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Abstract Eddy covariance (EC) datasets have provided
insight into climate determinants of net ecosystem produc-
tivity (NEP) and evapotranspiration (ET) in natural eco-
systems for decades, but most EC studies were published
in serial fashion such that one study’s result became the
following study’s hypothesis. This approach reflects the
hypothetico-deductive process by focusing on previously
derived hypotheses. A synthesis of this type of sequen-
tial inference reiterates subjective biases and may amplify
past assumptions about the role, and relative importance,
of controls over ecosystem metabolism. Long-term EC
datasets facilitate an alternative approach to synthesis: the
use of inductive data-based analyses to re-examine past
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deductive studies of the same ecosystem. Here we exam-
ined the seasonal climate determinants of NEP and ET by
analyzing a 15-year EC time-series from a subalpine forest
using an ensemble of Artificial Neural Networks (ANNs)
at the half-day (daytime/nighttime) time-step. We extracted
relative rankings of climate drivers and driver-response
relationships directly from the dataset with minimal a pri-
ori assumptions. The ANN analysis revealed temperature
variables as primary climate drivers of NEP and daytime
ET, when all seasons are considered, consistent with the
assembly of past studies. New relations uncovered by the
ANN approach include the role of soil moisture in driv-
ing daytime NEP during the snowmelt period, the nonlin-
ear response of NEP to temperature across seasons, and
the low relevance of summer rainfall for NEP or ET at the
same daytime/nighttime time step. These new results offer
a more complete perspective of climate—ecosystem interac-
tions at this site than traditional deductive analyses alone.

Keywords Coniferous - Model-data assimilation -
Photosynthesis - Fluxnet - Eddy covariance

Introduction

Over the past two decades, studies on ecosystem-to-global
scale dynamics in the terrestrial carbon cycle have benefited
from combined tower-based observations of CO,, H,O and
energy fluxes, along with weather/climate variables (Wofsy
et al. 1993; Flanagan et al. 2002; Monson et al. 2002; Bal-
docchi 2003). Early studies focused on the dynamics of spe-
cific sites, but as the number of sites grew, broader spati-
otemporal analyses were conducted on climate determinants
of regional-to-global scale patterns in the carbon cycle (Gil-
manov et al. 2010; Beer et al. 2010; Xiao et al. 2011; Jung
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et al. 2011; Hilton et al. 2014). There remains a role and
opportunity for single-site studies to uncover the mecha-
nisms and processes that link climate to ecosystem metabo-
lism, especially within the context of holding site constant
while studying vegetation dynamics and climate variables
across overlapping time spans, ranging from seasonal
through interannual to decadal (Callahan 1984; Richardson
et al. 2007; Scheffer et al. 2009; Dragoni et al. 2011; Pile-
gaard et al. 2011; Craine et al. 2012; Keenan et al. 2012).

Syntheses of multiple studies conducted at a single
site tend to be conducted with serial hindsight. That is,
researchers subjectively evaluate the conclusions of a past
study by posing them as the hypotheses for a future study.
This deductive approach carries forward the focus on states
and processes that compose past hypotheses, and thus tends
to canalize perspectives on the most important drivers of
observed responses. This process of synthesis is often done
in an informal manner, through statements of interpreta-
tion in the discussion sections of manuscripts, and with
researchers providing subjective interpretations of current
results within the context of past results. One approach
that has been used to achieve a more formal synthesis is
to use data to constrain process-based models through data
assimilation (Luo et al. 2011; Keenan et al. 2011). This is a
hypothetico-deductive approach, in which past knowledge
and observational data are used to structure and parameter-
ize models. The equations comprising such models repre-
sent hypotheses about how driving variables and observed
effects interact with one another (Young et al. 1996; Bras-
well et al. 2005; Young 2006; Moffat et al. 2010; Zobitz
et al. 2011; Keenan et al. 2011). The models are used to
make predictions of outcomes (e.g. net ecosystem produc-
tivity, NEP) given a prescribed set of driving variables, and
those model-simulated outcomes are compared to observa-
tions. To test the model (and the hypotheses implemented
as equations), a statistical error can be estimated for the
model-data match. If a model’s predictions align with
the observed data, the model’s underlying hypotheses are
deemed valid (Young 2006; Moffat et al. 2010).

An alternative to deductive approaches is to extract insight
directly from the data using statistical models. This inductive
approach can be designed to minimize the a priori hypotheses
common in deductive analyses (Moffat et al. 2010). Although
an inductive approach does not directly test mechanistic
hypotheses for the processes of interest, it can reveal which
drivers of the observed effects are the most important among
a given set of drivers, whether information might be missing
from deduced mechanistic models, and ultimately, the shape
of the ecosystem response to drivers (Moffat et al. 2010).
Artificial Neural Networks (ANNs) provide an advantageous
tool for extracting patterns directly from large, highly variable
datasets with few a priori assumptions (Moffat et al. 2010).
ANN:Ss are purely empirical models inspired by the biological
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neural networks of the nervous system (Olden et al. 2008).
Because ANNs are non-parametric, and excellent at approxi-
mating nonlinear relationships in complex systems, ANNs
are becoming more widely used in ecology. For a detailed
description of ANNs and their applications, see Bishop
(1995), Lek and Guégan (1999), Papale and Valentini (2003),
Olden et al. (2008), and Moffat et al. (2010). In ecosystem
ecology, ANNs have been used for multiple purposes, such as
providing a benchmark for process-based model performance
(Moffat et al. 2010; Keenan et al. 2012), correcting systematic
error in the flux outputs of land—surface models (Abramowitz
et al. 2007), and estimating carbon or water fluxes without
relying on models of how plant physiology responds to envi-
ronmental variables (Van Wijk and Bouten 1999; Moffat et al.
2010; Keenan et al. 2012).

In this study, we applied a data-based modeling strategy
using ensembles of ANNs to a 15-year eddy flux dataset
derived from the Niwot Ridge AmeriFlux site (US-NR1),
located in a high-elevation, subalpine forest in west-
ern North America (Monson et al. 2002, 2010). Previous
model-data fusion studies have been conducted at this site
using Bayesian-type approaches (Sacks et al. 2006, 2007;
Moore et al. 2008; Hu et al. 2010), and a set of over 50 past
studies including observations and models have been pub-
lished. It would be possible to conduct a traditional sub-
jective, and deductive, synthesis of knowledge from these
studies. However, our goal here is to conduct a new synthe-
sis of available data and apply an inductive approach using
ANNS to characterize seasonal drivers of NEP and ET. In
conducting this synthesis we avoided a priori assumptions
about controls and relationships. We then compared the
more objective synthesis using the ANN with the lessons
learned through the past hypothetico-deductive studies.

Methods
Site

Niwot Ridge is part of the Long-Term Ecological Research
network, and the Niwot Ridge EC dataset is among the
longest for forest sites (Monson et al. 2002; Williams et al.
2016). The Niwot Ridge AmeriFlux site is in a subalpine
forest at high elevation (3050 m) in the Rocky Mountains,
USA (40°1'58"N, 105°32'47"W). Mean annual temperature
is 1.5 °C. Annual precipitation averages 800 mm, with 65%
falling as snow (Scott-Denton et al. 2013). The secondary
forest surrounding the site is approximately 120 years old
and is dominated by Engelmann spruce (Pinceae engelma-
nii), subalpine fir (Abies lasiocarpa), and lodgepole pine
(Pinus contorta). For a full site description see Greenland
(1989), Monson et al. (2002, 2005) and Turnipseed et al.
(2002, 2003).
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Meteorological and eddy covariance measurements

The US-NRI eddy-covariance flux tower was installed in
November 1998. Net ecosystem CO, exchange (NEE) and
latent and sensible heat fluxes were measured at a height
of 21.5 m. We used 30-min averaged flux and climate data
from January 1, 1999 to December 31, 2013 (AmeriFlux
version 2015.11.10). Note that although NEE was used as
an input to the ANN, we use the term net ecosystem pro-
ductivity (NEP) throughout the text and figures to empha-
size carbon uptake or loss with respect to the ecosystem,
rather than to the atmosphere (NEP = —NEE). Evapotran-
spiration (ET) was calculated from latent heat flux. For
further discussion of the eddy flux measurements at Niwot
Ridge, see Monson et al. (2002), Turnipseed et al. (2002,
2003), Yi et al. (2008), and Burns et al. (2014, 2015, 2016).
The data and further details on processing are available
from the Niwot Ridge AmeriFlux web site (http://urquell.
colorado.edu/data_ameriflux/). Historical daily snow water
equivalent (SWE) was obtained from the Natural Resources
Conservation Service (NRCS) SNOTEL site 663 (NIWOT)
which is within 500 m of the flux tower.

Data treatment and grouping

Daytime and nighttime means were determined from
30-min averaged data for all meteorological and flux vari-
ables except snow water equivalent and precipitation. Snow
water equivalent (SWE), a measure of snowpack water
content, was available at a daily temporal resolution, and so
the daytimes and nighttimes for each day of the year were
assigned the same measurement. Precipitation was summed
for each daytime and nighttime time step. Throughout this
text, the terms ‘daytime’ and ‘nighttime’ refer to the day-
time or nighttime means or sums of meteorological and
flux observations. Daytime and nighttime bins for averag-
ing or summation of 30-min data were determined based
on sunrise and sunset times for each day of the year for the
latitude and longitude of the Niwot Ridge site; if a given
30-min averaged period theoretically included any moment
of photosynthetically active radiation (PAR) above zero,
then that 30 min period was considered daytime.

For our target variables (NEP and ET), data was pro-
cessed as follows: only non-gap-filled data (AmeriFlux
flag 1, ‘okay’ for NEP data and AmeriFlux flag 1 and 5 for
ET data) were used; we excluded 30-min periods from the
daytime and nighttime NEP data that failed both the inte-
gral statistics and stationarity tests; we excluded NEP and
ET data from 30-min periods during the nighttime with
canopy-surface friction velocity (u.) less than 0.2, which
has been determined as the best threshold to distinguish
atmospheric stability influences on fluxes (see Monson
et al. 2002). These exclusions meant that some ‘daytime’

or ‘nighttime’ bins were incomplete, so we excluded ‘day-
time’ and ‘nighttime’ data points if more than 50% of their
constituent 30-min periods were missing. For non-bounded
climate variables (air temperature, soil temperature, and net
radiation) outliers more than three standard deviations from
the mean were excluded. The number of available day-
times/nighttimes in each data grouping after quality control
is shown in Online Resource material (Tables S1-S8).

We grouped the daytime and nighttime data based on
annual or seasonal periods of interest (Table 1). To exam-
ine how the seasonal drivers of NEP and ET vary among
years, we grouped climate and flux data for each year
(1999-2013). To examine how the drivers of NEP vary
across seasons, we grouped data into phenologically rele-
vant ‘seasonal periods’ for training the ANN (Fig. 2b). The
‘snowmelt’ period included data from the first day of peak
SWE to the first day with zero SWE. The ‘pre-monsoon’
period included data from zero SWE to the first day of the
monsoon (defined as the first day after June 15 with 24-h
summed precipitation greater than or equal to 10 mm). The
‘monsoon’ period included data from the first day of the
monsoon to September 20 (arbitrarily chosen). The ‘post-
monsoon’ period included data from September 21 to the
date when SWE was greater than, or equal to, 25 mm for
more than a week after September 20 (or after September
21st for ‘leap years’). The winter period was defined as
the end of the post-monsoon period to the beginning of the
‘snowmelt’ period of the following calendar year.

Artificial neural network model framework

We used a modeling framework of multi-layered feed-for-
ward artificial neural networks trained by backpropagation.
The ANNSs of this study consisted of two layers: the input
(see ‘candidate seasonal drivers’ section below) fed into a
hidden layer, and the outputs of the hidden layer fed into an
output layer (Fig. 1). Only one hidden layer was used; feed-
forward ANNs with a single hidden layer can approximate
any continuous function with an arbitrary accuracy pro-
vided that no constraints are placed on the number of nodes
or the magnitude of the nodal weights (Cybenko 1989). All
ANNSs were created and trained using Matlab’s neural net-
work toolbox (Matlab version R 2014b; Beale et al. 2014).
For each ANN, workflow consisted of the following
steps: data pre-processing, network creation, network con-
figuration, initialization of weights and biases, network
training, and network validation (Beale et al. 2014). For
data pre-processing, all inputs (candidate seasonal driv-
ers) and the target (—NEP and ET) were scaled so that all
values were within the interval [—1 1] to correspond to the
nearly linear range of the hyperbolic tangent sigmoid trans-
fer function and to expedite training (Moffat 2012; Beale
et al. 2014). Networks (Fig. 1) were created for daytime
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Table 1 Summary of questions and the strategy to inform each question via data grouping and candidate drivers of net ecosystem productivity (NEP) and evapotranspiration (ET) fluxes for

analysis with artificial neural networks

Questions

Data grouping

Candidate drivers

All data analysis

What are the seasonal drivers of daytime and nighttime NEP and ET? All daytime data and all nighttime data from 1999 to 2013

Interannual analysis

What are the seasonal drivers of daytime and nighttime NEP and ET
for individual years?

Seasonal analysis

What are the drivers of daytime and nighttime NEP and ET within
phenologically relevant seasonal periods?

What is the response of NEP and ET to their relevant seasonal driv-
ers?

Each individual year from 1999 to 2013, daytime and nighttime data

Daytime and nighttime data from 1999 to 2013 grouped by seasonal
period (Fig. 2b):

Winter period

Snowmelt period

Pre-monsoon period

Monsoon period

Post-monsoon period

All continuous data

All daytime data and all nighttime data from 1999 to 2013, and data
grouped by periods (Fig. 2b)

All candidate drivers:

Air temperature (°C)

Wind speed (m s™")

Wind direction (deg. from north)
Friction velocity, u. (m s7h
Precipitation (mm)

Vapor pressure deficit (kPa)

Soil temperature (°C)
PAR (umol m2 s~ ')
Net radiation (W m~2)?
Humidity (percent)
Soil moisture (m>* m™3)
Snow water equivalent (mm)®

b

Same as above

Same as above

Most relevant primary drivers:

Air temperature (°C)

Soil temperature (°C)

(Additional responses in Online Resource Figs.
S5-S14)

# Daytime only
® Soil moisture only available for 2002-2013

¢ Excluded for periods without snow cover (pre-monsoon and monsoon periods)

8¢

T¥—ST81 (L107) vI130[0920
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Output

Bias Bias

Fig. 1 Architecture of ANN models used in this study. For daytime
data, benchmark ANNs had n = 12 or 11 inputs for periods with and
without snowpack, respectively (see Table 1). For nighttime data,
benchmark ANNs had n = 10 or 9 inputs for periods with and with-
out snowpack. Primary driver ANNs had n = 1 input, and secondary
driver ANNs had n = 2 inputs. All ANNs had m = 8 nodes in the
hidden layer. Black arrows represent weights; gray arrows represent
biases. Dotted lines represent inputs and hidden nodes not depicted
(e.g. hidden nodes 3 through m). In a feedforward ANN, information
flows in one direction: from the inputs, through the hidden layer to
the output layer

and nighttime data of each seasonal period described above.
Networks were configured with the input size equal to the
number of candidate seasonal drivers (inputs) for each sce-
nario and eight hidden layer nodes. Eight nodes were used
for the hidden layer based on preliminary tests of the effect
of node size on ANN performance (Online Resource Figs
S3, S4). Before training, inputs and associated targets were
randomly divided into three separate subsets for training
(60% of data), validation (20% of data), and testing (20%
of data). The ‘training’ and ‘validation’ subsets were both
used during training. The ‘training’ subset was used for
computing the performance gradient and updating weights
(Beale et al. 2014). To avoid overfitting the data, network
weights and biases were saved when the error of the ‘vali-
dation’ subset reached a minimum during the training pro-
cess (Beale et al. 2014). Networks were trained in batch
(epoch) mode using the Levenberg—Marquardt algorithm
with mean-square error as the performance (merit) func-
tion. Each ANN scenario was repeated ten times, and the
ANN with the lowest mean squared error from the ‘testing’
subset was selected for analysis of seasonal driver rank-
ings. Stated uncertainty represents population standard
deviations for ten ANNs trained with the same seasonal
data grouping.

Candidate seasonal driver selection and relevance
To minimize a priori assumptions about which seasonal

climate drivers are important, the starting set of candidates
included all drivers that could potentially affect NEP and

ET. We selected the following initial set of candidate driv-
ers: air temperature (°C) measured at 21.5 m, wind speed
(m s~ ') measured at 21.5 m, wind direction (degrees from
true north) measured at 21.5 m, u. (m s’l), precipitation
(mm) measured at 10.5 m, vapor pressure deficit (kPa)
measured at 21.5 m, soil temperature (°C), incoming pho-
tosynthetically active photon flux density (PAR) (umol m~>
s~!) measured at 25.5 m, net radiation (W m~2) measured
at 25.5 m, relative humidity (percent) measured at 8 m,
volumetric soil moisture (m®> m~>) measured at 0—15 cm
depth, and snow water equivalent (mm). Because envi-
ronmental variables may be cross-correlated with each
other, a driver might appear to be more important than the
actual driving variable (Moffat et al. 2010). Examination
of the relationships between the driving variables shows
the cross-dependencies and highlights the variables where
those dependencies should be taken into account during
interpretation of the results (Online Resource Fig.S1, S2).

To estimate the total explainable variability in the data-
set, all candidate drivers were used as inputs for ANN
training (Moffat et al. 2010). The > between the target
(observed NEP or ET) and ANN output served as a ‘bench-
mark’ of maximum mapping between the target and the
candidate seasonal drivers (Moffat et al. 2010). This r* also
showed how much variability remained unexplained due to
measurement noise or unmeasured/omitted drivers of flux
(Moffat et al. 2010). Because volumetric soil moisture was
only available after the start of 2002, ANN benchmarks
were calculated with and without volumetric soil moisture
data. The results were similar (difference between includ-
ing or excluding soil water content in benchmark 7% values
was usually less than 0.08, and only higher than 0.1 for
year 2003 and 2004), and here we only report benchmarks
without soil water content included for consistency across
the 15-year dataset.

After an ANN performance benchmark was created,
we performed a ranking of ‘primary’ drivers based on rel-
evance, and then an identification of relevant ‘secondary’
drivers for each data grouping. To examine the relevance of
each input as ‘primary’ seasonal drivers of flux, ANNs were
trained with each candidate driver individually and ranked
based on 2. Next, the relevance of each input as a ‘second-
ary’ seasonal driver was examined by training ANNs with
two inputs: the most relevant ‘primary’ seasonal driver plus
each other input variable. For all ANNs (primary, second-
ary and benchmark) the coefficient of determination pro-
vided a measure of relevant information provided by the
input(s) as described in Moffat et al. (2010; see also Van
De Laar et al. 1999). We applied this approach to each
‘seasonal period’ independently. Because primary and sec-
ondary drivers could have similar relevance (+%), the cor-
relation coefficients () were compared after a Fisher r-to-z
transformation (Fisher 1921). Each driver was compared
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Fig. 2 Fifteen-year average

seasonality of environment, net (a)
ecosystem productivity (NEP) . 300 +
and evapotranspiration (ET) _ E 200

at Niwot Ridge. a Mean daily
(24 h) precipitation (purple
line; multiplied by 10 for
visualization) and snow water
equivalent (SWE; brown line) (b)
with interquartile range (grey).
b Boxplots showing median
(dotted line), interquartile range
(grey), and range (black whisk-
ers; from q3 4+ 1.5(q3 — ql)

(

Precipitation & snow
>
o
1

o

winter

Precipitation *10
SWE

monsoon
winter

- pre-monsoon
post-monsoon

| | snow melt

and q1 — 1.5(q3 — ql), where T
ql = 25th and q3 = 75th per- (c)
centile) of transitions between

seasonal periods. Seasonality of -,%Nw °
NEP (green line) for ¢ daytime n_% E 0
and d nighttime, and ET (blue i} g

line) for e daytime and f night- z 2 5

time with interquartile range

(grey). Color version of this (d)
figure is available online

a
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nighttime
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to the next rank down for up to four drivers for each data
grouping. The z-score from comparing the correlation coef-
ficients indicates whether multiple drivers were ‘tied’ for
‘significantly most relevant.” If more than three drivers for a
given grouping were tied (p > 0.05 for two-tailed test), then
no driver(s) were described as ‘significantly most relevant.’

The response of a dependent variable to an individual
driver can be captured by an ANN model with that indi-
vidual driver as the sole input (Moffat et al. 2010). Exam-
ining the shape and form of the ecosystem response may
provide insight into the mechanisms of ecosystem metab-
olism (Moffat et al. 2010). Ecosystem responses derived
from an ANN trained with a single input driver do not
exclude the influence of other drivers (i.e. they are not
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partial responses), and so the shape of the response may
be influenced by other factors that co-vary with the driver
in question over some or all of the observed range of vari-
ability. Thus, the ecosystem response to a single input is
most informative for input drivers of high relevance (that
account for much of variation in the response variable). We
examined the NEP and ET responses to their most relevant
primary drivers as determined from the ANNs trained on all
the daytime or nighttime data (Table 1). Then, to investigate
how the sensitivity of NEP to climate varies due to phenol-
ogy or other seasonal changes in ecosystem dynamics, we
plotted the single-driver ANNs for all daytime and night-
time data for each phenologically relevant seasonal period.
Because ANN models vary due to the random assignment
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of weights during training, and the random division of the
data into training, validation, and test datasets, an ensemble
of 100 ANN models were trained for each primary driver,
and mean and standard deviation of these 100 models were
plotted for visualization.

Results
Climate drivers of net ecosystem productivity

For NEP, the benchmark r* values showed that the com-
bined candidate drivers explained approximately 89 and
87% of the total variance in NEPg,im. and NEP ;pime
datasets, respectively (Fig. 3, Online Resource Tables S9,
S10). Temperature variables emerged as the significantly
most relevant seasonal drivers of NEPy, . and NEP, .,
for all data across all seasons (1999-2013); for NEP-
daytime> the significantly most relevant drivers were air tem-
perature above the canopy and soil temperature, and for
NEP ;ionime: the most relevant driver was soil temperature
(Fig. 3, Online Resource Tables S9 and S10). For individ-
ual years, the significantly most relevant primary drivers
varied for NEP, . (air temperature, soil temperature,
or SWE), but always included soil temperature for NEP-
nighime (Online Resource Tables S17 and S18). Training
ANNs with two inputs—the most relevant and one other
driver—revealed that the secondary drivers that produced
the greatest improvement in performance for all data were
relative humidity and VPD for NEP, ., improving the
coefficient of determination by 0.14 and 0.12, respectively,
above the 0.67 value for air temperature alone (Online
Resource Table S13). For NEP,;,pime. air temperature and
soil moisture produced the highest improvements when
combined with soil temperature (Online Resource Table
S14). Many candidate drivers were not relevant to dynam-
ics in NEP. For all NEPy, ;. and NEP, o, iy data, ANNs
trained with wind speed, wind direction, u., or precipita-
tion as the sole input yielded low performance (> < 0.2;
Fig. 3, Online Resource Tables S9 and S10), and as the
secondary input (to air temperature) yielded little perfor-
mance improvement (r2 < 0.1; Online Resource Tables
S13, S14).

time

Climate drivers of NEPg, i and NEP ;o ime
for phenologically relevant seasonal periods

Based on benchmarks, seasonal drivers explained more
variation in NEP during some periods than others. All
drivers explained 76% of variation in NEPg, . dur-
ing snowmelt (Fig. 3a, Online Resource Table S9),
but explained less variation as the seasons progressed

(monsoon period benchmark ? = 0.58:; Fig. 3a, Online
Resource Table S9). By the post-monsoon period this
trend reversed, and a high percentage of NEP, ;. was
again explained by all drivers (benchmark r* = 0.80;
Fig. 3a, Online Resource Table S9). NEP ;o ime followed
a similar seasonal pattern of decreased total explainable
variability during the monsoon (Fig. 3b, Online Resource
Table S10).

ANNs trained on single climate variables for data
grouped by seasonal period showed the best performance
with temperature variables for most periods during both the
daytime and nighttime. Yet there were two seasonal periods
for which a temperature variable was not the significantly
most relevant primary driver of NEP during the daytime:
the snowmelt period and the monsoon period. During the
snowmelt period, soil moisture was the significantly most
relevant primary driver for NEPg, . (Fig. 3, Online
Resource Table S9). During the monsoon period for NEP-
daytime> 10 driver(s) emerged as significantly most relevant,
but VPD explained more variation than air temperature
(Fig. 3, Online Resource Table S9). The significantly most
relevant secondary drivers of NEPy, i, that emerged were
PAR and net radiation (for monsoon), and soil moisture (for
winter; Online Resource Table S13). For NEP ;,pime, soil
temperature was the significantly most relevant driver for
all periods except snowmelt, when air temperature was sig-
nificantly most relevant, and pre-monsoon, when tempera-
ture variables were both most relevant (Online Resource
Table S10). The relevance of secondary drivers of NEP, .,
ime Was similar within most seasons, but during winter, air
temperature, soil moisture, and SWE were most relevant
(Online Resource Table S14). Also similar to the result for
ANNSs trained on all data, ANNs trained with wind speed,
wind direction, u., or precipitation as the sole input (pri-
mary driver) for NEPy, . or NEP;01,ime data grouped by
seasonal period yielded low performance (+* < 0.1; Online
Resource Table S9-10). As a secondary input to the most
relevant primary driver for each period, these same vari-
ables produced little performance improvement (difference
in * < 0.1) for NEP ionitime and NEPy, i Of all seasonal
periods (Online Resource Table S13, S14).

We focused on temperature variables (soil or air tem-
perature) for our examination of NEP responses because
these were the most relevant drivers for all NEPg, ;.. and
NEP,;ionime data (Fig. 3), many seasonal periods (Fig. 3),
and most individual years (Online Resource Tables S17,
S18). The response of NEPy, . to temperature resembled
a physiological thermal performance curve, with a posi-
tive NEP response at low temperatures, and negative NEP
response at higher temperatures (Figs. 5a, 6a). NEP, ;o ime
responded negatively to air temperature and soil tempera-
ture (Figs. 5b, 6b).
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Fig. 3 Relevance of candidate drivers for seasonal data groupings
(winter, snowmelt, pre-monsoon, monsoon, and post-monsoon) as
well as all data for a daytime and b nighttime net ecosystem produc-
tivity (NEP). The bars indicate the performance (coefficient of deter-
mination) of an ANN with each candidate driver as a single input.
For each data grouping, significantly highest relevance primary driv-
ers are denoted with asterisks, and vertical dotted line indicates the
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benchmark ANN performance. The soil moisture time series started
in 2002, so benchmark performances do not include soil moisture
as an input, and the soil moisture row does not include 1999-2001.
Abbreviations are used for snow water equivalent (SWE), moisture
(moist.), relative (rel.), radiation (rad.), direction (dir.), temperature
(temp.), incoming photosynthetically active radiation (PAR), vapor
pressure deficit (VPD), and precipitation (precip)
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Climate drivers of evapotranspiration

For ET, the benchmark 7 values showed that, when combined,
all daytime candidate drivers and nighttime candidate drivers
explained 78 and 43% of the total variance in ETg, . and
ET ightime> respectively (Fig. 4, Online Resource Tables S11
and S12). For ETj, . air temperature and soil temperature
were significantly highest relevance drivers of all data (Fig. 4a,
Online Resource Table S11), and air temperature, soil temper-
ature, or both emerged as significantly most relevant primary
driver(s) of ET,ime for many individual years, sometimes
tied with SWE (Online Resource Table S19). For all ET ;.
time data, no primary drivers emerged as significantly most rel-
evant because performance was similar across more than four
drivers, but u. and wind speed were notably relevant (Online
Resource Table S12), and for data grouped by each individual
year, u. and wind speed were the most relevant primary driv-
ers of 2004 (Online Resource Table S20). The secondary driv-
ers of ETq,yime produced little improvement in performance
across years (Online Resource Table S23).

Climate drivers of daytime and nighttime
evapotranspiration for phenologically relevant seasonal
periods

Like the NEP result, benchmarks varied by seasonal peri-
ods for ET with the lowest amount of variance explained
in the post-monsoon for ETgy,yiy. and pre-monsoon for
ET,iontime (Fig. 4, Online Resource Tables S11 and S12).
For ET,ighime the candidate drivers explained a low
amount of variation (pre-monsoon benchmark ”? = 0.36),
a decrease in 0.19 from the snowmelt period when ANNs
performed best (Online Resource Table S12).

For all periods, the most relevant primary driver dif-
fered between ETg,yime and ETohyime- FOr ETgayime,
the ANNs with humidity and VPD (winter period),
and net radiation and PAR (monsoon period) variables
as inputs showed the best performance (Fig. 4, Online
Resource material S11). By contrast, for ET,pime, N0
significantly highest relevance drivers emerged, but
wind speed and friction velocity (u.) showed relatively
high relevance as primary drivers for all periods, and
VPD and relative humidity were high relevance dur-
ing the monsoon (Fig. 4, Online Resource Table S12).
Relatively high relevance ETg, . secondary drivers
varied through time, from radiation variables (winter
and snowmelt), to wind direction (pre-monsoon), to soil
moisture (monsoon), and VPD (post-monsoon) but none
were significantly highest secondary drivers for any sea-
sonal period (Online Resource Table S15). For ET ;..
ime Significantly highest relevance secondary drivers
were relative humidity during the winter, and wind
speed during the monsoon (Online Resource Table S16).

Examining the responses of ET g, ime and ET o ime tO
their most relevant primary drivers revealed differences
between daytime and nighttime sensitivities across diur-
nal cycles and seasons. For all seasonal periods, ET in
general showed little sensitivity to variation in air tem-
perature when temperatures were subzero (Fig. 7a, b).
ET jaytime> but not ET, ;i Was more responsive to tem-
perature during growing season (non-winter) seasonal
periods (Fig. 7a, b).

Discussion and synthesis

Drivers of ecosystem metabolism considering all
seasons together

Using an inductive approach focused on daily time-steps
to evaluate seasonal patterns of ecosystem—climate rela-
tionships, we found that temperature was a predominant
driver of NEP, inclusive of both daytime and nighttime
periods of CO, exchange. Air temperature and soil tem-
perature were the most relevant drivers of mean NEP,,
ime» When data for all parts of the growing season were
considered together (Fig. 3a, Online Resource Table S9),
and soil temperature was the most relevant driver of mean
NEP,iopyime for all data (Fig. 3b, Online Resource Table
S10). Mean NEPg, . responded positively to warm-
ing temperatures until daytime-average temperature sur-
passed about 12.5 °C, reached a peak, and responded
negatively as average daily temperature approaches
20 °C (Fig. 5a). Extrapolations from nighttime respi-
ration to daytime respiration are imperfect (Goulden
et al. 1996; Speckman et al. 2014), and may exclude the
effect of light-inhibition on leaf respiration (Wehr et al.
2016). That said, high respiration rates in warm tempera-
tures likely contributed to the reversal in the response of
NEP,(ime to air temperature at high values (Fig. 5b), in
addition to shifting photosynthetic temperature optima.
NEP,ionyime decreased with soil temperature (Fig. 6b), as
expected given the exponentially positive responses of
soil respiration, driven by high sensitivities of microbial
respiration and microbial biomass to increasing temper-
ature in this forest ecosystem (Monson et al. 2006a, b;
Schmidt et al. 2009).

In a previous study of this same ecosystem, Huxman
et al. (2003) used path analysis, a deductive statistical frame-
work, to construct a model of correlations between seasonal
climate and NEP and, like our study, showed that tempera-
ture is a dominant driver of seasonal dynamics in NEP. The
observed effect of temperature was particularly relevant
to our study because it also revealed a switch in ecosystem
sensitivity to temperature during the growing season—from
a positive effect (higher temperature caused higher NEP)
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well as all data for a daytime and b nighttime evapotranspiration thus benchmark values shown here do not include soil moisture as
(ET). The bars indicate the performance (coefficient of determina- an input, and the soil moisture row does not include 1999-2001. See
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the modeled response and uncertainty. Insets show mean response
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Color version of this figure is available online

during spring to a negative effect (higher temperature caused
lower NEP) during mid-summer. The cause of the seasonal
switch in temperature sensitivity, as reported in Huxman
et al. (2003), was that ecosystem respiration rates were low
during the spring because the presence of the snow pack kept
soil temperatures and associated soil respiration rates rela-
tively low, but increasing air temperatures stimulated gross
ecosystem productivity, thus enhancing rates of NEP. During
mid-summer, however, soil respiration rates for snow-free
soil were assumed to increase due to direct thermal stimula-
tion of the heterotrophic component (see Scott-Denton et al.
2003). These causes are also likely to be driving the seasonal
switch in temperature sensitivity of NEP that we observed. It
is informative that the simple path analysis deployed by Hux-
man et al. (2003) detected the seasonal reversal in ecosystem
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Fig. 6 Response of a daytime and b nighttime net ecosystem pro-
ductivity (NEP) to soil temperature. The points (colored by period)
indicate observations (daytime or nighttime NEP means). The mean
(black line) and standard deviation (grey band) from 100 ANNs show
the modeled response and uncertainty. Insets show mean response
(colored lines) and standard deviation (grey bands) of a daytime and
b nighttime NEP to soil temperature during specific seasonal periods.
Color version of this figure is available online

temperature response given that it was conditioned on only
two years of data, compared to the fifteen years of data in
this study. One conclusion that we have drawn from the
comparison of these two studies is that it is possible to detect
dominant seasonal drivers with a relatively short time-series
span. The response of this subalpine system to temperature
is sufficiently strong and consistent to emerge from only two
years of study and within the scope of a deductive frame-
work conditioned on prior knowledge of processes.

Our analysis, however, carried the power to situate the
role of temperature within a broader context of other cli-
mate drivers. Our results showed that snow-water equiva-
lent (SWE) as a primary driver yielded a coefficient of
determination almost as high as that for temperature regard-
ing NEPy, . and NEP (Fig. 3; Online Resource

nighttime
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Fig. 7 Response of a daytime and b nighttime evapotranspira-
tion (ET) to air temperature. The points (colored by period) indicate
observations (daytime or nighttime ET means). The mean (black line)
and standard deviation (grey band) from 100 ANNs show the mod-
eled response and uncertainty. Insets show mean response (colored
lines) and standard deviation (grey bands) of a daytime and b night-
time ET to air temperature during specific seasonal periods. Color
version of this figure is available online

Tables S9 and S10). SWE and soil temperature are closely
related with snow melting around 0 °C (Online Resource
Fig. S1 and S2). We thus infer that temperature controls
NEP not only through its interaction with photosynthetic
optima and respiration rates during the non-winter peri-
ods, but also as an annual control over the physical state of
water. The temperature and water effects are intertwined in
their seasonal influences on ecosystem carbon metabolism,
and whereas they were revealed in our analysis, they were
not revealed in the simpler path analysis by Huxman et al.
(2003).

One of the major contributions of our study was the
power we had to reveal the nuanced controls of ET, which
have generally been considered in less detail, compared to
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NEDP, in past analyses of tower flux data. The ANN analysis
revealed evidence that Niwot Ridge experiences an annual
cycle in the predominance of demand (governed by atmos-
pheric factors) versus supply (governed by water avail-
ability; Federer 1982) as limitations on daytime transpira-
tion. The most relevant ETg, 4, driver, as identified in the
ANN, shifted from soil moisture (suggesting supply limi-
tation) for the snowmelt period, towards net radiation and
PAR for the pre-monsoon through post-monsoon periods
(Fig. 4a, Online Resource Table S11). Net radiation should
increase evaporative demand (via increased energy to drive
latent heat flux), but the photosynthetically active portion
of the light spectrum can also affect supply to the atmos-
phere (via stomatal responses). Given that pre-monsoon
ET jaytime> and to some extent monsoon ET i, remained
high at high VPD and low relative humidity, and that ETg,,.
ime Was more sensitive to PAR during these same periods
(Online Resource Figs. S10, S13 and S14), we hypothesize
that during this part of the season, stomata act to maximize
carbon gain, rather than minimize water loss. Thus, overall
ET is likely limited by demand early in the growing season.
During the post-monsoon period the ecosystem appeared to
shift back to greater supply limitation, as ET, iy, showed
frequent declines at high VPD and showed little sensitivity
to PAR (Online Resource Figs. S13 and S14). This seasonal
shift from demand-limited to supply-limited ET is consist-
ent with findings from a watershed model study for a north-
ern Rocky Mountain site that experiences similar annual
rainfall as that for Niwot Ridge (Emanuel et al. 2010).
ET,iontime» Which we expect to be driven by tempera-
ture, relative humidity, and wind speed (based on theory
expressed in the Penman—Monteith and Clausius—Clay-
peron relations; Monson and Baldocchi 2014) was deter-
mined in large part by u. or wind speed (Fig. 4b, Online
Resource Table S12). Given that u. is calculated from wind
speed, and that these two variables are correlated (Online
Resource Fig. S1 and S2), it is difficult to differentiate
between them as independent candidate drivers. Nonethe-
less, this finding suggests several possibilities that warrant
future investigation. Of the components of ET (evapora-
tion and transpiration), evaporation is generally expected to
dominate ET,;qpime. SO Our results suggest that wind speed
or u. may drive evaporation. Yet wind speed also decreases
leaf surface resistance, providing a possible mechanism
for impacting ET,;,pyime i the presence of positive night-
time transpiration (Dawson et al. 2007), which has been
reported as relatively frequent in Engelmann spruce and
subalpine fir, two of the dominant trees in the Niwot Ridge
forest (Turnipseed et al. 2009). Any seasonality of a possi-
ble interaction between wind speed and transpiration could
be difficult to detect because ET,;gpime 1s slightly higher in
the winter (Fig. 2f) when trees are dormant and sublimation
dominates (Burns et al. 2015). The significance of u. as a
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control over ET, independent of windspeed, might occur if
canopy roughness differs depending on wind direction, thus
affecting wind shear differentially. We did not partition u.
as a function of windspeed in the current analysis, and we
have not pursued the potential for canopy roughness and
shear interactions to control ET independent of windspeed.
However, we note the potential for these interactions here
as justification for not combining u. and windspeed as a
single driving variable in the analysis.

Another unexpected result was that wet precipitation
(rain) did not show high relevance as a driver of NEP-
daytime OF NEP o1 ime flux for the continuous dataset (all
data) or any seasonal period (Online Resource Tables
S9-S10), and for ET, precipitation never explained more
than 19% of the total ET variability for any seasonal
period, daytime or nighttime (Online Resource Tables
S11-S12). If the effects of precipitation on NEP or ET
lag after the precipitation events by more than ~12 h,
then our analysis would not have been expected to detect
the relationship. Burns et al. (2015) found enhanced
mid-day ET on dry days following a wet day during the
warm season (May/June through September), so it is
possible that we indeed missed this relation with respect
to ET in our study due to a lag effect. Despite its lack of
significance as a direct driver of NEP, we hypothesize
the existence of indirect effects through other climate
variables that did emerge as relevant drivers such as rela-
tive humidity and VPD. Relative humidity and VPD were
relevant secondary drivers of all NEP;, ;. data when
the primary driver was air temperature (Online Resource
Table S13). Furthermore, soil moisture in the upper soil
profile emerged as an important secondary driver of all
NEP,yime data when the primary driver was soil tem-
perature (Online Resource Table S13). These variables
should be affected by rain or the increased cloud cover
associated with rain events. It is also important to rec-
ognize that the low relevance of wet precipitation from
this daytime/nighttime analysis does not signify that wet
precipitation is unimportant at other time scales because
the controls on NEP and ET vary with time (Barford
et al. 2001; Siqueira et al. 2006; Richardson et al. 2007).
Short-term (minutes to hours) responses to precipitation
may not be captured in this analysis since eddy covari-
ance data during precipitation are gap-filled, and pre-
cipitation could have a lagged effect on NEP or ET over
several days which also may not be captured in the half-
day-averaged time steps examined here. Since meteorol-
ogy data time-step duration varies across process-based
ecosystem models (Siqueira et al. 2006), future ecohy-
drology studies should examine how temporal resolution
(e.g. daytime/nighttime versus half-hour) affects simu-
lated interaction between precipitation, other climate
variables, NEP, and ET.

Seasonal partitioning of drivers of ecosystem
metabolism

NEP is much less sensitive to temperature during winter
than during other periods; the ANN trained on winter day-
time data only, showed net carbon loss during this season
until mean daytime temperature rose several degrees above
0 °C. Similarly, winter ETy, ;. rates were relatively con-
sistent at approximately 1 mmol m? s~!, regardless of tem-
perature, but ET, i, increased with temperature as winter
ended and the snow cover began to melt (Fig. 7a). Unlike
daytime, the NEP .y ime and ET ;o ime Tesponses to tem-
perature variables during winter were more aligned with
those of other periods (Figs. 5b, 6b, 7b). The responses
of NEP ;o ime to soil temperature appeared similar across
seasonal periods, and carbon release clearly increased with
soil temperature during the winter (Fig. 6b). Together, the
daytime and nighttime NEP and ET responses lead us to
conclude that during the winter, trees cannot transpire and
carry out leaf-level gas exchange, but soil respiration per-
sists. This result aligns with previous studies on winter
dynamics at Niwot Ridge that showed an active beneath-
snow microbial community (Monson et al. 2006a, b; Lip-
son et al. 2009; Schmidt et al. 2009).

Previous climate—carbon relations studies at Niwot
Ridge, all of which used a shorter span of data and tested
explicit hypotheses in a deductive framework, focused on
the role of the spring snowpack and the timing of its melt
as the primary control over early season rates of CO,
uptake (Monson et al. 2002, Huxman et al. 2003, Mon-
son et al. 2005, Hu et al. 2010). Evidence was presented to
support deep, late-winter snowpacks as a crucial resource
allowing the forest to sequester atmospheric CO, at rela-
tively high rates early in the growing season. Monson et al.
(2005) discovered that trees in this forest can respond to
spring snowmelt through rapid upregulation of photosyn-
thetic capacity, and hypothesized that the primary advan-
tage of the evergreen growth habit is to respond quickly
to the availability of snowmelt water before the onset of
mid-summer drought. Even later in the growing season, the
importance of snowmelt water was shown to be important,
as hydrogen and oxygen stable isotopes in water extracted
from tree stems showed that most NEP in the forest was
driven by snowmelt water, not mid-summer rain water (Hu
et al. 2010).

Our analysis confirmed that the snowmelt period is
indeed an important period controlling rates of atmospheric
CO, uptake in this forest ecosystem. However, unlike pre-
vious studies, we identified soil moisture during the snow-
melt period as more important in explaining variance in
NEP, than temperature (Fig. 3a), and relative humidity
and VPD were identified as the most important second-
ary drivers (based on the ANNs trained on single climate
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variables (Online Resource Table S13). From our analysis,
we conclude that only after snow melt is completed does
air temperature take on a direct role as the primary driver
of seasonal dynamics in NEP. Thus, while temperature
was identified as the primary determinant of NEP when
assessed across all seasons together, it had a subordinate
role to soil moisture during the earliest part of the season.
There is a critical transition in controls, from soil moisture
content to temperature, that occurs as the system emerges
from snowmelt.

After the snowpack melt, NEP declines during the ‘pre-
monsoon’ period relative to the late ‘snowmelt’ period
(Fig. 2¢). This decline occurs despite evidence that tran-
spiration is less limited by water supply, and trees are
actively taking up carbon. Previous studies have shown that
increases in soil respiration are a major contributor to this
NEP decrease, particularly rhizospheric respiration after
trees prime soil with sugar exudates during the snowmelt
(Scott-Denton et al. 2006; Weintraub et al. 2007). The ANN
results suggest that after snowmelt, warming temperatures
and snowpack-derived soil moisture provide favorable con-
ditions for high soil respiration rates. The ANNs trained
on pre-monsoon NEPg, ;. and NEP . showed that
temperature variables were the most relevant climatic vari-
ables for this period (Figs. 3, 4, Online Resource Tables S9,
S10), and nighttimes during the pre-monsoon showed more
carbon loss at above-zero soil temperatures than winter or
snowmelt periods (Fig. 5b).

Although the monsoon rains in this region are relatively
mild (Fig. 2a, b), monsoon rains are expected to play a role
in supplying moisture to trees during the summer. How-
ever, as discussed above, in our analysis, rain remained of
low relevance as a driver of NEP even during the monsoon
period (Fig. 3). Also intriguing was our finding that much
variation in NEP during the monsoon was unexplained by
the climate drivers examined here (benchmark P, Figs. 3,
4). The most relevant drivers of NEP, e and NEP oy ime
(VPD and soil temperature, respectively) during the mon-
soon were still not very relevant (Fig. 3, Online Resource
Tables S9, S10). Overall, NEPy,in. and NEPpime
became less explained by all of the climatic drivers as the
growing season progressed from snowmelt to pre-monsoon
to monsoon. These findings of (1) low precipitation rele-
vance and (2) low total explainable variability suggest that
day-to-day variation in NEP during the monsoon period
was driven by factors not included in our candidate driv-
ers, at least not at the time scale of this analysis. Deep soil
moisture availability was not included as a candidate driver
and is a promising explanation; water isotopic signatures
suggest most xylem water derives from snowmelt late in
the growing season for dominant tree species at this site
(Hu et al. 2010). Thus, snowmelt water may buffer the for-
est from moisture variation during the monsoon.
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The post-monsoon period, like that for snowmelt, was
revealed as a transition period in which ecosystem metabo-
lism switches, in this case from the upregulated phase of
the growing season to the downregulated phase of winter.
During this period the forest at Niwot Ridge experiences
sub-zero air temperatures. Soil temperature is the most
important temperature variable for both daytime and night-
time mean NEP (Fig. 3a, b), and NEP appears more sensi-
tive to soil temperature above 0 °C during both the daytime
and nighttime (Fig. 6a, b). ET;,n. showed decreasing
sensitivity to all primary candidate drivers during the post-
monsoon (Fig. 4a, Online Resource Table S11). These
results suggest that the freeze—thaw status of the soil con-
trols day-to-day variations in NEP during this period. This
contrasts with the snowmelt period, where the high signifi-
cance of soil moisture during the daytime suggests photo-
synthesis is limited by water supply rather than controlled
directly by soil temperature (Fig. 3a).

Conclusion

Studies that have examined long-term eddy-covariance
datasets at individual sites have shown that doing so pro-
vides an independent means of corroborating, or chal-
lenging, our prior understanding of ecosystem processes.
Insight into controls over ecosystem processes can be
framed in general terms using the limited span of a flux
time series coupled to a deductive analysis framework that
tests hypotheses based on prior knowledge. However, an
alternative inductive analytical framework of a longer time
series offers confidence that such insight is unbiased by
prior expectations or a priori assumptions. In this study, we
showed that, overall, temperature plays an essential role in
controlling NEP, ;e and NEP ;o ime, as well as ET g, ime,
which is consistent with a prior deductive analysis on a
limited span of the same observational time series. With the
longer time series of our study, and the inductive process
we applied, however, we were able to discern much more
detail about the interaction of drivers in determining sea-
sonal responses to the climate, and in some cases, reveal
the nuances of indirect effects of drivers on ecosystem
metabolism. Our analysis has implications for deductive,
process-based terrestrial biosphere models that use day-
time and nighttime time-steps. Parsimonious process-based
models should achieve reasonable model-data agreement
when they include one of the most relevant ‘primary’ and
according ‘secondary’ drivers of the complete daytime or
nighttime time series because the ANNs with the two most
relevant drivers performed almost as well as ANNs with all
candidate drivers (reaching 69-97% of the benchmark per-
formance for all data analyses). However, it is important to
recognize that the total explainable variability (benchmark),
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the relative importance of climate drivers, and the NEP and
ET responses to single drivers, all change seasonally, sug-
gesting that phenology and climate variable interactions
shift such that NEP and ET sensitivities to climate are
dynamic throughout the year. Sophisticated process-based
models intended for more complete ecophysiological rep-
resentation should aim to reproduce these seasonal shifts.
Discovering when process-based models fail to produce
similar patterns to the ANN could diagnose model struc-
tures and parameterizations that need improvement for
accurate representation of controls over ecosystem metabo-
lism. Our study demonstrates that there is still much to be
learned by applying inductive approaches to long-term data
series as a means of understanding interactive mechanisms
and synergies that emerge among the many co-varying cli-
mate drivers over time, thereby confirming or challenging
our understanding of the nature of ‘ecosystem metabolism’.
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