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Abstract Regression-based detection and attribution methods continue to take a central role in the
study of climate change and its causes. Here we propose a novel Bayesian hierarchical approach to this
problem, which allows us to address several open methodological questions. Specifically, we take into
account the uncertainties in the true temperature change due to imperfect measurements, the uncertainty
in the true climate signal under different forcing scenarios due to the availability of only a small number of
climate model simulations, and the uncertainty associated with estimating the climate variability covariance
matrix, including the truncation of the number of empirical orthogonal functions (EOFs) in this covariance
matrix. We apply Bayesian model averaging to assign optimal probabilistic weights to different possible
truncations and incorporate all uncertainties into the inference on the regression coefficients. We provide
an efficient implementation of our method in a software package and illustrate its use with a realistic
application.

1. Introduction

The subject of climate change detection and attribution, also referred to as optimal fingerprinting, has con-
tinued to take a prominent role in the Assessment Reports of the Intergovernmental Panel on Climate Change
(IPCC) [e.g., Hegerl et al., 2007; Bindoffet al., 2013] as the most common way to quantitatively assess if and how
the climate has changed as a result of human activity. Broadly speaking, the goal of climate change detec-
tion and attribution methods is to differentiate if contributions to observed changes are climate internal or
result from external forcings [Hegerl and Zwiers, 2011]. From a methodological point of view, this subject has
mainly been addressed with regression methods, where the observed change is the dependent variable and
the external forcing scenarios are the regressors or predictors. The goal is inference on the regression coeffi-
cients, whose estimated values and uncertainty ranges determine if a change has been detected and to which
(combination of) scenarios it can be attributed.

Sinceits early development [Hegerl et al., 1996], assuming a standard linear model with a single source of noise,
the methodology has continued to evolve. Allen and Stott [2003] allowed for errors in the forcings signals and,
assuming they have the same structure as the internal variability, applied a total least squares solution, which
is stillcommonly used [e.g., Lott et al., 2013]. This was further advanced by Huntingford et al. [2006], who relaxed
the assumption of identical covariance structures. However, Hannart et al. [2014] argued that the approaches
discussed in Huntingford et al. [2006] were not actually suitable to solve the problem as stated. Hannart et al.
[2014] addressed this shortcoming and developed an iterative inference procedure based on likelihood opti-
mization. This procedure successfully derives estimates of the regression coefficients and their asymptotic
confidence intervals in the more general case of different covariance structures on observations and forcing
signals. Yet Hannart et al. [2014] still assume that these covariance structures are known in the inferential pro-
cedure, stating that “While this [covariance] estimation step has been shown to critically influence the end
result, it is in general handled preliminarily and rather independently from the regression inference which is
at stake here.” If covariances are estimated outside the regression, it is difficult to account for uncertainties
associated with the covariance estimation in the inference on the regression coefficients. In recently pub-
lished work, Hannart [2016] proposed a hierarchical regression approach, which accounts for uncertainty in
the covariance matrix based on an inverse-Wishart prior.
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Due to the high-dimensional nature of observations and model output (even when aggregated to relatively
coarse grid cells), estimation of the climate variability is challenging. Typically, the covariance matrix of the cli-
mate variability is estimated based on a small to moderate number of “control runs” of a climate model without
any forcings. To regularize the resulting estimate, several previous approaches [e.g., Santer et al., 1993; Ribes
etal.,, 2009] have represented the covariance matrix using a small number of empirical orthogonal functions
(EOFs) or principal components of the sample covariance matrix. This approach is effective for regulariza-
tion, but it ignores the uncertainty in the shape and number of EOFs and the values of the corresponding
eigenvalues in the subsequent analysis.

In this work, we consider an empirical Bayesian hierarchical framework that addresses some of the open
methodological questions within the realm of regression-based climate change detection and attribution.
We integrate out the true mean forcing signals under the assumption of a noninformative prior, which is
more consistent with Bayesian inference than the standard practice of profiling (i.e.,, maximizing) them out
[e.g., Ribes et al., 2009; Hannart et al., 2014; Hannart, 2016]. Another novel aspect to our work is the account-
ing for uncertainty in the observations as represented by an ensemble. Hence, our Bayesian framework allows
us to incorporate the uncertainty in the observations and in the climate model variability explicitly in the
regression procedure and to propagate these uncertainty components to the regression coefficient estimates.
Unlike the related approach of Hannart [2016], we stay within the commonly used framework of empirical
orthogonal functions (EOFs). We address the issue of using a specific truncation of the number of EOFs by
choosing a reasonable range for the number of EOFs and applying Bayesian model averaging (BMA) to infer
the individual probabilities among this range of truncations. Assessing a large number, or all possible num-
bers, of EOFs is feasible, because the implementation of our method is computationally very efficient and the
BMA framework lends itself to parallelization.

2. The Model

2.1. Regression-Based Climate Change Detection and Attribution

From a statistical point of view, climate change detection and attribution can be viewed as a multivariate
spatial or spatiotemporal regression problem. We consider temperatures over the entire globe, divided into
fairly large grid cells (e.g., a 5° X 5° grid, resulting in 72 x 36 = 2592 grid cells). Lety = (y,, ....¥,)’ denote a
vector representing the true temperature changes in the n grid cells. For example, y could contain the slope
coefficients in linear regressions of temperature on time for some time period under investigation. Quan-
tifying temperature change through the slope coefficient in a linear regression model is common practice,
because it is the simplest and therefore most defensible way of characterizing the overall change. When the
time period under consideration is long enough, cyclical climate effects (e.g., El Nifio) are smoothed over and
can be ignored.

Corresponding to the vector y of true temperature changes, we have vectors x, ... , X,, representing the (true)
temperature changes that would have happened under m different forcing scenarios. Let X = (X, ..., X,,).
Also, denote by Can nxn covariance matrix characterizing the internal climate variability (without any forcing).

We write the commonly assumed linear regression model in the form of a conditional distribution,

yIX.8.C~ N, (Z /f,-x,,C>, M
Jj=1

where N, denotes an n variate normal or Gaussian distribution. In this regression framework, climate change
detection consists, in essence, of deciding whether each of the f; is equal to 0 or not. We assume that x, corre-
sponds to the anthropogenic forcing, and so the conclusion that §; # 0 means that climate change (in terms
of linear temperature change over the time period of interest) due to human activity has been detected.
Attribution goes a step further by requiring that the observations are consistent with the responses to a spe-
cific combination of forcings assuming an additive response [e.g., Ribes et al., 2013]. This is equivalent to testing
if the f; are equal to unity if the mean responses for each forcing have been removed. However, there is an
understanding in the literature that while the response patterns are essential, the magnitude of the response
can be incorrect. Therefore, if the estimated uncertainty range does not include unity, the model response
can be rescaled to match the observations if physically reasonable [e.g., Hegerl and Zwiers, 2011]. Note that a
normal distribution isimplicitly assumed in the generalized least squares algorithms used by many climate sci-
entists for regression-based detection and attribution, because the maximum likelihood estimate for g under
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this assumption coincides with the generalized least squares estimate. Here we take a Bayesian approach and
assume independent standard normal priors for the f;. The use of this (vaguely) informative prior is neces-
sary for the Bayesian model averaging in section 3.3, but our simulation experiments showed that it has little
effect on the posterior distribution of g relative to a noninformative prior.

The regression problem of inferring g based on the model in (1) seems very straightforward. The challenge is
that in practice, y, X, B, and C are all unknown. Because it is not sufficient to simply “plug in” point estimators
for those quantities in (1) without accounting for uncertainty in their estimation [see, e.g., Allen and Stott,
2003], we opt for a Bayesian hierarchical model in which the components of the model are random. Such a
setup allows the uncertainties from the estimation of the different model components to be propagated to
the uncertainty estimates of the f3,.

2.2. Uncertainty in the “Data”

We cannot directly observe the true temperatures on which y is based [cf. Berliner et al., 2000]. Instead,
we assume that we have available an ensemble of reconstructed temperatures, from each of which we
can calculate a vector of time trend coefficients corresponding to y. Then, for an N member ensemble,
we assume that

iid

YOly, W~ N,(y,W), i=1,....N, )

where W is a covariance matrix describing the variability of the ensemble members around the true temper-
ature changeyy.

For simplicity and to avoid nonidentifiability issues, we let W be a fixed diagonal matrix, with its jth diagonal
element (W);; = var({y,.(') 1 i=1,...,N}) equal to the sample variance of the jth elements of the ensemble
vectors {y?}.

Similarly, while we do not know the true temperature change x; under the jth forcing scenario, we assume
that each global circulation model (GCM) output qu) can be written as the true mean temperature change due
to forcing, x;, plus internal climate variability with covariance matrix C, which under a normal assumption can

be written as

0] ind _ P
X; |xj,C~J\/,,(xj,C), I=1,....L, j=1,...m, (3)

where L; is the number of GCM runs under the jth forcing scenario. At least for L; = 1, this part of our
model is similar to the errors-in-variable model used by Allen and Stott [2003], which was extended to the
multiple-GCM case by Huntingford et al. [2006], and for which Hannart et al. [2014] developed a maximum
likelihood approach. For our Bayesian model, we assume independent uniform prior distributions on R for all
elements of X. The implications of this prior assumption will be further explored in section S2 in the supporting
information.

In summary, our observations are given by the vectors

!
Y=V, .. ,y"Y and X= (xﬁ”', XX ...,xf,ﬁ’")'> , )

X
which are linked to the quantities in the regression model (1) via (2) and (3), respectively.

2.3. The Model for the Climate Variability

The covariance matrix € in (1) and (3) characterizes the internal climate variability and the variation
between different GCMs. This matrix is typically estimated from “control runs,” which are GCM runs
without any external forcing, and thus only represent internal climate variability and GCM variabil-

ity. Given L, control runs xf)”,...,xg(’), let € be the corresponding sample covariance matrix; that is,

(= L0+1 o <xg) - )‘(0) (xg) - )‘(0>/, where X, = ;—0 ¥ xY.

Because typically L, < n, this estimate of C is highly unstable, and some regularization is required. The most
commonly used approach is to estimate C using so-called empirical orthogonal functions (EOFs) [e.g., Santer
etal., 1993; Ribes et al., 2009] as BKB’, where B is an n X r basis function matrix consisting of the first r principal
components of €, K = diag{e’iu . e;‘r} is a diagonal matrix containing the corresponding eigenvalues, and
typically r < n. However, the matrix BKB’ in (5) is singular, implying that the multivariate distributions in (1)
and (3) would be degenerate for C = BKB'.
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To obtain a nonsingular covariance matrix, we modify this approach slightly and assume
C = BKB' +5°l,, (5)

where K = diag{e*, ..., e*},and , is the n x n identity matrix. Note that the regularized estimator, rC+ a?l,,
proposed by Ribes et al. [2009], is a special case of (5) forr = L,,.

We account for some of the uncertainty in estimating C by letting 4,,..., 4, and ¢ be random unknown
parameters, with independent prior distributions Ao~ N, 1) and loge ~ N(m,,1), where m, =

log /rr(é);zj 2,-.

Usually, it is not clear how to choose r, the number of EOFs, and there is a whole range of possible values, say,
{Fins -+ » 'max }- The results of the analysis might differ depending on which value of r is chosen. We explic-
itly take thls uncertainty into account, by modeling r as an additional unknown in the model with a discrete
uniform prior distribution on {rins -+ Fmax }-

3. Inference

Given the observations ) and the GCM output X from (4), we carry out Bayesian inference on the unknown
quantities in the model using Markov chain Monte Carlo (MCMCQ). Specifically, our interest is in obtaining the
posterior distribution of the unknown parameters 6, = (f', 0, A, ..., 4,) given the data ¥’ and X. Note that
the number of parameters in 8, depends on r, the number of EOFs, which makes inference challenging. Hence,
we first describe inference on 0, for a particular fixed value of r (i.e., conditional on r), and then we combine
the results for different values of r in section 3.3. Using Bayes'’s Theorem, we have the conditional posterior

0,1V, X, 1] « [V, X]6,,r][6,Ir]. (6)

3.1. The Integrated Likelihood

Note that the “unobservable data” X and y do not appear in (6). These two quantities are often high dimen-
sional (consisting of nm and n elements, respectively), and so it is crucial for efficient inference to analytically
integrate out (i.e., marginalize over) these two quantities. Hence, our first task is to obtain the so-called
integrated likelihood,

[V, X16,,r] = [V|X,0,,r][X|6,,1], @)

where

m

L m L
[X16,.1] = /Hﬂj\f (x"1x.€) [xj]dxanﬂ/Nn (1%, €) ax = 1.

j=1 1=1 j=1 I=1

To obtain [Y|X, 6,, r] in (7), first note that we have
vec(X) | X, 6,.r ~ N, (vecX),L”' ® C),

where the vec() operator stacks the columns of a matrix |nto avector, L = diag{L,,...,L,,}, ® denotes the
Kronecker product, and X is the matrix with jth column Z/ . (')/L Then, one can |ntegrate out X by applying
the laws of total expectation and variance to obtain

ylX,6,,r~N, (XB.9(B)C),
whereg(f) =1+ Z/’L /3},2/Lj. Finally, if we also integrate out y, we have

y|X79r7rN NnN ((1N®)_()ﬂ7zy), (8)
where Xy, =Jy, @ g(f)C+ 1y ® W, Jy = 1,1, and 1 is an N-dimensional vector of ones.

3.2. MCMC for Fixed Number of EOFs

Based on the integrated likelihood in (7), we then sample from the posterior of 6, in (6) for a particular value
r = r; using Markov chain Monte Carlo (MCMC), resulting in samples 9(” Q(M) In section S1 [Haario et al.,
2001; Harville, 1997; Sherman and Morrison, 1950; Woodbury, 1950; Henderson and Searle, 1981], we describe
the details of the algorithm, including how to quickly evaluate the integrated likelihood. While this likeli-
hood involves the very large nN x nN matrix X,,, we derive an expression of the likelihood that only involves
determinants and inverses of (small) r x r and diagonal n x n matrices.
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3.3. Bayesian Model Averaging Over the Number of EOFs

Once samples from the posterior for each value of r € {rp,. ..., rmax} have been obtained as described in
section 3.2, we can perform Bayesian model averaging (BMA) [e.g., Hoeting et al., 1999] to average the posterior
results for different values of r using weights (i.e., probabilities) automatically chosen by the data.

The posterior of f averaged over the posterior of r (i.e,, taking the uncertainty about the value of rinto account)
is given by

max

[BIY, X1 =Y [BIr, ¥, X1P(r =r,|Y,X),

i=min
where [B]r;, Y, X] is the posterior distribution of g for the model with fixed r = r; from section 3.2. Further,
due to the discrete uniform prior on r, the posterior probability of r = r; is given by P(r = ;| Y, X) «x [V, X|r;]
P(r=r) x [P, X]|r].

Hence, the weights for each r; are determined solely by the so-called marginal likelihood [V, X|r;], which
integrates out the parameters 6,. Fortunately, it turns out that an estimate of this quantity [e.g., Newton
and Raftery, 1994] can be obtained using the evaluations of the likelihood already performed in the MCMC
procedure (i.e., without any significant additional calculations), as

y -1
1
[, X|r]_<—2m>

j=1
where 0(’) is the jth MCMC sample (posterior draw) of the parameter vector from section 3.2, and [V, X|r;, 0(’)]
is the I|keI|hood in(7)forr=r,.

3.4. Residual Consistency Test

A residual consistency test is often used to determine whether the assumed model is consistent with the
observations, or whether the observations cannot be fully explained by the forcings under consideration.
Such a test arises naturally here as a Bayesian goodness-of-fit test. Consider the quadratic form

q,,r = vec(?)’E;]1 vec(Y),

where Y is an n x N matrix with kth column y® — XB. Then, under the null hypothesis that the observations
actually do come from the assumed model, we have q(8,,r) ~ ;(,fN when evaluated at a random draw from the
posterior distribution [8,,r| Y, X] [Jun et al., 2014]. As we have already obtained q(eg), r;) as part of our MCMC
procedure (see section S1), we can obtain a posterior distribution of test statistics for our goodness-of-fit
test at virtually no additional cost. Straightforwardly converting each test statistic to a p value, we obtain a
posterior distribution of p values. If this distribution is close to 0, there is evidence of model misfit. If it is close
to 1, no such evidence exists.

4, lllustration

We applied our method to simulated and real data. The results of the simulation are summarized in section S2.
Here we illustrate our methodology on monthly means of zonally averaged tropospheric temperature (TLT)
from a previously investigated data set [Santer et al., 2013a, 2013b].

4.1. Observational and Climate Model Data

We use observational data from satellite-based microwave sounding units (MSUs) from Remote Sensing
Systems (RSS) for the 27 year period from January 1979 to December 2011. To account for various uncertainties
associated with the sampling and the retrieval, the data are provided as a 396-member ensemble of observa-
tions [Mears et al., 2011]. We consider this ensemble to be noisy samples of the unknown true temperatures
and use it to represent the observational uncertainty as in (2).

For climate model data, we selected historical runs with natural-only (NAT) and anthropogenic-only (ANT)
forcings from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive. Some of the CMIP5 simu-
lations were vertically weighted to be similar to the MSU observations [Santer et al., 2013a], and we based our
selection on the availability of those zonally averaged MSU-comparable temperatures and earlier scientific
findings to exclude problematic runs [Santer et al., 2013b]. This resulted in four natural forcings-only model
runs (bcc csm1, can esm2, giss e2 r p1, and giss €2 r p3) and three anthropogenic forcings-only runs (gfdl, giss
e2rpl,and gisse2rp3), shown in Figures S1 and S2, respectively. As controls, we use the preindustrial control
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90 S
Figure 1. Linear tropospheric temperature trend (in °C per decade) for the period 1979-2005 for the giss €2 r p1 model

run using (a) only anthropogenic forcing and (b) only natural forcing, and (c) the average of 396 observational ensemble
members from RSS. Areas in grey were excluded from the analysis due to the absence of satellite observations.

run giss e2 r p1 from the CMIP5 archive. This run spans 550 years, and we split the run in 27 year segments,
which resulted in 20 such segments.

We use the built-in MATLAB function “geoloc2grid” to convert all climate model and observational data
from their native resolution to a 5° x 5° grid. We limit the domain to 80° north and —70° south, and we further
exclude locations with an altitude higher than 3000 m as there is no satellite data coverage for these locations.
The resulting fields consist of n = 2107 grid cells, for which we calculate the linear slope coefficients used in
the analysis. Figure 1 shows the spatial field of coefficients for one example of the anthropogenic forcings-only
run, one example of the natural forcings-only run, and the mean field of the observational ensemble.

4.2. Implementation and Results

We implement the model in MATLAB 2014b using 20,000 MCMC iterations for each value of r € {1,...,19},
5000 of which are considered burn-in. This setup provides good convergence properties of the Markov chains.
Figure 2a shows the posterior distributions of g, (anthropogenic forcing) and g, (natural forcing) for each
truncation, r € {1, ..., 19}, individually, while Figure 2c shows the corresponding Bayesian model averaged
estimates. According to standard interpretation, both forcings are detected, as the 95% credible intervals do
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Figure 2. Results for the tropospheric temperature data analysis. (a) Posterior distributions of ; (anthropogenic forcing)
in red and f, (natural forcing) in green for each EOF truncation r € {1, ..., 19}. (b) Posterior probabilities for different
values of r. (c) Marginal posterior distributions of p; and g, obtained by Bayesian model averaging over r. (d) Posterior
distribution of p values for the residual consistency test.

not contain zero. The coefficient corresponding to the anthropogenicforcing is of larger magnitude and hence
potentially stronger than the natural forcing. The averaged estimates are obtained using the posterior prob-
abilities for each truncation option shown in Figure 2b. For this application, most of the weight, slightly more
than 50%, is placed on the truncation using 18 EOFs. The difference between the widths of the posterior dis-
tributions for the individual truncations (Figure 2a) and the distributions based on BMA (Figure 2¢) illustrates
how taking the uncertainty about the value of r into account leads to broader, and arguably more realistic,
credible intervals on the coefficients. Applying the residual consistency test (described in section 3.4), there
is no evidence of a model misfit as the distribution of p values is close to 1 (Figure 2d).

4.3. Computational Considerations

One of the challenges with Bayesian methods, due to their requirement for repeated, iterative sampling, is
often their computational speed, which can be prohibitively slow for some applications. For our model, the
derivations in section 3.2 result in short computation times for the MCMC for each possible EOF truncation r.
In addition, these MCMC analyses for different r can be executed completely in parallel. On a moderate laptop,
a MacBook Pro with an Intel quad-core 2.6 GHz i7 processor and 8 GB of memory, using MATLAB 2014b and
four cores, the algorithm takes less than 8 min to evaluate all 19 truncation options and perform Bayesian
model averaging to obtain the results shown in Figure 2. On clusters or high-performance computing systems,
where a large number of cores is available, the algorithm can easily be scaled up to a higher number of EOF
truncations if longer control runs are available.

5. Discussion and Conclusion

We have introduced a Bayesian hierarchical model that addresses some of the open methodological questions
in regression-based detection and attribution. Specifically, we take into account the uncertainties related to
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observations and climate signals under different forcing scenarios. Further, we incorporate the uncertainty
associated with estimating the climate variability covariance matrix into the inference on the regression coef-
ficients. Instead of choosing a specific truncation of the number of empirical orthogonal functions (EOFs) in
this covariance matrix, we apply Bayesian model averaging to assign optimal probabilistic weights to a range
of possible truncations. The method is computationally efficient and scalable due to its parallel nature, which
we have demonstrated with a substantive application.

A broader issue that we have not addressed, but which is not specific to our methodology, is the sensitivity to
the choice of control runs. Our inferential scheme is still conditional on a given set of control runs, and we are
not accounting for the uncertainty stemming from choosing these runs. In particular, the estimation of the
EOF vectors based on a small number of control runs can be unstable and sensitive to the specific choice of
runs. One avenue for further research would be to regularize the EOF estimation [e.g., Wang and Huang, 20171
or to treat the EOFs as random fields and account for their uncertainty [e.g., Suarez and Ghosal, 2017].

We have further assumed a relatively simple form for the covariance matrix associated with the observation
ensemble, namely, a fixed diagonal matrix with the empirical variances as its elements. We could allow this
matrix to be of a more general form (e.g., based on a Gaussian Markov random field) with potentially unknown
(random) parameters. We have also assumed the different climate model runs to be independent replicates
of the same random quantity; for situations where multiple ensemble members are available from different
models, we could improve the setup by modeling intermodel and intramodel variability.

In additional future work, we plan on conducting a comprehensive performance evaluation using extensive
simulations. This evaluation will extend our preliminary simulations in section S2, for example, by considering
the effect of the number of control runs and shrinkage of the regression coefficients for small grid size.
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