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Abstract Regression-based detection and attribution methods continue to take a central role in the

study of climate change and its causes. Here we propose a novel Bayesian hierarchical approach to this

problem, which allows us to address several open methodological questions. Specifically, we take into

account the uncertainties in the true temperature change due to imperfect measurements, the uncertainty

in the true climate signal under different forcing scenarios due to the availability of only a small number of

climate model simulations, and the uncertainty associated with estimating the climate variability covariance

matrix, including the truncation of the number of empirical orthogonal functions (EOFs) in this covariance

matrix. We apply Bayesian model averaging to assign optimal probabilistic weights to different possible

truncations and incorporate all uncertainties into the inference on the regression coefficients. We provide

an efficient implementation of our method in a software package and illustrate its use with a realistic

application.

1. Introduction

The subject of climate change detection and attribution, also referred to as optimal fingerprinting, has con-

tinued to take a prominent role in the Assessment Reports of the Intergovernmental Panel on Climate Change

(IPCC) [e.g.,Hegerl et al., 2007; Bindoff et al., 2013] as themost commonway to quantitatively assess if and how

the climate has changed as a result of human activity. Broadly speaking, the goal of climate change detec-

tion and attribution methods is to differentiate if contributions to observed changes are climate internal or

result from external forcings [Hegerl and Zwiers, 2011]. From a methodological point of view, this subject has

mainly been addressed with regression methods, where the observed change is the dependent variable and

the external forcing scenarios are the regressors or predictors. The goal is inference on the regression coeffi-

cients, whose estimated values and uncertainty ranges determine if a change has been detected and towhich

(combination of) scenarios it can be attributed.

Since its early development [Hegerl etal., 1996], assuminga standard linearmodelwith a single sourceof noise,

themethodology has continued to evolve. Allen and Stott [2003] allowed for errors in the forcings signals and,

assuming they have the same structure as the internal variability, applied a total least squares solution, which

is still commonlyused [e.g., Lott etal., 2013]. Thiswas further advancedbyHuntingfordetal. [2006],who relaxed

the assumption of identical covariance structures. However, Hannart et al. [2014] argued that the approaches

discussed in Huntingford et al. [2006] were not actually suitable to solve the problem as stated. Hannart et al.

[2014] addressed this shortcoming and developed an iterative inference procedure based on likelihood opti-

mization. This procedure successfully derives estimates of the regression coefficients and their asymptotic

confidence intervals in the more general case of different covariance structures on observations and forcing

signals. Yet Hannart et al. [2014] still assume that these covariance structures are known in the inferential pro-

cedure, stating that “While this [covariance] estimation step has been shown to critically influence the end

result, it is in general handled preliminarily and rather independently from the regression inference which is

at stake here.” If covariances are estimated outside the regression, it is difficult to account for uncertainties

associated with the covariance estimation in the inference on the regression coefficients. In recently pub-

lished work, Hannart [2016] proposed a hierarchical regression approach, which accounts for uncertainty in

the covariance matrix based on an inverse-Wishart prior.
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Due to the high-dimensional nature of observations and model output (even when aggregated to relatively

coarse grid cells), estimation of the climate variability is challenging. Typically, the covariancematrix of the cli-

mate variability is estimatedbasedona small tomoderatenumberof “control runs” of a climatemodelwithout

any forcings. To regularize the resulting estimate, several previous approaches [e.g., Santer et al., 1993; Ribes

et al., 2009] have represented the covariance matrix using a small number of empirical orthogonal functions

(EOFs) or principal components of the sample covariance matrix. This approach is effective for regulariza-

tion, but it ignores the uncertainty in the shape and number of EOFs and the values of the corresponding

eigenvalues in the subsequent analysis.

In this work, we consider an empirical Bayesian hierarchical framework that addresses some of the open

methodological questions within the realm of regression-based climate change detection and attribution.

We integrate out the true mean forcing signals under the assumption of a noninformative prior, which is

more consistent with Bayesian inference than the standard practice of profiling (i.e., maximizing) them out

[e.g., Ribes et al., 2009; Hannart et al., 2014; Hannart, 2016]. Another novel aspect to our work is the account-

ing for uncertainty in the observations as represented by an ensemble. Hence, our Bayesian framework allows

us to incorporate the uncertainty in the observations and in the climate model variability explicitly in the

regressionprocedure and topropagate theseuncertainty components to the regression coefficient estimates.

Unlike the related approach of Hannart [2016], we stay within the commonly used framework of empirical

orthogonal functions (EOFs). We address the issue of using a specific truncation of the number of EOFs by

choosing a reasonable range for the number of EOFs and applying Bayesian model averaging (BMA) to infer

the individual probabilities among this range of truncations. Assessing a large number, or all possible num-

bers, of EOFs is feasible, because the implementation of our method is computationally very efficient and the

BMA framework lends itself to parallelization.

2. The Model
2.1. Regression-Based Climate Change Detection and Attribution

From a statistical point of view, climate change detection and attribution can be viewed as a multivariate

spatial or spatiotemporal regression problem. We consider temperatures over the entire globe, divided into

fairly large grid cells (e.g., a 5∘ × 5∘ grid, resulting in 72 × 36 = 2592 grid cells). Let y = (y1,… , yn)
′ denote a

vector representing the true temperature changes in the n grid cells. For example, y could contain the slope

coefficients in linear regressions of temperature on time for some time period under investigation. Quan-

tifying temperature change through the slope coefficient in a linear regression model is common practice,

because it is the simplest and therefore most defensible way of characterizing the overall change. When the

time period under consideration is long enough, cyclical climate effects (e.g., El Niño) are smoothed over and

can be ignored.

Corresponding to the vectoryof true temperature changes,wehave vectorsx1,… , xm representing the (true)

temperature changes that would have happened under m different forcing scenarios. Let X = (x1,… , xm).

Also, denotebyCann×n covariancematrix characterizing the internal climate variability (without any forcing).

We write the commonly assumed linear regression model in the form of a conditional distribution,

y|X,�,C ∼ n

(
m∑

j=1

�jxj,C

)
, (1)

wheren denotes an n variate normal or Gaussian distribution. In this regression framework, climate change

detection consists, in essence, of decidingwhether each of the �j is equal to 0 or not.We assume that x1 corre-

sponds to the anthropogenic forcing, and so the conclusion that �1 ≠ 0means that climate change (in terms

of linear temperature change over the time period of interest) due to human activity has been detected.

Attribution goes a step further by requiring that the observations are consistent with the responses to a spe-

cific combinationof forcings assuminganadditive response [e.g.,Ribesetal., 2013]. This is equivalent to testing

if the �j are equal to unity if the mean responses for each forcing have been removed. However, there is an

understanding in the literature that while the response patterns are essential, themagnitude of the response

can be incorrect. Therefore, if the estimated uncertainty range does not include unity, the model response

can be rescaled to match the observations if physically reasonable [e.g., Hegerl and Zwiers, 2011]. Note that a

normal distribution is implicitly assumed in thegeneralized least squares algorithmsusedbymany climate sci-

entists for regression-based detection and attribution, because themaximum likelihood estimate for � under
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this assumption coincides with the generalized least squares estimate. Here we take a Bayesian approach and

assume independent standard normal priors for the �j . The use of this (vaguely) informative prior is neces-

sary for the Bayesian model averaging in section 3.3, but our simulation experiments showed that it has little

effect on the posterior distribution of � relative to a noninformative prior.

The regression problem of inferring � based on the model in (1) seems very straightforward. The challenge is

that in practice, y, X, � , and C are all unknown. Because it is not sufficient to simply “plug in” point estimators

for those quantities in (1) without accounting for uncertainty in their estimation [see, e.g., Allen and Stott,

2003], we opt for a Bayesian hierarchical model in which the components of the model are random. Such a

setup allows the uncertainties from the estimation of the different model components to be propagated to

the uncertainty estimates of the �j .

2.2. Uncertainty in the “Data”

We cannot directly observe the true temperatures on which y is based [cf. Berliner et al., 2000]. Instead,

we assume that we have available an ensemble of reconstructed temperatures, from each of which we

can calculate a vector of time trend coefficients corresponding to y. Then, for an N member ensemble,

we assume that

y(i)|y,W iid
∼ n(y,W), i = 1,… ,N, (2)

whereW is a covariance matrix describing the variability of the ensemble members around the true temper-

ature change y.

For simplicity and to avoid nonidentifiability issues, we letW be a fixed diagonal matrix, with its jth diagonal

element (W)j,j = var({y
(i)

j
∶ i = 1,… ,N}) equal to the sample variance of the jth elements of the ensemble

vectors {y(i)}.

Similarly, while we do not know the true temperature change xj under the jth forcing scenario, we assume

that each global circulationmodel (GCM) output x
(l)

j
can bewritten as the truemean temperature change due

to forcing, xj , plus internal climate variability with covariancematrix C, which under a normal assumption can

be written as

x
(l)

j
|xj,C

ind
∼ n(xj,C), l = 1,… , Lj, j = 1,… ,m, (3)

where Lj is the number of GCM runs under the jth forcing scenario. At least for Lj = 1, this part of our

model is similar to the errors-in-variable model used by Allen and Stott [2003], which was extended to the

multiple-GCM case by Huntingford et al. [2006], and for which Hannart et al. [2014] developed a maximum

likelihood approach. For our Bayesianmodel, we assume independent uniform prior distributions onR for all

elementsofX. The implicationsof this prior assumptionwill be further explored in sectionS2 in the supporting

information.

In summary, our observations are given by the vectors

 = (y(1)′,… , y(N)′)′ and  =
(
x
(1)′

1
,… , x

(L1)′

1
,… , x(1)′

m
,… , x

(Lm)′
m

)′

, (4)

which are linked to the quantities in the regression model (1) via (2) and (3), respectively.

2.3. The Model for the Climate Variability

The covariance matrix C in (1) and (3) characterizes the internal climate variability and the variation

between different GCMs. This matrix is typically estimated from “control runs,” which are GCM runs

without any external forcing, and thus only represent internal climate variability and GCM variabil-

ity. Given L0 control runs x
(1)

0
,… , x

(L0)

0
, let Ĉ be the corresponding sample covariance matrix; that is,

Ĉ =
1

L0−1

∑L0
l=1

(
x
(l)

0
− x̄0

)(
x
(l)

0
− x̄0

)′

, where x̄0 =
1

L0

∑L0
l=1

x
(l)

0
.

Because typically L0 < n, this estimate of C is highly unstable, and some regularization is required. The most

commonly used approach is to estimate C using so-called empirical orthogonal functions (EOFs) [e.g., Santer

et al., 1993; Ribes et al., 2009] as BKB′, where B is an n× r basis functionmatrix consisting of the first r principal

components of Ĉ, K = diag{e�̂1 ,… , e�̂r} is a diagonal matrix containing the corresponding eigenvalues, and

typically r ≪ n. However, the matrix BKB′ in (5) is singular, implying that the multivariate distributions in (1)

and (3) would be degenerate for C = BKB′.
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To obtain a nonsingular covariance matrix, we modify this approach slightly and assume

C = BKB′ + �2In, (5)

where K = diag{e�1 ,… , e�r}, and In is the n×n identity matrix. Note that the regularized estimator, �Ĉ+�2In,

proposed by Ribes et al. [2009], is a special case of (5) for r = L0.

We account for some of the uncertainty in estimating C by letting �1,… , �r and � be random unknown

parameters, with independent prior distributions �j ∼  (�̂j, 1) and log � ∼  (mr, 1), where mr =

log

√
tr(Ĉ)−

∑
j �̂j

n
.

Usually, it is not clear how to choose r, the number of EOFs, and there is a whole range of possible values, say,

{rmin,… , rmax}. The results of the analysis might differ depending on which value of r is chosen. We explic-

itly take this uncertainty into account, by modeling r as an additional unknown in the model with a discrete

uniform prior distribution on {rmin,… , rmax}.

3. Inference

Given the observations  and the GCM output  from (4), we carry out Bayesian inference on the unknown

quantities in the model using Markov chain Monte Carlo (MCMC). Specifically, our interest is in obtaining the

posterior distribution of the unknown parameters �r = (�′, �, �1,… , �r)
′ given the data  and  . Note that

the number of parameters in�r depends on r, the number of EOFs,whichmakes inference challenging. Hence,

we first describe inference on �r for a particular fixed value of r (i.e., conditional on r), and then we combine

the results for different values of r in section 3.3. Using Bayes’s Theorem, we have the conditional posterior

[�r| , , r] ∝ [ ,|�r, r] [�r|r]. (6)

3.1. The Integrated Likelihood

Note that the “unobservable data” X and y do not appear in (6). These two quantities are often high dimen-

sional (consisting of nm and n elements, respectively), and so it is crucial for efficient inference to analytically

integrate out (i.e., marginalize over) these two quantities. Hence, our first task is to obtain the so-called

integrated likelihood,

[ ,|�r , r] = [| ,�r , r] [|�r, r], (7)

where

[|�r , r] = ∫
m∏

j=1

Lj∏

l=1

n

(
x
(l)

j
|xj,C

)
[xj]dX ∝

m∏

j=1

Lj∏

l=1
∫ n

(
xj|x

(l)

j
,C

)
dxj = 1.

To obtain [| ,�r , r] in (7), first note that we have

vec(X) | ,�r, r ∼ nm

(
vec(X̄), L−1 ⊗ C

)
,

where the vec() operator stacks the columns of a matrix into a vector, L = diag{L1,… , Lm}, ⊗ denotes the

Kronecker product, and X̄ is thematrix with jth column
∑Lj

l=1
x
(l)

j
∕Lj . Then, one can integrate outX by applying

the laws of total expectation and variance to obtain

y | ,�r, r ∼ n

(
X̄�, g(�)C

)
,

where g(�) = 1 +
∑m

j=1
�2
j
∕Lj . Finally, if we also integrate out y, we have

 | ,�r , r ∼ nN

(
(1N ⊗ X̄)�,�

)
, (8)

where � = JN ⊗ g(�)C + IN ⊗W, JN = 1N1
′
N
, and 1N is an N-dimensional vector of ones.

3.2. MCMC for Fixed Number of EOFs

Based on the integrated likelihood in (7), we then sample from the posterior of �ri
in (6) for a particular value

r = ri using Markov chain Monte Carlo (MCMC), resulting in samples �(1)
ri
,… ,�(M)

ri
. In section S1 [Haario et al.,

2001; Harville, 1997; Sherman and Morrison, 1950;Woodbury, 1950; Henderson and Searle, 1981], we describe

the details of the algorithm, including how to quickly evaluate the integrated likelihood. While this likeli-

hood involves the very large nN × nNmatrix � , we derive an expression of the likelihood that only involves

determinants and inverses of (small) r × r and diagonal n × nmatrices.
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3.3. Bayesian Model Averaging Over the Number of EOFs

Once samples from the posterior for each value of r ∈ {rmin,… , rmax} have been obtained as described in

section3.2,we canperformBayesianmodel averaging (BMA) [e.g.,Hoetingetal., 1999] to average theposterior

results for different values of r using weights (i.e., probabilities) automatically chosen by the data.

Theposterior of� averagedover theposterior of r (i.e., taking theuncertainty about thevalueof r into account)

is given by

[�| ,] =

max∑

i=min

[�|ri, ,] P(r = ri| ,),

where [�|ri, ,] is the posterior distribution of � for the model with fixed r = ri from section 3.2. Further,

due to the discrete uniform prior on r, the posterior probability of r = ri is given by P(r = ri| ,) ∝ [ ,|ri]
P(r = ri) ∝ [ ,|ri].

Hence, the weights for each ri are determined solely by the so-called marginal likelihood [ ,|ri], which
integrates out the parameters �ri

. Fortunately, it turns out that an estimate of this quantity [e.g., Newton

and Raftery, 1994] can be obtained using the evaluations of the likelihood already performed in the MCMC

procedure (i.e., without any significant additional calculations), as

[ ,|ri] =
(

1

M

M∑

j=1

1

[ ,|ri,�(j)
ri
]

)−1

where �(j)
ri
is the jthMCMC sample (posterior draw) of the parameter vector from section 3.2, and [ ,|ri,�(j)

ri
]

is the likelihood in (7) for r = ri.

3.4. Residual Consistency Test

A residual consistency test is often used to determine whether the assumed model is consistent with the

observations, or whether the observations cannot be fully explained by the forcings under consideration.

Such a test arises naturally here as a Bayesian goodness-of-fit test. Consider the quadratic form

q(�r , r) = vec(Ỹ)′�−1 vec(Ỹ),

where Ỹ is an n × Nmatrix with kth column y(i) − X̄� . Then, under the null hypothesis that the observations

actually do come from the assumedmodel, we have q(�r, r) ∼ �2
nN

when evaluated at a randomdraw from the

posterior distribution [�r, r| ,] [Jun et al., 2014]. As we have already obtained q(�(j)
ri
, ri) as part of our MCMC

procedure (see section S1), we can obtain a posterior distribution of test statistics for our goodness-of-fit

test at virtually no additional cost. Straightforwardly converting each test statistic to a p value, we obtain a

posterior distribution of p values. If this distribution is close to 0, there is evidence of model misfit. If it is close

to 1, no such evidence exists.

4. Illustration

Weapplied ourmethod to simulated and real data. The results of the simulation are summarized in section S2.

Here we illustrate our methodology on monthly means of zonally averaged tropospheric temperature (TLT)

from a previously investigated data set [Santer et al., 2013a, 2013b].

4.1. Observational and Climate Model Data

We use observational data from satellite-based microwave sounding units (MSUs) from Remote Sensing

Systems (RSS) for the27yearperiod fromJanuary 1979 toDecember 2011. To account for variousuncertainties

associated with the sampling and the retrieval, the data are provided as a 396-member ensemble of observa-

tions [Mears et al., 2011]. We consider this ensemble to be noisy samples of the unknown true temperatures

and use it to represent the observational uncertainty as in (2).

For climate model data, we selected historical runs with natural-only (NAT) and anthropogenic-only (ANT)

forcings from the Coupled Model Intercomparison Project Phase 5 (CMIP5) archive. Some of the CMIP5 simu-

lations were vertically weighted to be similar to theMSU observations [Santer et al., 2013a], and we based our

selection on the availability of those zonally averaged MSU-comparable temperatures and earlier scientific

findings to exclude problematic runs [Santer et al., 2013b]. This resulted in four natural forcings-only model

runs (bcc csm1, can esm2, giss e2 r p1, and giss e2 r p3) and three anthropogenic forcings-only runs (gfdl, giss

e2 r p1, and giss e2 r p3), shown in Figures S1 and S2, respectively. As controls, we use the preindustrial control
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Figure 1. Linear tropospheric temperature trend (in ∘C per decade) for the period 1979–2005 for the giss e2 r p1 model

run using (a) only anthropogenic forcing and (b) only natural forcing, and (c) the average of 396 observational ensemble

members from RSS. Areas in grey were excluded from the analysis due to the absence of satellite observations.

run giss e2 r p1 from the CMIP5 archive. This run spans 550 years, and we split the run in 27 year segments,

which resulted in 20 such segments.

We use the built-in MATLAB function “geoloc2grid” to convert all climate model and observational data

from their native resolution to a 5∘ × 5∘ grid. We limit the domain to 80∘ north and−70∘ south, andwe further

exclude locationswith an altitude higher than 3000mas there is no satellite data coverage for these locations.

The resulting fields consist of n = 2107 grid cells, for which we calculate the linear slope coefficients used in

the analysis. Figure 1 shows the spatial field of coefficients for oneexampleof the anthropogenic forcings-only

run, one example of the natural forcings-only run, and the mean field of the observational ensemble.

4.2. Implementation and Results

We implement the model in MATLAB 2014b using 20,000 MCMC iterations for each value of r ∈ {1,… , 19},

5000 ofwhich are consideredburn-in. This setupprovides good convergenceproperties of theMarkov chains.

Figure 2a shows the posterior distributions of �1 (anthropogenic forcing) and �2 (natural forcing) for each

truncation, r ∈ {1,… , 19}, individually, while Figure 2c shows the corresponding Bayesian model averaged

estimates. According to standard interpretation, both forcings are detected, as the 95% credible intervals do
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Figure 2. Results for the tropospheric temperature data analysis. (a) Posterior distributions of �1 (anthropogenic forcing)

in red and �2 (natural forcing) in green for each EOF truncation r ∈ {1,… , 19}. (b) Posterior probabilities for different

values of r. (c) Marginal posterior distributions of �1 and �2 obtained by Bayesian model averaging over r. (d) Posterior

distribution of p values for the residual consistency test.

not contain zero. The coefficient corresponding to theanthropogenic forcing is of largermagnitudeandhence

potentially stronger than the natural forcing. The averaged estimates are obtained using the posterior prob-

abilities for each truncation option shown in Figure 2b. For this application, most of the weight, slightly more

than 50%, is placed on the truncation using 18 EOFs. The difference between the widths of the posterior dis-

tributions for the individual truncations (Figure 2a) and the distributions based on BMA (Figure 2c) illustrates

how taking the uncertainty about the value of r into account leads to broader, and arguably more realistic,

credible intervals on the coefficients. Applying the residual consistency test (described in section 3.4), there

is no evidence of a model misfit as the distribution of p values is close to 1 (Figure 2d).

4.3. Computational Considerations

One of the challenges with Bayesian methods, due to their requirement for repeated, iterative sampling, is

often their computational speed, which can be prohibitively slow for some applications. For our model, the

derivations in section 3.2 result in short computation times for the MCMC for each possible EOF truncation r.

In addition, theseMCMCanalyses for different r can be executed completely in parallel. On amoderate laptop,

a MacBook Pro with an Intel quad-core 2.6 GHz i7 processor and 8 GB of memory, using MATLAB 2014b and

four cores, the algorithm takes less than 8 min to evaluate all 19 truncation options and perform Bayesian

model averaging toobtain the results shown in Figure 2.On clusters or high-performance computing systems,

where a large number of cores is available, the algorithm can easily be scaled up to a higher number of EOF

truncations if longer control runs are available.

5. Discussion and Conclusion

Wehave introducedaBayesianhierarchicalmodel that addresses someof theopenmethodological questions

in regression-based detection and attribution. Specifically, we take into account the uncertainties related to
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observations and climate signals under different forcing scenarios. Further, we incorporate the uncertainty

associatedwith estimating the climate variability covariancematrix into the inference on the regression coef-

ficients. Instead of choosing a specific truncation of the number of empirical orthogonal functions (EOFs) in

this covariancematrix, we apply Bayesianmodel averaging to assign optimal probabilistic weights to a range

of possible truncations. Themethod is computationally efficient and scalable due to its parallel nature, which

we have demonstrated with a substantive application.

A broader issue that we have not addressed, but which is not specific to ourmethodology, is the sensitivity to

the choice of control runs. Our inferential scheme is still conditional on a given set of control runs, and we are

not accounting for the uncertainty stemming from choosing these runs. In particular, the estimation of the

EOF vectors based on a small number of control runs can be unstable and sensitive to the specific choice of

runs. One avenue for further researchwould be to regularize the EOF estimation [e.g.,WangandHuang, 2017]

or to treat the EOFs as random fields and account for their uncertainty [e.g., Suarez and Ghosal, 2017].

We have further assumed a relatively simple form for the covariance matrix associated with the observation

ensemble, namely, a fixed diagonal matrix with the empirical variances as its elements. We could allow this

matrix to be of amore general form (e.g., based on aGaussianMarkov randomfield)with potentially unknown

(random) parameters. We have also assumed the different climate model runs to be independent replicates

of the same random quantity; for situations where multiple ensemble members are available from different

models, we could improve the setup by modeling intermodel and intramodel variability.

In additional future work, we plan on conducting a comprehensive performance evaluation using extensive

simulations. This evaluationwill extend our preliminary simulations in section S2, for example, by considering

the effect of the number of control runs and shrinkage of the regression coefficients for small grid size.
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