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Abstract—This paper describes a method of detecting buzzes

of  bees  in  field  audio.   Detecting  the  buzzing  of  bees  from

environmental recordings is an instance of sound scene analysis.

In  this  work,  we  build  upon  prior  work  in  computational

auditory  scene  analysis  (CASA),  employing  spectral  clustering

techniques to mitigate the weakness of the target signal, coupled

with  a  newly-introduced  concept  of  “focal  templates”.   This

system  yields  promising  results  on  a  previously  acquired

collection of environmental recordings, yielding results consistent

with human performance,  and, in some cases,  improving upon

human performance.  Our success in this task suggests that the

combination of focal templates and spectral clustering may prove

valuable in other sound scene analysis tasks, especially when the

target may be well-defined but may suffer from low signal-to-

noise ratio (SNR).   Survey recordings with manual (visual and

acoustic) annotations were processed, and the algorithm yielded

very favorable results.  The potential for deploying this approach

into a low-cost pollinator monitoring system is discussed.

Keywords—computational  auditory  scene  analysis;  CASA;

focal templates; buzz detection

I. INTRODUCTION

Pollinator  monitoring  is  a  field  of  growing  interest  in
ecology, agriculture, and conservation.  Pollinators, and bees in
particular,  have  an  enormous  impact  on  our  environment
through the pollination services they deliver.  Recent reports of
honeybee hive collapse have brought the issue into the public
eye.   The  health  of  bee  pollinators  (including  honeybees,
bumble bees, and other native species) is paramount to a secure
food  supply and  stable  economy.   Given  this,  a  method to
monitor  bees  non-invasively  and  economically  is  highly
desirable.   In  this  paper,  we  discuss  a  system  of  acoustic
monitoring for pollinators that meets these parameters.

Detecting  the  buzzing  of  bees  from  environmental
recordings  is  an instance  of  sound scene analysis.   As with
many sound scene analysis tasks, one must separate the target
acoustic components from everything else (i.e., the noise), and
this must often occur in very low signal-to-noise ratio (SNR)
circumstances,  including instances of occlusions in the time-
frequency domain.  In this work, we employ spectral clustering
techniques  to  mitigate  the  weakness  of  the  target  signal,
coupled with a newly-introduced concept of “focal templates”.

II. BACKGROUND

A. State-of-the-art Monitoring Methods

The  state-of-the-art  in  bee  monitoring  involves  a
combination of trapping, netting, and visual observation.  This
is a labor-intensive process, and it also removes bees from the
environment (destructive sampling).  While this is currently the
only way to confidently identify exactly what species of bee
are occupying an area, these methods are not practical for low-
cost, widespread deployment.

B. Prior Work in Acoustic Monitoring

Some  researchers  have  previously  engaged  in  various
forms of acoustic monitoring.  Most, however, either rely on
manual  segmentation  of  an  audio  signal  prior  to  further
processing, or rely heavily on laboratory settings to normalize
the sound inputs.  Burkart et al. conducted a study on the flight
and pollination buzzing of  neotropical  bees,  providing some
guidance  related  to  the  expected  frequencies  of  each  [1].
Gradisek et  al. have demonstrated the ability to classify bee
sounds (with constraints) using a labeled database and machine
learning  [2].   No  work  to  date,  however,  has  attempted  to
automate detection of buzzing in the wild.

C. Computational Auditory Scene Analysis

To  detect  buzzes  within  field  recordings,  we  have
developed a Computational Auditory Scene Analysis (CASA)
approach  to processing  the  signals.   CASA is  a  developing
field which attempts to implement the principles of auditory
scene analysis (ASA) via computer algorithms that can “listen”
in a similar way to humans.  ASA is based upon the observed
principles  of  how  humans  differentiate  sound  events  and
“streams” within an audio mixture [3].  It is clear that humans
are very good at  separating and identifying  sounds within a
complex audio mixture, especially by applying attention to a
particular sound source, but the task of automating this is not
straightforward.   (The  classic  example  demonstrating  the
human capacity for  sound source  separation is the “cocktail
party problem”,  where  humans are  readily able to discern a
particular conversation even in the midst of many interfering
sounds in a noisy environment.)  Many approaches to CASA
have been attempted (e.g., [4]), but there does not yet exist a
general  solution  to  this  challenging  problem.   Spectral
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clustering  [5]  has  been  applied  to  audio  signals  [6],  and
Martins  has  developed  a  framework  for  applying  spectral
clustering to musical signals using well-established perceptual
cues [7].  In this work, we extend Martins' framework, adding
focal templates as a means of applying attention to our sound
source of interest (i.e., bee buzzing).

D. Digital Audio Representation and Focal Templates

Digital audio is recorded as a time-series of samples, with
each sample representing the amplitude of a sound signal at a
particular  point  in  time;  in  our  data,  these  samples  were
recorded at 44100 samples/second.  This time-domain signal
may be transformed into a time-frequency representation using
a technique such as the discrete Fourier transform (DFT).  Such
a representation  may be  referred  to  as  a  spectrogram.   The
spectrogram represents the energy of the audio signal within
time-frequency (T-F) bins, where the magnitude of each bin
corresponds to the energy within a particular frequency band
occurring during a narrow frame of time.  By analyzing the
pattern of energy,  across frequencies and over time, one can
detect complex patterns that correspond to events arising from
sound sources  in the audio mixture.   Observing the patterns
that  correspond  to  bees  buzzing  leads  us  to  our  concept  of
focal templates.

III. ALGORITHM

The approach we take in processing the signal is illustrated
in Fig. 1.  The algorithm has been implemented in MATLAB
and  makes  use  of  built-in  functions  (e.g.,  spectrogram)
whenever possible.

The  process  currently  works  off-line;  that  is,  it  uses
previously recorded  audio.   There  is  nothing to  prevent  the
process from being implemented in real-time (save reading a
20-second buffer to use as a texture window).  The input signal
is  resampled  down  to  4000  samples/second;  this  sampling
frequency  is  chosen  to  preserve  audio  frequencies  up  to
2000 Hz while minimizing the amount of data (and later, the
size of the affinity matrix) to process.

The  signal  is  divided  into  20-second  texture  windows,
which is the macro temporal unit used to analyze the signal.
The remainder of the process applies to each and every texture
window.

A spectrogram is produced from the texture window, using
100ms  windows  with  90ms  overlap  (giving  micro  time
resolution of 10ms).  This results in a frequency resolution of
10 Hz.  After the spectrogram is produced, the energy within
four  bands  (0-500  Hz,  500-1000  Hz,  1000-1500  Hz,  and
1500-2000 Hz) is assessed.  If the energy within the first band
(0-500 Hz) is  greater  than the energy within the other three
bands  combined,  the  signal  (from  the  texture  window)  is
passed through a high-pass filter  before  reproducing another
spectrogram.  We found that signals with very high low-band
energy yielded poor detection results, and we observed that this
problem  could  be  mitigated  via  high-pass  filtering  at  the
texture window level.  This process will repeat until the energy
within the first band falls below the combined energy of the
other three bands.

Fig. 1.  Flowchart for buzz detection algorithm.



The focal template may be thought of as a type of dynamic
T-F filter  that  capitalizes  on certain  properties  of  the  target
sound of interest.   It  is known that bee buzzing (along with
many other natural sounds) is highly harmonic.  Further, from
observing  spectrograms  of  buzzes,  we  note  that  while  the
(fundamental) frequency of a buzz can change over the course
of the buzz, it generally remains relatively constant or changes
gradually.  Thus, our focal template (to focus attention on bees
buzzing within the audio mixture) will look for harmonically
related time-frequency elements within 10ms time slices of the
spectrogram, will filter-out (eliminate from consideration) non-
conforming T-F elements,  and will  look for  periods of time
when the fundamental  frequency (across multiple 10ms time
slices) remains relatively steady or changes gradually.  Further,
we  expect  that  no  buzzes  will  occur  at  frequencies  below
120 Hz,  so T-F elements  corresponding to  these frequencies
are immediately eliminated.

Field audio contains many sources of noise,  so the focal
template must be robust to low SNR.  To combat this, for each
10ms  time  slice  within  a  texture  window,  the  algorithm
determines whether the four T-F bins having the highest energy
are found at frequencies having a harmonic relationship with
one another (that is, are the frequencies corresponding to the
selected T-F bins integer  multiples of the same fundamental
frequency).   Note  that  the  algorithm  does  not  require
identification of consecutive harmonics; the algorithm is robust
to missing or occluded harmonics.  If the four T-F bins having
highest  energy are  not all in harmonic relationship with one
another, there is not a prominent (or prominent enough) buzz
present in this time slice and no T-F bins will be transmitted to
the next (spectral clustering) step.  If,  however,  all four T-F
bins  are in  harmonic  relation,  they  are  retained  in  the
spectrogram for clustering in the next step.

A  fully  connected  graph  (affinity  matrix;  see  [8])  is
constructed from the preserved T-F elements of the focused
spectrogram.  This graph (or affinity matrix) is constructed by
determining the similarity (or affinity)  between every pair of
T-F  elements  remaining  after  the  focal  template  is  applied.
Various similarity measures have been proposed (see [7]), but
here we calculate and use only the time similarity between two
T-F bins as

time_simAB = exp(-(time_sliceA - time_sliceB)^2) 

where  time_sliceX represents the particular 10ms unit of time
within the texture  window in which the T-F element  X was
found.  Eq. 1 could also be expressed as

time_simAB = exp(-(time_distAB)^2) 2

where  time_dist of  1  corresponds  to  the  distance  between
consecutive 10ms time slices of the spectrogram.

Spectral  clustering  is  performed  by  calculating  the
eigenvectors  of  the  affinity  matrix,  which  corresponds  to  a
normalized cut [8].  We partition the focused spectrogram into
three clusters by assigning the T-F bins according to a k-means
clustering of the smallest three eigenvectors.  We have found

that clustering into three clusters yields the best results.  This is
because there may be more than one bee buzzing at the same
time,  and  these  buzzes  (if  at  different  frequencies)  may be
allocated to separate clusters.   Further,  one or more clusters
may contain a noise residual after a buzz has been clustered
separately.

The  density of each resulting cluster is then calculated by
taking the maximum of

cl_size * mean_cl_dist / (median_cl_dist^2) 3

or

median_cl_dist / mean_cl_dist 4

where  cl_size is  the  cluster  size,  mean_cl_dist is  the  mean
distance between all pairs of T-F elements within the cluster,
and median_cl_dist is the median distance between all pairs of
T-F  elements  within  the  cluster.   (If  the  median_cl_dist
equals 0, cl_dist is defined to be 1.)  The distance between any
two T-F elements within a cluster is defined as the Euclidean
distance between the points in the spectrogram, considering the
distance between contiguous frequency bins as  freq_dist of 1
and the distance between contiguous time slices as  time_dist
of 1 (as in Eq. 2), yielding

distAB = sqrt(time_distAB^2 + freq_distAB^2) 5.

If  a  cluster  has  density  greater  than  or  equal  to  1,  it  is
processed to report potential buzzes represented by the cluster.
To  assess  whether  a  group  of  T-F  elements  in  a  cluster
constitutes  a  buzz,  the  entire  cluster  is  convolved  with  a
20-element vector and then summed across frequency into a
one-dimensional  “smashed  cluster”  vector  (in  the  time-
domain).   This  has  the  effect  of  smoothing  over  time  to
mitigate  against  low SNR (and to guard  specifically against
buzzes being occluded over one or more time slices).  Peaks
within the resulting “smashed cluster” are detected; if a peak
reaches 1.0, it is considered a buzz.  The time boundaries (start
and stop) of the buzz are determined by determining the extent
of the base of the detected peak (when the base reaches zero).
These start/stop times are recorded for writing to an output file.

IV. EXPERIMENTAL RESULTS

The  algorithm  has  undergone  extensive  trials  during
development to ensure robustness to a variety of conditions.
The  algorithm  has  been  used  to  process  approximately
80 hours of data collected in alpine meadows of the Colorado
Rocky Mountains during July 2015.  These recordings were
taken  simultaneously  with  visual  observations,  and  buzzes
were  manually  annotated  after-the-fact  using  the  Audacity
audio file editor.  Thus, we have human-annotated ground truth
available to validate the automatic buzz detection method.

At this time, we have tabulated results for 77 separate audio
recordings;  as  may  be  expected  in  field  audio,  there  is
considerable variation from recording to recording with respect



to number of buzzes, prevalence of interfering noise (primarily
airplanes, human voice), and overall fidelity.  No attempt was
made to "clean" the signals prior to processing.  Even so, we
find that the method is successful with 68.0% sensitivity and
61.4%  selectivity  (relative  to  the  human-annotated  ground
truth).   These  statistics  are  encouraging  for  a  new  method
based upon CASA, but closer examination reveals that even
greater success may be claimed.  First, across the 77 analyzed
recordings, sensitivity ranged from a minimum of 19.5% up to
a maximum of 93.8%.  Selectivity ranged from a minimum of
5.4% up to a maximum of 95.3%.  Recordings yielding low
sensitivity tended to also yield low selectivity, suggesting that
the overall quality of the recording (and subsequent SNR) was
low.  Additionally, some recordings contained very few buzzes
(in one case, only 4 human-annotated buzzes), which tended to
yield poorer results.  Individual inspection (listening) of false
negatives (missed buzzes compared to ground truth) suggested
that many of the missed buzzes occurred when the buzzes were
very,  very  faint.   Finally,  and  perhaps  most  promising,

individual inspection of false positives (detected buzzes that
did not correspond to a manually annotated buzz in the ground
truth) revealed a surprising number of buzzes that were missed
in the manual annotation.  That is to say, in some cases, the
automated method performed better than human listening in an
intentional annotation effort.  Further work is necessary (and
underway)  to  ascertain  the  extent  to  which  buzzes  may be
missing in the "ground truth".  Overall, we find these results to
be  very  encouraging,  and  we are  motivated  to  continue the
analysis of this dataset while also looking to further validate
the algorithm on other collected recordings.

CONCLUSIONS

We have presented a new method of detecting buzzing of
bees  from field  audio.   Initial  results  are  encouraging,  and
detailed analysis suggests the method holds signficant promise,
with some recordings yielding sensitivity and selectivity well
above  90%.   This  approach  to  acoustic  detection  of  bee

Fig. 2.  "Spectrogram" output from the proposed method of spectral clustering with focal templates.  The x-axis on each graph represents time (20-second 

texture windows shown); the y-axis represent frequency (ranging form 0 to 2000 Hz).  Clockwise, from upper left:  a) a spectrogram of noisy field audio 

containing buzzing from two different bees; one buzz is moderately weak and the other is very faint,  b) an output cluster containing the time-frequency (T-F) 

elements of the stronger buzz; two distinct buzzes are detected by the algorithm in this cluster (at the beginning of the texture window and near the middle),  

c) an output cluster containing the T-F elements of the very faint buzz; a buzz is detected by the algorithm around the 8 second mark, and  d) a third cluster 

containing only noise T-F elements.



buzzing  makes  it  possible  to  scale  bee  monitoring  to
applications heretofore impractical, such as routine monitoring
of pollination services available to farms or orchards.  This
method also has positive implications for conservationists and
ecologists  who  may  wish  to  monitor  bee  populations
non-destructively.   We  can  envision  developing  a  low-cost
system that can conveniently capture the environmental audio,
process the results,  and provide time-stamped information to
stakeholders about the bees that are present at any given time.
Presently, this algorithm reports number of buzzes detected and
total  time  of  buzzing,  but  further  development  may lead  to
more  detailed  information  that  could  lead  to  acoustically
discerning functional traits of bees, or perhaps even species.
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