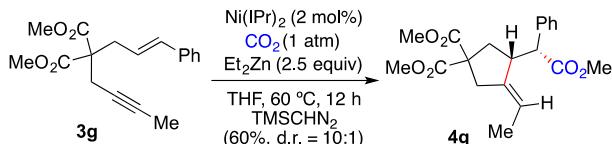
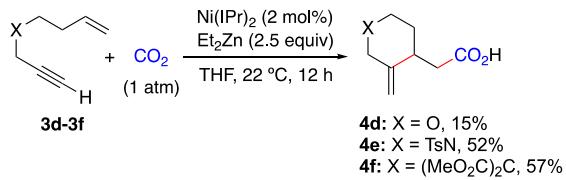
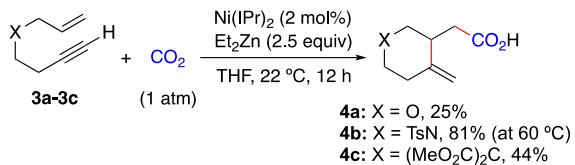

^a Conditions: **1a** (0.05 mmol), $\text{Ni}(\text{IPr})_2$ (2 mol%), ZnEt_2 (0.15 mmol), THF (1 mL), CO_2 (1 atm), 12 h at 23 °C. ^b NMR yields using TMS as the internal standard. ^c 4 mol % ligand.


We explored the scope of the reductive cycloisomerization with 1 atm of CO_2 (Table 2). Methyl and benzyl malonate derived substrates underwent straightforward cyclization to afford the cyclic α,β -unsaturated acids **2a** and **2b** in high yields. Terminal alkyne **1c** proceeded to generate the 5-membered product **2c** in 64% yield. Aromatic alkyne **1d** gave acid **2d** in 60% yield. Cyclization of 1,7-enyne **1e** gave rise to the six-membered product **2e** in 58% yield.

Unsubstituted 1,6-ene **1f** lacked reactivity, suggesting the Thorpe-Ingold effect plays a crucial role in facilitating the cyclization. In addition, sterically hindered olefins, such as geminal disubstituted substrate **1g**, exhibited no reactivity.

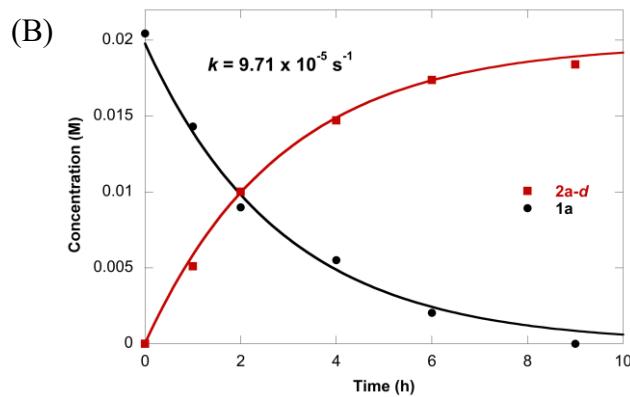
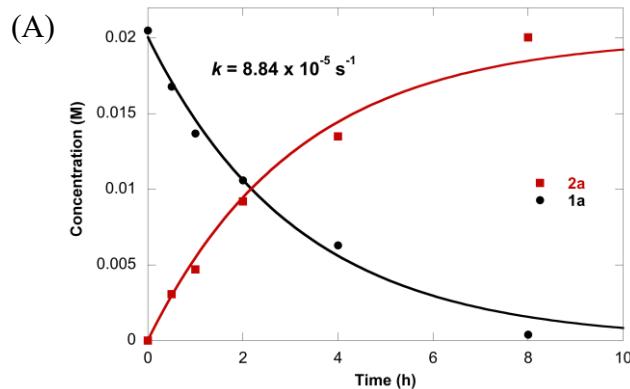
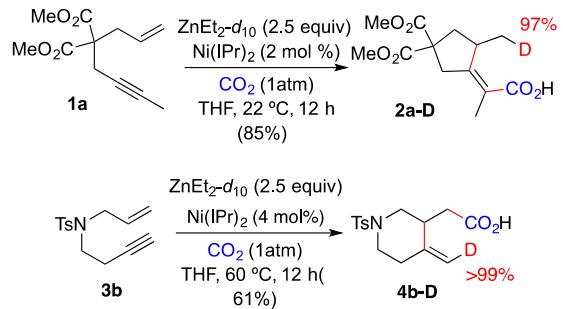
The reaction conditions tolerate heteroatoms, giving rise to a variety of piperidine, pyrrolidine, and furan derivatives (**2h-2q**). We used single crystal X-ray diffraction to confirm the structure and the stereochemistry of **2j**. α -Phenyl substituted tosylamide **2l** was formed as a mixture of *cis* and *trans*-diastereomers in a 1:3 ratio, while α -methyl substituted tosylamide **2m** was formed as a 1:1 mixture of diastereomers. We assigned the diastereomers via NOESY experiments. The tosyl- protecting group of the amine substrates could be substituted by benzoyl- and Boc groups, giving rise to **2n** and **2o** in 74% and 57% yields, respectively. The use of free amines, however, did not result in any product formation. Allyl- propargyl ethers underwent cyclization to generate carboxylic acids **2p** and **2q** in good yields.

Table 2. Scope of the Reductive Cycloisomerization with CO₂ Incorporated to Alkynes^a

^a Conditions: Enyne = 0.5 mmol. Isolated yields. ^b 4% Ni(IPr)₂. ^c Crude product treated with TMSCHN₂ and isolated as methyl ester.

When we evaluated terminal 1,7-enynes, we observed a change in the regioselectivity of the CO₂ incorporation from the alkynes to the alkenes (Scheme 1). Allyl-homopropargyl and homoallyl-propargyl substrates, **3a-3c** and **3d-3f**, respectively, underwent cyclization to form carboxylic acids **4a-4f**. In contrast with the regioselectivity observed for 1,6-enynes **2a-2q**, 1,7-enynes **3a-3f**, bearing terminal alkynes, incorporated CO₂ onto the olefin. This reaction tolerated *N*- and *O*-heteroatoms and afforded piperidine and tetrahydropyran derivatives. In addition, introducing a phenyl substituent on the olefin led to the same change in regioselectivity of the CO₂ incorporation to afford saturated carboxylate **4g** as a 10:1 mixture of diastereomers. The addition of the hydride to the alkyne was exclusively *cis* to the newly formed C–C bond in **4g**.

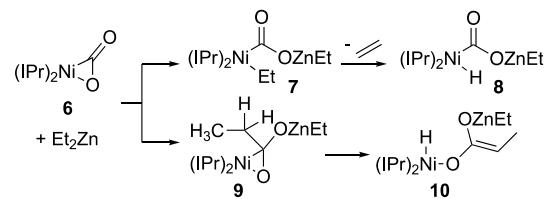



Scheme 1. Scope of Reductive Cyclization with CO₂ Incorporated to Alkenes

We next turned our focus to probing the mechanism. In the presence of 0.5 equivalents of CO₂, relative to the enyne substrate, the cyclization reaction of **1d** proceeded under standard conditions to form the carboxylation product **2d** accompanied by a reductive cycloisomerization product **5d** (eq 1).⁸ Cyclization of **1a** with ZnEt₂-*d*₁₀ formed carboxylic acid **2a-D** in 85% isolated yield (Scheme 2). ¹H and ¹³C NMR spectra established that a single deuterium atom was incorporated into the methyl group in 97% efficiency. The use of ZnEt₂-*d*₁₀ in the cyclization of **3b** led to >99% deuterium incorporation into the terminal olefin of **4b**. The diastereoselectivity of the deuterium incorporation is high with the deuterium *cis*- to the newly formed C–C bond, and no H/D scrambling observed. We conducted kinetic studies for the carboxylation of **1a** using NMR analysis. The reaction time course fits to a first order kinetic model (Figure 1A).⁹ Comparing the reaction rates with ZnEt₂ and ZnEt₂-*d*₁₀ revealed a kinetic isotope effect of 0.911 ± 0.1 (Figure 1B).

Scheme 2. Cyclization of 1a and 3d with ZnEt₂-d₁₀

Figure 1. Kinetic profiles of reductive cyclization of **1a** with Et₂Zn (A) and Et₂Zn-*d*₁₀ (B). Conditions: [1a]₀ = 0.021 M, [Et₂Zn]₀ = 0.050 mM, CO₂ = 1 atm, solvent = THF, temperature = 22 °C, internal standard = tetramethylsilane.

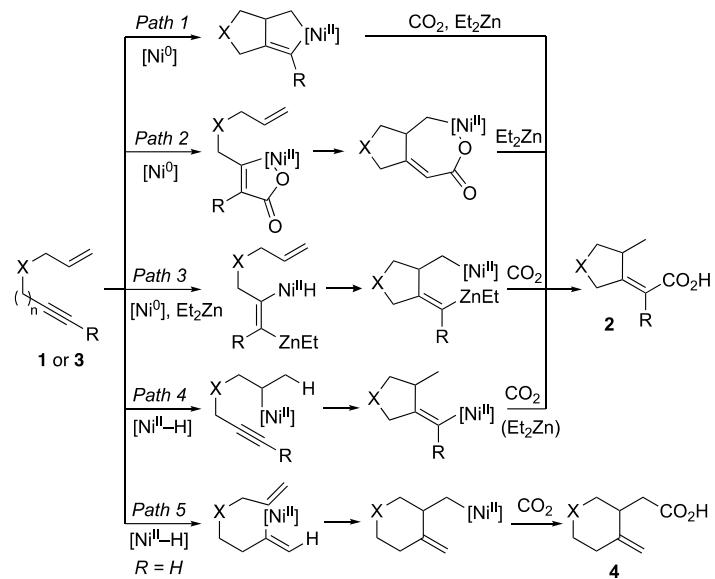
We conducted spectroscopic studies of the catalytic reaction and a series of stoichiometric experiments to elucidate the nature of the Ni catalyst. The EPR spectrum of a reaction mixture of **2a** under standard conditions frozen to 10 K showed no signal. When we monitored the stoichiometric reaction of Ni(IPr)₂ with **1a** in the presence of ZnEt₂ and CO₂ by in-situ ¹H NMR spectroscopy, we observed a diamagnetic Ni species. When CO₂ and/or Et₂Zn were excluded from the reaction, no conversion of **1a** was detected. Mixing stoichiometric Ni(IPr)₂ and enyne **1a** resulted in no reaction. When CO₂ was introduced to the dark purple solution of Ni(IPr)₂, the color immediately changed to yellow. Upon addition of enyne **1a**, the ¹H NMR spectrum of the mixture exhibits a new Ni species but no conversion of **1a** (Figure S1). Introducing Et₂Zn to the reaction mixture resulted in formation of **2a**.


III. Discussion

The experiments presented above allow us to evaluate possible pathways for the reductive cyclization. The formation of reductive cycloisomerization product **5d** in the presence of insufficient CO₂ (eq 1) suggests that cyclization occurs prior to the incorporation of CO₂. Deuterium labeling studies with Et₂Zn-*d*₁₀ (Scheme 2) reveal that the hydrogen atom incorporated into the product originates from Et₂Zn. The lack of H/D scrambling suggests that hydride insertion is irreversible. The negligible KIE with Et₂Zn-*d*₁₀ implies that steps involving the cleavage of the C–H bonds of Et₂Zn and Ni–hydride are fast. Analysis of the reaction mixture by EPR spectroscopy excludes Ni(I) or Ni(III) species as the catalyst resting state. ¹H

NMR studies of the catalyst activation provide circumstantial evidence for diamagnetic intermediates involved in catalysis.

Our stoichiometric experiments establish that $\text{Ni}(\text{IPr})_2$ alone does not react with the enyne substrate. Both CO_2 and Et_2Zn are crucial to activate the Ni catalyst. The reaction of CO_2 with $\text{Ni}(0)$ results in an immediate color change, possibly forming side-on adduct **6**, as is known for $\text{Ni}(0)$ -phosphine complexes.¹⁰ The enyne substrate **1a**, however, does not react with **6**, evident from stoichiometric studies (Figure S1). Based on previous studies by Dong and coworkers,¹¹ $(\text{IPr})_2\text{Ni}(0)\text{-CO}_2$ adduct **6** can transmetallate with Et_2Zn to form intermediate **7** (Scheme 3). Upon release of ethylene, β -H elimination gives rise to $\text{Ni}-\text{H}$ **8**, which enters the catalytic cycle. Alternatively, nucleophilic addition of Et_2Zn to the carbonyl of **6** could form intermediate **9**, followed by β -H elimination to generate $\text{Ni}(\text{II})-\text{H}$ **10**. Consistent with this proposal, $\text{Ni}(\text{II})$ precursors, such as $\text{NiCl}_2(\text{DME})$, are active in catalyzing the reductive cyclization reaction (Table 1, entry 3). We attribute the lower yield of $\text{NiCl}_2(\text{DME})$ compared with $\text{Ni}(\text{IPr})_2$ to catalyst decomposition when the coordination of IPr to $\text{NiCl}_2(\text{DME})$ is incomplete.

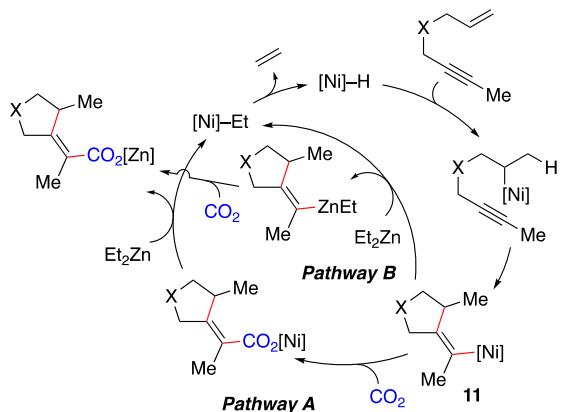

Scheme 3. Proposed Activation of the Ni Catalyst by CO_2 and Et_2Zn

Oxidative cycloaddition of alkenes and alkynes with $\text{Ni}(0)$ has been invoked in Ni-catalyzed reductive coupling reactions^{5f} and early reports in Ni-mediated CO_2 functionalization.¹² If the reductive cyclization proceeded through this pathway, CO_2 could undergo nucleophilic attack by the metallocycle intermediate followed by reductive cleavage with Et_2Zn (Scheme 4, Path 1). This pathway is consistent with our observation that cyclization precedes the incorporation of

CO_2 , but is inconsistent with the lack of reactivity between enyne **1a** and $\text{Ni}(\text{IPr})_2$ in stoichiometric studies.¹³

Scheme 4. Possible Pathways of Ni-Catalyzed Reductive Cycloisomerization

Louie and coworkers proposed a cycloaddition between CO_2 , $\text{Ni}(0)$, and an alkyne.^{3a} It is conceivable that a similar reaction could form a metallolactone, which inserts into the alkene and generate the final product (Scheme 4, Path 2). This pathway is inconsistent with cyclization preceding the incorporation of CO_2 , evident from the formation of reductive cyclization product **5d**. In addition, the lack of reactivity between $\text{Ni}(\text{IPr})_2$, enyne **1a**, and CO_2 in the absence of Et_2Zn contrasts with Path 2.


In a Ni-catalyzed reductive cyclization of diynes with CO_2 , Ma and coworkers invoked transmetallation between a $\text{Ni}(0)$ -alkyne adduct and Et_2Zn to afford a vinyl-zinc intermediate (Scheme 4, Path 3). Further olefin insertion generates the cyclized product.^{3g} The vinyl-Zn intermediate is responsible for the nucleophilic attack on CO_2 to form the carboxylic acid. In the report by Ma, reductive cyclization of the diynes occurs in high yield in the absence of CO_2 .^{3g} In

contrast, our reductive cyclization did not produce any cyclized product in the absence of CO₂. This observation provides circumstantial evidence to rule out Ma's mechanism.

Our mechanistic data are consistent with Path 4. The reaction initiates by the insertion of a Ni(II)–H species into the alkene, followed by subsequent insertion of the alkyne and activation of CO₂. When terminal 1,7-alkyne **3a–f** and 1,6-alkyne **3g**, with steric hindrance on alkene, were used as the substrate, the initial insertion of Ni(II)–H favors the more reactive and sterically more accessible alkyne (Path 5).¹⁴ This change of insertion sequence results in the incorporation of CO₂ into the alkene and forms saturated acids **4a–g**. It is noteworthy that the unique change in selectivity with substrates **3a–g** provides further evidence to exclude Paths 2 and 3, which cannot account for the observed steric effect on the change of insertion sequence.

Collectively, we propose the catalytic cycle shown in Scheme 5 to account for our experimental observations. Irreversible, insertion of Ni–H into the alkene, followed by insertion of the alkyne, gives rise to a vinyl–Ni intermediate **11**, which may directly react with CO₂ (Pathway A).¹⁵ Subsequent transmetallation with Et₂Zn forms a Ni–Et intermediate, which undergoes β -H elimination to regenerate the Ni–H species. Alternatively, the activation of CO₂ could be preceded by transmetallation to Zn, forming a vinylzinc species which ultimately reacts with CO₂ (Pathway B).^{3c} Our current data do not distinguish these two pathways, and ongoing research focuses on elucidating the role of Zn salts in activating CO₂.

Scheme 5. Proposed Catalytic Cycle

IV. Conclusion

In conclusion, we have developed a simple, selective, and mild procedure for constructing (hetero)cyclic α,β -unsaturated carboxylic acids from 1,6- and 1,7-enes and CO_2 . Increasing the steric hindrance on alkene or decreasing the steric hindrance on alkyne results in a unique change in the regioselectivity of the carboxylation to afford unconjugated carboxylic acids. Our mechanistic studies suggest a hydride insertion mechanism is operative, which distinguishes this work from previous reactions in incorporating CO_2 .

Experimental

General Considerations. All air- and moisture- sensitive manipulations were carried out in a nitrogen-filled glove box. Solvents were dried and deoxygenated by passing through alumina in a solvent purification system. $\text{Ni}(\text{cod})_2$ was purchased from Strem and used without further purification. Chloroform-*d*, benzene-*d*₆, and bromoethane-*d*₅ were purchased from Cambridge Isotope Laboratories. Substrates **1a-g**, **1i-k**, **1o-q**, **3a**, and **3d-f** were synthesized according to literature procedures.^{16a-n}

¹H and ¹³C NMR spectra were recorded on Bruker 600, 500, and 400 MHz Avance spectrometers. The chemical shifts (δ) are given in parts per million and referenced to residual solvent peaks or TMS internal standard. The following abbreviations were used to describe

multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, m = multiplet, br = broad. IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer. X-ray crystallographic data were collected on Bruker AXS SMART APEXII single crystal diffractometer. High-resolution mass spectra (HRMS) were collected on an Agilent 6224 TOF LC/MS. Reactions were monitored by thin layer chromatography (TLC) on Merck TLC Silica gel 60 F₂₅₄ plates and compounds were visualized by UV light (254 nm) or KMnO₄ staining. Column chromatography was performed on Merck Silica gel 60 (0.015-0.040 mm). Carbon dioxide was purchased from Airgas and was passed through 2 Drierite columns before use. Melting points were measured using a Mel-Temp apparatus with open glass capillaries.

Ni(IPr)₂. A 20 mL scintillation vial was charged with Ni(cod)₂ (100 mg, 0.36 mmol, 1 equiv) and 6 mL THF. With stirring, IPr¹⁷ (282 mg, 0.73 mmol, 2 equiv) was added in 6 mL THF. The solution quickly turned dark brown, then black. After stirring overnight, solvent was removed under vacuum, the residue was dissolved in 10 mL toluene, and stirring was continued for a further 12 hours. After repeating the cycle two more times, volatiles were removed under vacuum and black residue was suspended in pentane (5 mL) and filtered. The solid was washed with pentane twice and dried under vacuum to give 166 mg (0.20 mmol, 56%) of Ni(IPr)₂ as a black, microcrystalline solid. The filtrate was stored at -35 °C. After 24 hours, the supernatant was removed and the solids were dried under vacuum to afford 35 mg (0.04 mmol, 11%) of Ni(IPr)₂ (67% overall). The solid was stored at -35 °C. Solutions of Ni(IPr)₂ were found to decompose over several days at room temperature. The spectroscopic data is in agreement with the previous reports.¹⁸ **1H NMR (600 MHz, C₆D₆)** δ 7.28 (t, *J* = 7.7 Hz, 4H), 7.08 (d, *J* = 7.7 Hz, 8H), 6.11 (s, 4H), 3.06 (sept, *J* = 6.9 Hz, 8H), 1.25 (d, *J* = 6.9 Hz, 24H), 1.10 (d, *J* = 6.9 Hz, 24H). **¹³C {¹H} NMR (151 MHz, C₆D₆)** δ 193.5, 145.4, 139.3, 123.3, 120.8, 28.3, 24.5, 23.9.

Procedure for Screening Reaction Conditions: An oven-dried 25 mL bomb flask was charged with the nickel catalyst, ligand, and THF (0.8 mL) in a nitrogen-filled glovebox. The flask was sealed and removed from the glovebox. Under a stream of CO₂, enyne 1a (0.05 mmol, 1 equiv) was added as a solution in 0.1 mL THF. After addition of the reductant (2.5 equiv), the flask was degassed three times by the freeze-pump-thaw method. The specified amount of CO₂ was then introduced to the flask and the mixture stirred vigorously for 12 hours at the specified temperature. The mixture was cooled in an ice bath, diluted with 2 mL EtOAc, and quenched with 3 mL 1 M HCl. The aqueous phase was extracted with 2 mL EtOAc three times. The combined organic phase was dried over Na₂SO₄. Solvent was removed under vacuum. The crude material was dissolved in CDCl₃ (0.6 mL) followed by the addition of TMS internal standard (0.02 mmol from a stock solution in CDCl₃) and analysis by NMR spectroscopy. All yields were determined by NMR spectroscopy (Table S1).

General Procedure for Cyclization Reactions in Bomb Flasks (General Procedure A):

An oven-dried 25 mL bomb flask was charged with Ni(IPr)₂ (2-4%) and THF (0.8 mL) in a glovebox. The flask was sealed and removed from the glovebox. Under a stream of CO₂, enyne **1a-q** or **3a-g** (0.05 mmol, 1 equiv) was added as a solution in 0.1 mL THF. After the addition of ZnEt₂ (2.5 equiv) in 0.1 mL THF the solution became turbid. The flask was degassed three times by the freeze-pump-thaw method. The flask was filled with one atmosphere of CO₂. After stirring vigorously for 12 hours the mixture was cooled in an ice bath, diluted with 2 mL EtOAc, and quenched with ~3 mL 1 M HCl (or sat. NH₄Cl for substrate **1o**). The aqueous phase was extracted 3 x 2 mL EtOAc. The combined organic phase was washed with brine and dried over Na₂SO₄. The crude material was dissolved in CDCl₃ (0.6 mL) with TMS (0.02 mmol from a

stock solution in CDCl_3) added and analyzed by NMR spectroscopy. The crude material was then purified by chromatography on silica with elution by mixtures of CHCl_3 and MeOH .

General Procedure for Cyclization Reactions in Round-Bottom Flasks (RBF) (General Procedure B): An oven-dried 50 mL RBF was charged with $\text{Ni}(\text{IPr})_2$ (2-4%) and THF (8 mL) in a glovebox. The flask was sealed with a septum and brought out of the glovebox. The flask was purged with a balloon of CO_2 until the solution turned yellow. The balloon was refilled and enyne **1a-q** or **3a-g** (0.5 mmol, 1 equiv) was added in 1 mL THF. ZnEt_2 (2.5 equiv) was added dropwise in 1 mL THF and the solution became turbid. The mixture was stirred vigorously for 12 hours. The CO_2 balloon was replaced every 4-8 hours due to corrosion of the balloon by ZnEt_2 . The mixture was cooled in an ice bath, diluted with 10 mL EtOAc , and quenched with ~ 5 mL 1 M HCl (or sat. NH_4Cl for substrate **1o**). The aqueous phase was extracted with EtOAc three times. The combined organic phase was washed twice with brine and dried over Na_2SO_4 . Solvent was removed under vacuum to give the crude products, which were purified by recrystallization (carboxylic acids **2i** and **2j**), conversion to the corresponding methyl ester with TMSCHN_2 followed by chromatography on silica with hexane/ EtOAc (esters **2e**, **2n**, **2q**, and **4g**), or chromatography of the free acids on silica with $\text{CHCl}_3/\text{MeOH}$ (all other carboxylic acids).

General Procedure for Methylation of Carboxylic Acids (General Procedure C): The crude material was dissolved in 3 mL toluene and 2 mL MeOH were added. The solution was cooled in an ice bath and TMSCHN_2 (3 equiv, 2 M in hexane) was added dropwise. The ice bath was removed and the solution stirred at room temperature for 1 hour. Acetic acid was added dropwise until the yellow color of TMSCHN_2 faded, then solvent was removed under vacuum. The methyl esters were then purified by column chromatography on silica with elution by hexane and EtOAc .

Procedure for Kinetic Experiments: In parallel, several oven-dried 25 mL bomb flasks were charged with Ni(IPr)₂ (0.001 mmol, 0.02 equiv, 0.8 mL THF) from a stock solution in THF, in a glovebox. The flasks were sealed and removed from the glovebox. Under a stream of CO₂, enyne **1a** (0.05 mmol, 1 equiv) was added from a stock solution in THF (0.1 mL). After the addition of ZnEt₂ or ZnEt₂-*d*₁₀ (2.5 equiv) in 0.1 mL THF from a stock solution, the flask was degassed three times by the freeze-pump-thaw method. The flask was filled with one atmosphere of CO₂. After stirring vigorously for the specified time the mixture was cooled in an ice bath, diluted with 2 mL EtOAc, and quenched with ~3 mL 1 M HCl. The aqueous phase was extracted 3 x 2 mL EtOAc. The combined organic phase was washed with brine and dried over Na₂SO₄. The crude material was dissolved in CDCl₃ (0.6 mL) with TMS (0.02 mmol from a stock solution in CDCl₃) added and analyzed by NMR spectroscopy. Kinetic experiments were repeated twice in order to assure reproducibility.

Stoichiometric Reaction Between Ni(IPr)₂, CO₂, and **1a.** A J-Young NMR tube was charged with a solution of Ni(IPr)₂ (8 mg, 0.009 mmol, 1 equiv) and enyne **1a** (2 mg, 0.009 mmol, 1 equiv) in 0.6 mL C₆D₆. The NMR spectrum of this solution showed no reaction even after 2 days at room temperature. The tube was degassed and refilled with CO₂, causing the solution to turn yellow/orange. The NMR spectrum of this mixture showed Ni(IPr)₂ had been consumed and a new Ni species formed. Enyne **1a** was unreactive with this new Ni species (Figure S1).

Reaction with Substoichiometric CO₂: An oven-dried 25 mL bomb flask was charged with Ni(IPr)₂ (0.005 mmol, 0.02 equiv) and 4 mL THF in a glovebox. The flask was sealed and removed from the glovebox. Under a stream of CO₂, enyne **1d** (0.25 mmol, 1 equiv) was added in 0.5 mL THF followed by ZnEt₂ (2.5 equiv) in 0.5 mL THF. The flask was degassed three

times by the freeze-pump-thaw method. Using a gas addition bulb and standard Schlenk technique, 0.5 equivalents of CO₂ were condensed into the flask. The mixture was stirred overnight, cooled in an ice bath, and quenched with 1 M HCl. The aqueous phase was extracted with EtOAc three times. The combined organic phase was washed twice with brine and dried over Na₂SO₄. Solvent was removed under vacuum to give the crude products (Figure S2), which were purified by chromatography on silica with 100% CHCl₃ → 100:1 CHCl₃:MeOH to give **2d** (25 mg, 0.075 mmol, 30%) and **5d** (46 mg, 0.16 mmol, 64%) as colorless oils. The spectroscopic data for compound **5d** matches with that reported in the literature.¹⁹

(E)-dimethyl 3-benzylidene-4-methylcyclopentane-1,1-dicarboxylate (5d). **1H NMR (400 MHz, CDCl₃)** δ 7.33 (m, 4H), 7.21 (m, 1H), 6.22 (q, *J* = 2.4 Hz, 1H), 3.73 (s, 3H), 3.72 (s, 3H), 3.39 (d, *J* = 17.6 Hz, 1H), 3.21 (dd, *J* = 17.2, 2.8 Hz, 1H), 2.77 (m, 1H), 2.60 (ddd, *J* = 12.8, 7.2, 1.6 Hz, 1H), 1.77 (dd, *J* = 12.4, 11.6 Hz, 1H), 1.22 (d, *J* = 6.4 Hz, 1H). **13C NMR (101 MHz, CDCl₃)** δ 172.3, 172.2, 146.0, 137.9, 128.3, 126.2, 121.5, 109.7, 59.0, 52.8, 41.5, 39.1, 39.0, 18.3.

(Z)-2-(4,4-bis(methoxycarbonyl)-2-methylcyclopentylidene)propanoic acid (2a). Following General Procedure B with enyne **1a** and purification of the crude material via column chromatography (100% CHCl₃ → 10:1 CHCl₃:MeOH) afforded **2a** as a colorless solid in 96% yield (130 mg, 0.48 mmol). Mp 66–68 °C. **1H NMR (600 MHz, CDCl₃)** δ 3.75 (s, 3H), 3.71 (s, 3H), 3.59 (m, 1H), 3.28 (d, *J* = 18.3 Hz, 1H), 2.96 (d, *J* = 18.3 Hz, 1H), 2.59 (dd, *J* = 13.5, 8.2 Hz, 1H), 2.17 (dd, *J* = 13.5, 3.5 Hz, 1H), 1.86 (s, 3H), 1.04 (d, *J* = 7.1 Hz, 3H). **13C {¹H} NMR (151 MHz, CDCl₃)** δ 173.2, 172.5, 172.2, 162.7, 119.4, 58.1, 53.01, 52.96, 41.8, 40.8, 37.7, 20.5, 16.3. **HRMS (ESI-TOF) *m/z*:** [(M+H) – H₂O]⁺ Calcd for C₁₃H₁₇O₅ 253.1071; Found 253.1070. **TLC:** R_f = 0.20 (40:1 CHCl₃:MeOH).

(Z)-2-(4,4-bis((benzylxy)carbonyl)-2-methylcyclopentylidene)propanoic acid (2b).

Following General Procedure B with enyne **1b** and purification of the crude material via column chromatography (100% CHCl₃ → 10:1 CHCl₃:MeOH) afforded **2b** as a colorless oil in 90% yield (0.45 mmol, 190 mg). **1H NMR (600 MHz, CDCl₃)** δ 7.32 (m, 6H), 7.28 – 7.26 (m, 2H), 7.23 (m, 2H), 5.18-5.10 (m, 4H), 3.60 (br, 1H), 3.30 (d, *J* = 18.2 Hz, 1H), 2.99 (d, *J* = 18.1 Hz, 1H), 2.65 (dd, *J* = 13.5, 8.3 Hz, 1H), 2.17 (dd, *J* = 13.5, 3.8 Hz, 1H), 1.83 (s, 3H), 1.03 (d, *J* = 7.1 Hz, 3H). **13C {¹H} NMR (151 MHz, CDCl₃)** δ 172.6, 171.6, 171.3, 162.8, 135.3, 135.2, 128.6, 128.6, 128.4, 128.4, 128.2, 128.0, 119.4, 67.6, 67.4, 58.4, 41.8, 40.7, 37.7, 20.7, 16.4. **HRMS (ESI-TOF) m/z:** [M+H]⁺ Calcd for C₂₅H₂₇O₆ 423.1808; Found 423.1802. **TLC:** R_f = 0.64 (10:1 CHCl₃:MeOH).

(Z)-2-(4,4-bis(methoxycarbonyl)-2-methylcyclopentylidene)acetic acid (2c).

Following General Procedure B with enyne **1c** and purification of the crude material via column chromatography (100% CHCl₃ → 10:1 CHCl₃:MeOH) afforded **2c** as a tan oil in 64% yield (0.32 mmol, 82 mg). This compound slowly isomerizes to the *E* isomer. **1H NMR (500 MHz, CDCl₃)** δ 5.78 (s, 1H), 3.76 (s, 3H), 3.72 (s, 3H), 3.54 (q, *J* = 7.0 Hz, 1H), 3.31 (dt, *J* = 17.2, 2.0 Hz, 1H), 2.95 (d, *J* = 17.2 Hz, 1H), 2.73 (ddd, *J* = 13.6, 8.4, 2.0 Hz, 1H), 2.03 (dd, *J* = 13.6, 8.4 Hz, 1H), 1.16 (d, *J* = 7.0 Hz, 3H). **13C {¹H} NMR (151 MHz, CDCl₃)** δ 171.9, 171.6, 170.8, 147.4, 123.8, 58.2, 53.02, 52.99, 42.8, 41.6, 36.3, 20.5. **HRMS (ESI-TOF) m/z:** [M+Na]⁺ Calcd for C₁₂H₁₆O₆Na 279.0840; Found 279.0858. **TLC:** R_f = 0.38 (20:1 CHCl₃:MeOH).

(Z)-2-(4,4-bis(methoxycarbonyl)-2-methylcyclopentylidene)-2-phenylacetic acid (2d).

Following General Procedure B with enyne **1d** and purification of the crude material via column chromatography (100% CHCl₃ → 100:1 CHCl₃:MeOH) afforded **2d** as a colorless oil in

60% yield (0.30 mmol, 100 mg). **1H NMR** (500 MHz, CDCl₃) δ 7.39 – 7.34 (m, 2H), 7.32 – 7.28 (m, 1H), 7.16 (dd, *J* = 8.1, 1.3 Hz, 2H), 3.70 (br s, 4H), 3.66 (s, 3H), 3.05 (dd, *J* = 17.8, 1.9 Hz, 1H), 2.74 – 2.65 (m, 2H), 2.09 (dd, *J* = 13.6, 5.2 Hz, 1H), 1.20 (d, *J* = 7.0 Hz, 3H). **13C {1H} NMR** (151 MHz, CDCl₃) δ 172.0, 171.7, 171.3, 165.6, 138.0, 129.2, 128.4, 127.5, 126.5, 58.2, 52.9, 52.9, 41.61, 41.59, 37.1, 20.9. **HRMS (ESI-TOF) m/z:** [M+H]⁺ Calcd for C₁₈H₂₁O₆ 333.1338; Found 333.1307. **TLC:** R_f = 0.48 (10:1 CHCl₃:MeOH).

Dimethyl (Z)-3-(1-methoxy-1-oxopropan-2-ylidene)-4-methylcyclohexane-1,1-dicarboxylate (2e). Following General Procedure B followed by General Procedure C with enyne **1e** and purification of the crude material via column chromatography (10:1 hexane:EtOAc) afforded **2e** as a slightly yellow oil in 58% yield (0.29 mmol, 87 mg) (82% b.r.s.m.). **1H NMR** (500 MHz, CDCl₃) δ 3.74 (s, 3H), 3.712 (s, 3H), 3.710 (s, 3H) 3.15 (ddd, *J* = 14.3, 2.1, 1.1 Hz, 1H), 3.13 – 3.07 (m, 1H), 2.44 (dd, *J* = 14.4, 1.4 Hz, 1H), 2.20 (dq, *J* = 13.7, 3.6 Hz, 1H), 2.03 (td, *J* = 13.7, 4.2 Hz, 1H), 1.91 (d, *J* = 1.4 Hz, 3H), 1.68 (tt, *J* = 13.7, 4.2 Hz, 1H), 1.54 (dq, *J* = 14.0, 3.6 Hz, 1H), 1.14 (d, *J* = 7.1 Hz, 3H). **13C {1H} NMR** (151 MHz, CDCl₃) δ 172.4, 170.8, 170.7, 144.9, 123.7, 77.4, 56.8, 53.0, 52.6, 51.6, 32.6, 30.0, 26.0, 18.6, 15.5. **HRMS (ESI-TOF) m/z:** [M+H]⁺ Calcd for C₁₅H₂₃O₆ 299.1490; Found 299.1496. **TLC:** R_f = 0.20 (10:1 hexane:EtOAc).

(E)-2-(3-methyl-1-tosylpiperidin-4-ylidene)-2-(trimethylsilyl)acetic acid (2h). Following General Procedure B with enyne **1h** and purification of the crude material via column chromatography (100% CHCl₃ → 100:1 CHCl₃:MeOH) afforded **2h** as a colorless oil in 62% yield (0.31 mmol, 123 mg). **1H NMR** (500 MHz, CDCl₃) δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 3.91 (dq, *J* = 8.2, 2.6 Hz, 1H), 3.59 (d, *J* = 11.3 Hz, 1H), 2.76 (d, *J* = 6.9 Hz, 1H), 2.64 (dd, *J* = 13.3, 5.3 Hz, 1H), 2.43 (s, 3H), 2.38 – 2.29 (m, 1H), 2.22 – 2.13 (m, 1H), 1.30 (d, *J* = 6.9 Hz, 3H), 1.16 (t, *J* = 7.6 Hz, 1H), 0.17 (s, 9H). **13C {1H} NMR** (151 MHz, CDCl₃) δ 176.1,

153.8, 143.7, 133.1, 130.8, 129.7, 127.6, 52.3, 47.2, 36.7, 28.8, 21.5, 18.2, -0.2. **HRMS (ESI-TOF) *m/z*:** [M+H]⁺ Calcd for C₁₈H₂₈NO₄SSi 382.1508; Found 382.1503. **TLC:** R_f = 0.33 (10:1 CHCl₃:MeOH).

(E)-2-(4-methyl-1-tosylpyrrolidin-3-ylidene)propanoic acid (2i). Following General Procedure B with enyne **1i** and purification of the crude material via recrystallization from CH₂Cl₂/hexane afforded **2i** as an off-white solid in 87% yield (0.44 mmol, 136 mg). Mp 99–101 °C. **¹H NMR (600 MHz, CDCl₃)** δ 7.71 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.0 Hz, 2H), 4.16 (d, *J* = 16.6 Hz, 1H), 3.68 – 3.51 (m, 2H), 3.35 (d, *J* = 9.1 Hz, 1H), 2.98 (dd, *J* = 9.1, 6.1 Hz, 1H), 2.43 (s, 3H), 1.75 (s, 3H), 1.18 (d, *J* = 6.9 Hz, 3H). **¹³C {¹H} NMR (151 MHz, CDCl₃)** δ 171.0, 157.8, 143.9, 132.1, 129.8, 127.9, 119.2, 55.4, 52.1, 37.8, 21.6, 19.6, 15.8. **HRMS (ESI-TOF) *m/z*:** [M+H]⁺ Calcd for C₁₅H₂₀NO₄S 310.1108; Found 310.1115. **TLC:** R_f = 0.15 (20:1 CHCl₃:MeOH).

(E)-2-(4-methyl-1-tosylpyrrolidin-3-ylidene)butanoic acid (2j). Following General Procedure B with enyne **1j** and purification of the crude material via recrystallization from CH₂Cl₂/hexane afforded **2j** as a colorless solid in 91% yield (0.46 mmol, 147 mg). Mp 83–84 °C. **¹H NMR (600 MHz, CDCl₃)** δ 7.71 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 4.20 (d, *J* = 16.4 Hz, 1H), 3.64 (d, *J* = 16.4 Hz, 1H), 3.60 – 3.52 (m, 1H), 3.33 (d, *J* = 9.1 Hz, 1H), 2.98 (dd, *J* = 9.1, 6.1 Hz, 1H), 2.43 (s, 3H), 2.17 (dq, *J* = 14.7, 7.4 Hz, 1H), 2.09 (dq, *J* = 14.4, 7.4 Hz, 1H), 1.18 (d, *J* = 7.0 Hz, 3H), 0.98 (t, *J* = 7.4 Hz, 3H). **¹³C {¹H} NMR (151 MHz, CDCl₃)** δ 171.5, 157.2, 144.0, 132.0, 129.8, 127.9, 125.7, 55.2, 51.2, 37.7, 23.8, 21.6, 19.7, 12.8. **HRMS (ESI, *m/z*):** calcd for C₁₆H₂₁NO₄S[M+H⁺]: 324.1265, found 324.1264. **TLC:** R_f = 0.15 (20:1 CHCl₃:MeOH).

(Z)-2-(4-methyl-1-tosylpyrrolidin-3-ylidene)-2-(trimethylsilyl)acetic acid (2k).

Following General Procedure B with enyne **1k** and purification of the crude material via column chromatography (100% CHCl₃ → 10:1 CHCl₃:MeOH) afforded **2k** as a tan oil in 76% yield (0.38 mmol, 140 mg). **¹H NMR (400 MHz, CDCl₃)** δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.34 (d, *J* = 8.2 Hz, 2H), 4.08 (d, *J* = 15.4 Hz, 1H), 3.61 (d, *J* = 15.4 Hz, 1H), 3.27 – 3.19 (m, 1H), 3.19 – 3.11 (m, 1H), 2.98 (dd, *J* = 9.1, 6.1 Hz, 1H), 2.43 (s, 3H), 1.13 (d, *J* = 7.0 Hz, 3H), 0.15 (s, 9H). **¹³C {¹H} NMR (101 MHz, CDCl₃)** δ 176.0, 160.2, 144.0, 131.9, 129.8, 128.3, 127.8, 54.3, 51.3, 39.0, 21.5, 19.9, –0.7. **HRMS (ESI-TOF) *m/z*:** [M+H]⁺ Calcd for C₁₇H₂₆NO₄SSi 368.1347; Found 368.1325. **TLC:** R_f = 0.19 (30:1 CHCl₃:MeOH).

(E)-2-(4-methyl-5-phenyl-1-tosylpyrrolidin-3-ylidene)propanoic acid (2l). Following General Procedure B with enyne **1l** and purification of the crude material via column chromatography (100% CHCl₃ → 100:1 CHCl₃:MeOH) afforded **2l** as a colorless oil in 82% yield (0.41 mmol, 158 mg, d.r. = 3:1 *anti:syn*). Separation of the diastereomers was not possible and they were characterized as a mixture. **Anti isomer:** **¹H NMR (600 MHz, CDCl₃)** δ 7.54 (d, *J* = 8.2 Hz, 2H), 7.29 (m, *J* = 8.6 Hz, 2H), 7.23 – 7.16 (m, 4H), 7.06 (m, 1H), 4.77 (s, 1H), 4.31 (dt, *J* = 16.9, 1.6 Hz, 1H), 4.21 (dd, *J* = 16.9, 1.1 Hz, 1H), 3.64 (m, 1H), 2.38 (s, 3H), 1.82 (s, 3H), 1.05 (d, *J* = 7.0 Hz, 3H). **¹³C {¹H} NMR (151 MHz, CDCl₃)** δ 171.7, 157.7, 143.4, 144.7, 129.5, 128.6, 128.4, 127.6, 127.5, 127.2, 126.0, 71.1, 51.7, 47.1, 21.5, 20.4, 16.0. **Syn isomer:** **¹H NMR (500 MHz, CDCl₃)** δ 7.54 (d, *J* = 8.2 Hz, 2H), 7.29 (m, 7H), 4.39 (d, *J* = 17.5 Hz, 1H), 4.25 (d, *J* = 6.3 Hz, 1H), 4.04 (d, *J* = 16.4 Hz, 1H), 3.71 – 3.57 (m, 1H), 2.43 (s, 3H), 1.79 (s, 3H), 0.81 (d, *J* = 7.1 Hz, 1H). **¹³C {¹H} NMR (151 MHz, CDCl₃)** δ 172.4, 155.9, 153.9, 144.1, 135.7, 129.6, 128.7, 128.2, 127.8, 120.0, 118.8, 69.0, 53.7, 44.3, 21.6, 20.2, 15.4. **HRMS (ESI-TOF) *m/z*:** [M+H]⁺ Calcd for C₂₁H₂₄NO₄S 386.1421; Found 386.1417. **TLC:** R_f = 0.43 (10:1 CHCl₃:MeOH).

(E)-2-(4,5-dimethyl-1-tosylpyrrolidin-3-ylidene)propanoic acid (2m). Following General Procedure B with enyne **1m** and purification of the crude material via column chromatography (100% $\text{CHCl}_3 \rightarrow$ 100:1 $\text{CHCl}_3:\text{MeOH}$) afforded **2m** as a colorless oil in 90% yield (0.45 mmol, 146 mg, d.r. = 1:1 *anti:syn*). Separation of the diastereomers was not possible and they were characterized as a mixture. *Anti isomer:* $^1\text{H NMR}$ (500 MHz, CDCl_3) δ 7.76 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 8.1 Hz, 2H), 4.26 (d, J = 17.2 Hz, 1H), 3.78 (q, J = 6.5 Hz, 1H), 3.66 (dd, J = 17.3, 1.4 Hz, 1H), 3.29 (q, J = 7.0 Hz, 1H), 2.42 (s, 3H), 1.80 (s, 3H), 1.09 (d, J = 7.0 Hz, 3H), 0.78 (d, J = 7.0 Hz, 3H). ^{13}C { ^1H } NMR (151 MHz, CDCl_3) δ 172.1, 158.1, 143.7, 136.4, 129.9, 127.4, 120.4, 63.9, 50.4, 45.7, 21.8, 19.5, 16.0, 15.5. *Syn isomer:* $^1\text{H NMR}$ (500 MHz, CDCl_3) δ 7.69 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 4.15 – 4.07 (m, 1H), 4.03 (dt, J = 16.9, 1.5 Hz, 1H), 3.43 (sept, J = 6.6 Hz, 1H), 3.06 (sept, J = 6.3 Hz, 1H), 2.43 (s, 3H), 1.74 (s, 3H), 1.40 (d, J = 6.4 Hz, 3H), 1.13 (d, J = 6.5 Hz, 3H). ^{13}C { ^1H } NMR (151 MHz, CDCl_3) δ 172.1, 156.7, 144.1, 132.3, 130.0, 128.1, 118.7, 59.8, 54.4, 43.3, 21.8, 19.5, 16.2, 13.9. **HRMS (ESI-TOF) m/z:** [M+H]⁺ Calcd for $\text{C}_{16}\text{H}_{22}\text{NO}_4\text{S}$ 324.1270; Found 324.1259. **TLC:** R_f = 0.23 (30:1 $\text{CHCl}_3:\text{MeOH}$).

Methyl (E)-2-(1-benzoyl-4-methylpyrrolidin-3-ylidene)propanoate (2n). Following General Procedure B followed by General Procedure C with enyne **1n** and purification of the crude material via column chromatography (3:1 hexane:EtOAc) afforded **2n** as a colorless oil in 74% yield (0.37 mmol, 96 mg). $^1\text{H NMR}$ (500 MHz, CDCl_3) δ 7.49 (m, 2H), 7.42 (m, 3H), 4.70 (d, J = 19.0 Hz, 1H), 4.17 (d, J = 19.0 Hz, 1H), 3.74 (s, 3H), 3.64 (m, 2H), 3.39 (d, J = 9.9 Hz, 1H), 1.89 (s, 3H), 1.11 (d, J = 6.7 Hz, 3H). ^{13}C { ^1H } NMR (151 MHz, CDCl_3) δ 170.0, 167.4, 154.8, 136.1, 130.1, 128.4, 127.2, 119.8, 56.7, 51.5, 49.8, 38.0, 19.7, 15.9. **HRMS (ESI-TOF) m/z:**

$[\text{M}+\text{Na}]^+$ Calcd for $\text{C}_{16}\text{H}_{19}\text{NO}_3\text{Na}$ 296.1263; Found 296.1247. **TLC:** $R_f = 0.17$ (3:1 hexane:EtOAc).

(E)-2-(1-(tert-butoxycarbonyl)-4-methylpyrrolidin-3-ylidene)propanoic acid (2o). Following General Procedure B with enyne **1o** and purification of the crude material via column chromatography (100% $\text{CHCl}_3 \rightarrow$ 100:1 $\text{CHCl}_3:\text{MeOH}$) afforded **2o** as a colorless oil in 57% yield (0.29 mmol, 73 mg). Some peaks in the ^1H and ^{13}C NMR spectra appear as broad multiplets due to the Boc group. **$^1\text{H NMR (500 MHz, CDCl}_3$** δ 4.25 – 4.03 (br m, 1H), 4.03 – 3.84 (br m, 1H), 3.61 (br s, 1H), 3.35 (br m, 2H), 1.76 (br s, 2H), 1.40 (s, 9H), 1.09 (d, $J = 7.0$ Hz, 3H). **$^{13}\text{C }\{^1\text{H}\} \text{ NMR (151 MHz, CDCl}_3$** δ 171.2, 155.0, 118.5, 79.8, 53.7 (br m), 50.3, 38.0 (br m), 28.5, 20.5, 15.8, 8.9. **HRMS (ESI-TOF) m/z :** $[(\text{M}+\text{NH}_4) - \text{H}_2\text{O}]^+$ Calcd for $\text{C}_{13}\text{H}_{23}\text{N}_2\text{O}_3$ 255.1701; Found 255.1703. **TLC:** $R_f = 0.43$ (10:1 $\text{CHCl}_3:\text{MeOH}$).

(E)-2-(4-methyldihydrofuran-3(2H)-ylidene)propanoic acid (2p). Following General Procedure B with enyne **1p** and purification of the crude material via column chromatography (100% $\text{CHCl}_3 \rightarrow$ 100:1 $\text{CHCl}_3:\text{MeOH}$) afforded **2p** as a colorless oil in 72% yield (0.36 mmol, 56 mg). **$^1\text{H NMR (600 MHz, CDCl}_3$** δ 4.58 (d, $J = 16.0$ Hz, 1H), 4.31 (d, $J = 17.3$ Hz, 1H), 3.85-3.79 (m, 2H), 3.57 (m, 1H), 1.80 (s, 3H), 1.21 (d, $J = 7.0$ Hz, 3H). **$^{13}\text{C }\{^1\text{H}\} \text{ NMR (151 MHz, CDCl}_3$** δ 171.9, 162.3, 116.7, 76.2, 71.4, 38.9, 18.9, 15.5. **HRMS (ESI-TOF) m/z :** $[(\text{M}+\text{H}) - \text{H}_2\text{O}]^+$ Calcd for $\text{C}_8\text{H}_{11}\text{O}_2$ 139.0754; Found 139.0754. **TLC:** $R_f = 0.44$ (10:1 $\text{CHCl}_3:\text{MeOH}$).

Methyl (E)-2-(4-methyldihydrofuran-3(2H)-ylidene)-2-phenylacetate (2q). Following General Procedure B followed by General Procedure C with enyne **1q** and purification of the crude material via column chromatography (10:1 hexane:EtOAc) afforded **2q** as a colorless oil in 60% yield (0.3 mmol, 70 mg). **$^1\text{H NMR (500 MHz, CDCl}_3$** δ 7.36 (t, $J = 7.3$ Hz, 2H), 7.30 (t, J

= 7.2 Hz, 1H), 7.14 (d, J = 7.3 Hz, 2H), 4.31 (d, J = 16.1 Hz, 1H), 4.00 (d, J = 16.1 Hz, 1H), 3.92 (dd, J = 8.5, 5.6 Hz, 1H), 3.78 (d, J = 8.5 Hz, 1H), 3.71 (s, 3H), 3.68 (m, 1H), 1.30 (d, J = 7.0 Hz, 3H). ^{13}C { ^1H } NMR (151 MHz, CDCl_3) δ 166.8, 162.1, 137.4, 128.8, 128.6, 127.7, 124.6, 76.1, 71.5, 51.9, 38.7, 18.9. HRMS (ESI-TOF) m/z : [M+H]⁺ Calcd for $\text{C}_{14}\text{H}_{17}\text{O}_3$ 233.2824; Found 233.2831. TLC: R_f = 0.23 (10:1 hexane:EtOAc).

2-(4-Methylenetetrahydro-2H-pyran-3-yl)acetic acid (4a). Following General Procedure B with enyne **3a** and purification of the crude material via column chromatography (100% CHCl_3 \rightarrow 10:1 CHCl_3 :MeOH) afforded **4a** as a colorless oil in 25% yield (0.13 mmol, 20 mg). ^1H NMR (600 MHz, CDCl_3) δ 4.81 (s, 1H), 4.76 (s, 1H), 3.78 (dd, J = 11.0, 3.8 Hz, 1H), 3.70 (dqd, J = 15.1, 6.7, 3.0 Hz, 2H), 3.49 (dd, J = 10.9, 5.3 Hz, 1H), 2.76 (dt, J = 11.0, 6.7 Hz, 1H), 2.62 (dd, J = 15.9, 6.7 Hz, 1H), 2.52 (dd, J = 15.9, 7.7 Hz, 1H), 2.38 (dt, J = 12.0, 5.3 Hz, 1H), 2.24 (dt, J = 13.8, 5.3 Hz, 1H). ^{13}C { ^1H } NMR (151 MHz, CDCl_3) δ 174.7, 146.0, 108.6, 72.8, 69.8, 40.2, 34.2, 34.2. HRMS (ESI-TOF) m/z : [M+H]⁺ Calcd for $\text{C}_8\text{H}_{13}\text{O}_3$ 157.0859; Found 157.0847. TLC: R_f = 0.43 (10:1 CHCl_3 :MeOH).

2-(4-Methylene-1-tosylpiperidin-3-yl)acetic acid (4b). Following General Procedure B with enyne **3b** at 60 °C and purification of the crude material via column chromatography (100% CHCl_3 \rightarrow 10:1 CHCl_3 :MeOH) afforded **4b** as a colorless solid in 81% yield (0.41 mmol, 125 mg). Mp 160–161 °C. ^1H NMR (600 MHz, CDCl_3) δ 7.63 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 4.76 (d, J = 13.5 Hz, 2H), 3.25 – 3.19 (m, 1H), 3.04 (d, J = 4.8 Hz, 2H), 2.91 (ddd, J = 11.4, 8.5, 4.0 Hz, 1H), 2.84 (m, 1H), 2.61 (d, J = 1.4 Hz, 2H), 2.42 (m, 4H), 2.26 (ddd, J = 13.5, 6.2, 4.0 Hz, 1H). ^{13}C { ^1H } NMR (151 MHz, CDCl_3) δ 176.5, 145.0, 143.8, 133.5, 129.8, 127.7, 110.4, 51.6, 47.9, 38.8, 35.3, 32.5, 21.7. HRMS (ESI-TOF) m/z : [M+H]⁺ Calcd for $\text{C}_{15}\text{H}_{20}\text{NO}_4\text{S}$ 310.1113; Found 310.1104. TLC: R_f = 0.33 (10:1 CHCl_3 :MeOH).

2-(5,5-bis(methoxycarbonyl)-2-methylenecyclohexyl)acetic acid (4c). Following General Procedure B with enyne **3c** and purification of the crude material via column chromatography (100% CHCl₃ → 10:1 CHCl₃:MeOH) afforded **4c** as a colorless solid in 44% yield (0.22 mmol, 59 mg). Mp 102–104 °C. **1H NMR (500 MHz, CDCl₃)** δ 4.78 (s, 1H), 4.60 (s, 1H), 3.79 (s, 3H), 3.70 (s, 3H), 2.66 (m, 2H), 2.51 (dt, *J* = 13.0, 2.8 Hz, 1H), 2.45 (dq, *J* = 13.0, 3.1, 2.8 Hz, 1H), 2.39 – 2.30 (m, 2H), 2.22 (td, *J* = 13.6, 4.3 Hz, 1H), 1.76 (td, *J* = 13.2, 4.5 Hz, 1H), 1.58 (t, *J* = 12.5 Hz, 1H). **13C {¹H} NMR (151 MHz, CDCl₃)** δ 176.4, 172.4, 171.3, 148.6, 106.5, 55.3, 53.0, 52.9, 38.5, 37.2, 35.7, 33.0, 32.8. **HRMS (ESI-TOF) m/z:** [(M+H) – H₂O]⁺ Calcd for C₁₃H₁₇O₅ 253.1071; Found 253.1073. **TLC:** R_f = 0.31 (10:1 CHCl₃:MeOH).

2-(3-methylenetetrahydro-2H-pyran-4-yl)acetic acid (4d). Following General Procedure B with enyne **3d** and purification of the crude material via column chromatography (100% CHCl₃ → 10:1 CHCl₃:MeOH) afforded **4d** as a colorless oil in 15% yield (0.08 mmol, 12 mg). **1H NMR (600 MHz, CDCl₃)** δ 4.92 (s, 1H), 4.77 (s, 1H), 4.17 (d, *J* = 12.2 Hz, 1H), 4.00 – 3.91 (m, 2H), 3.63 (td, *J* = 11.3, 2.6 Hz, 1H), 2.82 – 2.69 (m, 2H), 2.40 (dd, *J* = 15.3, 7.2 Hz, 1H), 1.92 – 1.85 (m, 1H), 1.51 (dtd, *J* = 13.1, 10.7, 4.2 Hz, 1H). **13C {¹H} NMR (151 MHz, CDCl₃)** δ 175.9, 145.9, 108.4, 72.9, 67.2, 36.7, 36.6, 34.0. **HRMS (ESI-TOF) m/z:** [M+H]⁺ Calcd for C₈H₁₃O₃ 157.0859; Found 157.0866. **TLC:** R_f = 0.33 (10:1 CHCl₃:MeOH).

2-(3-methylene-1-tosylpiperidin-4-yl)acetic acid (4e). Following General Procedure B with enyne **3e** and purification of the crude material via column chromatography (100% CHCl₃ → 10:1 CHCl₃:MeOH) afforded **4e** as a tan oil in 52% yield (0.26 mmol, 80 mg). **1H NMR (600 MHz, CDCl₃)** δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.33 (d, *J* = 8.3 Hz, 2H), 5.02 (s, 1H), 4.79 (s, 1H), 4.01 (d, *J* = 12 Hz, 1H), 3.66 – 3.59 (m, 1H), 3.06 (d, *J* = 12 Hz, 1H), 2.71 – 2.58 (m, 2H), 2.44 (m, 4H), 2.31 (dd, *J* = 15.9, 7.7 Hz, 1H), 1.89 (dq, *J* = 12.6, 4.2 Hz, 1H), 1.43 (dtd, *J* = 13.1,

10.9, 4.2 Hz, 1H). **^{13}C { ^1H } NMR (151 MHz, CDCl_3) δ 176.5, 143.7, 142.4, 132.9, 129.7, 127.8, 110.7, 52.7, 45.6, 36.9, 36.3, 31.4, 21.6. **HRMS (ESI-TOF) m/z :** [M+H]⁺ Calcd for $\text{C}_{15}\text{H}_{20}\text{NO}_4\text{S}$ 310.1113; Found 310.1108. **TLC:** R_f = 0.42 (10:1 CHCl_3 :MeOH).**

2-(4,4-bis(methoxycarbonyl)-2-methylenecyclohexyl)acetic acid (4f). Following General Procedure B with enyne **3f** and purification of the crude material via column chromatography (100% CHCl_3 → 10:1 CHCl_3 :MeOH) afforded **4f** as a colorless oil in 57% yield (0.29 mmol, 77 mg). **^1H NMR (500 MHz, CDCl_3)** δ 4.84 (s, 1H), 4.70 (s, 1H), 3.72 (s, 3H), 3.71 (s, 3H), 2.91 (dd, J = 13.5, 1.6 Hz, 1H), 2.68 – 2.53 (m, 3H), 2.35 (dd, J = 15.1, 7.3 Hz, 2H), 1.95–1.86 (m, 2H), 1.48 – 1.37 (m, 1H). **^{13}C { ^1H } NMR (151 MHz, CDCl_3)** δ 176.6, 171.9, 171.0, 145.5, 109.8, 57.0, 52.9, 52.7, 40.0, 38.5, 37.0, 30.4, 30.3. **HRMS (ESI-TOF) m/z :** [M+H]⁺ Calcd for $\text{C}_{13}\text{H}_{19}\text{O}_6$ 271.1176; Found 271.1173. **TLC:** R_f = 0.36 (10:1 CHCl_3 :MeOH).

Dimethyl(E)-3-ethylidene-4-(2-methoxy-2-oxo-1-phenylethyl)cyclopentane-1,1-dicarboxylate (4g). Following General Procedure B with enyne **3g** at 60 °C followed by General Procedure C and purification of the crude material via column chromatography (4:1 hexane:EtOAc) afforded **4g** as a colorless oil in 60% yield (0.30 mmol, 108 mg). **^1H NMR (500 MHz, CDCl_3)** δ 7.34–7.24 (m, 5H), 5.30 (m, 1H), 3.70 (s, 3H), 3.67 (s, 3H), 3.64 (s, 3H), 3.49 (d, J = 10.7 Hz, 1H), 3.01 (d, J = 16.6 Hz, 1H), 2.90 (d, J = 19.9 Hz, 1H), 2.24 – 2.15 (m, 1H), 1.64 – 1.59 (m, 3H), 1.58 (s, 2H). **^{13}C { ^1H } NMR (151 MHz, CDCl_3)** δ 173.9, 172.4, 172.1, 140.7, 137.5, 128.7, 128.6, 127.5, 117.9, 57.9, 56.2, 52.83, 52.77, 52.0, 45.3, 37.8, 36.9, 14.8. **HRMS (ESI-TOF) m/z :** [M+H]⁺ Calcd for $\text{C}_{20}\text{H}_{25}\text{O}_6$ 361.1651; Found 361.1651. **TLC:** R_f = 0.43 (3:1 hexane:EtOAc).

*EtLi-d₅.*²⁰ An oven-dried 25 mL bomb flask was evacuated and refilled with Ar. Pentane (15 mL) was added to the flask, followed by Li^0 (~400 mg, 57 mmol, 10 equiv) in small chunks.

EtBr-*d*₅ was added (0.43 mL, 5.7 mmol, 1 equiv) and the flask was sealed. The mixture was stirred vigorously at 40 °C for 16 hours. In a N₂-filled glovebox, the mixture was filtered through Celite. The filtrate was concentrated under vacuum to give EtLi-*d*₅ as a colorless, crystalline solid (202 mg, 4.9 mmol, 85%). ¹³C {¹H} NMR (151 MHz, C₆D₆) δ 10.1 (sept), -1.3 (m).

ZnEt₂-*d*₁₀. The deuterated zinc reagent was generated in situ by a modified literature procedure²¹ and used without isolation. ZnCl₂ (16 mg, 0.12 mmol, 1 equiv) was dissolved in 1 mL Et₂O in a 4 mL vial. EtLi-*d*₅ (10 mg, 0.24 mmol, 2 equiv) was added in 0.5 mL Et₂O and the solution became turbid. After stirring for 1 hour at 23 °C, 0.5 mL pentane was added to precipitate LiCl and the mixture was filtered. The filtrate was concentrated under vacuum and titrated with I₂ before use.²²

(*Z*)-2-(4,4-bis(methoxycarbonyl)-2-(methyl-*d*)cyclopentylidene)propanoic acid (**2a-D**).

Following General Procedure A with enyne **1a** and ZnEt₂-*d*₁₀ (2.5 equiv) followed by purification of the crude material via column chromatography (100% CHCl₃ → 10:1 CHCl₃:MeOH) afforded **2a-D** as a colorless solid in 85% yield (0.043 mmol, 12 mg) with 97% deuterium incorporation. Mp 65–68 °C. ¹H NMR (600 MHz, CDCl₃) δ 3.77 (s, 3H), 3.73 (s, 3H), 3.60 (m, 1H), 3.30 (d, *J* = 18.3 Hz, 1H), 2.98 (d, *J* = 18.3 Hz, 1H), 2.61 (dd, *J* = 13.5, 8.2 Hz, 1H), 2.19 (dd, *J* = 13.5, 3.5 Hz, 1H), 1.88 (s, 3H), 1.04 (d, *J* = 7.1 Hz, 2H). ¹³C {¹H} NMR (151 MHz, CDCl₃) δ 172.5, 172.3, 172.2, 162.7, 119.2, 58.1, 53.0, 52.9, 41.8, 40.8, 37.7, 20.2 (t), 16.4. HRMS (ESI-TOF) *m/z*: [M+H]⁺ Calcd for C₁₃H₁₈DO₆ 272.1244; Found 272.1238.

TLC: R_f = 0.20 (40:1 CHCl₃:MeOH).

(*Z*)-2-(4-(methylene-*d*)-1-tosylpiperidin-3-yl)acetic acid (**4b-D**). Following General Procedure A with enyne **3b** and ZnEt₂-*d*₁₀ (2.5 equiv) at 60 °C and purification of the crude

material via column chromatography (100% CHCl₃ → 100:1 CHCl₃:MeOH) afforded **4b-D** as a colorless solid in 61% yield (0.031 mmol, 10 mg) with >99% deuterium incorporation. Mp 158–160 °C. **¹H NMR (600 MHz, CDCl₃)** δ 7.63 (d, *J* = 8.1 Hz, 2H), 7.31 (d, *J* = 8.1 Hz, 2H), 4.75 (s, 1H), 3.28 – 3.17 (m, 1H), 3.04 (d, *J* = 4.5 Hz, 2H), 2.91 (ddd, *J* = 11.4, 8.4, 4.0 Hz, 1H), 2.88 – 2.80 (m, 1H), 2.61 (d, *J* = 7.2 Hz, 2H), 2.45 (m, 1H), 2.42 (s, 3H), 2.30 – 2.22 (m, 1H). **¹³C {¹H} NMR (151 MHz, CDCl₃)** δ 175.2, 144.8, 143.6, 133.4, 129.7, 127.6, 110.0 (t), 51.4, 47.8, 38.7, 36.0, 32.3, 21.5. **HRMS (ESI-TOF) *m/z*:** [M+H]⁺ Calcd for C₁₅H₁₉DNO₄S 311.1170; Found 311.1167. **TLC:** R_f = 0.33 (10:1 CHCl₃:MeOH).

N-(but-2-yn-1-yl)-4-methyl-N-(1-phenylallyl)benzenesulfonamide (1I). 1-Phenylprop-2-en-1-ol (154 mg, 1.15 mmol, 1 equiv) was dissolved in 10 mL dry THF under N₂. PPh₃ (477 mg, 1.81 mmol, 1.6 equiv) and TsNHBoc (325 mg, 1.2 mmol, 1.05 equiv) were added and the solution was cooled to 0 °C. DEAD (0.8 mL of 40% solution in toluene, 1.9 mmol, 1.7 equiv) was added dropwise and the reaction was stirred for 1 hour at 0 °C then 8 hours at room temperature. The solution was diluted with EtOAc and quenched with sat. NH₄Cl_(aq). The aqueous phase was extracted 2 x 5 mL EtOAc. The combined organic phase was washed with 2 x 10 mL brine and dried over Na₂SO₄. Solvent was removed and the yellow residue was dissolved in 5 mL DCM and treated with 3 mL TFA. The solution was stirred for 2 hours and solvent was removed to give a yellow oil. Purification was accomplished via column chromatography on silica using 4:1 hexane:EtOAc to give 4-methyl-*N*-(1-phenylallyl)-*p*-toluenesulfonamide as a slightly yellow oil (233 mg, 0.81 mmol, 70%). The spectroscopic data for this compound are in agreement with the published spectra.²³ 4-Methyl-*N*-(1-phenylallyl)-*p*-toluenesulfonamide (66 mg, 0.23 mmol, 1 equiv) was dissolved in 6 mL dry THF and treated with NaH (60% in mineral oil, 12 mg, 0.28 mmol, 1.2 equiv). The mixture was stirred until the evolution of H₂ ceased (30 minutes). 1-

bromobut-2-yne (0.03 mL, 0.3 mmol, 1.3 equiv) was added and the mixture was stirred for 12 hours. The reaction was diluted with EtOAc and quenched with sat. NH₄Cl (aq). The aqueous phase was extracted 2 x 5 mL EtOAc and the combined organic phase was washed with brine and dried over MgSO₄. The product was purified via column chromatography on silica using 10:1 hexane:EtOAc giving a colorless oil (41 mg, 0.12 mmol, 65%). The spectroscopic data for this compound are in agreement with the published spectra.²⁴ **¹H NMR (600 MHz, CDCl₃)** δ 7.74 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 3.3 Hz, 2H), 7.23 – 7.16 (m, 5H), 6.14 (ddd, *J* = 17.1, 10.3, 7.6 Hz, 1H), 5.56 (d, *J* = 7.6 Hz, 1H), 5.19 (dt, *J* = 10.3, 1.2 Hz, 1H), 5.10 (dt, *J* = 17.1, 1.3 Hz, 1H), 4.01 (dq, *J* = 18.2, 2.4 Hz, 1H), 3.70 (dq, *J* = 18.2, 2.4 Hz, 1H), 2.37 (s, 3H), 1.51 (t, *J* = 2.4 Hz, 3H). **¹³C {¹H} NMR (151 MHz, CDCl₃)** δ 143.0, 138.2, 137.9, 134.2, 129.0, 128.4, 128.1, 127.9, 127.8, 119.0, 80.7, 74.5, 63.7, 34.5, 21.6, 3.4.

N-allyl-*N*-(but-2-yn-1-yl)benzamide (**1n**). A 50 mL RBF was charged with 15 mL DMF and 60 mg of a 60% dispersion of NaH in mineral oil (1.3 mmol, 1.3 equiv) under N₂. The mixture was cooled in an ice bath and *N*-allylbenzamide (162 mg, 1 mmol, 1 equiv) was added as a solution in 5 mL DMF. The mixture was stirred at 0 °C for 20 minutes, then 1-bromobut-2-yne (0.11 mL, 1.26 mmol, 1.26 equiv) was added dropwise. The mixture was stirred at room temperature for 12 hours, then the reaction mixture was diluted with EtOAc and quenched with sat. NH₄Cl (aq). The aqueous phase was extracted 4 x 5 mL EtOAc and the combined organic phase was washed with 2 x 10 mL H₂O, 2 x 10 mL brine, and dried over MgSO₄. Column chromatography on silica with 10:1 hexane:EtOAc gave the product as a slightly yellow oil (203 mg, 0.95 mmol, 95%). The ¹H and ¹³C NMR spectra are broad due to restricted rotation around the benzamide. **¹H NMR (500 MHz, CDCl₃)** δ 7.60-7.38 (br m, 5H), 5.95-5.69 (br m, 1H), 5.26 (dq, *J* = 10.2, 1.4 Hz, 2H), 4.38-4.19 (br m, 2H), 4.06-3.83 (br m, 2H), 1.86 (s, 3H) **¹³C {¹H} NMR (151 MHz, CDCl₃)** δ 143.0, 138.2, 137.9, 134.2, 129.0, 128.4, 128.1, 127.9, 127.8, 119.0, 80.7, 74.5, 63.7, 34.5, 21.6, 3.4.

NMR (151 MHz, CDCl₃) δ 171.4 (br), 135.9, 132.8 (br), 130.0, 128.5, 127.1 (br), 118.1 (br), 80.3 (br) 74.1, 49.0 (br), 36.4 (br), 3.7. **HRMS (ESI-TOF) m/z:** [M+H]⁺ Calcd for C₁₄H₁₆NO 214.1226; Found 214.1230. **TLC:** R_f = 0.15 (10:1 hexane:EtOAc).

N-allyl-*N*-(but-3-yn-1-yl)-*p*-toluenesulfonamide (**3b**). *N*-(but-3-yn-1-yl)-*p*-toluenesulfonamide²⁵ (850 mg, 3.8 mmol, 1 equiv) was dissolved in 10 mL of acetone. K₂CO₃ (630 mg, 4.56 mmol, 1.2 equiv) was added, followed by allyl bromide (0.4 mL, 4.56 mmol, 1.2 equiv). The mixture was heated to reflux for 12 hours then filtered and solvent was removed. Column chromatography on silica with 10:1 hexane:EtOAc gave the product as a colorless oil (590 mg, 2.24 mmol, 59%, 83% b.r.s.m.) as well as 250 mg (1.12 mmol, 29%) of the alkyne starting material. **¹H NMR (500 MHz, CDCl₃)** δ 7.74-7.66 (m, 2H), 7.35-7.26 (m, 2H), 5.66 (ddt, *J* = 16.7, 10.1, 6.4 Hz, 1H), 5.23-5.12 (m, 2H), 3.84 (dt, *J* = 6.5, 1.4 Hz, 2H), 3.32-3.23 (m, 2H), 2.49-2.46 (m, 2H), 2.42 (s, 3H), 1.96 (t, *J* = 2.7 Hz, 1H). **¹³C {¹H} NMR (151 MHz, CDCl₃)** δ 143.6, 137.0, 133.2, 130.0, 127.4, 119.5, 81.2, 70.3, 51.5, 46.2, 21.7, 19.5. **HRMS (ESI-TOF) m/z:** [M+H]⁺ Calcd for C₁₄H₁₈NO₂S 264.1053; Found 264.1055. **TLC:** R_f = 0.30 (10:1 hexane:EtOAc).

N-allyl-4-methyl-*N*-(4-(trimethylsilyl)but-3-yn-1-yl)benzenesulfonamide (**1h**). A RBF was charged with *N*-allyl-*N*-(but-3-yn-1-yl)-*p*-toluenesulfonamide (**3b**) (160 mg, 0.61 mmol, 1 equiv) and 3 mL dry THF, then cooled to -78 °C under N₂. 1.6 M *n*-BuLi in hexane (0.46 mL, 0.73 mmol, 1.2 equiv) was added dropwise and the solution was stirred for 10 minutes. TMSCl (0.10 mL, 0.67 mmol, 1.1 equiv) was added dropwise. The solution was stirred for 1.5 hours at -78 °C, then at room temperature overnight. The reaction was quenched with sat. NH₄Cl_(aq) and the aqueous layer was extracted 2 x 5 mL EtOAc. The combined organic phase was washed with 2 x 10 mL brine and dried over MgSO₄. Purification via column chromatography on silica with

10:1 hexane:EtOAc gave the product as a colorless oil (185 mg, 0.55 mmol, 90%). **¹H NMR (500 MHz, CDCl₃)** δ 7.75-7.69 (m, 2H), 7.34-7.28 (m, 2H), 5.73-5.61 (m, 1H), 5.24-5.14 (m, 2H), 3.86 (d, *J* = 6.4 Hz, 2H), 3.29 (t, *J* = 7.5 Hz, 2H), 2.50 (t, *J* = 5.0 Hz, 2H), 2.43 (s, 3H), 0.14 (s, 9H). **¹³C {¹H} NMR (151 MHz, CDCl₃)** δ 143.5, 137.2, 133.2, 129.9, 127.4, 119.4, 103.8, 86.8, 51.6, 46.3, 21.7, 21.0. **HRMS (ESI-TOF) *m/z*:** [M+H]⁺ Calcd for C₁₇H₂₆NO₂SSI 336.1448; Found 336.1448. **TLC:** R_f = 0.33 (10:1 hexane:EtOAc).

Dimethyl 2-(but-2-yn-1-yl)-2-cinnamylmalonate (3g). A RBF was charged with NaH (54 mg, 2.2 mmol, 1.2 equiv.) and cooled to 0 °C under N₂. 10 mL of dry DMF was then added to the RBF via syringe. Dimethyl 2-(but-2-yn-1-yl)malonate²⁶ (345 mg, 1.873 mmol, 1 equiv.) was added to the RBF in 1 mL DMF and stirred for five minutes. Cinnamyl bromide (443 mg, 2.25 mmol, 1.2 equiv.) was added to the RBF dropwise. The flask was warmed to room temperature and stirred overnight. The reaction was quenched with sat. NH₄Cl_(aq) and water. The aqueous layer was extracted 3 x 10 mL diethyl ether. The combined organic layer was washed with 10 mL brine, then 10 mL water, and dried over MgSO₄. Purification via column chromatography on silica with 20:1 hexane:EtOAc gave enyne **3g** as a colorless oil (491 mg, 1.63 mmol, 87%). **¹H NMR (500 MHz, CDCl₃)** δ 7.34 – 7.27 (m, 4H), 7.23 – 7.19 (m, 1H), 6.49 (d, *J* = 15.7 Hz, 1H), 6.02 (dt, *J* = 15.7, 7.6 Hz, 1H), 3.74 (s, 6H), 2.94 (dd, *J* = 7.6, 1.2 Hz, 2H), 2.79 (q, *J* = 2.5 Hz, 2H), 1.79 (t, *J* = 2.5 Hz, 3H). **¹³C {¹H} NMR (151 MHz, CDCl₃)** δ 170.7, 137.2, 134.5, 128.6, 127.6, 126.4, 123.7, 79.2, 73.4, 57.8, 52.9, 36.1, 23.5, 3.7. **HRMS (ESI-TOF) *m/z*:** [M+H]⁺ Calcd for C₁₈H₂₁O₄ 301.1434; Found 301.1438. **TLC:** R_f = 0.40 (4:1 hexane:EtOAc).

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge via the Internet at <http://pubs.acs.org>. Copies of ^1H NMR spectra, ^{13}C NMR spectra, IR spectra, reaction optimization table, and crystallographic data for **2j**.

AUTHOR INFORMATION

Corresponding Author

diao@nyu.edu

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Nadia Leonard (Chirik lab, Princeton University) for assistance in testing the EPR signal of the reaction mixture and Dr. Chunhua Hu for solving the crystal structure of **2j**. This work was supported by the National Science Foundation under award number CHE-1654483 and New York University. The cryoprobe is supported by NIH under grant number S10 OD016343.

REFERENCES

1. (a) Behr, A. *Angew. Chem. Int. Ed.* **1988**, *27*, 661. (b) Sakakura, T.; Choi, J.-C.; Yasuda, H. *Chem. Rev.* **2007**, *107*, 2365. (c) Aresta, M. *Carbon Dioxide as Chemical Feedstock*; Wiley-VCH Verlag GmbH & Co. KGaA, 2010. (d) Aresta, M.; Dibenedetto, A.; Quaranta, E. *J. Catal.* **2016**, *343*, 2.
2. For selected reviews, see: (a) Sakakura, T.; Choi, J.-C.; Yasuda, H. *Chem. Rev.* **2007**, *107*, 2365. (b) Correa, A.; Martín, R. *Angew. Chem. Int. Ed.* **2009**, *48*, 6201 (c) Cokoja, M.; Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kühn, F. E. *Angew. Chem. Int. Ed.* **2011**, *50*, 8510. (d) Tsuji, Y.; Fujihara, T. *Chem. Commun.* **2012**, *48*, 9956. (e) Zhang, L.; Hou, Z.

Chem. Sci. **2013**, *4*, 3395. (f) Yeung, C. S.; Dong, V. M. *Top. Catal.* **2014**, *57*, 1342. (g) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. *Nat. Commun.* **2015**, *6*. (h) Yu, B.; He, L.-N. *ChemSusChem* **2015**, *8*, 52. (i) Börjesson, M.; Moragas, T.; Gallego, D.; Martin, R. *ACS Catalysis* **2016**, *6*, 6739. (j) Li, Y.; Cui, X.; Dong, K.; Junge, K.; Beller, M. *ACS Catalysis* **2016**, *6*, 1077.

3. For representative examples, see: (a) Louie, J.; Gibby, J. E.; Farnworth, M. V.; Tekavec, T. N. *J. Am. Chem. Soc.* **2002**, *124*, 15188. (b) Takimoto, M.; Nakamura, Y.; Kimura, K.; Mori, M. *J. Am. Chem. Soc.* **2004**, *126*, 5956. (c) Williams, C. M.; Johnson, J. B.; Rovis, T. *J. Am. Chem. Soc.* **2008**, *130*, 14936. (d) Zhang, L.; Cheng, J.; Carry, B.; Hou, Z. *J. Am. Chem. Soc.* **2012**, *134*, 14314. (e) Moragas, T.; Cornella, J.; Martin, R. *J. Am. Chem. Soc.* **2014**, *136*, 17702. (f) Nogi, K.; Fujihara, T.; Terao, J.; Tsuji, Y. *J. Am. Chem. Soc.* **2016**, *138*, 5547. (g) Cao, T.; Ma, S. *Org. Lett.* **2016**, *18*, 1510. (h) Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Wang, L.; He, Y.-Q.; Ye, J.-H.; Li, J.; Zhi, Y.-G.; Yu, D.-G. *Angew. Chem. Int. Ed.* **2016**, *55*, 7068. (i) Butcher, T. W.; McClain, E. J.; Hamilton, T. G.; Perrone, T. M.; Kroner, K. M.; Donohoe, G. C.; Akhmedov, N. G.; Petersen, J. L.; Popp, B. V. *Org. Lett.* **2016**, *18*, 6428.

4. For examples: (a) Lomenzo, S. A.; Izenwasser, S.; Katz, J. L.; Terry, P. D.; Zhu, N.; Klein, C. L.; Trudell, M. L. *J. Med. Chem.* **1997**, *40*, 4406. (b) Signe, H.; Jeremy, R. G.; Karsten, B. M.; Orla, M. L.; Bente, F.; Arne, S.; Povl, K.-L.; Rasmus, P. C. *Curr. Top. Med. Chem.* **2006**, *6*, 1861.

5. For reviews of Ni-catalyzed reductive coupling reactions, see: (a) Montgomery, J. *Angew. Chem. Int. Ed.* **2004**, *43*, 3890. (b) Ng, S.-S.; Jamison, T. F. *Tetrahedron* **2006**, *62*, 11350. (c) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. *Nature* **2014**, *509*, 299. (d) Standley, E. A.;

Tasker, S. Z.; Jensen, K. L.; Jamison, T. F. *Acc. Chem. Res.* **2015**, *48*, 1503. (e) Weix, D. J. *Acc. Chem. Res.* **2015**, *48*, 1767. (f) Jackson, E. P.; Malik, H. A.; Sormunen, G. J.; Baxter, R. D.; Liu, P.; Wang, H.; Shareef, A.-R.; Montgomery, J. *Acc. Chem. Res.* **2015**, *48*, 1736. (g) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. *J. Am. Chem. Soc.* **2016**, *138*, 12692.

6. For a review of cycloisomerization reactions, see: Yamamoto, Y. *Chem. Rev.* **2012**, *112*, 4736.

7. Iglesias, M. J.; Blandez, J. F.; Fructos, M. R.; Prieto, A.; Álvarez, E.; Belderrain, T. R.; Nicasio, M. C. *Organometallics* **2012**, *31*, 6312.

8. Chen, M.; Weng, Y.; Guo, M.; Zhang, H.; Lei, A. *Angew. Chem. Int. Ed.* **2008**, *47*, 2279.

9. Kinetic fitting was carried out with COPASI software: Hoops, S.; Sahle, S.; Gauges, R.; Lee, C.; Pahle, J.; Simus, N.; Singhal, M.; Xu, L.; Mendes, P.; Kummer, U. *Bioinformatics* **2006**, *22*, 3067.

10. (a) Aresta, M.; Nobile, C. F. *J. Chem. Soc., Chem. Commun.* **1975**, 636. (b) Aresta, M.; Nobile, C. F. *J. Chem. Soc., Dalton Trans.* **1977**, 708.

11. Yeung, C. S.; Dong, V. M. *J. Am. Chem. Soc.* **2008**, *130*, 7826.

12. (a) Schaefer, D.; Hoberg, H. *J. Organomet. Chem.*, **1983**, *251*, C51 b) Hoberg, H.; Peres, Y.; Kruger, C.; Tsay, Y.-H. *Angew. Chem., Int. Ed. Engl.* 1987, **26**, 771 c) Saito, S.; Nakagawa, S.; Koizumi, T.; Hirayama, K.; Yamamoto, Y. *J. Org. Chem.*, **1999**, *64*, 3975.

13. Ogoshi, S.; Arai, T.; Ohashi, M.; Kurosawa, H. *Chem. Commun.* **2008**, 1347.

14. Wilson, G. L. O.; Abraha, M.; Krause, J. A.; Guan, H. R. *Dalton T* **2015**, *44*, 12128.

15. Wu, J.; Hazari, N.; Incarvito, C. D. *Organometallics* **2011**, *30*, 3142.

16. (a) Kossler, D.; Cramer, N. *J. Am. Chem. Soc.* **2015**, *137*, 12478. (b) Ishida, M.; Tanaka, K. *Org. Lett.*, **2013**, *15*, 2120. (c) Trost, B. M.; Shi, Y. *J. Am. Chem. Soc.*, **1993**, *115*, 12491.

(d) Pardo-Rodríguez, V.; Buñuel, E.; Collado-Sanza, D.; Cárdenas, D. *J. Chem. Commun.*, **2012**, *48*, 10517. (e) Zachary, D.-G. W.; Letitia, Y. J.; Ian, T. A. *J. Am. Chem. Soc.*, **2016**, *138*, 14570. (f) Miura, T.; Sasaki, T.; Nakazawa, H.; Murakami, M. *J. Am. Chem. Soc.*, **2005**, *127*, 1390. (g) Gibson, S. E.; Hardick, D. J.; Haycock, P. R.; Kaufmann, K. A. C.; Miyazaki, A.; Tozer, M. J.; White, A. J. P. *Chem. Eur. J.*, **2007**, *13*, 7099. (h) Candito, D. A.; Lautens, M. *Synlett*, **2011**, *14*, 1987. (i) Sylvester, K. T.; Chirik, P. J. *J. Am. Chem. Soc.*, **2009**, *131*, 8772. (j) Berk, S. C.; Grossman, R. B.; Buchwald, S. L. *J. Am. Chem. Soc.*, **1994**, *116*, 8593. (k) Morimoto, T.; Fuji, K.; Tsutsumi, K.; Kakiuchi, K. *J. Am. Chem. Soc.*, **2002**, *124*, 3806. (l) Daniel, D.; Middleton, R.; Henry, H. L.; Okamura, W. H. *J. Org. Chem.*, **1996**, *61*, 5617. (m) Kavanagh, Y.; Chaney, C. M.; Muldoon, J.; Evans, P. *J. Org. Chem.*, **2008**, *73*, 8601. (n) Trost, B. M.; Ball, Z. T. *J. Am. Chem. Soc.*, **2005**, *127*, 17644.

17. Bantreil, X.; Nolan, S. P. *Nat. Protoc.* **2011**, *6*, 69.

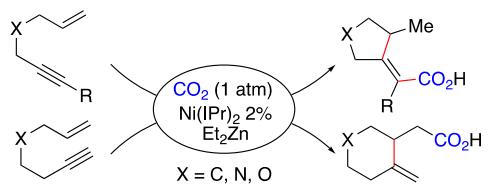
18. Matsubara, K.; Miyazaki, S.; Koga, Y.; Nibu, Y.; Hashimura, T.; Matsumoto, T. *Organometallics* **2008**, *27*, 6020.

19. Jang, H.-Y.; Krische, M. J. *J. Am. Chem. Soc.*, **2004**, *126*, 7875.

20. Anker, R. M.; Cook, A. H. *J. Chem. Soc.* **1941**, 323.

21. Montgomery, J.; Savchenko, A. V. *J. Am. Chem. Soc.*, **1996**, *118*, 2099.

22. Krasovskiy, A.; Knochel, P. *Synthesis-Stuttgart* **2006**, 890.


23. Weiner, B.; Baeza, A.; Jerphagnon, T.; Feringa, B. L. *J. Am. Chem. Soc.*, **2009**, *131*, 9473.

24. Xia, J.-B.; Liu, W.-B.; Wang, T.-M.; You, S.-L. *Chem. Eur. J.*, **2010**, *16*, 6442.

25. Kim, S.; Chung, Y. K. *Org. Lett.*, **2014**, *16*, 4352.

26. Zhang, Q.; Xu, W.; Lu, X. *J. Org. Chem.*, **2005**, *70*, 1505.

TOC

