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Abstract—This paper describes a method of detecting buzzes
of bees in field audio. Detecting the buzzing of bees from
environmental recordings is an instance of sound scene analysis.
In this work, we build upon prior work in computational
auditory scene analysis (CASA), employing spectral clustering
techniques to mitigate the weakness of the target signal, coupled
with a newly-introduced concept of “focal templates”. This
system yields promising results on a previously acquired
collection of environmental recordings, yielding results consistent
with human performance, and, in some cases, improving upon
human performance. Our success in this task suggests that the
combination of focal templates and spectral clustering may prove
valuable in other sound scene analysis tasks, especially when the
target may be well-defined but may suffer from low signal-to-
noise ratio (SNR). Survey recordings with manual (visual and
acoustic) annotations were processed, and the algorithm yielded
very favorable results. The potential for deploying this approach
into a low-cost pollinator monitoring system is discussed.
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1. INTRODUCTION

Pollinator monitoring is a field of growing interest in
ecology, agriculture, and conservation. Pollinators, and bees in
particular, have an enormous impact on our environment
through the pollination services they deliver. Recent reports of
honeybee hive collapse have brought the issue into the public
eye. The health of bee pollinators (including honeybees,
bumble bees, and other native species) is paramount to a secure
food supply and stable economy. Given this, a method to
monitor bees non-invasively and economically is highly
desirable. In this paper, we discuss a system of acoustic
monitoring for pollinators that meets these parameters.

Detecting the buzzing of bees from environmental
recordings is an instance of sound scene analysis. As with
many sound scene analysis tasks, one must separate the target
acoustic components from everything else (i.e., the noise), and
this must often occur in very low signal-to-noise ratio (SNR)
circumstances, including instances of occlusions in the time-
frequency domain. In this work, we employ spectral clustering
techniques to mitigate the weakness of the target signal,
coupled with a newly-introduced concept of “focal templates”.
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II. BACKGROUND

A. State-of-the-art Monitoring Methods

The state-of-the-art in bee monitoring involves a
combination of trapping, netting, and visual observation. This
is a labor-intensive process, and it also removes bees from the
environment (destructive sampling). While this is currently the
only way to confidently identify exactly what species of bee
are occupying an area, these methods are not practical for low-
cost, widespread deployment.

B. Prior Work in Acoustic Monitoring

Some researchers have previously engaged in various
forms of acoustic monitoring. Most, however, either rely on
manual segmentation of an audio signal prior to further
processing, or rely heavily on laboratory settings to normalize
the sound inputs. Burkart et al. conducted a study on the flight
and pollination buzzing of neotropical bees, providing some
guidance related to the expected frequencies of each [1].
Gradisek et al. have demonstrated the ability to classify bee
sounds (with constraints) using a labeled database and machine
learning [2]. No work to date, however, has attempted to
automate detection of buzzing in the wild.

C. Computational Auditory Scene Analysis

To detect buzzes within field recordings, we have
developed a Computational Auditory Scene Analysis (CASA)
approach to processing the signals. CASA is a developing
field which attempts to implement the principles of auditory
scene analysis (ASA) via computer algorithms that can “listen”
in a similar way to humans. ASA is based upon the observed
principles of how humans differentiate sound events and
“streams” within an audio mixture [3]. It is clear that humans
are very good at separating and identifying sounds within a
complex audio mixture, especially by applying attention to a
particular sound source, but the task of automating this is not
straightforward.  (The classic example demonstrating the
human capacity for sound source separation is the “cocktail
party problem”, where humans are readily able to discern a
particular conversation even in the midst of many interfering
sounds in a noisy environment.) Many approaches to CASA
have been attempted (e.g., [4]), but there does not yet exist a
general solution to this challenging problem.  Spectral
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clustering [5] has been applied to audio signals [6], and
Martins has developed a framework for applying spectral
clustering to musical signals using well-established perceptual
cues [7]. In this work, we extend Martins' framework, adding
focal templates as a means of applying attention to our sound
source of interest (i.e., bee buzzing).

D. Digital Audio Representation and Focal Templates

Digital audio is recorded as a time-series of samples, with
each sample representing the amplitude of a sound signal at a
particular point in time; in our data, these samples were
recorded at 44100 samples/second. This time-domain signal
may be transformed into a time-frequency representation using
a technique such as the discrete Fourier transform (DFT). Such
a representation may be referred to as a spectrogram. The
spectrogram represents the energy of the audio signal within
time-frequency (T-F) bins, where the magnitude of each bin
corresponds to the energy within a particular frequency band
occurring during a narrow frame of time. By analyzing the
pattern of energy, across frequencies and over time, one can
detect complex patterns that correspond to events arising from
sound sources in the audio mixture. Observing the patterns
that correspond to bees buzzing leads us to our concept of
focal templates.

III. ALGORITHM

The approach we take in processing the signal is illustrated
in Fig. 1. The algorithm has been implemented in MATLAB
and makes use of built-in functions (e.g., spectrogram)
whenever possible.

The process currently works off-line; that is, it uses
previously recorded audio. There is nothing to prevent the
process from being implemented in real-time (save reading a
20-second buffer to use as a texture window). The input signal
is resampled down to 4000 samples/second; this sampling
frequency is chosen to preserve audio frequencies up to
2000 Hz while minimizing the amount of data (and later, the
size of the affinity matrix) to process.

The signal is divided into 20-second texture windows,
which is the macro temporal unit used to analyze the signal.
The remainder of the process applies to each and every texture
window.

A spectrogram is produced from the texture window, using
100ms windows with 90ms overlap (giving micro time
resolution of 10ms). This results in a frequency resolution of
10 Hz. After the spectrogram is produced, the energy within
four bands (0-500 Hz, 500-1000 Hz, 1000-1500 Hz, and
1500-2000 Hz) is assessed. If the energy within the first band
(0-500 Hz) is greater than the energy within the other three
bands combined, the signal (from the texture window) is
passed through a high-pass filter before reproducing another
spectrogram. We found that signals with very high low-band
energy yielded poor detection results, and we observed that this
problem could be mitigated via high-pass filtering at the
texture window level. This process will repeat until the energy
within the first band falls below the combined energy of the
other three bands.
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Fig. 1. Flowchart for buzz detection algorithm.




The focal template may be thought of as a type of dynamic
T-F filter that capitalizes on certain properties of the target
sound of interest. It is known that bee buzzing (along with
many other natural sounds) is highly harmonic. Further, from
observing spectrograms of buzzes, we note that while the
(fundamental) frequency of a buzz can change over the course
of the buzz, it generally remains relatively constant or changes
gradually. Thus, our focal template (to focus attention on bees
buzzing within the audio mixture) will look for harmonically
related time-frequency elements within 10ms time slices of the
spectrogram, will filter-out (eliminate from consideration) non-
conforming T-F elements, and will look for periods of time
when the fundamental frequency (across multiple 10ms time
slices) remains relatively steady or changes gradually. Further,
we expect that no buzzes will occur at frequencies below
120 Hz, so T-F elements corresponding to these frequencies
are immediately eliminated.

Field audio contains many sources of noise, so the focal
template must be robust to low SNR. To combat this, for each
10ms time slice within a texture window, the algorithm
determines whether the four T-F bins having the highest energy
are found at frequencies having a harmonic relationship with
one another (that is, are the frequencies corresponding to the
selected T-F bins integer multiples of the same fundamental
frequency). Note that the algorithm does not require
identification of consecutive harmonics; the algorithm is robust
to missing or occluded harmonics. If the four T-F bins having
highest energy are not all in harmonic relationship with one
another, there is not a prominent (or prominent enough) buzz
present in this time slice and no T-F bins will be transmitted to
the next (spectral clustering) step. If, however, all four T-F
bins are in harmonic relation, they are retained in the
spectrogram for clustering in the next step.

A fully connected graph (affinity matrix; see [8]) is
constructed from the preserved T-F elements of the focused
spectrogram. This graph (or affinity matrix) is constructed by
determining the similarity (or affinity) between every pair of
T-F elements remaining after the focal template is applied.
Various similarity measures have been proposed (see [7]), but
here we calculate and use only the time similarity between two
T-F bins as

time_simup = exp(-(time_slice, - time_sliceg)™2) )

where time slicey represents the particular 10ms unit of time
within the texture window in which the T-F element X was
found. Eq. 1 could also be expressed as

time_simyp = exp(-(time_dist3)"2) 2)

where time_dist of 1 corresponds to the distance between
consecutive 10ms time slices of the spectrogram.

Spectral clustering is performed by calculating the
eigenvectors of the affinity matrix, which corresponds to a
normalized cut [8]. We partition the focused spectrogram into
three clusters by assigning the T-F bins according to a k-means
clustering of the smallest three eigenvectors. We have found

that clustering into three clusters yields the best results. This is
because there may be more than one bee buzzing at the same
time, and these buzzes (if at different frequencies) may be
allocated to separate clusters. Further, one or more clusters
may contain a noise residual after a buzz has been clustered
separately.

The density of each resulting cluster is then calculated by
taking the maximum of

cl_size * mean_cl_dist / (median_cl_dist"2) 3)

or

median_cl_dist / mean_cl_dist 4)

where ¢l size is the cluster size, mean cl _dist is the mean
distance between all pairs of T-F elements within the cluster,
and median_cl_dist is the median distance between all pairs of
T-F elements within the cluster. (If the median_cl dist
equals 0, c/_dist is defined to be 1.) The distance between any
two T-F elements within a cluster is defined as the Euclidean
distance between the points in the spectrogram, considering the
distance between contiguous frequency bins as freq dist of 1
and the distance between contiguous time slices as time dist
of 1 (as in Eq. 2), yielding

dist.s = sqrt(time_dist.g"2 + freq dist.s"2) 5).

If a cluster has density greater than or equal to 1, it is
processed to report potential buzzes represented by the cluster.
To assess whether a group of T-F eclements in a cluster
constitutes a buzz, the entire cluster is convolved with a
20-element vector and then summed across frequency into a
one-dimensional “smashed cluster” vector (in the time-
domain). This has the effect of smoothing over time to
mitigate against low SNR (and to guard specifically against
buzzes being occluded over one or more time slices). Peaks
within the resulting “smashed cluster” are detected; if a peak
reaches 1.0, it is considered a buzz. The time boundaries (start
and stop) of the buzz are determined by determining the extent
of the base of the detected peak (when the base reaches zero).
These start/stop times are recorded for writing to an output file.

IV. EXPERIMENTAL RESULTS

The algorithm has undergone extensive trials during
development to ensure robustness to a variety of conditions.
The algorithm has been used to process approximately
80 hours of data collected in alpine meadows of the Colorado
Rocky Mountains during July 2015. These recordings were
taken simultaneously with visual observations, and buzzes
were manually annotated after-the-fact using the Audacity
audio file editor. Thus, we have human-annotated ground truth
available to validate the automatic buzz detection method.

At this time, we have tabulated results for 77 separate audio
recordings; as may be expected in field audio, there is
considerable variation from recording to recording with respect
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Fig. 2. "Spectrogram" output from the proposed method of spectral clustering with focal templates. The x-axis on each graph represents time (20-second
texture windows shown); the y-axis represent frequency (ranging form 0 to 2000 Hz). Clockwise, from upper left: a) a spectrogram of noisy field audio
containing buzzing from two different bees; one buzz is moderately weak and the other is very faint, b) an output cluster containing the time-frequency (T-F)
elements of the stronger buzz; two distinct buzzes are detected by the algorithm in this cluster (at the beginning of the texture window and near the middle),
¢) an output cluster containing the T-F elements of the very faint buzz; a buzz is detected by the algorithm around the 8 second mark, and d) a third cluster

containing only noise T-F elements.

to number of buzzes, prevalence of interfering noise (primarily
airplanes, human voice), and overall fidelity. No attempt was
made to "clean" the signals prior to processing. Even so, we
find that the method is successful with 68.0% sensitivity and
61.4% selectivity (relative to the human-annotated ground
truth). These statistics are encouraging for a new method
based upon CASA, but closer examination reveals that even
greater success may be claimed. First, across the 77 analyzed
recordings, sensitivity ranged from a minimum of 19.5% up to
a maximum of 93.8%. Selectivity ranged from a minimum of
5.4% up to a maximum of 95.3%. Recordings yielding low
sensitivity tended to also yield low selectivity, suggesting that
the overall quality of the recording (and subsequent SNR) was
low. Additionally, some recordings contained very few buzzes
(in one case, only 4 human-annotated buzzes), which tended to
yield poorer results. Individual inspection (listening) of false
negatives (missed buzzes compared to ground truth) suggested
that many of the missed buzzes occurred when the buzzes were
very, very faint. Finally, and perhaps most promising,

individual inspection of false positives (detected buzzes that
did not correspond to a manually annotated buzz in the ground
truth) revealed a surprising number of buzzes that were missed
in the manual annotation. That is to say, in some cases, the
automated method performed better than human listening in an
intentional annotation effort. Further work is necessary (and
underway) to ascertain the extent to which buzzes may be
missing in the "ground truth". Overall, we find these results to
be very encouraging, and we are motivated to continue the
analysis of this dataset while also looking to further validate
the algorithm on other collected recordings.

CONCLUSIONS

We have presented a new method of detecting buzzing of
bees from field audio. Initial results are encouraging, and
detailed analysis suggests the method holds signficant promise,
with some recordings yielding sensitivity and selectivity well
above 90%. This approach to acoustic detection of bee



buzzing makes it possible to scale bee monitoring to
applications heretofore impractical, such as routine monitoring
of pollination services available to farms or orchards. This
method also has positive implications for conservationists and
ecologists who may wish to monitor bee populations
non-destructively. We can envision developing a low-cost
system that can conveniently capture the environmental audio,
process the results, and provide time-stamped information to
stakeholders about the bees that are present at any given time.
Presently, this algorithm reports number of buzzes detected and
total time of buzzing, but further development may lead to
more detailed information that could lead to acoustically
discerning functional traits of bees, or perhaps even species.
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