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ABSTRACT

Automated sensing instruments on satellites and aircraft have enabled the collection of massive amounts
of high-resolution observations of spatial ields over large spatial regions. If these datasets can be eiciently
exploited, they can provide new insights on a wide variety of issues. However, traditional spatial-statistical
techniques such as kriging are not computationally feasible for big datasets. We propose amulti-resolution
approximation (M-RA) of Gaussian processes observed at irregular locations in space. The M-RA process is
speciied as a linear combination of basis functions at multiple levels of spatial resolution, which can cap-
ture spatial structure from very ine to very large scales. The basis functions are automatically chosen to
approximate a given covariance function, which can be nonstationary. All computations involving the M-
RA, including parameter inference and prediction, are highly scalable for massive datasets. Crucially, the
inference algorithms can also be parallelized to take full advantage of large distributed-memory comput-
ing environments. In comparisons using simulated data and a large satellite dataset, theM-RA outperforms
a related state-of-the-art method. Supplementary materials for this article are available online.

1. Introduction

Automated sensing instruments on satellites and aircraft have
enabled the collection of massive amounts of high-resolution
observations of spatial ields over large and inhomogenous
spatial domains. If these kinds of datasets can be eiciently
exploited, they can provide new insights on a wide variety
of issues, such as greenhouse gas concentrations for climate
change, soil properties for precision agriculture, and atmo-
spheric states for weather forecasting. Based (implicitly or
explicitly) on Gaussian processes, the ield of spatial statistics
provides a rich toolkit for the analysis of such data, including
estimating unknown parameters, predicting the spatial ield at
unobserved locations, and properly quantifying uncertainty in
the predictions and parameters (e.g., Cressie and Wikle 2011).

However, traditional spatial-statistical techniques such as
kriging are not computationally feasible for big datasets, because
dense n × n matrices need to be decomposed, where n is the
number of measurements. General-purpose methods such as
the preconditioned conjugate gradient algorithm (e.g., Golub
and Van Loan 2012) or probabilistic projections (e.g., Halko,
Martinsson, and Tropp 2011; Stein, Chen, and Anitescu 2013)
can solve large linear systems. But it is challenging for such
algorithms to calculate the determinant of the data covari-
ance matrix also required for likelihood-based inference, as
this covariance is huge, often dense, and might have a slowly
decaying spectrum.

More specialized methods for approximating spatial infer-
ence that explicitly try to exploit spatial information in the data
have been proposed in the literature, but most of them either
require restrictive assumptions about the covariance function
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(e.g., Fuentes 2007; Lindgren, Rue, and Lindström 2011),
or they ignore much of the ine-scale dependence (e.g., Higdon
1998; Mardia et al. 1998; Calder 2007; Cressie and Johannesson
2008; Katzfuss and Cressie 2009; Lemos and Sansó 2009; Katz-
fuss and Cressie 2011, 2012) or the large-scale dependence (e.g.,
Furrer, Genton, and Nychka 2006; Kaufman, Schervish, and
Nychka 2008; Shaby and Ruppert 2012). Composite-likelihood
methods (e.g., Vecchia 1988; Curriero and Lele 1999; Stein, Chi,
andWelty 2004; Caragea and Smith 2007; Bevilacqua et al. 2012;
Eidsvik et al. 2014) achieve computational feasibility by treating
(blocks of) observations as conditionally independent, but it is
not clear how to obtain proper joint predictive distributions for
locations in diferent blocks.

We propose here a multi-resolution approximation (M-RA)
of Gaussian processes observed at irregular (i.e., nongridded)
locations in space. The M-RA process is speciied as a linear
combination of basis functions at multiple levels of spatial reso-
lution, which can capture spatial structure from very ine to very
large scales.Multi-resolutionmodels (e.g., Chui 1992; Johannes-
son, Cressie, and Huang 2007; Nychka et al. 2016) have been
very successful in spatial statistics, due to their ability to lex-
ibly capture dependence at multiple spatial scales while being
computationally feasible. In contrast to these existing meth-
ods, in our M-RA the basis functions and the distributions of
their weights are chosen to “optimally” approximate a given
covariance function, without requiring any restrictions on this
covariance function. The basis functions in each region at each
resolution are chosen iteratively according to the rules of the
predictive process (Quiñonero Candela and Rasmussen 2005;
Banerjee et al. 2008), based on a recursive partitioning of the
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202 M. KATZFUSS

spatial domain into smaller and smaller subregions, and a set
of “knot” locations in each region. The M-RA is a generaliza-
tion of the full-scale approximation (Snelson and Ghahramani
2007; Sang, Jun, and Huang 2011; Sang and Huang 2012), a cur-
rent state-of-the-art method for covariance approximations for
large spatial data, which has only one level of domain partition-
ing and one resolution of basis functions. We will compare the
two approaches extensively.

Inference for basis-function models essentially consists
of obtaining the posterior distribution of the basis-function
weights. In previous approaches, computationally feasible infer-
ence has been achieved by limiting the number of basis func-
tions to be small (e.g., Higdon 1998; Quiñonero Candela and
Rasmussen 2005; Cressie and Johannesson 2008) or by specify-
ing the precision matrix of the weight vector to be diagonal or
sparse (e.g., Higdon 1998; Lindgren, Rue, and Lindström 2011;
Nychka et al. 2016). The M-RA combines both approaches: It
results in a multi-resolution (block) sparse precision matrix,
but the number of spatial basis functions within each region is
small, allowing repeated application of the Sherman–Morrison–
Woodbury formula (Sherman and Morrison 1950; Woodbury
1950). This leads to a highly scalable inference algorithm for
theM-RA (which could also be applied to any multi-resolution
basis-function model with a similar structure). Crucially, based
on previous work (Katzfuss and Hammerling 2017) describing
parallel algorithms for a special case of the M-RA, we derive
algorithms that can split the computing task eiciently between
many nodes. This way, spatial inference could be carried out for
massive spatial datasets, using parallel computations at a num-
ber of nodes, each dealing only with a subset of the dataset. If
enough computing nodes are available, this ensures scalability
of the M-RA even for datasets with many millions of observa-
tions.

This article is organized as follows. In Section 2, we introduce
the M-RA and discuss some of its properties. In Section 3, we
present algorithms for parameter inference and spatial predic-
tion, and describe the computational complexity of the M-RA.
In Section 4, we apply theM-RA to large simulated datasets and
to a real-data example and compare the M-RA to the full-scale
approximation. We conclude in Section 5. All proofs are given
in the Appendix.

2. Multi-Resolution Approximation (M-RA)

We begin this section by describing the true Gaussian pro-
cess to be approximated (Section 2.1). After some preliminar-
ies (Section 2.2), we introduce the multi-resolution approxima-
tion (M-RA) (Section 2.3) and discuss its properties (Sections
2.4 and 2.5).

2.1. The True Gaussian Process

Let {y0(s) : s ∈ D}, or y0(·), be the true spatial ield or process
of interest on a continuous (nongridded) domain D ⊂ R

d , d ∈
N

+. We assume that y0(·) ∼ GP(0,C0) is a zero-meanGaussian
process with covariance function C0. We place no restrictions
on C0, other than assuming that it is a positive-deinite func-
tion on D that is known up to a vector of parameters, θ. In real
applications, y0(·) will often not have mean zero, but estimating

and subtracting the mean is usually not a computational prob-
lem. Once y0(·) has been observed at a set of n spatial locations,
S = {s1, . . . , sn}, the distribution of the data is given by

y0(S ) :=
(
y0(s1), . . . , y0(sn)

)′ ∼ Nn

(
0,C0(S,S )

)
,

an n-variate Gaussian distribution with covariance matrix
C0(S,S ) =

(
C0(si, s j)

)
i, j=1,...,n

.

The basic goal of spatial statistics is to make (likelihood-
based) inference on the parameters θ and to obtain spatial pre-
dictions of y0(·) at a set of locations SP (i.e., to obtain the pos-
terior distribution of y0(S

P)). This requires multiple Cholesky
decompositions of the data covariance matrix C0(S,S ), which
generally has O(n3) time and O(n2) memory complexity. This
is computationally infeasible when n = 105 or more. In addi-
tion, computations for inference are also very diicult to paral-
lelize, as computations with a dense and large covariance matrix
require substantial communication overhead. Thus, the com-
putational challenges cannot be solved by brute-force use of
high-performance computing systems, and approximations or
simplifying assumptions are necessary.

2.2. Domain Partitioning and Knots

To deine theM-RA, we need a recursive partitioning of the spa-
tial domain D, in which each of J regions, D1, . . . ,DJ , is again
divided into J smaller subregions, and so forth, up to levelM:

D j1,..., jm−1
=

⋃̇
jm=1,...,J D j1,..., jm , j1, . . . , jm−1 = 1, . . . , J;

m = 1, . . . ,M.

For a generic Gaussian process x(·) ∼ GP(0,C), we deine
[x(·)][m] to be a “block-independent” version of x(·) between
regions at resolutionm, that is, [x(·)][m] ∼ GP(0, [C][m]), where
[C][m](s1, s2) = C(s1, s2) if s1, s2 are in the same regionD j1,..., jm

at resolutionm, and [C][m](s1, s2) = 0 otherwise.
We also need a multi-resolutional set of knots, such that

Q j1,..., jm is a set of r knots (with r << n) that all lie in subre-
gion D j1,..., jm . For ease of notation, we assume that the knots
in each of the regions at resolution M are given by the obser-
vation locations in that region:Q j1,..., jM = S j1,..., jM . Further, we
writeQ(m) = {Q j1,..., jm : j1, . . . , jm = 1, . . . , J} for the set of all
rJm knots at resolution m. For a one-dimensional toy example,
the top row of Figure 1 shows partitions and basis functions for
M-RAs with M = 1 and M = 3. The knots are the locations at
which the basis functions attain their maximum.

Note that we have assumed the same number (J) of sub-
regions in each partition and the same number (r) of knots
in each subregion, but this is only for notational convenience
and not necessary for the inference described later. Hereafter,
we will assume the domain partitioning and knots to be ixed
and known. Some further discussion of their choice is given in
Section 2.5.

2.3. Deinition of theMulti-Resolution Approximation

(M-RA)

Recall the true Gaussian process y0(·) ∼ GP(0,C0) from
Section 2.1.We assume temporarily that the covariance function
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Figure . Comparison of a full-scale approximation (-RA) to a multi-resolution approximation with three resolutions (-RA) with the same computational complexity
(Mr = 6 for both models) in a toy example of n = 54 observations generated from an exponential covariance function on a one-dimensional spatial domainD = [0, 1].
Panels (c) and (d) show the covariance approximations using only the basis functions up to resolutionm, form = 0, . . . ,M. Asm increases, deviations between the true
and approximated covariance occur only on smaller and smaller scales (distances). Form = M, the covariance and predictions of the -RA are exactly the same as the true
covariance and the corresponding (optimal) predictions of the 0-RA, whereas the covariance approximations and predictions using the -RA differ considerably from the
truth. Note that for other covariance functions or in higher dimensions, theM-RA will not generally be exact (see Section .).

C0 is fully known (parameter inference is discussed in Section
3.3). The M-RA process approximates y0(·) and its covari-
ance C0 iteratively at resolutions m = 0, . . . ,M, based on the
knots and partitions speciied in Section 2.2. At each resolu-
tion m, it approximates the “remainder” term—the diference
between y0(·) and the approximations at lower resolutions—
using the predictive process (Banerjee et al. 2008), indepen-
dently between regions D j1,..., jm . As illustrated in Panel (d) of
Figure 1, low M-RA resolutions capture variability at low fre-
quencies (i.e., at large distances), resulting in remainder terms
that exhibit variability on smaller and smaller scales as m
increases, and so approximating the remainder independently
between iner and iner partitions causes little approximation
error.

More speciically, we begin with a predictive-process approx-
imation of y0(·), τ0(s) := E(y0(s)|y0(Q(0))), s ∈ D, and we
approximate the remainder process by assuming it to be inde-
pendent between regions D1, . . . ,DJ at resolution 1: δ1(·) =
[y0(·) − τ0(·)][1] (Sang, Jun, and Huang 2011). We then again
approximate this remainder process as the sum of its pre-
dictive process, τ1(s) = E

(
δ1(s)|δ1(Q(1))

)
, s ∈ D, plus the

approximate remainder δ2(·) = [δ1(·) − τ1(·)][2], and so forth,
up to level M. This leads to the following expression for the
M-RA:

yM(·) = τ0(·) + τ1(·) + · · · + τM−1(·) + δM(·), (1)

where τm(s) = E
(
δm(s)|δm(Q(m))

)
, s ∈ D, and δm(·) =

[δm−1(·) − τm−1(·)][m] ∼ GP(0, vm).
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204 M. KATZFUSS

An alternative expression for the M-RA in (1) can be
obtained by noting that, for m = 0, . . . ,M − 1, we can write
each predictive process for s ∈ D j1,..., jm as a linear com-
bination of basis functions (see Katzfuss 2013), τm(s) =
b j1,..., jm (s)′η j1,..., jm with η j1,..., jm ∼ Nr(0,K j1,..., jm ), and

b j1,..., jm (s) := vm(s,Q j1,..., jm ), s ∈ D j1,..., jm

K−1
j1,..., jm

:= vm(Q j1,..., jm ,Q j1,..., jm )

vm+1(s1, s2) := vm(s1, s2) − b j1,..., jm (s1)
′K j1,..., jmb j1,..., jm (s2),

s1, s2 ∈ D j1,..., jm , (2)

where vm+1(s1, s2) = 0 if s1 and s2 are in diferent regions at the
mth resolution, and we set v0 = C0. Therefore, the M-RA can
also be written as a linear combination of basis functions at M
resolutions 0, . . . ,M − 1, plus a remainder term at resolution
M:

yM(s) = b(s)′η + b j1 (s)
′η j1 + · · · + b j1,..., jM−1

(s)′η j1,..., jM−1

+ δM(s), s ∈ D j1,..., jM , (3)

where the weight vectors are independent of each other and
of δM(·) ∼ GP(0, vM). Panels (a) and (c) of Figure 1 show the
basis functions in the toy example. Once we have observed
data at locations S , we can also write the remainder δM(·)
in (3) as a linear combination of basis functions, δM(s) =
b j1,..., jM (s)′η j1,..., jM , s ∈ D j1,..., jM , as in (2), where Q j1,..., jM =
S j1,..., jM .

2.4. Properties of theM-RA

... Many Basis Functions

In contrast to so-called low-rank approaches, which rely on a
small or moderate number of basis functions and for which cap-
turing small-scale variation is challenging (see, e.g., Stein 2014),
the total number of basis functions for theM-RA withM > 0 is
larger than the number of measurements: rtotal = r

∑M
m=0 J

M =
rJM + r

∑M−1
m=0 J

m = n + r J
M−1
J−1

> n. This allows the M-RA to
capture variation at all spatial scales, including very small scales.

... Orthogonal Decomposition

Because the predictive process is a conditional expectation,
which is a projection operator, the predictive process τm(·)
is independent of the remainder δm(·) − τm(·), for all m =
0, . . . ,M − 1. Hence, we deine the M-RA in (1) as a sum of
orthogonal components. In the form (3), theM-RA is aweighted
sum of spatial basis functions, for which the weights η j1,..., jm are
block-orthogonal in probability space, but two sets of basis func-
tions b j1,..., jm1

and bi1,...,im2
are only block-orthogonal in physical

space ifD j1,..., jm1
∩ Di1,...,im2

= �.

... Valid Gaussian Process

Proposition 1. TheM-RA is a valid Gaussian process with a non-
negative deinite covariance function,CM .

... “Optimal” Basis Functions

At every resolutionm = 0, . . . ,M − 1 and within every region
D j1,..., jm , the goal of the M-RA in (1) is to approximate the
remainder process δm(·) as closely as possible, where

δm(·) = [δm−1(·) − τm−1(·)][m] = [y0(·) −
m−1∑
l=0

τl (·)][m]. (4)

Hence, in each region, δm(·) in (1) is the diference between
the true process y0(·) and the “previous” terms at lower resolu-
tions,

∑m−1
l=0 τl (·). We choose τm(·) to be the predictive-process

approximation of δm(·). As this is a conditional expectation,
τm(·) is the function of δm(Q(m)) that minimizes the expected
squared diference to δm(s), conditional on δm(Q(m)) (Banerjee
et al. 2008). Further, τm(·) can be viewed as an approximation
of the optimal rank-r representation of δm(·)within each region
D j1,..., jm , in that τm(·) is the Nyström approximation of the irst
r terms in the Karhunen–Loève expansion of δm(·) (Sang and
Huang 2012). This is further evidence that at each resolution
the predictive process captures variability at the low frequen-
cies, leaving mostly higher-frequency variability to be captured
at higher resolutions within smaller subregions. For increasing
r, τm(·) will be increasingly close to δm(·). In fact, if Q j1,..., jm is
equal to S j1,..., jm , the set of observed locations inD j1,..., jm , then it
is straightforward to show that τm(S j1,..., jm ) = δm(S j1,..., jm ). In
this sense, τm(·) (and its basis-function representation) are an
“optimal” approximation of δm(·).

In contrast to many other multi-resolution methods for spa-
tial data, theM-RA thus automatically provides a basis-function
representation to approximate a given covariance function C0

(based on a particular domain partitioning and set of knots),
without any restrictions on C0. This is illustrated in Figure 2,
which shows the basis functions of a 3-RA for a highly nonsta-
tionary covariance functionC0.

... Quality of the Covariance Approximation

At resolution m, the M-RA attempts to capture the covari-
ance of the remainder δm(·) between the partitions of each
region D j1,..., jm by the predictive-process basis-functions com-
ponent b j1,..., jm (·)′η j1,..., jm . How close the covariance of the M-
RA,CM(s1, s2), is to the true covariance,C0(s1, s2), depends on
up to which resolution s1 and s2 lie in the same region. If s1 and
s2 are in the same region at resolution M, then CM(s1, s2) =
C0(s1, s2). (To prove this, simply combine (1) with (4).) This
also implies that the variances of y0(·) and yM(·) are the same.
If s1 and s2 are in the same regionD j1,..., jm at resolutionm < M,
but not at resolution m + 1, then C0(s1, s2) is only approxi-
mated by the basis functions up to resolution m: CM(s1, s2) =∑m

l=0 b j1,..., jl (s1)
′K j1,..., jlb j1,..., jl (s2).

... Comparison to the Full-Scale Approximation

Important special cases of the M-RA are the original process
y0 for M = 0, and the full-scale approximation (Snelson and
Ghahramani 2007; Sang, Jun, and Huang 2011) forM = 1. The
full-scale approximation, or 1-RA, only has basis functions at
one resolution with rF knots QF, and a single level of domain
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Figure . For a spatial process with a nonstationary Matérn covariance function with range . and spatially varying (increasing) smoothness ν(s) = 0.2 + 0.7s on a
one-dimensional domainD = [0, 1], basis functions, and partitions of anM-RA with J = 2 and r = 3. Note how the basis functions adapt to the increasing smoothness
of the true covariance function and according to the placement of basis functions at lower resolutions.

partitioning, D =
⋃̇

j=1,...,JFD
F

j . For massive datasets, the sub-

regions DF

j need to be very small to maintain computational
feasibility.

Comparing ourM-RA (withM > 1) and a full-scale approx-
imation (1-RA) with QF = Q and {DF

j : j = 1, . . . , JF} =
{D j1,..., jM : j1, . . . , jM = 1, . . . , J}, the covariance approxima-
tion for the two models is the same for pairs of locations in the
same inest subregion DF

j and for pairs in diferent subregions
Di andD j with i �= j at the (coarsest) resolution 1. For all other
pairs of locations, theM-RA has extra basis functions to capture
their dependence, and if r is suiciently large that τm(·) captures
the dependence of δm(·) between subregionsD j1,..., jm+1

well, the
M-RA will provide a better approximation of y0(·) than the
1-RA.

As described later in Section 3.6, theM-RA with r knots has
the same computational complexity as the 1-RA withMr knots.
As illustrated in Figure 1, the M-RA can result in considerably
better approximations. Further comparisons are presented in
Section 4.

2.5. More on the Choice of Knots and Partitions

To achieve good approximations, we recommend choosing M
and J as small and r as large as the computational resources allow
(see Table 1(a)), under the constraint that rJM ≥ n.

If the observation locations are approximately uniformly
distributed over the domain D, the partitions can simply be
obtained by recursively splitting each region into J subregions
of equal area. If the observation locations are far from uniform,
more complicated partitioning schemes might be necessary to
achieve fast inference.

Table . Time and memory complexity of the M-RA and its special cases, regular
kriging (0-RA) and full-scale approximation (-RA), on a single computer and in
a distributed computing environment with many nodes. See Sections .–. for
more details.

Single processor Distributed

Time Memory Time Memory

(a) Increasing r andM

-RA n3 n2

-RA nr2 nr r3 r2

M-RA n(Mr)2 nMr (Mr)3 Mr2

(b)M = O(log n)

M-RA n log2 n n log n log3 n log n

The remaining issue is the placement of the r knots within
each region. A simple solution is to use equidistant grids over
each region D j1,..., jm , but it can also be advantageous to place
more knots close to the boundaries within each region. To see
why, remember from (4) and Section 2.3 that the goal within
each regionD j1,..., jm is to approximate δm(·) ∼ GP(0, vm). Con-
sider the case of a region with J = 2 subregions containing
observed locations S = {S1,S2} with S j = {SB

j ,S
I
j}, where SB

j

are the locations within a distance c from the boundary and
S I

j are the remaining locations in the interior of subregion

j. Choosing the knots Q j1,..., jm = SB := {SB
1 ,SB

2 }, it can be
shown that var(δm(S )) = var(τm(S )) + var(δm(S )|δm(SB)),
the latter being a matrix with only one nonzero block,
var(δm(S I )|δm(SB)). The only part of thismatrix that is ignored
by theM-RA is cov(δm(S I

1), δm(S I
2)|δm(SB)), which should be

very small if c is large and/or the screening efect (e.g., Stein
2011) holds for vm.

An extreme case of this strategy is illustrated in Figure 1. For
the exponential covariance function without nugget in one spa-
tial dimension, the screening efect holds exactly, in that two
observations are conditionally independent given a third obser-
vation that separates the two. Because the knots for a particu-
lar resolution in Figure 1 are placed on the boundaries between
partitions at the next higher resolution, the M-RA is exact in
this case. For covariance functions without screening efect or
in higher dimensions, theM-RA will generally not be exact.

While the (favorable) numerical results in Section 4.1 are
obtained with the simplest choice of equal-area partitions and
equally spaced knots, it is possible to adopt more complicated
strategies, such as choosing the knots and partitions based
on clustering (e.g., Snelson and Ghahramani 2007) or using
reversible-jump Markov chain Monte Carlo (e.g., Gramacy and
Lee 2008; Katzfuss 2013). Any potential boundary efects due
to the choice of partitions can be alleviated by carrying out
severalM-RAs with diferent, shifted partitions and combining
the results using Bayesian model averaging (e.g., Hoeting et al.
1999).

3. Inference

In this section, we describe inference for the M-RA. For a par-
ticular value of the parameter vector θ, the covariance function
C0, and hence the basis functions b j1,..., jm and the covariance
matrices K j1,..., jm in (3) are ixed. The prerequisite for inference

D
o
w

n
lo

ad
ed

 b
y
 [

T
ex

as
 A

&
M

 U
n
iv

er
si

ty
 L

ib
ra

ri
es

] 
at

 0
9
:1

5
 3

0
 N

o
v
em

b
er

 2
0
1
7
 



206 M. KATZFUSS

is to calculate the quantities summarizing the prior distribu-
tion induced by the M-RA at the chosen knots and observed
locations (Section 3.1). Then, the main task for inference is
to obtain the posterior distribution of the unknown weight
vectors EM−1 (Section 3.2), where we deine Em := {η j1,..., jl :
j1, . . . , jl = 1, . . . , J; l = 0, . . . ,m} for all m = 0, . . . ,M − 1
to be the set of all basis-function weights at resolution m and
all lower resolutions (and we let E−1 = � be the empty set).
Once this posterior distribution has been obtained, it can be
used to evaluate the likelihood (Section 3.3) and to obtain spa-
tial predictions (Section 3.4). By exploiting the block-sparse
multi-resolution structure of the prior and posterior precision
matrices of the weights, we obtain inference that has excel-
lent time and memory complexity (Section 3.6), can take full
advantage of distributed-memory systems with a large number
of nodes (Section 3.5), and is thus scalable to massive spatial
datasets.

3.1. Calculating the Prior Quantities

Let S j1,..., jm be the observation locations that lie in region
D j1,..., jm , and deine

Bl
j1,..., jm

:= b j1,..., jl (S j1,..., jm ), l = 0, 1, . . . ,m,

� j1,..., jm := var(yM(S j1,..., jm )|Em−1)

= Bm
j1,..., jm

K j1,..., jmB
m
j1,..., jm

′ + V j1,..., jm ,

V j1,..., jm := var(yM(S j1,..., jm )|Em)

= blockdiag
{
�j1,...,jm,1, . . . ,�j1,...,jm,J

}
, (5)

for m = 0, 1, . . . ,M − 1, and � j1,..., jM := vM(S j1,..., jM ,

S j1,..., jM ).
For inference, we explicitly need to calculate the matrices

{K−1
j1,..., jm

: j1, . . . , jm = 1, . . . , J;m = 0, . . . ,M − 1}, {Bl
j1,..., jM

:
j1, . . . , jM = 1, . . . , J; l = 0, . . . ,M − 1}, and {� j1,..., jM:
j1, . . . , jM = 1, . . . , J}. Deining Wl

j1,..., jm
:= vl (Q j1,..., jm ,

Q j1,..., jl ), we can do so by calculating

Wl
j1,..., jm

= C0(Q j1,..., jm ,Q j1,..., jl )

−
l−1∑

k=0

Wk
j1,..., jm

K j1,..., jkW
k
j1,..., jl

′ (6)

for m = 0, . . . ,M, j1, . . . , jm = 1, . . . , J, and l = 0, . . . ,m.
Then we have K−1

j1,..., jm
= Wm

j1,..., jm
for m < M, Bl

j1,..., jM
=

Wl
j1,..., jM

for l < M, and � j1,..., jM = WM
j1,..., jM

.
As an aside, other parameterizations of these matrices (and

the quantities in (3)) are also possible and will lead to similar
inference algorithms as described later, as long as theweight vec-
tors are a priori independent and the basis functions have the
same limited support.

3.2. The Posterior Distribution of the Basis-Function

Weights

The deinition of theM-RA in (3), together with the deinitions
in (5), implies that

yM
(
S j1,..., jm

)
|Em ∼ N

(∑m
l=0 B

l
j1,..., jm

η j1,..., jl ,V j1,..., jm

)
.

Using the results in Katzfuss and Hammerling (2017, sec. 3), it
can be shown that the conditional posterior distributions of the
weight vectors for allm = 0, . . . ,M − 1 are given by

η j1,..., jm |yM(S ), Em−1
ind.∼ Nr

(
ν̃ j1,..., jm , K̃ j1,..., jm

)
,

j1, . . . , jm = 1, . . . , J, (7)

with posterior precision and mean

K̃−1
j1,..., jm

= K−1
j1,..., jm

+ Bm
j1,..., jm

′V−1
j1,..., jm

Bm
j1,..., jm

= K−1
j1,..., jm

+ Am,m
j1,..., jm

,

ν̃ j1,..., jm = K̃ j1,..., jm

(
Bm

j1,..., jm
′V−1

j1,..., jm
(yM(S j1,..., jm )

−
m−1∑

l=0

Bl
j1,..., jm

η j1,..., jl )

)

= K̃ j1,..., jmωm
j1,..., jm

−
m−1∑

l=0

K j1,..., jmA
m,l
j1,..., jm

η j1,..., jl

(8)

respectively, where

Ak,l
j1,..., jm

:= Bk
j1,..., jm

′V−1
j1,..., jm

Bl
j1,..., jm

=
∑J

jm+1=1 Ã
k,l
j1,..., jm+1

,

k ≥ l = 0, . . . ,m,

ωk
j1,..., jm

:= Bk
j1,..., jm

′V−1
j1,..., jm

yM(S j1,..., jm ) =
∑J

jm+1=1 ω̃k
j1,..., jm+1

,

(9)

can be obtained recursively for m = M − 1,M − 2, . . . , 0
using

Ãk,l
j1,..., jm

:= Bk
j1,..., jm

′�−1
j1,..., jm

Bl
j1,..., jm

= Ak,l
j1,..., jm

− Ak,m
j1,..., jm

K̃ j1,..., jmA
m,l
j1,..., jm

,

ω̃k
j1,..., jm

:= Bk
j1,..., jm

′�−1
j1,..., jm

y(S j1,..., jm )

= ωk
j1,..., jm

− Ak,m
j1,..., jm

K̃ j1,..., jmωm
j1,..., jm

. (10)

In practice, the quantities in (10) are calculated directly from
the deinition (irst equality) for m = M, and using the recur-
sive expression (second equality) for m = M − 1, . . . , 0. The
proof of results (9)–(10) is straightforward using the Sherman–
Morrison–Woodbury formula (Sherman and Morrison 1950;
Woodbury 1950; Henderson and Searle 1981):

�−1
j1,..., jm

= V−1
j1,..., jm

− V−1
j1,..., jm

Bm
j1,..., jm

K̃ j1,..., jmB
m
j1,..., jm

′V−1
j1,..., jm

.

(11)
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3.3. Parameter Inference

Inference for theM-RA is based on LM(θ), the likelihood of the
observations yM(S ) ∼ Nn(0,�), where� = �(θ) is theM-RA
covariance matrix given in (5) with m = 0 based on parameter
vector θ:

−2 log LM(θ) = log |�| + yM(S )′ �−1 yM(S ).

This likelihood can be calculated using the quantities in Section
3.2. We have −2 log LM(θ) = d + u, with

d j1,..., jm := log |� j1,..., jm |,
u j1,..., jm := yM(S j1,..., jm )′�−1

j1,..., jm
yM(S j1,..., jm ),

m = 0, 1, . . . ,M. For m = M, these quantities are calculated
using the deinition. For m = M − 1, . . . , 0, the recursive
expressions

d j1,..., jm = log |K̃−1
j1,..., jm

| − log |K−1
j1,..., jm

| +
∑J

jm+1=1 d j1,..., jm+1
,

u j1,..., jm = −ωm
j1,..., jm

′K̃ j1,..., jmωm
j1,..., jm

+
∑J

jm+1=1 u j1,..., jm+1
,

can be derived using a matrix determinant lemma (e.g., Harville
1997, Thm. 18.1.1) and the Sherman–Morrison–Woodbury for-
mula in (11).

In summary, the M-RA log-likelihood can be written as a
sumof log-determinants and quadratic forms involving only r ×
rmatrices. This result enables fast and scalable evaluation of the
likelihood, which in turn allows for a wide array of likelihood-
based inference techniques for an unknown parameter vector θ,
such as maximum likelihood estimation, Markov chain Monte
Carlo (MCMC), or particle iltering in spatio-temporal contexts.

3.4. Spatial Prediction

Spatial prediction can be carried out separately, after parameter
inference is completed. In a frequentist context, prediction only
has to be carried out once, for the inal parameter estimates. In
a Bayesian framework, parameter inference can be carried out
only for the thinned MCMC chain, or for particles with consid-
erable weight in the case of a particle sampler.

Implicitly conditioning on a particular value of the param-
eter vector θ, spatial prediction amounts to inding the poste-
rior predictive distribution, yM(SP)|yM(S ), at a set of prediction
locations SP. We denote by SP

j1,..., jM
the prediction locations in

regionD j1,..., jM . As a irst step, we need to calculate prior predic-
tion quantities similar to (6),

Ul
j1,..., jM

:= vl

(
SP

j1,..., jM
,Q j1,..., jl

)

= C0

(
SP

j1,..., jM
,Q j1,..., jl

)
−

l−1∑

k=0

Uk
j1,..., jM

K j1,..., jkW
k
j1,..., jl

′,

for l = 0, . . . ,M, and then we set LMj1,..., jM :=
vM(SP

j1,..., jM
,S j1,..., jM ) = UM

j1,..., jM
and

VP
j1,..., jM

:= vM

(
SP

j1,..., jM
,SP

j1,..., jM

)

= C0

(
SP

j1,..., jM
,SP

j1,..., jM

)
−

M−1∑

k=0

Uk
j1,..., jM

K j1,..., jkU
k
j1,..., jM

′.

Spatial predictions can then be obtained using the following
proposition.

Proposition 2. The posterior predictive distribution can be
written as

yM

(
SP

j1,..., jM

)
|yM(S ) =

M−1∑
m=0

B̃m+1,m
j1,..., jM

η̃ j1,..., jm + δ̃ j1,..., jM ,

(12)

where

η̃ j1,..., jm

ind.∼ Nr

(
K̃ j1,..., jmωm

j1,..., jm
, K̃ j1,..., jm

)
,

δ̃ j1,..., jM

ind.∼ N
(
LMj1,..., jM�−1

j1,..., jM
yM

(
S j1,..., jM

)
,

VP
j1,..., jM

− LMj1,..., jM�−1
j1,..., jM

LMj1,..., jM
′
)

,

and the “posterior basis-function matrices” are given by

B̃l,k
j1,..., jM

: = b j1,..., jk

(
SP

j1,..., jM

)
− Llj1,..., jM�−1

j1,..., jl
Bk

j1,..., jl

= B̃l+1,k
j1,..., jM

− B̃l+1,l
j1,..., jM

K̃ j1,..., jlA
l,k
j1,..., jl

, (13)

for k = 0, 1, . . . , l − 1.

Hence, the posterior predictive distribution in (12) has the
same form as the (prior) M-RA process in (3). This allows cal-
culation and storage of the joint posterior predictive distribution.
Often, interest is in summaries of this joint posterior predictive
distribution, such as the marginal posterior predictive distribu-
tions at each prediction location. In practice, the posterior basis-
functionmatrices in (13) are calculated directly from the deini-
tion (irst equation) for l = M, and using the recursive relation
(second equation) for l = M − 1, . . . , 0.

3.5. Distributed Computing

Amajor advantage of theM-RA is that it is well suited tomodern
computing environments, in that computations can be carried
out in a distributed fashion with little communication overhead
at a large number of nodes, each only dealing with a small subset
of the data.

More speciically, assume that we have nodes {N j1,..., jm :
j1, . . . , jm = 1, . . . , J; m = 0, 1, . . . ,M} in a tree-like struc-
ture, as illustrated in Figure 3. Each node N j1,..., jm holds the
r knots or observation locations Q j1,..., jm located in subregion
D j1,..., jm , and it only has to work with matrices of size r ×
r (implying excellent load balance). The main computational
efort for node N j1,..., jm is in computing the Cholesky decom-

position of the r × r matrix K̃ j1,..., jm and calculating the quanti-
ties in (10), the latter of which could be parallelized if the node
has multiple cores. The communication to each nodeN j1,..., jm is
O(Jm2r2), as it receives the matrices to calculate the quantities
in (9) from its children. The calculations at the nodes/subregions
for each resolution can be carried out completely in parallel.

For spatial prediction at locations SP, each (terminal) node
N j1,..., jM carries out parallel computations involvingSP

j1,..., jM
, the

prediction locations in region D j1,..., jM , to obtain the “posterior
basis-function matrices” in (13).
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208 M. KATZFUSS

Figure . Illustration of the computational setup for distributed inference in the 2-RA with J = 2 and r = 5 for a toy example in a one-dimensional spatial domain. As
indicated by matching colors, nodeN j

1
,..., j

m
works with the knotsQ j

1
,..., j

m
, jm = 1, 2;m = 0, 1, 2. Only communication between connected nodes is necessary.

3.6. Computational Complexity

Remember that we assume here for simplicity that there is an
equal number of r = n

JM
knots or observation locations in each

region D j1,..., jm , and we regard J as a ixed (small) number.

For each of the
∑M

m=0 J
m < 2JM regions, the main computa-

tional efort for inference is in obtaining the matrices Ãk,l
j1,..., jm

in
(10), which requires one Cholesky decomposition of the r × r
matrix K̃ j1,..., jm and computing O(m2) quadratic forms of size
r × r. Thus,M-RA inference hasO(JMM2r3) = O(nr2M2) time
complexity andO(nrM) memory complexity.

When the M-RA is implemented in a distributed environ-
ment with a large number of nodes (as in Section 3.5 above),
the overall time complexity is O(M3r3) and the memory com-
plexity per node is O(Mr2), assuming that communication
(which is O(M2r2) per node) does not dominate computation
time.

Thus, the M-RA with r knots has the same computational
complexity as the 1-RA with Mr knots, but theM-RA can pro-
vide a much better approximation (see Figure 1). As is further
explored in Section 4.1, as n is increasing, the performance of the
1-RA degrades unless r is allowed to increase as some fraction
of n, while for theM-RA we can keep r ixed and instead letM
increase with n asM = O(logJ n). This is a natural assumption
under increasing-domain asymptotics, for which an increase in
the domain and data size by a factor of J allows an additional
split of the resulting domain (i.e., increasing M by one) with-
out degrading the approximation within the J subregions at the
irst resolution. In this case, the time and memory complexity
for the M-RA are O(n log2 n) and O(n log n), respectively, in
the nondistributed setting. In the distributed setting, the overall
time complexity is then O(log3 n), and the memory and com-
munication complexity per node are O(log n) and O(log2 n),
respectively.

The same complexities hold for prediction, as long as the
number of prediction locations per terminal region is on
the same order as the number of observed locations (i.e.,
|SP

j1,..., jM
| = O(r)). In addition, the M-RA allows us to store

the entire joint predictive distribution inO(Mr2JM ) = O(nMr)
memory (O(Mr2) per node in the distributed case). If M =
O(log n), this isO(n log n) (orO(log n) per node).

As summarized in Table 1(b), if we let M increase as log n,
the time and memory complexity for theM-RA are both quasi-
linear in n, and even polylogarithmic in distributed settings with
many nodes. Hence, theM-RA is highly scalable and can handle
trulymassive spatial datasets if enough computational nodes are
available.

4. Numerical Comparisons and Illustrations

Using simulated and real data, we compared our proposed M-
RA to the full-scale approximation (1-RA), which is a special
case of theM-RA and a current state-of-the-artmethod for large
spatial data. A nondistributed implementation of the methods
in Julia (http://julialang.org/) version 0.3.7 was run on a 16-core
machine (Intel Xeon 2.90GHz) with 64GB RAM. All Julia code,
R code to produce the plots, and the data for Section 4.2 are
available as supplementary material.

4.1. Simulation Study

We simulated ive datasets, each roughly of size two million
(speciically, nmax = 1,966,080) from a Gaussian process with
mean zero and covariance function

C0(s1, s2) = 0.95M1.5(|s1 − s2|/0.05) + 0.05 I(s1 = s2),

s1, s2 ∈ D,

where I(·) is the indicator function and

M1.5(h) =
(
1 + h

√
3
)
exp

(
− h

√
3
)
, h ∈ R

+
0 (14)

is aMatérn correlation functionwith smoothness parameter 1.5,
which is also used for the real-data example below in Section
4.2. The data were simulated on an equidistant grid on a one-
dimensional domain D = [0, 1], which permitted fast simula-
tion using the Davies–Harte algorithm and evaluation of the
exact likelihood using the Durbin–Levinson algorithm for com-
parison. These algorithms were implemented in Julia along the
lines of the functionsDHsimulate andDLLoglikelihood
in the R package ltsa (McLeod, Yu, and Krougly 2007).

From the “full” datasets of size nmax, we created datasets of
varying sample sizes n roughly between 2000 and 2 million.
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Figure . Results from the simulation study in one spatial dimension described in Section .. 0-RA is the true Gaussian process, and -RA S and -RA F are full-scale
approximations with increasing and fixed r, respectively. Note that all axes indicating time or sample size are on a log scale. The log-scores (i.e., log-likelihoods) are all
scaled relative to the log-score of theM-RA.

We considered the two types of asymptotics commonly used in
spatial statistics: For ixed-domain (inill) asymptotics, we took
equally spaced subsets of sizen from the full dataset on the entire
domain [0, 1]. For increasing-domain asymptotics, we always
took the irst n observations from the entire set.

We then recorded the log-likelihood and the time taken
to compute it for each n and for each of the following four
competitors:

0-RA: A Gaussian process with the true covariance func-
tion C0, which provides the best possible it, but
scales asO(n3).

1-RA F: A “fast” 1-RAwith ixed r = 240 and increasing J =
n/240, which scales asO(n).

1-RA S: A “slow” 1-RAwith ixed J = 64 and increasing r =
n/64, which scales asO(n3).

M-RA: An M-RA as described in Section 3.6, with r =
30, J = 4, and M = log4(n/30), which scales as
O(n log2 n).

For all competitors, the true covariance function (including
all parameters) is assumed known, andwe use the log-likelihood
(at the true parameters) implied by each competitor as a mea-
sure of how well that competitor approximates this true covari-
ance. The log-likelihood is equivalent to the log-score, which is
a strictly proper scoring rule in the sense that it is maximized
in expectation by the true model (e.g., Gneiting and Katzfuss
2014). This means that, on average, the 0-RA will have the high-
est possible log-score.

The results of these experiments with increasing sample size
(averaged over the ive datasets) are shown in Panels (a)–(c) of
Figure 4. The computation times scale roughly as expected. We
extrapolated the computation times of the 0-RA and 1-RA S for
values of n for which the simulation machine ran out of mem-
ory, but were able to compute the exact log-likelihoods for the 0-
RAusing theDurbin–Levinson algorithm for up ton ≈ 500,000.
TheM-RA and the 1-RA F had similar computation times, with
the latter becoming slightly faster for very large n. The log-scores

Figure . For the simulation study in two dimensions, comparison of theM-RA (with varyingM) to the -RA (with varying r). Note that the time axes are on a log scale. The
log-likelihoods are all scaled relative to the log-likelihood of the -RA.
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210 M. KATZFUSS

of theM-RA appear to be getting closer to those of the (compu-
tationally infeasible) 0-RA and 1-RA S with increasing n, while
the log-scores of the 1-RA F become increasingly worse relative
to the optimum.

For the largest sample size considered (n = 1,966,080), we
further investigated computation times and log-scores for dif-
ferent versions of theM-RA (with r = 30 andM = 2, 4, 8) and
the 1-RA (with r between 60 and 960). The results are shown in
Panel (d) of Figure 4. The 2-RA and the 4-RA were roughly 8.7
and 11.8, respectively, faster than the fastest 1-RA with an equal
or greater log-score. None of the 1-RAs achieved a log-score as
high as the 8-RA.

We also conducted a simulation study in two-dimensional
space. We considered n = 3,211,264 observations with an expo-
nential covariance function with scale 0.3 and variance 1 on a
regular grid on the unit square D = [0, 1]2. Using the function
RFsimulate in the R package RandomFields (Schlather
et al. 2015), we simulated ive datasets without a nugget, and
ive datasets with a nugget consisting of Gaussian white noise
with variance 0.05. For both settings, we compared the M-RA
with r = 49 andM = 2, 4, 8 to the 1-RA with r between 49 and
784. The averaged results are shown in Figure 5. The relative per-
formance of the two methods is similar to the one-dimensional
case in Figure 4(d), but in the case without a nugget even fast
approximations with small r or M achieve a relatively high
log-likelihood.

4.2. Analysis of Total PrecipitableWater

Wealso applied ourmethodology to n = 271,014measurements
of total precipitable water (TPW) made by the Microwave Inte-
grated Retrieval System (MIRS) satellites between 2 a.m. and
3 a.m. UTC on February 1, 2011, over a region covering the
United States. The measurements are shown in Panel (a) of
Figure 6. The data are noisy and hourly datasets exhibit large
gaps, which means that prediction of the true underlying TPW
ield is necessary at both observed and unobserved locations.
Currently, an ad hoc operational version of such a gap-illed
product is sent to National Weather Service oices, where it is
used to track the movement of water vapor in the atmosphere
and to detect conditions that can lead to heavy precipitation (see
Kidder and Jones 2007; Forsythe et al. 2012, for more details).

We extended our methodology slightly to accommodate the
fact that the TPW observations contain measurement error. We
assumed that the observations were

z(si) = yM(si) + ε(si), i = 1, . . . , n,

where yM(·) is the M-RA as before, and for simplicity we
assumed that we have spatially independentmeasurement error,

ε(si)
iid∼ N(0, σ 2

ε ). In this case, parameter inference and predic-
tion (of y(·), not z(·)) can proceed as before, except that we
needed to set� j1,..., jM = vM(S j1,..., jM ,S j1,..., jM ) + σ 2

ε I below (5).
We compared the proposedM-RA (withM = 6) to the 1-RA

(full-scale approximation) and to a block-independent approxi-
mation (e.g., Stein 2014), which simply divides the domain into
subregions and treats the process as independent between sub-
regions. This can be viewed as a special case of the 1-RA with
zero knots at resolution m = 0. The 6-RA had varying Jm at

diferent resolutionsm, (J1, . . . , J6) = (2, 2, 4, 8, 8, 16), with an
average number of 16.45 knots per region. The 1-RA had 1024
subregions with an average of 264.59 knots per region, and the
block approximation had 256 subregions with an average of
1054.53 observations per region. After subtracting a constant
mean, some exploratory analyses showed that a Matérn covari-
ance with smoothness parameter 1.5 it the data well, and so all
methods used were approximating a covariance of the form,

C0(s1, s2) = σ 2 M1.5(‖s1 − s2‖/κ),

whereM1.5 is given in (14).
We irst estimated the unknown parameters σ 2, κ , and σ 2

ε

by numerically maximizing the log-likelihood functions of the
three approximation methods, and the resulting estimates and
maximum log-likelihood values are given inTable 2. Then, using
the estimated parameters, we computed the posterior distribu-
tion of the underlying TPW ield on a regular 0.25◦ × 0.25◦ lat-
itude/longitude grid of size 24,805 over the domain. Marginal
summaries (posterior means and posterior standard deviations)
are shown in Figure 6.

Finally, we compared the posterior predictive distributions
for three sets of 5000 randomly selected held-out test data
(to evaluate short-range predictions) and for three randomly
selected held-out test regions of size 5◦ × 5◦ (to evaluate long-
range predictions). As the true TPW values are unknown, we
compared the predictions to the observations, considering the
mean square prediction error (RMSPE) and the mean continu-
ous rank probability score (CRPS). The CRPS is a strictly proper
scoring rule that quantiies the it of the entire predictive distri-
bution (i.e., for a normal distribution, the mean, and the vari-
ance) to the data, and it is on the same scale as the observations
(see, e.g., Gneiting and Katzfuss 2014).

As the block-independent long-range predictions were poor,
we also carried out local kriging using the parameter estimates
from the block-independent approximation. For every predic-
tion location, the local-kriging predictions were based only on
the data at the 20 nearest observed locations. The computation
times for each test set were between 150 and 550 sec. Note also
that the M-RA methods provide the joint posterior predictive
distribution at all prediction locations, while local kriging only
providesmarginal posterior predictive distributions at each pre-
diction location.

Summarizing the comparison in Table 2, the irst threemeth-
ods have similar computation times, maximum log-likelihood
values, short-range predictions, and they all produce slight arti-
facts in the posterior-standard-deviation plots in the right col-
umn of Figure 6 in areas with nearly zero uncertainty. However,
the 6-RA produces by far the best long-range predictions. In the
prediction plots in the left column of Figure 6, strong “blocky”
artifacts are visible for both the 1-RA and the block approxi-
mation. These diferences are important in many satellite-data
applications, where large regions of missing data in hourly or
daily data are very common due to satellite tracks and nonre-
trieval (e.g., because of heavy cloud coverage).

5. Conclusions and FutureWork

Wehave presented themulti-resolution approximation (M-RA),
a novel technique for approximating Gaussian processes with
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Figure . , measurements of total precipitable water (TPW), along with posterior predictive means and standard deviations of the true underlying TPW field on a
0.25◦ × 0.25◦ grid using three different methods. Color scales are in units of mm.

any covariance function. TheM-RA is essentially a linear com-
bination of many spatial basis functions at multiple resolutions.
The precision matrix of the basis-function weights has a multi-
resolutional block-sparse structure, which allows scalable infer-
ence and distributed computations. Because the basis functions
in our methodology are chosen optimally for a given covari-
ance function, this can provide further insight on other multi-
resolution approaches in which basis functions are chosen in a
more ad hoc way.

The M-RA compares favorably with the full-scale approx-
imation of Sang, Jun, and Huang (2011), which is a current
state-of-the-art method for large spatial data and can be viewed
as a special case of the M-RA (with M = 1). Using theoretical
results, a toy example, large simulated datasets, and a real-data
application, we have shown that theM-RA can provide a better
approximation at the same computational complexity and com-
putation time as the 1-RA, or it can provide a similar approx-
imation at a fraction of the computational time. It should also
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212 M. KATZFUSS

Table . Results of the TPW analysis. block: block-independent approximation; local: local kriging based on  nearest neighbors; r̄: average number of knots per region;
time/lik.: average time (in seconds) per likelihood evaluation; loglik.: log-likelihood relative to the -RA log-likelihood; random: test set randomly sampled from obser-
vations; test regions: randomly selected test regions of size 5◦ × 5◦ ; RMSPE: root mean square prediction error; CRPS: mean continuous rank probability score (lower is
better).

Maximum likelihood estimation Random Test regions

r̄ time/lik. σ̂ 2 κ̂ σ̂ 2
ε

loglik. RMSPE CRPS RMSPE CRPS

-RA . . . . . . . . . .
-RA . . . . . . . . . .
block . . . . . . . . . .
local . . . .

be noted that our inference results for M = 1 provide an algo-
rithm for parallel, distributed computations for inference in the
full-scale approximation.

We are planning on providing user-friendly software that
provides good default choices for theM-RA and that can be run
on both desktop computers and on high-performance comput-
ing environments. Taking advantage of the distributed-memory
architecture of the latter should in principle allow applying the
M-RA to datasets with hundreds of millions of observations, as
many satellite instruments are now able to produce on a daily
basis.

The M-RA not only approximates the data covariance
matrix, but it is a valid Gaussian process in its own right.
Extensions tomore complicated scenarios are therefore possible
by embedding the M-RA process in a hierarchical model (e.g.,
Cressie and Wikle 2011). When the data measurement process
is complex, theM-RA can be embedded in a hierarchical model
that explicitly models the measurement process, and allows, for
example, modeling non-Gaussian data, or fusing data from dif-
ferent measurement instruments.

Also of interest is a spatio-temporal version of the M-RA.
Because it is possible to store and propagate the entire joint pos-
terior predictive distribution, the M-RA could be extended to
allow Kalman-ilter-type inference in massive spatio-temporal
state-space models (which is challenging for other sparse-
precision approaches such as Lindgren, Rue, and Lindström
2011). In this sense, theM-RAmight also provide an alternative
to the ensemble Kalman ilter (Evensen 1994; Katzfuss, Stroud,
and Wikle 2016) in certain situations.

Appendix: Proofs

Proof of Proposition 1. For any set of locations S ⊂ D, yM(S ) in the

form (3) is a linear combination of the vector consisting of all basis-

functionweights, which has amultivariate normal distribution, and

so yM(·) is a Gaussian process.

Further, note that yM(·) in (1) is a sum of independent com-

ponents, τm(s) = E(δm(s)|δm(Q(m))), where δm(·) is independent
between regions D j1,..., jm . Starting with δ0(·) = y0(·), we can show

iteratively for m = 1, . . . ,M − 1 using the law of total variance

that, for any inite set S j1,..., jm ⊂ D j1,..., jm , the matrix

var
(
δm

(
S j1,..., jm

))
= var

(
δm−1

(
S j1,..., jm

))

− var
(
E

(
δm−1

(
S j1,..., jm

)
|δm−1(Q j1,..., jm−1

)
))

= var
(
δm−1

(
S j1,..., jm

)
|δm−1(Q j1,..., jm−1

)
)

is nonnegative deinite. Thus, the covariance functions of the δm(·),
the τm(·), and of yM(·) are nonnegative deinite. �

Proof of Proposition 2. For j1, . . . , jm = 1, . . . , J,m = 0, 1, . . . ,M,

and l = 0, . . . ,m, deine

µl
j1,..., jm

:= E
(
yM

(
SP

j1,..., jm

)
|yM(S ), El−1

)
,

	l
i1,...,im; j1,..., jm := cov

(
yM(SP

i1,...,im
), yM

(
SP

j1,..., jm

)
|yM(S ), El−1

)
,

Bl,P
j1,..., jm

:= b j1,..., jl

(
SP

j1,..., jm

)

Llj1,..., jm := cov
(
yM

(
SP

j1,..., jm

)
, yM

(
S j1,..., jl

) ∣∣El−1

)

= vl

(
SP

j1,..., jm
,S j1,..., jl

)
,

B̃l,k
j1,..., jm

:= Bk,P
j1,..., jm

− Llj1,..., jm�−1
j1,..., jl

Bk
j1,..., jl

,

k = 0, . . . , l − 1.

Note that, for l < M, we have Llj1,..., jm = Bl,P
j1,..., jm

K j1,..., jlB
l
j1,..., jl

′ + L̃lj1,..., jm , where L̃lj1,..., jm is a sparse block matrix

with the only nonzero block being Ll+1
j1,..., jm

. Hence, it can be shown

that L̃lj1,..., jmV
−1
j1,..., jl

Bk
j1,..., jl

= Ll+1
j1,..., jm

�−1
j1,..., jl+1

Bk
j1,..., jl+1

. Using a

variant of the Sherman–Morrison–Woodbury formula, we can also

show that K j1,..., jl Ã
l,k
j1,..., jl

= K̃ j1,..., jlA
l,k
j1,..., jl

. By applying (11), we

therefore have

B̃l,k
j1,..., jm

= Bk,P
j1,..., jm

− Bl,P
j1,..., jm

K j1,..., jl

(
Bl

j1,..., jl
′V−1

j1,..., jl
Bk

j1,..., jl

−Bl
j1,..., jl

′V−1
j1,..., jl

Bl
j1,..., jl

K̃ j1,..., jlB
l
j1,..., jl

′V−1
j1,..., jl

Bk
j1,..., jl

)

−L̃lj1,..., jmV
−1
j1,..., jl

Bk
j1,..., jl

+ L̃lj1,..., jmV
−1
j1,..., jl

Bl
j1,..., jl

K̃ j1,..., jlA
l,k
j1,..., jl

= Bk,P
j1,..., jm

− Bl,P
j1,..., jm

K j1,..., jl

(
Al,k

j1,..., jl
− Al,l

j1,..., jl
K̃ j1,..., jlA

l,k
j1,..., jl

)

−Ll+1
j1,..., jm

�−1
j1,..., jl+1

Bk
j1,..., jl+1

+ Ll+1
j1,..., jm

�−1
j1,..., jl+1

Bl
j1,..., jl+1

K̃ j1,..., jlA
l,k
j1,..., jl

= Bk,P
j1,..., jm

− Ll+1
j1,..., jm

�−1
j1,..., jl+1

Bk
j1,..., jl+1

−
(
Bl,P

j1,..., jm
− Ll+1

j1,..., jm
�−1

j1,..., jl+1
Bl

j1,..., jl+1

)
K̃ j1,..., jlA

l,k
j1,..., jl

= B̃l+1,k
j1,..., jm

− B̃l+1,l
j1,..., jm

K̃ j1,..., jlA
l,k
j1,..., jl

,

which proves (13).

It is easy to see that the desired posterior predictive distribution

is multivariate normal, yM(SP)|yM(S ) ∼ N(µ,	), and so spatial

prediction amounts to inding the posterior mean and covariance

matrix, µ and 	, respectively. To obtain these quantities, note that
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wehave fromwell-knownproperties of themultivariate normal dis-

tribution that

µl
j1,..., jm

= E
(
yM

(
SP

j1,..., jm

)
|yM

(
S j1,..., jl

)
, El−1

)

=
l−1∑

k=0

Bk,P
j1,..., jm

η j1,..., jk + Llj1,..., jm�−1
j1,..., jl

(
yM

(
S j1,..., jl

)
−

l−1∑

k=0

Bk
j1,..., jm

η j1,..., jk

)

= Llj1,..., jm�−1
j1,..., jl

yM(S j1,..., jl ) +
l−1∑

k=0

B̃l,k
j1,..., jm

η j1,..., jk .

(A.1)

By the law of total expectation, we therefore have

µl−1
j1,..., jm

= E
(
µl

j1,..., jm

∣∣yM(S ), El−2

)

= Llj1,..., jm�−1
j1,..., jl

yM(S j1,..., jl ) +
l−2∑

k=0

B̃l,k
j1,..., jm

η j1,..., jk

+ B̃l,l−1
j1,..., jm

ν̃ j1,..., jl−1

= Llj1,..., jm�−1
j1,..., jl

yM(S j1,..., jl ) + B̃l,l−1
j1,..., jm

K̃ j1,..., jl−1
ω̃ j1,..., jl−1

+
l−2∑

k=0

B̃l,k
j1,..., jm

η j1,..., jk , (A.2)

and by the law of total covariance, we have

	l−1
i1,...,im; j1,..., jm = E

(
	l

i1,...,im; j1,..., jm
∣∣yM(S ), El−2

)

+ cov
(
µl
i1,...,im

,µl
j1,..., jm

∣∣yM(S ), El−2

)

= 	l
i1,...,im; j1,..., jm + cov

(
B̃l,l−1
i1,...,im

ηi1,...,il−1
, B̃l,l−1

j1,..., jm
η j1,..., jl−1

∣∣yM(S ), El−2

)

= 	l
i1,...,im; j1,..., jm + B̃l,l−1

j1,..., jm
K̃ j1,..., jl−1

B̃l,l−1
j1,..., jm

′

I((i1, . . . , im) = ( j1, . . . , jm)). (A.3)

The result (12) follows by starting with µM
j1,..., jM

from (A.1)

and 	M
j1,..., jM

= VP
j1,..., jM

− LMj1,..., jM�−1
j1,..., jM

LMj1,..., jM
′, and iteratively

applying (A.2) and (A.3) withm = M for l = M, . . . , 0. �

SupplementaryMaterials

All Julia code, R code to produce the plots, and the data for
Section 4.2 are available online.
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