
1 3

Oecologia (2017) 184:25–41

DOI 10.1007/s00442-017-3853-0

CONCEPTS, REVIEWS AND SYNTHESES

Climate controls over ecosystem metabolism: insights from a 

fifteen-year inductive artificial neural network synthesis for a 

subalpine forest

Loren P. Albert1 · Trevor F. Keenan2 · Sean P. Burns3,4 · Travis E. Huxman5 · 

Russell K. Monson1,6 

Received: 2 July 2016 / Accepted: 13 March 2017 / Published online: 25 March 2017 

© Springer-Verlag Berlin Heidelberg 2017

deductive studies of the same ecosystem. Here we exam-

ined the seasonal climate determinants of NEP and ET by 

analyzing a 15-year EC time-series from a subalpine forest 

using an ensemble of Artificial Neural Networks (ANNs) 

at the half-day (daytime/nighttime) time-step. We extracted 

relative rankings of climate drivers and driver–response 

relationships directly from the dataset with minimal a pri-

ori assumptions. The ANN analysis revealed temperature 

variables as primary climate drivers of NEP and daytime 

ET, when all seasons are considered, consistent with the 

assembly of past studies. New relations uncovered by the 

ANN approach include the role of soil moisture in driv-

ing daytime NEP during the snowmelt period, the nonlin-

ear response of NEP to temperature across seasons, and 

the low relevance of summer rainfall for NEP or ET at the 

same daytime/nighttime time step. These new results offer 

a more complete perspective of climate–ecosystem interac-

tions at this site than traditional deductive analyses alone.

Keywords Coniferous · Model-data assimilation · 

Photosynthesis · Fluxnet · Eddy covariance

Introduction

Over the past two decades, studies on ecosystem-to-global 

scale dynamics in the terrestrial carbon cycle have benefited 

from combined tower-based observations of CO2, H2O and 

energy fluxes, along with weather/climate variables (Wofsy 

et al. 1993; Flanagan et al. 2002; Monson et al. 2002; Bal-

docchi 2003). Early studies focused on the dynamics of spe-

cific sites, but as the number of sites grew, broader spati-

otemporal analyses were conducted on climate determinants 

of regional-to-global scale patterns in the carbon cycle (Gil-

manov et al. 2010; Beer et al. 2010; Xiao et al. 2011; Jung 

Abstract Eddy covariance (EC) datasets have provided 

insight into climate determinants of net ecosystem produc-

tivity (NEP) and evapotranspiration (ET) in natural eco-

systems for decades, but most EC studies were published 

in serial fashion such that one study’s result became the 

following study’s hypothesis. This approach reflects the 

hypothetico-deductive process by focusing on previously 

derived hypotheses. A synthesis of this type of sequen-

tial inference reiterates subjective biases and may amplify 

past assumptions about the role, and relative importance, 

of controls over ecosystem metabolism. Long-term EC 

datasets facilitate an alternative approach to synthesis: the 

use of inductive data-based analyses to re-examine past 
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et al. 2011; Hilton et al. 2014). There remains a role and 

opportunity for single-site studies to uncover the mecha-

nisms and processes that link climate to ecosystem metabo-

lism, especially within the context of holding site constant 

while studying vegetation dynamics and climate variables 

across overlapping time spans, ranging from seasonal 

through interannual to decadal (Callahan 1984; Richardson 

et al. 2007; Scheffer et al. 2009; Dragoni et al. 2011; Pile-

gaard et al. 2011; Craine et al. 2012; Keenan et al. 2012).

Syntheses of multiple studies conducted at a single 

site tend to be conducted with serial hindsight. That is, 

researchers subjectively evaluate the conclusions of a past 

study by posing them as the hypotheses for a future study. 

This deductive approach carries forward the focus on states 

and processes that compose past hypotheses, and thus tends 

to canalize perspectives on the most important drivers of 

observed responses. This process of synthesis is often done 

in an informal manner, through statements of interpreta-

tion in the discussion sections of manuscripts, and with 

researchers providing subjective interpretations of current 

results within the context of past results. One approach 

that has been used to achieve a more formal synthesis is 

to use data to constrain process-based models through data 

assimilation (Luo et al. 2011; Keenan et al. 2011). This is a 

hypothetico-deductive approach, in which past knowledge 

and observational data are used to structure and parameter-

ize models. The equations comprising such models repre-

sent hypotheses about how driving variables and observed 

effects interact with one another (Young et al. 1996; Bras-

well et al. 2005; Young 2006; Moffat et al. 2010; Zobitz 

et al. 2011; Keenan et al. 2011). The models are used to 

make predictions of outcomes (e.g. net ecosystem produc-

tivity, NEP) given a prescribed set of driving variables, and 

those model-simulated outcomes are compared to observa-

tions. To test the model (and the hypotheses implemented 

as equations), a statistical error can be estimated for the 

model-data match. If a model’s predictions align with 

the observed data, the model’s underlying hypotheses are 

deemed valid (Young 2006; Moffat et al. 2010).

An alternative to deductive approaches is to extract insight 

directly from the data using statistical models. This inductive 

approach can be designed to minimize the a priori hypotheses 

common in deductive analyses (Moffat et al. 2010). Although 

an inductive approach does not directly test mechanistic 

hypotheses for the processes of interest, it can reveal which 

drivers of the observed effects are the most important among 

a given set of drivers, whether information might be missing 

from deduced mechanistic models, and ultimately, the shape 

of the ecosystem response to drivers (Moffat et al. 2010). 

Artificial Neural Networks (ANNs) provide an advantageous 

tool for extracting patterns directly from large, highly variable 

datasets with few a priori assumptions (Moffat et al. 2010). 

ANNs are purely empirical models inspired by the biological 

neural networks of the nervous system (Olden et al. 2008). 

Because ANNs are non-parametric, and excellent at approxi-

mating nonlinear relationships in complex systems, ANNs 

are becoming more widely used in ecology. For a detailed 

description of ANNs and their applications, see Bishop 

(1995), Lek and Guégan (1999), Papale and Valentini (2003), 

Olden et al. (2008), and Moffat et al. (2010). In ecosystem 

ecology, ANNs have been used for multiple purposes, such as 

providing a benchmark for process-based model performance 

(Moffat et al. 2010; Keenan et al. 2012), correcting systematic 

error in the flux outputs of land–surface models (Abramowitz 

et al. 2007), and estimating carbon or water fluxes without 

relying on models of how plant physiology responds to envi-

ronmental variables (Van Wijk and Bouten 1999; Moffat et al. 

2010; Keenan et al. 2012).

In this study, we applied a data-based modeling strategy 

using ensembles of ANNs to a 15-year eddy flux dataset 

derived from the Niwot Ridge AmeriFlux site (US-NR1), 

located in a high-elevation, subalpine forest in west-

ern North America (Monson et al. 2002, 2010). Previous 

model-data fusion studies have been conducted at this site 

using Bayesian-type approaches (Sacks et al. 2006, 2007; 

Moore et al. 2008; Hu et al. 2010), and a set of over 50 past 

studies including observations and models have been pub-

lished. It would be possible to conduct a traditional sub-

jective, and deductive, synthesis of knowledge from these 

studies. However, our goal here is to conduct a new synthe-

sis of available data and apply an inductive approach using 

ANNs to characterize seasonal drivers of NEP and ET. In 

conducting this synthesis we avoided a priori assumptions 

about controls and relationships. We then compared the 

more objective synthesis using the ANN with the lessons 

learned through the past hypothetico-deductive studies.

Methods

Site

Niwot Ridge is part of the Long-Term Ecological Research 

network, and the Niwot Ridge EC dataset is among the 

longest for forest sites (Monson et al. 2002; Williams et al. 

2016). The Niwot Ridge AmeriFlux site is in a subalpine 

forest at high elevation (3050 m) in the Rocky Mountains, 

USA (40°1′58″N, 105°32′47″W). Mean annual temperature 

is 1.5 °C. Annual precipitation averages 800 mm, with 65% 

falling as snow (Scott-Denton et al. 2013). The secondary 

forest surrounding the site is approximately 120 years old 

and is dominated by Engelmann spruce (Pinceae engelma-

nii), subalpine fir (Abies lasiocarpa), and lodgepole pine 

(Pinus contorta). For a full site description see Greenland 

(1989), Monson et al. (2002, 2005) and Turnipseed et al. 

(2002, 2003).
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Meteorological and eddy covariance measurements

The US-NR1 eddy-covariance flux tower was installed in 

November 1998. Net ecosystem CO2 exchange (NEE) and 

latent and sensible heat fluxes were measured at a height 

of 21.5 m. We used 30-min averaged flux and climate data 

from January 1, 1999 to December 31, 2013 (AmeriFlux 

version 2015.11.10). Note that although NEE was used as 

an input to the ANN, we use the term net ecosystem pro-

ductivity (NEP) throughout the text and figures to empha-

size carbon uptake or loss with respect to the ecosystem, 

rather than to the atmosphere (NEP = −NEE). Evapotran-

spiration (ET) was calculated from latent heat flux. For 

further discussion of the eddy flux measurements at Niwot 

Ridge, see Monson et al. (2002), Turnipseed et al. (2002, 

2003), Yi et al. (2008), and Burns et al. (2014, 2015, 2016). 

The data and further details on processing are available 

from the Niwot Ridge AmeriFlux web site (http://urquell.

colorado.edu/data_ameriflux/). Historical daily snow water 

equivalent (SWE) was obtained from the Natural Resources 

Conservation Service (NRCS) SNOTEL site 663 (NIWOT) 

which is within 500 m of the flux tower.

Data treatment and grouping

Daytime and nighttime means were determined from 

30-min averaged data for all meteorological and flux vari-

ables except snow water equivalent and precipitation. Snow 

water equivalent (SWE), a measure of snowpack water 

content, was available at a daily temporal resolution, and so 

the daytimes and nighttimes for each day of the year were 

assigned the same measurement. Precipitation was summed 

for each daytime and nighttime time step. Throughout this 

text, the terms ‘daytime’ and ‘nighttime’ refer to the day-

time or nighttime means or sums of meteorological and 

flux observations. Daytime and nighttime bins for averag-

ing or summation of 30-min data were determined based 

on sunrise and sunset times for each day of the year for the 

latitude and longitude of the Niwot Ridge site; if a given 

30-min averaged period theoretically included any moment 

of photosynthetically active radiation (PAR) above zero, 

then that 30 min period was considered daytime.

For our target variables (NEP and ET), data was pro-

cessed as follows: only non-gap-filled data (AmeriFlux 

flag 1, ‘okay’ for NEP data and AmeriFlux flag 1 and 5 for 

ET data) were used; we excluded 30-min periods from the 

daytime and nighttime NEP data that failed both the inte-

gral statistics and stationarity tests; we excluded NEP and 

ET data from 30-min periods during the nighttime with 

canopy-surface friction velocity (u*) less than 0.2, which 

has been determined as the best threshold to distinguish 

atmospheric stability influences on fluxes (see Monson 

et al. 2002). These exclusions meant that some ‘daytime’ 

or ‘nighttime’ bins were incomplete, so we excluded ‘day-

time’ and ‘nighttime’ data points if more than 50% of their 

constituent 30-min periods were missing. For non-bounded 

climate variables (air temperature, soil temperature, and net 

radiation) outliers more than three standard deviations from 

the mean were excluded. The number of available day-

times/nighttimes in each data grouping after quality control 

is shown in Online Resource material (Tables S1–S8).

We grouped the daytime and nighttime data based on 

annual or seasonal periods of interest (Table 1). To exam-

ine how the seasonal drivers of NEP and ET vary among 

years, we grouped climate and flux data for each year 

(1999–2013). To examine how the drivers of NEP vary 

across seasons, we grouped data into phenologically rele-

vant ‘seasonal periods’ for training the ANN (Fig. 2b). The 

‘snowmelt’ period included data from the first day of peak 

SWE to the first day with zero SWE. The ‘pre-monsoon’ 

period included data from zero SWE to the first day of the 

monsoon (defined as the first day after June 15 with 24-h 

summed precipitation greater than or equal to 10 mm). The 

‘monsoon’ period included data from the first day of the 

monsoon to September 20 (arbitrarily chosen). The ‘post-

monsoon’ period included data from September 21 to the 

date when SWE was greater than, or equal to, 25 mm for 

more than a week after September 20 (or after September 

21st for ‘leap years’). The winter period was defined as 

the end of the post-monsoon period to the beginning of the 

‘snowmelt’ period of the following calendar year.

Artificial neural network model framework

We used a modeling framework of multi-layered feed-for-

ward artificial neural networks trained by backpropagation. 

The ANNs of this study consisted of two layers: the input 

(see ‘candidate seasonal drivers’ section below) fed into a 

hidden layer, and the outputs of the hidden layer fed into an 

output layer (Fig. 1). Only one hidden layer was used; feed-

forward ANNs with a single hidden layer can approximate 

any continuous function with an arbitrary accuracy pro-

vided that no constraints are placed on the number of nodes 

or the magnitude of the nodal weights (Cybenko 1989). All 

ANNs were created and trained using Matlab’s neural net-

work toolbox (Matlab version R 2014b; Beale et al. 2014).

For each ANN, workflow consisted of the following 

steps: data pre-processing, network creation, network con-

figuration, initialization of weights and biases, network 

training, and network validation (Beale et al. 2014). For 

data pre-processing, all inputs (candidate seasonal driv-

ers) and the target (−NEP and ET) were scaled so that all 

values were within the interval [−1 1] to correspond to the 

nearly linear range of the hyperbolic tangent sigmoid trans-

fer function and to expedite training (Moffat 2012; Beale 

et al. 2014). Networks (Fig. 1) were created for daytime 

http://urquell.colorado.edu/data_ameriflux/
http://urquell.colorado.edu/data_ameriflux/
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Table 1  Summary of questions and the strategy to inform each question via data grouping and candidate drivers of net ecosystem productivity (NEP) and evapotranspiration (ET) fluxes for 

analysis with artificial neural networks

a Daytime only
b Soil moisture only available for 2002–2013
c Excluded for periods without snow cover (pre-monsoon and monsoon periods)

Questions Data grouping Candidate drivers

All data analysis

 What are the seasonal drivers of daytime and nighttime NEP and ET? All daytime data and all nighttime data from 1999 to 2013 All candidate drivers:

Air temperature (°C)

Wind speed (m s−1)

Wind direction (deg. from north)

Friction velocity, u* (m s−1)

Precipitation (mm)

Vapor pressure deficit (kPa)

Soil temperature (°C)

PAR (µmol m−2 s−1)a

Net radiation (W m−2)a

Humidity (percent)

Soil moisture (m3 m−3)b

Snow water equivalent (mm)c

Interannual analysis

 What are the seasonal drivers of daytime and nighttime NEP and ET 

for individual years?

Each individual year from 1999 to 2013, daytime and nighttime data Same as above

Seasonal analysis

 What are the drivers of daytime and nighttime NEP and ET within 

phenologically relevant seasonal periods?

Daytime and nighttime data from 1999 to 2013 grouped by seasonal 

period (Fig. 2b):

Winter period

Snowmelt period

Pre-monsoon period

Monsoon period

Post-monsoon period

All continuous data

Same as above

 What is the response of NEP and ET to their relevant seasonal driv-

ers?

All daytime data and all nighttime data from 1999 to 2013, and data 

grouped by periods (Fig. 2b)

Most relevant primary drivers:

Air temperature (°C)

Soil temperature (°C)

(Additional responses in Online Resource Figs. 

S5–S14)
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and nighttime data of each seasonal period described above. 

Networks were configured with the input size equal to the 

number of candidate seasonal drivers (inputs) for each sce-

nario and eight hidden layer nodes. Eight nodes were used 

for the hidden layer based on preliminary tests of the effect 

of node size on ANN performance (Online Resource Figs 

S3, S4). Before training, inputs and associated targets were 

randomly divided into three separate subsets for training 

(60% of data), validation (20% of data), and testing (20% 

of data). The ‘training’ and ‘validation’ subsets were both 

used during training. The ‘training’ subset was used for 

computing the performance gradient and updating weights 

(Beale et al. 2014). To avoid overfitting the data, network 

weights and biases were saved when the error of the ‘vali-

dation’ subset reached a minimum during the training pro-

cess (Beale et al. 2014). Networks were trained in batch 

(epoch) mode using the Levenberg–Marquardt algorithm 

with mean-square error as the performance (merit) func-

tion. Each ANN scenario was repeated ten times, and the 

ANN with the lowest mean squared error from the ‘testing’ 

subset was selected for analysis of seasonal driver rank-

ings. Stated uncertainty represents population standard 

deviations for ten ANNs trained with the same seasonal 

data grouping.

Candidate seasonal driver selection and relevance

To minimize a priori assumptions about which seasonal 

climate drivers are important, the starting set of candidates 

included all drivers that could potentially affect NEP and 

ET. We selected the following initial set of candidate driv-

ers: air temperature (°C) measured at 21.5 m, wind speed 

(m s−1) measured at 21.5 m, wind direction (degrees from 

true north) measured at 21.5 m, u* (m s−1), precipitation 

(mm) measured at 10.5 m, vapor pressure deficit (kPa) 

measured at 21.5 m, soil temperature (°C), incoming pho-

tosynthetically active photon flux density (PAR) (µmol m−2 

s−1) measured at 25.5 m, net radiation (W m−2) measured 

at 25.5 m, relative humidity (percent) measured at 8 m, 

volumetric soil moisture (m3 m−3) measured at 0–15 cm 

depth, and snow water equivalent (mm). Because envi-

ronmental variables may be cross-correlated with each 

other, a driver might appear to be more important than the 

actual driving variable (Moffat et al. 2010). Examination 

of the relationships between the driving variables shows 

the cross-dependencies and highlights the variables where 

those dependencies should be taken into account during 

interpretation of the results (Online Resource Fig.S1, S2).

To estimate the total explainable variability in the data-

set, all candidate drivers were used as inputs for ANN 

training (Moffat et al. 2010). The r2 between the target 

(observed NEP or ET) and ANN output served as a ‘bench-

mark’ of maximum mapping between the target and the 

candidate seasonal drivers (Moffat et al. 2010). This r2 also 

showed how much variability remained unexplained due to 

measurement noise or unmeasured/omitted drivers of flux 

(Moffat et al. 2010). Because volumetric soil moisture was 

only available after the start of 2002, ANN benchmarks 

were calculated with and without volumetric soil moisture 

data. The results were similar (difference between includ-

ing or excluding soil water content in benchmark r2 values 

was usually less than 0.08, and only higher than 0.1 for 

year 2003 and 2004), and here we only report benchmarks 

without soil water content included for consistency across 

the 15-year dataset.

After an ANN performance benchmark was created, 

we performed a ranking of ‘primary’ drivers based on rel-

evance, and then an identification of relevant ‘secondary’ 

drivers for each data grouping. To examine the relevance of 

each input as ‘primary’ seasonal drivers of flux, ANNs were 

trained with each candidate driver individually and ranked 

based on r2. Next, the relevance of each input as a ‘second-

ary’ seasonal driver was examined by training ANNs with 

two inputs: the most relevant ‘primary’ seasonal driver plus 

each other input variable. For all ANNs (primary, second-

ary and benchmark) the coefficient of determination pro-

vided a measure of relevant information provided by the 

input(s) as described in Moffat et al. (2010; see also Van 

De Laar et al. 1999). We applied this approach to each 

‘seasonal period’ independently. Because primary and sec-

ondary drivers could have similar relevance (r2), the cor-

relation coefficients (r) were compared after a Fisher r-to-z 

transformation (Fisher 1921). Each driver was compared 

Fig. 1  Architecture of ANN models used in this study. For daytime 

data, benchmark ANNs had n = 12 or 11 inputs for periods with and 

without snowpack, respectively (see Table 1). For nighttime data, 

benchmark ANNs had n = 10 or 9 inputs for periods with and with-

out snowpack. Primary driver ANNs had n = 1 input, and secondary 

driver ANNs had n = 2 inputs. All ANNs had m = 8 nodes in the 

hidden layer. Black arrows represent weights; gray arrows represent 

biases. Dotted lines represent inputs and hidden nodes not depicted 

(e.g. hidden nodes 3 through m). In a feedforward ANN, information 

flows in one direction: from the inputs, through the hidden layer to 

the output layer
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to the next rank down for up to four drivers for each data 

grouping. The z-score from comparing the correlation coef-

ficients indicates whether multiple drivers were ‘tied’ for 

‘significantly most relevant.’ If more than three drivers for a 

given grouping were tied (p > 0.05 for two-tailed test), then 

no driver(s) were described as ‘significantly most relevant.’

The response of a dependent variable to an individual 

driver can be captured by an ANN model with that indi-

vidual driver as the sole input (Moffat et al. 2010). Exam-

ining the shape and form of the ecosystem response may 

provide insight into the mechanisms of ecosystem metab-

olism (Moffat et al. 2010). Ecosystem responses derived 

from an ANN trained with a single input driver do not 

exclude the influence of other drivers (i.e. they are not 

partial responses), and so the shape of the response may 

be influenced by other factors that co-vary with the driver 

in question over some or all of the observed range of vari-

ability. Thus, the ecosystem response to a single input is 

most informative for input drivers of high relevance (that 

account for much of variation in the response variable). We 

examined the NEP and ET responses to their most relevant 

primary drivers as determined from the ANNs trained on all 

the daytime or nighttime data (Table 1). Then, to investigate 

how the sensitivity of NEP to climate varies due to phenol-

ogy or other seasonal changes in ecosystem dynamics, we 

plotted the single-driver ANNs for all daytime and night-

time data for each phenologically relevant seasonal period. 

Because ANN models vary due to the random assignment 

Fig. 2  Fifteen-year average 

seasonality of environment, net 

ecosystem productivity (NEP) 

and evapotranspiration (ET) 

at Niwot Ridge. a Mean daily 

(24 h) precipitation (purple 

line; multiplied by 10 for 

visualization) and snow water 

equivalent (SWE; brown line) 

with interquartile range (grey). 

b Boxplots showing median 

(dotted line), interquartile range 

(grey), and range (black whisk-

ers; from q3 + 1.5(q3 − q1) 

and q1 − 1.5(q3 − q1), where 

q1 = 25th and q3 = 75th per-

centile) of transitions between 

seasonal periods. Seasonality of 

NEP (green line) for c daytime 

and d nighttime, and ET (blue 

line) for e daytime and f night-

time with interquartile range 

(grey). Color version of this 

figure is available online
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of weights during training, and the random division of the 

data into training, validation, and test datasets, an ensemble 

of 100 ANN models were trained for each primary driver, 

and mean and standard deviation of these 100 models were 

plotted for visualization.

Results

Climate drivers of net ecosystem productivity

For NEP, the benchmark r2 values showed that the com-

bined candidate drivers explained approximately 89 and 

87% of the total variance in NEPdaytime and NEPnighttime 

datasets, respectively (Fig. 3, Online Resource Tables S9, 

S10). Temperature variables emerged as the significantly 

most relevant seasonal drivers of NEPdaytime and NEPnight-

time for all data across all seasons (1999–2013); for NEP-

daytime, the significantly most relevant drivers were air tem-

perature above the canopy and soil temperature, and for 

NEPnighttime, the most relevant driver was soil temperature 

(Fig. 3, Online Resource Tables S9 and S10). For individ-

ual years, the significantly most relevant primary drivers 

varied for NEPdaytime (air temperature, soil temperature, 

or SWE), but always included soil temperature for NEP-

nighttime (Online Resource Tables S17 and S18). Training 

ANNs with two inputs—the most relevant and one other 

driver—revealed that the secondary drivers that produced 

the greatest improvement in performance for all data were 

relative humidity and VPD for NEPdaytime, improving the 

coefficient of determination by 0.14 and 0.12, respectively, 

above the 0.67 value for air temperature alone (Online 

Resource Table S13). For NEPnighttime, air temperature and 

soil moisture produced the highest improvements when 

combined with soil temperature (Online Resource Table 

S14). Many candidate drivers were not relevant to dynam-

ics in NEP. For all NEPdaytime and NEPnighttime data, ANNs 

trained with wind speed, wind direction, u*, or precipita-

tion as the sole input yielded low performance (r2 < 0.2; 

Fig. 3, Online Resource Tables S9 and S10), and as the 

secondary input (to air temperature) yielded little perfor-

mance improvement (r2 < 0.1; Online Resource Tables 

S13, S14). 

Climate drivers of NEPdaytime and NEPnighttime 

for phenologically relevant seasonal periods

Based on benchmarks, seasonal drivers explained more 

variation in NEP during some periods than others. All 

drivers explained 76% of variation in NEPdaytime dur-

ing snowmelt (Fig. 3a, Online Resource Table S9), 

but explained less variation as the seasons progressed 

(monsoon period benchmark r2 = 0.58; Fig. 3a, Online 

Resource Table S9). By the post-monsoon period this 

trend reversed, and a high percentage of NEPdaytime was 

again explained by all drivers (benchmark r2 = 0.80; 

Fig. 3a, Online Resource Table S9). NEPnighttime followed 

a similar seasonal pattern of decreased total explainable 

variability during the monsoon (Fig. 3b, Online Resource 

Table S10).

ANNs trained on single climate variables for data 

grouped by seasonal period showed the best performance 

with temperature variables for most periods during both the 

daytime and nighttime. Yet there were two seasonal periods 

for which a temperature variable was not the significantly 

most relevant primary driver of NEP during the daytime: 

the snowmelt period and the monsoon period. During the 

snowmelt period, soil moisture was the significantly most 

relevant primary driver for NEPdaytime (Fig. 3, Online 

Resource Table S9). During the monsoon period for NEP-

daytime, no driver(s) emerged as significantly most relevant, 

but VPD explained more variation than air temperature 

(Fig. 3, Online Resource Table S9). The significantly most 

relevant secondary drivers of NEPdaytime that emerged were 

PAR and net radiation (for monsoon), and soil moisture (for 

winter; Online Resource Table S13). For NEPnighttime, soil 

temperature was the significantly most relevant driver for 

all periods except snowmelt, when air temperature was sig-

nificantly most relevant, and pre-monsoon, when tempera-

ture variables were both most relevant (Online Resource 

Table S10). The relevance of secondary drivers of NEPnight-

time was similar within most seasons, but during winter, air 

temperature, soil moisture, and SWE were most relevant 

(Online Resource Table S14). Also similar to the result for 

ANNs trained on all data, ANNs trained with wind speed, 

wind direction, u*, or precipitation as the sole input (pri-

mary driver) for NEPdaytime or NEPnighttime data grouped by 

seasonal period yielded low performance (r2 < 0.1; Online 

Resource Table S9-10). As a secondary input to the most 

relevant primary driver for each period, these same vari-

ables produced little performance improvement (difference 

in r2 < 0.1) for NEPnighttime and NEPdaytime of all seasonal 

periods (Online Resource Table S13, S14).

We focused on temperature variables (soil or air tem-

perature) for our examination of NEP responses because 

these were the most relevant drivers for all NEPdaytime and 

NEPnighttime data (Fig. 3), many seasonal periods (Fig. 3), 

and most individual years (Online Resource Tables S17, 

S18). The response of NEPdaytime to temperature resembled 

a physiological thermal performance curve, with a posi-

tive NEP response at low temperatures, and negative NEP 

response at higher temperatures (Figs. 5a, 6a). NEPnighttime 

responded negatively to air temperature and soil tempera-

ture (Figs. 5b, 6b).
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(a)

(b)

Fig. 3  Relevance of candidate drivers for seasonal data groupings 

(winter, snowmelt, pre-monsoon, monsoon, and post-monsoon) as 

well as all data for a daytime and b nighttime net ecosystem produc-

tivity (NEP). The bars indicate the performance (coefficient of deter-

mination) of an ANN with each candidate driver as a single input. 

For each data grouping, significantly highest relevance primary driv-

ers are denoted with asterisks, and vertical dotted line indicates the 

benchmark ANN performance. The soil moisture time series started 

in 2002, so benchmark performances do not include soil moisture 

as an input, and the soil moisture row does not include 1999–2001. 

Abbreviations are used for snow water equivalent (SWE), moisture 

(moist.), relative (rel.), radiation (rad.), direction (dir.), temperature 

(temp.), incoming photosynthetically active radiation (PAR), vapor 

pressure deficit (VPD), and precipitation (precip)
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Climate drivers of evapotranspiration

For ET, the benchmark r2 values showed that, when combined, 

all daytime candidate drivers and nighttime candidate drivers 

explained 78 and 43% of the total variance in ETdaytime and 

ETnighttime, respectively (Fig. 4, Online Resource Tables S11 

and S12). For ETdaytime, air temperature and soil temperature 

were significantly highest relevance drivers of all data (Fig. 4a, 

Online Resource Table S11), and air temperature, soil temper-

ature, or both emerged as significantly most relevant primary 

driver(s) of ETdaytime for many individual years, sometimes 

tied with SWE (Online Resource Table S19). For all ETnight-

time data, no primary drivers emerged as significantly most rel-

evant because performance was similar across more than four 

drivers, but u* and wind speed were notably relevant (Online 

Resource Table S12), and for data grouped by each individual 

year, u* and wind speed were the most relevant primary driv-

ers of 2004 (Online Resource Table S20). The secondary driv-

ers of ETdaytime produced little improvement in performance 

across years (Online Resource Table S23).

Climate drivers of daytime and nighttime 

evapotranspiration for phenologically relevant seasonal 

periods

Like the NEP result, benchmarks varied by seasonal peri-

ods for ET with the lowest amount of variance explained 

in the post-monsoon for ETdaytime and pre-monsoon for 

ETnighttime (Fig. 4, Online Resource Tables S11 and S12). 

For ETnighttime the candidate drivers explained a low 

amount of variation (pre-monsoon benchmark r2 = 0.36), 

a decrease in 0.19 from the snowmelt period when ANNs 

performed best (Online Resource Table S12).

For all periods, the most relevant primary driver dif-

fered between ETdaytime and ETnighttime. For ETdaytime, 

the ANNs with humidity and VPD (winter period), 

and net radiation and PAR (monsoon period) variables 

as inputs showed the best performance (Fig. 4, Online 

Resource material S11). By contrast, for ETnighttime, no 

significantly highest relevance drivers emerged, but 

wind speed and friction velocity (u*) showed relatively 

high relevance as primary drivers for all periods, and 

VPD and relative humidity were high relevance dur-

ing the monsoon (Fig. 4, Online Resource Table S12). 

Relatively high relevance ETdaytime secondary drivers 

varied through time, from radiation variables (winter 

and snowmelt), to wind direction (pre-monsoon), to soil 

moisture (monsoon), and VPD (post-monsoon) but none 

were significantly highest secondary drivers for any sea-

sonal period (Online Resource Table S15). For ETnight-

time significantly highest relevance secondary drivers 

were relative humidity during the winter, and wind 

speed during the monsoon (Online Resource Table S16).

Examining the responses of ETdaytime and ETnighttime to 

their most relevant primary drivers revealed differences 

between daytime and nighttime sensitivities across diur-

nal cycles and seasons. For all seasonal periods, ET in 

general showed little sensitivity to variation in air tem-

perature when temperatures were subzero (Fig. 7a, b). 

ETdaytime, but not ETnighttime was more responsive to tem-

perature during growing season (non-winter) seasonal 

periods (Fig. 7a, b).

Discussion and synthesis

Drivers of ecosystem metabolism considering all 

seasons together

Using an inductive approach focused on daily time-steps 

to evaluate seasonal patterns of ecosystem–climate rela-

tionships, we found that temperature was a predominant 

driver of NEP, inclusive of both daytime and nighttime 

periods of CO2 exchange. Air temperature and soil tem-

perature were the most relevant drivers of mean NEPday-

time, when data for all parts of the growing season were 

considered together (Fig. 3a, Online Resource Table S9), 

and soil temperature was the most relevant driver of mean 

NEPnighttime for all data (Fig. 3b, Online Resource Table 

S10). Mean NEPdaytime responded positively to warm-

ing temperatures until daytime-average temperature sur-

passed about 12.5 °C, reached a peak, and responded 

negatively as average daily temperature approaches 

20 °C (Fig. 5a). Extrapolations from nighttime respi-

ration to daytime respiration are imperfect (Goulden 

et al. 1996; Speckman et al. 2014), and may exclude the 

effect of light-inhibition on leaf respiration (Wehr et al. 

2016). That said, high respiration rates in warm tempera-

tures likely contributed to the reversal in the response of 

NEPdaytime to air temperature at high values (Fig. 5b), in 

addition to shifting photosynthetic temperature optima. 

NEPnighttime decreased with soil temperature (Fig. 6b), as 

expected given the exponentially positive responses of 

soil respiration, driven by high sensitivities of microbial 

respiration and microbial biomass to increasing temper-

ature in this forest ecosystem (Monson et al. 2006a, b; 

Schmidt et al. 2009).

In a previous study of this same ecosystem, Huxman 

et al. (2003) used path analysis, a deductive statistical frame-

work, to construct a model of correlations between seasonal 

climate and NEP and, like our study, showed that tempera-

ture is a dominant driver of seasonal dynamics in NEP. The 

observed effect of temperature was particularly relevant 

to our study because it also revealed a switch in ecosystem 

sensitivity to temperature during the growing season—from 

a positive effect (higher temperature caused higher NEP) 
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(a)

(b)

Fig. 4  Relevance of candidate drivers for seasonal data groupings 

(winter, snowmelt, pre-monsoon, monsoon, and post-monsoon) as 

well as all data for a daytime and b nighttime evapotranspiration 

(ET). The bars indicate the performance (coefficient of determina-

tion) of an ANN with each candidate driver as a single input. Sig-

nificantly highest relevance primary drivers denoted with asterisks. 

The vertical dotted line indicates the benchmark performance from 

all drivers. Note that the soil moisture time series started in 2002, 

thus benchmark values shown here do not include soil moisture as 

an input, and the soil moisture row does not include 1999–2001. See 

Fig. 3 legend for abbreviations
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during spring to a negative effect (higher temperature caused 

lower NEP) during mid-summer. The cause of the seasonal 

switch in temperature sensitivity, as reported in Huxman 

et al. (2003), was that ecosystem respiration rates were low 

during the spring because the presence of the snow pack kept 

soil temperatures and associated soil respiration rates rela-

tively low, but increasing air temperatures stimulated gross 

ecosystem productivity, thus enhancing rates of NEP. During 

mid-summer, however, soil respiration rates for snow-free 

soil were assumed to increase due to direct thermal stimula-

tion of the heterotrophic component (see Scott-Denton et al. 

2003). These causes are also likely to be driving the seasonal 

switch in temperature sensitivity of NEP that we observed. It 

is informative that the simple path analysis deployed by Hux-

man et al. (2003) detected the seasonal reversal in ecosystem 

temperature response given that it was conditioned on only 

two years of data, compared to the fifteen years of data in 

this study. One conclusion that we have drawn from the 

comparison of these two studies is that it is possible to detect 

dominant seasonal drivers with a relatively short time-series 

span. The response of this subalpine system to temperature 

is sufficiently strong and consistent to emerge from only two 

years of study and within the scope of a deductive frame-

work conditioned on prior knowledge of processes.

Our analysis, however, carried the power to situate the 

role of temperature within a broader context of other cli-

mate drivers. Our results showed that snow-water equiva-

lent (SWE) as a primary driver yielded a coefficient of 

determination almost as high as that for temperature regard-

ing NEPdaytime and NEPnighttime (Fig. 3; Online Resource 
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Tables S9 and S10). SWE and soil temperature are closely 

related with snow melting around 0 °C (Online Resource 

Fig. S1 and S2). We thus infer that temperature controls 

NEP not only through its interaction with photosynthetic 

optima and respiration rates during the non-winter peri-

ods, but also as an annual control over the physical state of 

water. The temperature and water effects are intertwined in 

their seasonal influences on ecosystem carbon metabolism, 

and whereas they were revealed in our analysis, they were 

not revealed in the simpler path analysis by Huxman et al. 

(2003).

One of the major contributions of our study was the 

power we had to reveal the nuanced controls of ET, which 

have generally been considered in less detail, compared to 

NEP, in past analyses of tower flux data. The ANN analysis 

revealed evidence that Niwot Ridge experiences an annual 

cycle in the predominance of demand (governed by atmos-

pheric factors) versus supply (governed by water avail-

ability; Federer 1982) as limitations on daytime transpira-

tion. The most relevant ETdaytime driver, as identified in the 

ANN, shifted from soil moisture (suggesting supply limi-

tation) for the snowmelt period, towards net radiation and 

PAR for the pre-monsoon through post-monsoon periods 

(Fig. 4a, Online Resource Table S11). Net radiation should 

increase evaporative demand (via increased energy to drive 

latent heat flux), but the photosynthetically active portion 

of the light spectrum can also affect supply to the atmos-

phere (via stomatal responses). Given that pre-monsoon 

ETdaytime, and to some extent monsoon ETdaytime, remained 

high at high VPD and low relative humidity, and that ETday-

time was more sensitive to PAR during these same periods 

(Online Resource Figs. S10, S13 and S14), we hypothesize 

that during this part of the season, stomata act to maximize 

carbon gain, rather than minimize water loss. Thus, overall 

ET is likely limited by demand early in the growing season. 

During the post-monsoon period the ecosystem appeared to 

shift back to greater supply limitation, as ETdaytime showed 

frequent declines at high VPD and showed little sensitivity 

to PAR (Online Resource Figs. S13 and S14). This seasonal 

shift from demand-limited to supply-limited ET is consist-

ent with findings from a watershed model study for a north-

ern Rocky Mountain site that experiences similar annual 

rainfall as that for Niwot Ridge (Emanuel et al. 2010).

ETnighttime, which we expect to be driven by tempera-

ture, relative humidity, and wind speed (based on theory 

expressed in the Penman–Monteith and Clausius–Clay-

peron relations; Monson and Baldocchi 2014) was deter-

mined in large part by u* or wind speed (Fig. 4b, Online 

Resource Table S12). Given that u* is calculated from wind 

speed, and that these two variables are correlated (Online 

Resource Fig. S1 and S2), it is difficult to differentiate 

between them as independent candidate drivers. Nonethe-

less, this finding suggests several possibilities that warrant 

future investigation. Of the components of ET (evapora-

tion and transpiration), evaporation is generally expected to 

dominate ETnighttime, so our results suggest that wind speed 

or u* may drive evaporation. Yet wind speed also decreases 

leaf surface resistance, providing a possible mechanism 

for impacting ETnighttime in the presence of positive night-

time transpiration (Dawson et al. 2007), which has been 

reported as relatively frequent in Engelmann spruce and 

subalpine fir, two of the dominant trees in the Niwot Ridge 

forest (Turnipseed et al. 2009). Any seasonality of a possi-

ble interaction between wind speed and transpiration could 

be difficult to detect because ETnighttime is slightly higher in 

the winter (Fig. 2f) when trees are dormant and sublimation 

dominates (Burns et al. 2015). The significance of u* as a 

E
T

d
a
y
ti
m

e
 (

m
m

o
l 
m

-2
 s

-1
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
(a)

-20 -10 0 10 20
0

1

2

3

4

5

Air temperature ( C)

-20 -10 0 10 20

E
T

n
ig

h
tt
im

e
 (

m
m

o
l 
m

-2
 s

-1
)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5(b)

Winter
Snowmelt
Pre-monsoon
Monsoon
Post-monsoon

-20 -10 0 10 20

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Fig. 7  Response of a daytime and b nighttime evapotranspira-

tion (ET) to air temperature. The points (colored by period) indicate 

observations (daytime or nighttime ET means). The mean (black line) 

and standard deviation (grey band) from 100 ANNs show the mod-

eled response and uncertainty. Insets show mean response (colored 

lines) and standard deviation (grey bands) of a daytime and b night-

time ET to air temperature during specific seasonal periods. Color 

version of this figure is available online



37Oecologia (2017) 184:25–41 

1 3

control over ET, independent of windspeed, might occur if 

canopy roughness differs depending on wind direction, thus 

affecting wind shear differentially. We did not partition u* 

as a function of windspeed in the current analysis, and we 

have not pursued the potential for canopy roughness and 

shear interactions to control ET independent of windspeed. 

However, we note the potential for these interactions here 

as justification for not combining u* and windspeed as a 

single driving variable in the analysis.

Another unexpected result was that wet precipitation 

(rain) did not show high relevance as a driver of NEP-

daytime or NEPnighttime flux for the continuous dataset (all 

data) or any seasonal period (Online Resource Tables 

S9-S10), and for ET, precipitation never explained more 

than 19% of the total ET variability for any seasonal 

period, daytime or nighttime (Online Resource Tables 

S11–S12). If the effects of precipitation on NEP or ET 

lag after the precipitation events by more than ~12 h, 

then our analysis would not have been expected to detect 

the relationship. Burns et al. (2015) found enhanced 

mid-day ET on dry days following a wet day during the 

warm season (May/June through September), so it is 

possible that we indeed missed this relation with respect 

to ET in our study due to a lag effect. Despite its lack of 

significance as a direct driver of NEP, we hypothesize 

the existence of indirect effects through other climate 

variables that did emerge as relevant drivers such as rela-

tive humidity and VPD. Relative humidity and VPD were 

relevant secondary drivers of all NEPdaytime data when 

the primary driver was air temperature (Online Resource 

Table S13). Furthermore, soil moisture in the upper soil 

profile emerged as an important secondary driver of all 

NEPdaytime data when the primary driver was soil tem-

perature (Online Resource Table S13). These variables 

should be affected by rain or the increased cloud cover 

associated with rain events. It is also important to rec-

ognize that the low relevance of wet precipitation from 

this daytime/nighttime analysis does not signify that wet 

precipitation is unimportant at other time scales because 

the controls on NEP and ET vary with time (Barford 

et al. 2001; Siqueira et al. 2006; Richardson et al. 2007). 

Short-term (minutes to hours) responses to precipitation 

may not be captured in this analysis since eddy covari-

ance data during precipitation are gap-filled, and pre-

cipitation could have a lagged effect on NEP or ET over 

several days which also may not be captured in the half-

day-averaged time steps examined here. Since meteorol-

ogy data time-step duration varies across process-based 

ecosystem models (Siqueira et al. 2006), future ecohy-

drology studies should examine how temporal resolution 

(e.g. daytime/nighttime versus half-hour) affects simu-

lated interaction between precipitation, other climate 

variables, NEP, and ET.

Seasonal partitioning of drivers of ecosystem 

metabolism

NEP is much less sensitive to temperature during winter 

than during other periods; the ANN trained on winter day-

time data only, showed net carbon loss during this season 

until mean daytime temperature rose several degrees above 

0 °C. Similarly, winter ETdaytime rates were relatively con-

sistent at approximately 1 mmol m2 s−1, regardless of tem-

perature, but ETdaytime increased with temperature as winter 

ended and the snow cover began to melt (Fig. 7a). Unlike 

daytime, the NEPnighttime and ETnighttime responses to tem-

perature variables during winter were more aligned with 

those of other periods (Figs. 5b, 6b, 7b). The responses 

of NEPnighttime to soil temperature appeared similar across 

seasonal periods, and carbon release clearly increased with 

soil temperature during the winter (Fig. 6b). Together, the 

daytime and nighttime NEP and ET responses lead us to 

conclude that during the winter, trees cannot transpire and 

carry out leaf-level gas exchange, but soil respiration per-

sists. This result aligns with previous studies on winter 

dynamics at Niwot Ridge that showed an active beneath-

snow microbial community (Monson et al. 2006a, b; Lip-

son et al. 2009; Schmidt et al. 2009).

Previous climate–carbon relations studies at Niwot 

Ridge, all of which used a shorter span of data and tested 

explicit hypotheses in a deductive framework, focused on 

the role of the spring snowpack and the timing of its melt 

as the primary control over early season rates of CO2 

uptake (Monson et al. 2002, Huxman et al. 2003, Mon-

son et al. 2005, Hu et al. 2010). Evidence was presented to 

support deep, late-winter snowpacks as a crucial resource 

allowing the forest to sequester atmospheric CO2 at rela-

tively high rates early in the growing season. Monson et al. 

(2005) discovered that trees in this forest can respond to 

spring snowmelt through rapid upregulation of photosyn-

thetic capacity, and hypothesized that the primary advan-

tage of the evergreen growth habit is to respond quickly 

to the availability of snowmelt water before the onset of 

mid-summer drought. Even later in the growing season, the 

importance of snowmelt water was shown to be important, 

as hydrogen and oxygen stable isotopes in water extracted 

from tree stems showed that most NEP in the forest was 

driven by snowmelt water, not mid-summer rain water (Hu 

et al. 2010).

Our analysis confirmed that the snowmelt period is 

indeed an important period controlling rates of atmospheric 

CO2 uptake in this forest ecosystem. However, unlike pre-

vious studies, we identified soil moisture during the snow-

melt period as more important in explaining variance in 

NEP, than temperature (Fig. 3a), and relative humidity 

and VPD were identified as the most important second-

ary drivers (based on the ANNs trained on single climate 
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variables (Online Resource Table S13). From our analysis, 

we conclude that only after snow melt is completed does 

air temperature take on a direct role as the primary driver 

of seasonal dynamics in NEP. Thus, while temperature 

was identified as the primary determinant of NEP when 

assessed across all seasons together, it had a subordinate 

role to soil moisture during the earliest part of the season. 

There is a critical transition in controls, from soil moisture 

content to temperature, that occurs as the system emerges 

from snowmelt.

After the snowpack melt, NEP declines during the ‘pre-

monsoon’ period relative to the late ‘snowmelt’ period 

(Fig. 2c). This decline occurs despite evidence that tran-

spiration is less limited by water supply, and trees are 

actively taking up carbon. Previous studies have shown that 

increases in soil respiration are a major contributor to this 

NEP decrease, particularly rhizospheric respiration after 

trees prime soil with sugar exudates during the snowmelt 

(Scott-Denton et al. 2006; Weintraub et al. 2007). The ANN 

results suggest that after snowmelt, warming temperatures 

and snowpack-derived soil moisture provide favorable con-

ditions for high soil respiration rates. The ANNs trained 

on pre-monsoon NEPdaytime and NEPnighttime showed that 

temperature variables were the most relevant climatic vari-

ables for this period (Figs. 3, 4, Online Resource Tables S9, 

S10), and nighttimes during the pre-monsoon showed more 

carbon loss at above-zero soil temperatures than winter or 

snowmelt periods (Fig. 5b).

Although the monsoon rains in this region are relatively 

mild (Fig. 2a, b), monsoon rains are expected to play a role 

in supplying moisture to trees during the summer. How-

ever, as discussed above, in our analysis, rain remained of 

low relevance as a driver of NEP even during the monsoon 

period (Fig. 3). Also intriguing was our finding that much 

variation in NEP during the monsoon was unexplained by 

the climate drivers examined here (benchmark r2, Figs. 3, 

4). The most relevant drivers of NEPdaytime and NEPnighttime 

(VPD and soil temperature, respectively) during the mon-

soon were still not very relevant (Fig. 3, Online Resource 

Tables S9, S10). Overall, NEPdaytime and NEPnighttime 

became less explained by all of the climatic drivers as the 

growing season progressed from snowmelt to pre-monsoon 

to monsoon. These findings of (1) low precipitation rele-

vance and (2) low total explainable variability suggest that 

day-to-day variation in NEP during the monsoon period 

was driven by factors not included in our candidate driv-

ers, at least not at the time scale of this analysis. Deep soil 

moisture availability was not included as a candidate driver 

and is a promising explanation; water isotopic signatures 

suggest most xylem water derives from snowmelt late in 

the growing season for dominant tree species at this site 

(Hu et al. 2010). Thus, snowmelt water may buffer the for-

est from moisture variation during the monsoon.

The post-monsoon period, like that for snowmelt, was 

revealed as a transition period in which ecosystem metabo-

lism switches, in this case from the upregulated phase of 

the growing season to the downregulated phase of winter. 

During this period the forest at Niwot Ridge experiences 

sub-zero air temperatures. Soil temperature is the most 

important temperature variable for both daytime and night-

time mean NEP (Fig. 3a, b), and NEP appears more sensi-

tive to soil temperature above 0 °C during both the daytime 

and nighttime (Fig. 6a, b). ETdaytime showed decreasing 

sensitivity to all primary candidate drivers during the post-

monsoon (Fig. 4a, Online Resource Table S11). These 

results suggest that the freeze–thaw status of the soil con-

trols day-to-day variations in NEP during this period. This 

contrasts with the snowmelt period, where the high signifi-

cance of soil moisture during the daytime suggests photo-

synthesis is limited by water supply rather than controlled 

directly by soil temperature (Fig. 3a).

Conclusion

Studies that have examined long-term eddy-covariance 

datasets at individual sites have shown that doing so pro-

vides an independent means of corroborating, or chal-

lenging, our prior understanding of ecosystem processes. 

Insight into controls over ecosystem processes can be 

framed in general terms using the limited span of a flux 

time series coupled to a deductive analysis framework that 

tests hypotheses based on prior knowledge. However, an 

alternative inductive analytical framework of a longer time 

series offers confidence that such insight is unbiased by 

prior expectations or a priori assumptions. In this study, we 

showed that, overall, temperature plays an essential role in 

controlling NEPdaytime and NEPnighttime, as well as ETdaytime, 

which is consistent with a prior deductive analysis on a 

limited span of the same observational time series. With the 

longer time series of our study, and the inductive process 

we applied, however, we were able to discern much more 

detail about the interaction of drivers in determining sea-

sonal responses to the climate, and in some cases, reveal 

the nuances of indirect effects of drivers on ecosystem 

metabolism. Our analysis has implications for deductive, 

process-based terrestrial biosphere models that use day-

time and nighttime time-steps. Parsimonious process-based 

models should achieve reasonable model-data agreement 

when they include one of the most relevant ‘primary’ and 

according ‘secondary’ drivers of the complete daytime or 

nighttime time series because the ANNs with the two most 

relevant drivers performed almost as well as ANNs with all 

candidate drivers (reaching 69–97% of the benchmark per-

formance for all data analyses). However, it is important to 

recognize that the total explainable variability (benchmark), 
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the relative importance of climate drivers, and the NEP and 

ET responses to single drivers, all change seasonally, sug-

gesting that phenology and climate variable interactions 

shift such that NEP and ET sensitivities to climate are 

dynamic throughout the year. Sophisticated process-based 

models intended for more complete ecophysiological rep-

resentation should aim to reproduce these seasonal shifts. 

Discovering when process-based models fail to produce 

similar patterns to the ANN could diagnose model struc-

tures and parameterizations that need improvement for 

accurate representation of controls over ecosystem metabo-

lism. Our study demonstrates that there is still much to be 

learned by applying inductive approaches to long-term data 

series as a means of understanding interactive mechanisms 

and synergies that emerge among the many co-varying cli-

mate drivers over time, thereby confirming or challenging 

our understanding of the nature of ‘ecosystem metabolism’.
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