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a b s t r a c t 

We investigate the relationship between teacher licensure test scores and student test achievement and 

high school course-taking. We focus on three subject/grade combinations—middle school math, ninth- 

grade algebra and geometry, and ninth-grade biology—and find evidence that a teacher’s basic skills test 

scores are modestly predictive of student achievement in middle school math and highly predictive of 

student achievement in high school biology. A teacher’s subject-specific licensure test scores are a consis- 

tent and statistically significant predictor of student achievement only in high school biology. Finally, we 

find little evidence that students assigned to middle school teachers with higher basic-skills test scores 

are more likely to take advanced math and science courses in high school. 

© 2017 Elsevier Ltd. All rights reserved. 
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An educated, innovative, motivated workforce—human capital—

is the most precious resource of any country in this new, flat

world. Yet there is widespread concern about our K–12 science

and mathematics education system, the foundation of that hu-

man capital in today’s global economy (National Academies of

Sciences, 2007). 

1. Introduction 

There is significant policy focus on the human capital of the na-

tion’s STEM teachers. This is motivated both by a desire to improve

STEM outcomes for students in K–12 schools and college (e.g.,

President’s Council of Advisors on Science and Technology, 2010 )

and by the vast body of empirical evidence showing the impor-
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ance of teacher quality for student achievement ( Aaronson, Bar-

ow, & Sander, 2007; Goldhaber & Hansen, 2013; Rivkin, Hanushek,

 Kain, 2005 ). 1 One way that states try to ensure a high-quality

eacher workforce is by requiring teacher candidates to pass li-

ensure tests, often of both their basic skills and content knowl-

dge, as a requirement for receiving a teaching license. Although

everal studies (e.g., Clotfelter, Ladd, & Vigdor, 2007; Goldhaber

 Hansen, 2010; Goldhaber, 2007 ) find modest positive correla-

ions between teacher performance on licensure exams and stu-

ent math achievement gains in elementary grades, there is little

vidence on whether licensure tests provide a useful “signal” of

he future quality of secondary STEM teachers. Moreover, there is

o existing evidence about whether teacher licensure test scores

re predictive of longer-term student outcomes like course taking

n STEM fields. 

In this paper we use data from Washington State to investigate

hether STEM teachers with higher licensure test scores are also
1 This focus on the human capital of STEM teachers is not new. In fact, there ex- 

ists an extensive body of literature tracking the progress that the nation is (or is 

not) making toward having a high-capacity STEM teacher workforce. Unfortunately, 

the indicators often used to evaluate this progress—e.g., teacher credentials and de- 

gree type—have not been found to be highly predictive of student achievement (e.g., 

ilson, Floden, & Ferrini-Mundy, 2001 ). 

https://doi.org/10.1016/j.econedurev.2017.09.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/econedurev
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econedurev.2017.09.002&domain=pdf
http://dx.doi.org/10.13039/501100008982
mailto:rtheobald@air.org
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3 The test developer (Pearson) for the WEST-B (a basic skills test used in Wash- 
ore effective at improving student outcomes. We focus on three

ubject/grade combinations—middle school (seventh–eighth grade) 

ath, ninth-grade algebra and geometry, and ninth-grade biology—

nd estimate whether a teacher’s score on licensure tests required

o teach these subjects are predictive of student test achievement

nd high school course taking. To our knowledge this is one of

he first papers to assess the predictive validity of teacher licen-

ure test scores in secondary math and science classrooms, and the

rst to investigate the potential longer-term impacts of exposure to

eachers with different licensure test scores. 

We find that basic skills licensure test scores—which can be con-

idered as a measure a candidate’s general skills in math, reading,

nd writing—are modestly predictive of student achievement in

iddle and high school math (though only statistically significant

n middle school math) and highly predictive of student achieve-

ent in high school biology. The relationships between teacher

andidate performance on subject-specific licensure test scores—

hich can be considered as a measure of a candidate’s job-specific

kills in the subject they will be endorsed to teach—and student

erformance are similar in magnitude to the relationships for basic

kills tests, though less consistently statistically significant. Finally,

e find little evidence that students assigned to middle school

ath teachers with higher basic-skills test scores are more likely

o take advanced math and science courses in high school. 

The paper proceeds as follows. In Section 2 , we provide back-

round and context for this study. We introduce our data and dis-

uss summary statistics in Section 3 , outline our analytic models

n Section 4 , and describe our results in Section 5 . We then offer

ome concluding thoughts in Section 6 . 

. Background 

There is overwhelming policy interest in improving student

utcomes in STEM fields, exemplified by a Report to the President

 President’s Council of Advisors on Science and Technology, 2010 )

tating that “STEM education will determine whether the United

tates will remain a leader among nations and whether we will be

ble to solve immense challenges in such areas as energy, health,

nvironmental protection, and national security” (p. v). This focus

n STEM outcomes has in turn prompted calls to improve the qual-

ty of the nation’s STEM teacher workforce (e.g., White House Of-

ce of Science and Technology Policy, 2012 ), since teacher qual-

ty has repeatedly been shown to be one of the most important

chool-related influences on student achievement ( Aaronson et al.,

007; Coleman et al., 1966; Rivkin et al., 2005; Rockoff, 2004 ). Un-

ortunately, relatively few teacher credentials (like degree level or

icensure status) appear to predict whether teachers affect student

utcomes in ways that are detectible by student test performance

e.g. Aaronson et al., 2007; Goldhaber & Brewer, 1997, 20 0 0; Harris

 Sass, 2011 ). 2 

That said, there is evidence that more nuanced measures

f teachers’ content knowledge predict student achievement.

onk and King (1994) , for instance, find that the number of un-

ergraduate mathematics and physical science courses a teacher

akes is positively related with how well students perform on math

nd science tests, respectively. Goldhaber and Brewer (1997) find

hat teachers with Baccalaureate and Master’s degrees in math are

ore effective at improving the math performance of their stu-

ents. Hill, Rowan, and Ball (2005) find that a survey-based mea-

ure of teachers’ content knowledge for teaching is predictive of

tudent achievement gains in first and third grades. Boyd, Gross-

an, Lankford, Loeb, and Wyckoff, (2009) find that first-year el-
2 For instance, prior work has found little relationship between teacher degree 

ype (e.g., Monk & King, 1994; Aaronson et al., 2007 ) or college entrance exam 

cores (e.g., Kane et al., 2008 ) and student achievement in mathematics. 

i

o

g

p

h

mentary teachers from teacher education programs that require

athematics courses are more effective at improving student per-

ormance in math. 

One way that states try to ensure that prospective teachers

ave sufficient content knowledge for teaching is through require-

ents that they pass various licensure tests designed to assess

oth basic skills and subject area knowledge. Licensure tests have

 long history, dating back to the 1930s when the first national

icensure exam, the National Teacher Examination, was developed

 Ravitch, 2003 ). Today all but one state require teachers to pass

arious licensure tests to participate in the public school labor

arket. 

Public debates about teacher licensure often center on the ex-

ent to which traditional licensure exams are a useful screen as

pposed to an inefficient barrier to entry to the teacher work-

orce (e.g., Angrist & Guryan, 2008; Goldhaber, Cowan, & Theobald,

017a ). Advocates argue that teacher licensure tests are an impor-

ant quality screen needed to professionalize teaching, often com-

aring them to tests taken by lawyers and doctors before they are

ertified to practice ( Maeroff, 1985 ). On the other side, critics of-

en point to empirical evidence that licensure tests may negatively

mpact effort s to diversify the teacher workforce (e.g., Goldhaber

 Hansen, 2010 ). We unfortunately have limited ability to test

hese theories for two reasons. First, our data does not predate the

ntroduction of licensure tests in Washington, so we cannot test

hether the existence of licensure tests has an overall impact on

he quality of the teacher workforce. Second, as described in the

ext section, very few candidates in Washington fail the licensure

ests that are the focus of this paper, so it is difficult to assess

he impact of these tests as a screen for ineffective teachers. That

aid, the low pass rates we report are important in themselves,

s they suggest that this mechanism through which licensure tests

ould impact the quality of the teacher workforce (i.e, as a pass/fail

creen) is unlikely to have much impact. 

Although teacher licensure test scores are typically not used

or any additional personnel decisions (e.g., hiring or professional

evelopment)—and indeed, test developers actively discourage the

se of licensure tests for decisions other than licensure itself—

eacher test scores may be predictive of student achievement away

rom the high-stakes cut-point used to determine employment el-

gibility. 3 In fact, empirical evidence at the elementary level shows

ositive and significant relationships between teachers’ perfor-

ance on some licensure exams and student test scores through-

ut the teacher test score distribution ( Clotfelter, Ladd, & Vigdor,

0 06, 20 07; Goldhaber & Hansen, 2010; Goldhaber, 2007; Hen-

ricks, 2014 ). Goldhaber (2007) , for instance, analyzes data from

orth Carolina and finds that having a teacher who passed the

raxis II tests rather than one who failed is correlated with an in-

rease in a student’s mathematics achievement of about 6% of a

tandard deviation, and that a one standard deviation increase in a

eacher’s test score is predictive of an increase in student mathe-

atics achievement of about 3% of a standard deviation. Most re-

ently, Hendricks (2014) documents increases in student achieve-

ent associated with the movement of a teacher with a high licen-

ure score into the student’s grade and school. This paper builds on

his prior evidence by investigating the extent to which continuous

icensure test scores provide a signal of future teacher effectiveness

n secondary STEM subjects. 
ngton state), for instance, states: “The subtest scores indicated on this report are 

nly for the purposes of admission to state-approved teacher preparation pro- 

rams and for teacher certification. They are NOT intended to be used for em- 

loyment decisions, other college admissions decisions, or any other purpose.”

ttp://www.west.nesinc.com/Content/Docs/WESTB _ ScoreReport _ backer.pdf . 

http://www.west.nesinc.com/Content/Docs/WESTB_ScoreReport_backer.pdf
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6 Passing scores for Praxis I, California Basic Educational Skills Test (CBEST), or 

the Pearson NES Essential Academic Skills test, as well as scores on the SAT and ACT 

above certain cutoffs (e.g., 515 on the math SAT) can be submitted as alternatives 
Most of the existing evidence about the predictive validity of li-

censure tests for student achievement is focused at the elementary

level. But the relative importance of teachers’ content knowledge

may increase as teachers are expected to teach more complex ma-

terial in higher grades ( Appleton, 2013 ). This is supported by re-

sults in Sass (2015) , who finds that teachers who entered Florida’s

teaching workforce by passing a professional teaching knowledge

exam and a subject area exam administered by ABCTE are more

effective than the average teacher in the state, and that this result

is strongest when the sample is restricted to students in grades 6-

10. 

To our knowledge, Clotfelter, Ladd, and Vigdor, (2010) is the

only existing evidence about the predictive validity of traditional

teacher licensure test scores at the secondary level, but due to data

limitations, they use a very different methodology than prior work

at the elementary level. 4 Specifically, Clotfelter et al. (2010) esti-

mate a student fixed-effects model that relies on within-student,

cross-subject comparisons (e.g., they find that students in high

school math classrooms score higher on a subject test relative to

tests in other subjects when they have a teacher in that sub-

ject who has high licensure test scores relative to their teach-

ers in other subjects). 5 In the next section, we describe the data

that will allow us to build on this existing work and estimate

models predicting student achievement that rely on cross-student,

within-subject comparisons (e.g., do students in secondary math

classrooms score higher on math tests, all else equal, when they

have a math teacher who has higher licensure test scores than a

math teacher with lower licensure test scores?) and produce sepa-

rate estimates for different course levels and subjects. Importantly,

we restrict our analysis to grades and subjects in which same-

subject prior year test scores are available. This is important be-

cause prior work (e.g., Chetty, Friedman, & Rockoff, 2014a; Kane &

Staiger, 2008; Jackson, 2014 ) has shown that controlling for prior

test scores and other student and course information in a “value

added” specification is sufficient to control for bias from the non-

random sorting of students to classes and teachers. 

In addition to concerns about student STEM achievement, there

is also considerable policy interest in pushing more students to-

wards STEM pathways. As noted by the President’s Council of Advi-

sors on Science and Technology (2010) , “It is important to note that

the problem is not just a lack of proficiency among American stu-

dents; there is also a lack of interest in STEM fields among many

students” (p. vi). There is some survey evidence relating teacher

quality to future student interest in STEM fields ( Gross, 1988 ), sug-

gesting that focusing on STEM teachers may be fruitful. 

The impact of teachers on future student STEM pathways could

come in one of two forms. First, there is clear evidence that

higher-achieving students are more likely to pursue STEM path-

ways ( Gottfried, Bozick, Rose, & Moore, 2016 ), so teachers may

have an indirect effect on the future STEM interest of their stu-

dents through their impacts on student achievement. Second, there

is a growing literature documenting that teachers have significant

impacts on student non-cognitive outcomes independent of their

impacts on student achievement (e.g., Blazar & Kraft, 2016; Ger-

shenson, 2016; Jackson, 2012; Petek & Pope, 2016 ), so teachers may

similarly have a direct effect on the future STEM interest of their

students. We test each of these hypotheses in our investigation of

the relationship between teacher licensure test scores and future

student course taking in STEM fields. 
4 Sass (2015) also finds that teachers who entered Florida’s teaching workforce 

by passing a professional teaching knowledge exam and a subject area exam ad- 

ministered by ABCTE are more effective than the average teacher in the state, and 

this result holds when the sample is restricted to students in grades 6-10. 
5 Clotfelter et al. (2010) consider the average of a teacher’s normalized licensure 

test scores across all tests the teacher has taken. 

t

g

f

s

. Data and summary statistics 

.1. Data 

This study combines four databases, all maintained and sup-

lied by the Washington State Office of the Superintendent of Pub-

ic Instruction (OSPI), to construct one panel data set containing

tudent-teacher-classroom-year observations. These databases are

he Washington State Credentials Database, the Washington State

-275 personnel report, the Comprehensive Education Data and Re-

earch System (CEDARS), and the State Testing database. 

The Washington State Credentials Database contains a complete

istory of scores on the state’s teacher licensure tests. In this study,

e focus on two tests that have been required for teacher licensing

n Washington State in recent years. Since 2002, prospective teach-

rs in Washington have had to pass the Washington Educator Skills

est-Basic (WEST-B)—an assessment of basic skills in reading, writ-

ng, and mathematics—as a requirement for admission into teacher

ducation programs. The test is designed to reflect general knowl-

dge and skills described in textbooks, the Washington Essential

cademic Learning Requirements, curriculum guides, and licensure

tandards. Because the state accepts a number of alternative tests

hat meet the WEST-B testing requirement for receiving a teach-

ng credential, 6 only 82% of new teachers from 2006 through 2015

ave taken the WEST-B. For these individuals, we observe their

cores on the math, reading, and writing subtests for each time

hey took the test. 

From 2010 to 2014, all teacher education program graduates

lso had to pass the Washington Educator Skills Test-Endorsements

WEST-E), a subject knowledge test for individual teaching en-

orsements that is intended to measure the job-specific skills in

he subject in which the candidate will receive an endorsement, as

 requirement for receiving a teaching credential. 7 Different WEST-

 exams were required for teachers to become certified in different

ubject areas and grade levels, but every credentialed teacher had

o pass at least one of these tests as a requirement for licensure.

or this study, we focus on scores on four WEST-E tests observed

ost frequently for teachers in our sample: Mathematics, Middle

evel Mathematics (MLM), Science, and Biology. 

The licensure exam data set is linkable to the state’s S-275

atabase, which contains information from the state’s personnel-

eporting process. It includes a record of all certified employees

n school districts and educational service districts (ESDs), their

lace(s) of employment, annual compensation, and demographic

haracteristics. The data set also includes highest degree earned

nd experience, which we consider as other potential predictors

f teacher effectiveness. 

Since the 2009–10 school year, teachers can be linked to the

tudents in their classrooms using a unique classroom ID in the

tate’s CEDARS database. 8 For the 2009–10 through 2014–15 school

ears, the CEDARS database contains information on individual stu-

ent background variables including gender, race/ethnicity, learn-

ng disability status, and free or reduced-priced lunch eligibility, as

ell as participation in the following programs: gifted/highly capa-
o the WEST-B exam (RCW 28A.410.220 & WAC 181-01-002). 
7 Prior to the WEST-E, the state required a passing score on the Praxis-II tests. Be- 

inning in September 2014, thestate replaced some WEST-E tests with assessments 

rom the National Evaluation Series (NES). For parsimony, we only consider WEST-E 

cores in this paper. 
8 CEDARS data includes fields designed to link students to their individual teach- 

ers, based on reported schedules. However, limitations of reporting standards and 

practices across the state may result in ambiguities or inaccuracies around these 

links. 
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le; limited English proficiency (LEP); and special education. These

tudent-level variables are used as control variables in all our mod-

ls. From this data set, we are also able to create indicators for

ifferent course “tracks” (basic, average, or advanced). 9 

Student test score data come from the State Testing database.

he database contains annual student test scores on the Measures

f Student Progress (MSP) exams for 2009–10 through 2013–14 in

eading (Grades 3–8), math (Grades 3–8), and science (Grades 5

nd 8), as well as high school End-of-Course (EOC) exams in Alge-

ra, Geometry, and Biology. 10 For 2014–15, the state transitioned to

he Smarter Balance Assessment (SBA) for Grades 3–8 in both math

nd reading. Our student achievement analysis focuses on middle

chool math (seventh and eighth grade), ninth-grade math (algebra

nd geometry), and ninth-grade biology, all grades in which both

urrent and same-subject prior-year test scores are available. 

The range of years we can consider varies across these differ-

nt subject/year combinations. Because sixth through eighth grade

ath test scores are available for the entire range of years that

tudents may be linked to teachers, 2009–10 through 2014–15, and

cores from the predecessor to the MSP exam—the Washington As-

essment of Student Learning (WASL)—are also available for the

008–09 academic year (i.e., a prior-year math score for 2009–10),

e can estimate models for middle school math in all years of

vailable CEDARS data (2009–10 through 2014–15). On the other

and, the Algebra and Geometry EOC exams were introduced in

he 2010–2011 academic year, and the Biology EOC exam started

n the 2011–12 school year. Thus we can only estimate models

or ninth-grade algebra and geometry for 2010–11 through 2014–

5, and for ninth-grade biology for 2011–12 and 2014–15. Across

he different years, subjects, and tests, our analytic datasets in-

lude 204,549 student-teacher-year observations (156,210 unique

tudents and 1,687 unique teachers). 11 

We also use the CEDARS data to create several variables that

escribe student course taking in STEM fields in high school. First,

e identify students who take at least one advanced math and

cience courses in high school by considering all math and sci-

nce courses taken by students between ninth and twelfth grade

s reported in the CEDARS data. We define high school courses as

advanced” following the procedure described in Gottfried (2015) ,

hich relies on a taxonomy outlined in Burkham et al. (2003) . 12 In

ur primary results, advanced math courses include trigonometry,

tatistics, pre-calculus, and higher courses, while advanced science
9 Tracks are classified by the use of course names and grade levels in the CEDARS 

chedule files. In middle school, courses in a “basic” track are courses below grade 

evel and math courses labeled “Basic”, “Remedial”, or “LAP”. Courses in an “av- 

rage” track are all general math courses at grade level, while courses in an “ad- 

anced” track are math courses above grade level or courses at or above algebra 1. 

n high school algebra, geometry, and biology, courses are considered in an “aver- 

ge” track unless labeled as “Honors”, “Advanced”, “Accelerated ”, or “IB”, in which 

ase they are considered in an “advanced” track, or are labeled as “Basic”, “Support”, 

nd“Remedial”, in which case they are considered in a “basic” track. 
10 Approximately one-third of Washington state schools serving Grades 3–8 par- 

icipated in a pilot of the SBA in the 2013–2014 school year, and the state did not 

ollect student test scores from these schools. Students from these schools there- 

ore are not included in the 2013–14 data (because they are missing current-year 

est scores) or the 2014–15 data (because they are missing prior-year test scores). 
11 We make a number of additional restrictions to the data set to derive these 

nalytic datasets. Specifically, we only include student/teacher/year combinations in 

hich the student has valid current and prior-year test scores, received instruction 

rom a single teacher in that subject and year, and (in the case of ninth-graders) 

as enrolled in the course aligned with the EOC test we consider (Algebra, Geome- 

ry, or Biology). Likewise, for each combination of grade level and teacher licensure 

est, we only consider student/teacher/year combinations in which the teacher has 

t least one valid licensure test score. 
12 At the high school level, courses are classified via state course codes 

nd state course names. In cases where a course is not mentioned in 

urkham et al. (2003) we use out best judgment to determine which level a course 

ligns with, and delete observations in schools with all missing state course names. 
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(

ourses include chemistry, physics, and higher courses. We also ex-

eriment with other definitions of advanced courses, including the

ull taxonomy described in Burkham, Lee, and Smerdon, (2003) .

inally, we calculate the total number of advanced math courses

nd advanced science courses each student took over the course of

heir time in high school. 

.2. Summary statistics 

The grades and subjects considered in this paper vary consid-

rably both in terms of the number and characteristics of the stu-

ents and teachers. Table 1 presents student-year-level summary

tatistics for each of the grade level and subject combinations con-

idered in this analysis. The first column of Table 1 , for example,

rovides summary statistics for all seventh and eighth-grade stu-

ents in the analytic dataset whose math teacher has at least one

alid WEST-B Math score. We standardize all student test scores

ithin grade and year, so the means in column 1 of Table 1 for

Lagged Math” and “Lagged Reading” mean that students in this

ample scored about 10% of a standard deviation higher on last

ear’s tests than the average student in the same grade and year.

he other summary statistics in column 1 are broadly representa-

ive of the demographics of public school students in Washington

tate, about 50% of whom are eligible for free/reduced priced lunch

nd about 25% of whom are underrepresented minorities (Ameri-

an Indian, Black, or Hispanic). 

Columns 2 and 3 of Table 1 illustrate some important differ-

nces between the ninth-grade algebra/geometry sample and the

inth-grade biology sample. Specifically, far fewer students in the

inth grade are enrolled in biology than in one of the ninth-grade

ath courses, and these students tend to be both more advan-

aged and higher performing. 13 Roughly 24% of students take bi-

logy in 9th grade compared to about 88% of students who take

lgebra or geometry. This is likely because higher-performing stu-

ents often take biology (and the biology EOC) in 9th grade rather

han wait until 10th grade when students are required to take the

iology EOC 14 . That students enrolled in different courses appear

uite different from each other along observable dimensions sug-

ests the need to carefully consider the implications of tracking

 Jackson, 2014 ) for the estimated achievement and course-taking

odels described below. 

In Table 1 (and in the analytic models described in the next

ection), teacher licensure test scores come from the first time each

eacher took the test and are standardized across all teacher candi-

ates who have ever taken these tests. For example, the mean for

WEST-B Math” in column 1 of Table 1 implies that the average

tudent in the WEST-B Math middle school sample has a teacher

ho scored over 50% of a standard deviation higher on their first

EST-B Math test than the average teacher candidate who took

his test. 

Our decision to standardize licensure test scores across all years

f data is important because, as shown in Fig. 1 , average scores

n all three WEST-B tests have been increasing steadily over time.

hese trends could be explained by the increased availability and

se of test preparation materials, a drop in test difficulty, or an

ncrease in the average qualifications of teachers. The first two ex-

lanations would suggest that we should only standardize teacher

est scores within years (since the time trends would have nothing

o do with the qualifications of different cohorts of teacher candi-

ates), while the latter explanation would suggest that we should
13 The most common science courses taken in 9th grade are “Physical Science”

39.9%) followed by “General Science” (24.2%) and then “Biology” (23.8%). The 

ost common math courses taken in 9th grade are “Algebra” (61.1%), “Geometery”

28.1%), and “General Math” (15.5%). 
14 www.k12.wa.us/assessment/StateTesting/BiologyEnd-of-CourseExams.aspx 
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Table 1 

Student-year level summary statistics by course. 

7th & 8th Grade 9th Grade 9th Grade 

Middle Sch. Math Alg./Geo. Biology 

Student Variables 

Lagged Math 0.105 −0.017 0.425 

(0.928) (0.808) (0.988) 

Lagged Reading 0.095 0.032 0.356 

(0.920) (0.859) (0.914) 

Lagged Science −0.009 0.378 

(0.862) (0.970) 

Female 0.496 0.501 0.516 

Multi-racial 0.048 0.044 0.043 

Am. Ind./ Alaska Nat. 0.017 0.018 0.017 

Asian/ Pac. Isl. 0.109 0.090 0.132 

Black 0.059 0.060 0.052 

Hispanic 0.213 0.216 0.160 

Gifted 0.074 0.027 0.075 

LEP 0.050 0.044 0.023 

Spec. Ed. 0.061 0.051 0.058 

FRL 0.483 0.486 0.376 

Learning Disability 0.033 0.028 0.033 

Basic Track 0.009 0.020 0.0 0 0 

Average Track 0.724 0.943 0.846 

Advanced Track 0.266 0.037 0.136 

Advanced H.S. Math Course ∗ 0.539 

Advanced H.S. Science Course ∗ 0.257 

Number of Advanced High School Math Courses ∗ 0.854 

(0.963) 

Number of Advanced High School Science Courses ∗ 0.925 

(0.861) 

Teacher Variables 

Standardized WEST-B Math 0.567 0.687 0.635 

(0.553) (0.533) (0.506) 

Standardized WEST-B Reading 0.234 0.189 0.593 

(0.820) (0.870) (0.641) 

Standardized WEST-B Writing 0.207 0.189 0.584 

(0.801) (0.860) (0.672) 

Proportion with a WEST-E score 0.375 0.367 0.413 

Standardized WEST-E MLM 0.129 

(0.788) 

Standardized WEST-E Math −0.024 0.241 

(0.812) (0.722) 

Standardized WEST-E Science −0.020 

(0.930) 

Standardized WEST-E Biology 0.189 

(0.956) 

Observations 135,079 54,354 15,116 

NOTE: Each sample is defined as student-year observations by course type linked to teachers with WEST- 

B scores. Blank cells are ommited due to small sample sizes. ∗Summary statistics from advanced course 

models (see Table 4 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

(  

W  

u  

n  

u  

t  

t  

m  

t  

f  

l

standardize teacher test scores across years (as the time trends

would reflect differences in average qualifications across test co-

horts). 

We test these explanations directly by estimating predictive va-

lidity models (described in the next section) with and without

teacher licensure test-year (or “cohort”) fixed effects. The year in

which candidates take the WEST-B is highly predictive of the per-

formance of their students (F = 36.20), and there is little evidence

that the within-cohort relationship between WEST-B scores is any

different than the cross-cohort relationship (t = 0.19). 15 This sug-

gests that changes in average WEST-B scores over time do re-

flect true differences in teacher candidate quality. This is consistent

with evidence from other studies showing that average SAT scores

of prospective teachers have increased over the past two decades
15 We note that recent cohorts of teachers appear to be more effective conditional 

on other observed covariates, which does not support the narrative that the “war on 

teachers” (e.g., Gamson, 2015 ) is having detrimental impacts on the teacher work- 

force. 

d

d

 Goldhaber & Walch, 2014; Lankford, Loeb, McEachin, Miller, &

ycoff, 2014 ), 16 recent cohorts of prospective teachers have higher

ndergraduate GPAs than their predecessors ( Gitomer, 2007 ), and

ew teachers are now coming from more competitive undergrad-

ate institutions than in past years ( Lankford et al., 2014 ). Finally,

he developer of the WEST-B and WEST-E (Pearson) describes the

ests as “criterion-referenced,” meaning that they are “designed to

easure a candidate’s knowledge and skills in relation to an es-

ablished standard (a criterion), rather than in relation to the per-

ormance of other candidates.”17 For these reasons, we standardize

icensure test scores across all years in our primary analysis. 18 
16 The increase in SAT scores documented in Lankford et al. (2014) is 0.10 stan- 

ard deviations from 2002 to 2010, which is not as dramatic as the 0.19 standard 

eviation increase in WEST-B scores over the same time period. 
17 https://www.west.nesinc.com/PageView.aspx?f=GEN _ AboutTheTests.html . 
18 We also experiment with models that consider test scores standardized within 

year, and the results are qualitatively similar (results available from authors upon 

request). 

https://www.west.nesinc.com/PageView.aspx?f=GEN_AboutTheTests.html
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Fig. 1. Average WEST-B scores by subtest and testing year. 
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Means of the standardized teacher licensure test scores in

able 1 permit some comparisons across different kinds of teach-

rs, but we summarize the complete distribution of scores for each

ample with kernel density plots of WEST-B scores (on the original

coring scale) for six mutually exclusive groups of test takers in

ig. 2 . The first three groups are considered in this study: middle

chool math teachers, ninth-grade algebra and geometry teachers,

nd ninth-grade biology teachers. 19 For comparison, we also in-

lude elementary teachers in tested grades and subjects (analogous

o teachers considered in prior studies of teacher licensure tests),

ll other teachers (i.e., those who are in the workforce but not in

ne of these other samples), and all test takers who never become

eachers in Washington State public schools. The figure shows that

inth-grade teachers tend to score higher on all three WEST-B tests

han middle school math teachers, and both groups of teachers

end to score dramatically higher on the WEST-B Math test than

lementary teachers, other teachers, and test takers who are never

bserved in the teaching workforce. 

Fig. 3 shows similar kernel density plots for WEST-E tests;

gain, we include the WEST-E tests required for elementary teach-

rs for comparison purposes. The first two panels of Fig. 3 show

hat ninth-grade algebra and geometry teachers tend to score con-

iderably higher than middle school math teachers on both WEST-E

ath tests, though both groups perform better, on average, than

est takers who are not observed in the state’s teaching work-

orce. 20 For the other WEST-E tests, teachers in our samples do not

erform much better, on average, than other teachers or test takers

ot observed in the workforce. The fact that ninth-grade teachers

end to score higher on both the WEST-B tests and WEST-E tests

ompared to other teachers is not surprising given the high degree

f correlation between these tests; for instance, the correlation be-
19 For the purposes of this figure, teacher type was determined by the number of 

tudents in each subject–grade combination taught in the analytic sample or ele- 

entary sample. 
20 39.6% of teacher candidates who fail the WEST-E Math on their first test admin- 

stration eventually pass it, while another 31.8% eventually pass the WEST-E MLM 

est. 

W  

p

 

n  

t

a

s

w

ween the WEST-B math test and the WEST-E Middle Level Math

est is 0.59. 21 

The “Cut Score” line in each plot within Figs. 2 and 3 illustrates

wo important points for our analysis. First, failure rates on these

ests for the population of interest (future secondary math and sci-

nce teachers) are extremely low. As we discuss in the next sec-

ion, this limits our ability to test the predictive validity of these

ut scores. Second, while the passing score is nominally set to

he same scale score (240) for all tests, some of these licensure

ests appear much more difficult to pass than others. Figs. 4 and

 show overall passing rates for these tests across all teacher can-

idates in Washington state and compares these passing rates to

hose in other states (California, Florida, and Michigan) that report

hese numbers. Generally speaking, the passing rates on the WEST-

 tests are much higher than the passing rates for basic skills li-

ensure tests in these other states, while the passing rates on the

EST-E tests considered in our primary analysis are more in line

ith (and even lower than in some cases) the passing rates for

ubject-specific licensure tests in these other states. Figs. 4 and

 illustrate that, unless the underlying skillsets of teacher candi-

ates in these states are wildly different, cut scores for passing li-

ensure tests are set at very different levels in different settings. 

We can also directly compare the difficulty of different WEST-

 tests by comparing the WEST-E performance of candidates who

ook different WEST-E tests but had similar scores on the WEST-

. We find that candidates tend to perform 16–20 points (or

bout one standard deviation) higher on the Elementary Educa-

ion WEST-E tests than candidates with similar WEST-B scores per-

orm on the Middle Level Math, Science, or Biology WEST-E exam,

nd 40 points (or about two standard deviations) higher than can-

idates with similar WEST-B scores perform on the Mathematics

EST-E test. These differences in test difficulty have important

olicy implications that we discuss in the conclusion. 22 

As a final exploration, we explore the extent to which there is

on-random sorting of different students to teachers with different
21 Correlations between the licensure tests we consider range from 0.44 (between 

he WEST-E Biology and Middle Level Math test) to 0.80 (between the WEST-E Math 

nd the Middle Level Math test). 
22 These comparisons are calculated from predicted values from separate regres- 

ions of each individual WEST-E score against WEST-B scores in math, reading, and 

riting. 
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Fig. 2. WEST-B scores by subtest and teacher type. 

 

 

 

 

 

 

 

 

 

 

 

 

4

4

 

l  

t  

t  

23 In the case of individual teacher evaluation, estimates from these models—

commonly called “value-added models”, or VAMs—have been shown to be unbiased 

despite the presence of student sorting ( Chetty et al. 2014a; Kane & Staiger, 2008 ), 
licensure test scores. Table 2 focuses on the middle school sample,

and presents summary statistics of students assigned to a teacher

in different quartiles of the distribution of WEST-B Math scores

(where Q1 in column 1 represents the lowest quartile). We see

clear evidence that students with higher prior performance and

in advanced tracks are more likely to be assigned to teachers in

the highest quartile of WEST-B scores; for example, the average

student assigned to a top quartile teacher scored over 20% of a

standard deviation higher on the previous year’s math test than

the average student assigned to a bottom quartile teacher. As dis-

cussed in Section 4 c, this evidence of non-random sorting strongly

informs the analytic approach we describe in the next section and
the robustness checks outlined in Section 5 . 
c

. Analytic approach 

.1. Student achievement models 

Our student achievement models can be situated within a

arger literature that attempts to separate the impact of various in-

erventions (including teacher characteristics) from other variables

hat influence student test performance. 23 Following the existing
and a recent review of the literature surrounding value-added methodologies con- 

luded, “To date, the studies that have used the strongest research designs provide 

compelling evidence that estimates of teacher value-added from standard models 
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Fig. 3. WEST-E scores by subtest and teacher type. 

Fig. 4. Basic skills licensure test passing rates by subtest and state. 
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Fig. 5. Subject-specific licensure test passing rates by subtest and state. 

Table 2 

Summary statistics by teacher quartile of basic skills math licensure test 

Teacher Q1 (168-282) Teacher Q2 (283-289) Teacher Q3 (291-294) Teacher Q4 (295-300) 

Lagged Math 0.015 0.078 0.082 0.235 

(0.919) (0.906) (0.914) (0.954) 

Lagged Reading 0.027 0.079 0.081 0.188 

(0.930) (0.911) (0.909) (0.920) 

Female 0.497 0.499 0.497 0.492 

Multi-racial 0.047 0.052 0.047 0.048 

Am. Ind./ Alaska Nat. 0.017 0.014 0.017 0.019 

Asian/ Pac. Isl. 0.095 0.106 0.108 0.127 

Black 0.056 0.063 0.060 0.057 

Hispanic 0.233 0.215 0.231 0.176 

Gifted 0.047 0.064 0.071 0.111 

LEP 0.057 0.049 0.055 0.038 

Spec. Ed. 0.066 0.057 0.061 0.060 

FRL 0.504 0.486 0.502 0.4 4 4 

Learning Disability 0.036 0.031 0.032 0.030 

Advanced Track 0.236 0.244 0.256 0.325 

Average Track 0.755 0.749 0.727 0.672 

Basic Track 0.009 0.008 0.018 0.004 

Observations 34,410 30,813 33,858 35,998 

Note: The summary statistics reported here are from the middle school math sample and are student-year averages. Quartiles 

are calculated within the sample. 
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literature about the predictive validity of teacher licensure tests

at the elementary level (e.g., Clotfelter et al., 2007; Goldhaber &

Hansen, 2010; Goldhaber, 2007 ), we estimate variants of the fol-

lowing student achievement model for each subject/grade com-

bination (middle school math, ninth-grade algebra and geometry,

and ninth-grade biology): 

 i jgst = β0 + β1 Y i,g−1 , t−1 + β2 X igt + β3 Z jt + β4 Scor e j + ε i jgst 

(1)

In Eq. (1) , Y ijgst is the test score (MSP, SBA, or EOC) of stu-

dent i in grade g , subject s , and year t , while in teacher j ’s class-
are not meaningfully biased by student-teacher sorting along observed or unob- 

served dimensions” and that “there is not any direct counter evidence indicating 

hat value-added estimates are substantially biased” ( Koedel et al., 2015 ). 

a  

f  

o  

t  
oom. Y 
i,g−1 ,t−1 

is a vector of student i ’s prior test scores in read-

ng, mathematics, and (for ninth-graders) science. The student test

cores in both Y ijgst and Y i,g−1 ,t−1 
are standardized by test, grade,

nd year across all test takers. Therefore, the units of the coeffi-

ients on the right hand side of Eq. (1) are standard deviations of

tudent performance (relative to other scores on the same test in

he same grade and year). X igt is a vector of student covariates for

tudent i, in grade g, and year t , which includes indicators for stu-

ent race/ethnicity, gender, free or reduced-priced lunch eligibility,

ifted/highly capable, limited English proficiency (LEP), special ed-

cation, and learning disabled. In some specifications, we include

 vector Z jt of additional teacher covariates that includes indicators

or teacher experience level in year t and an indicator for whether

r not the teacher possesses an advanced degree in year t . We es-

imate the model in Eq. (1) by ordinary least squares (OLS) and
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luster the error terms ɛ ijgst at the teacher level to account for cor-
elation between the errors of students taught by the same teacher.

In our primary specifications of the model in Eq. (1) , Score j is

he licensure test score of teacher j standardized across all years

f test takers. The coefficient β4 in these specifications can be in-

erpreted as the extent to which continuous licensure test scores

rovide a “signal” of future teacher effectiveness (i.e., the expected

ncrease in student performance associated with a one standard

eviation increase in the licensure test score of teacher j ). We can

lso mitigate concerns about nonlinearities and ceiling effects in

est scores (see Fig. 2 ) by estimating additional specifications that

eplace Score j with a vector of indicators for the quartile of the

istribution of test scores for teachers in that sample (Q2, Q3, or

4, with the reference category being Q1) that the test score of

eacher j falls into. 24 In these specifications, β4 is actually a vector

f coefficients, each of which represents the expected increase in

 student’s test score associated with having a teacher with a test

core in the second, third, or fourth quartile (respectively), relative

o having a teacher with a test score in the lowest quartile. 25 We

o not consider indicators for whether candidates passed the test

ecause, as discussed in the previous section and as illustrated by

igs. 2 and 3 , very few candidates in the sample failed these tests

n the first attempt. 

We estimate a number of different specifications of the model

n Eq. (1) . We first estimate a specification without any teacher

ovariates, so teachers are compared to all other teachers in the

ample, and then a specification that adds teacher covariates, so

eachers are compared to all other teachers in the sample with the

ame experience and degree level. We also estimate a specification

hat controls for student “track” (basic, regular, or advanced), so

omparisons are only made within the same types of courses; note

hat this makes comparisons between teachers and students in the

ame track but across schools . 

Finally, we consider a number of specifications that add var-

ous fixed effects intended to account for potential sources of

ias (discussed in Section 4 c). We estimate one specification with

chool fixed effects (so teachers are compared to other teachers

n the sample in the same school), and another with school-by-

ear fixed effects (so teachers are compared to other teachers in

he same school and year). Finally, we follow Jackson (2014) and

rotik, Walsh, Resch, Isenberg, and Kopa, (2013) and estimate mod-

ls that explicitly control for student tracking within schools by in-

luding school-year-grade-track fixed effects. These specifications

nly make comparisons within the same track within the same

rade, year, and school. 26 

As a preliminary check on the extent to which the differ-

nt model specifications above control for non-random sorting of

tudents to teachers by student performance and teacher licen-

ure test scores, we estimate the specifications of the model in

q. (1) but using student prior performance as the outcome vari-

ble (and dropping it from the list of predictor variables). We

nd that teacher WEST-B scores are a statistically-significant pre-

ictor of student prior performance in all specifications in mid-

le school math, but are not consistently statistically-significant
24 We calculate quartiles within each sample because very few teachers in the 

nalytic sample scored in the bottom quartile of the overall distribution of WEST-B 

ath scores. 
25 As a further check for nonlinearities, we also estimate models that replace the 

icensure scores with a teacher fixed effect and plot the resulting value-added esti- 

ates against teacher licensure scores. 
26 We also experiment with the models described in Hendricks (2014) that are 

dentified by the movement of teachers between school-grade-year-subject com- 

inations. However, our relatively sparse data on licensure test scores means that 

hese cells do not capture the average licensure test score for all teachers within 

he cell, so within-cell changes could be due to true changes in teacher skills or 

hanges in the composition of teachers with an observed licensure test score. 
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f

n ninth-grade algebra and geometry or ninth-grade biology. This

uggests that there is more non-random sorting by student perfor-

ance and teacher licensure test scores in our middle school sam-

le than in our high school sample. This is likely because our high

chool samples focus on students in specific courses (i.e., Algebra,

eometry, and Biology) because the high-school tests are course-

pecific, and much of the non-random sorting at the high school

evel is likely to be between different kinds of courses. 

.2. Student course taking models 

To investigate the relationships between teacher licensure test

cores and STEM course taking in high school, we first estimate

ariants of the following model predicting whether seventh grade

tudents in 2009-2010 and eighth grade students in 2009-10 and

010-11 take an advanced math or science course in high school 27 :

f 
(
p i jgkt 

)
= γ0 + γ1 Y i, t−1 + γ2 X igt + γ3 Z jt + γ4 Scor e j + γ5 S k 

(2) 

In Eq. (2) , p ijgt is the probability that student i who has teacher j

n middle school in year t takes an advanced course in high school

 (conditional on the observed values of the variables on the right

ide of Eq. (2 )), while S k is the number of advanced math or sci-

nce courses offered by high school k (to control for differential

pportunities to take advanced STEM courses for students in dif-

erent high schools) . All other control variables are the same as

he model in Eq. (1) , and we also consider similar specifications for

q. (2) as those described above. For example, we estimate models

n which Score j is the licensure test score of teacher j standardized

cross all years of test takers. The coefficient γ 4 in these specifi-

ations can be interpreted as the expected increase in the proba-

ility that student i takes an advanced course in subject s in high

chool associated with a one standard deviation increase in the li-

ensure test score of teacher j . Our primary specifications of the

odel in Eq. (2) is a linear probability model (i.e., f ( p i jgkt ) = p i jgkt )

ecause this allows us to isolate teacher effects by grade as out-

ined by Chetty, Friedman, and Rockoff, (2014b) , but we also exper-

ment with logistic regression models (i.e., f ( p i jgkt ) = log ( 
p i jgkt 

1 −p i jgkt 
) )

nd find qualitatively similar results. 

Finally, we estimate variants of a model predicting the num-

er of advanced math and science courses taken by the same co-

orts of seventh and eighth-grade students once they get to high

chool: 

f 
(
C i jgkt 

)
= α0 + α1 Y i,g−1 , t−1 + α2 X igt + α3 Z jt + α4 Scor e j 

+ γ5 S k + ε i jgt (3) 

In Eq. (3) , C ijgt is the number of advanced STEM courses taken

n high school by student i who has teacher j in eighth grade in

ear t . As with the model in Eq. (2) , our primary specifications

f the model in Eq. (3) is an OLS model (i.e., f ( C i jgkt ) = C i jgkt ) so

e can isolate teacher effects by grade ( Chetty et al. (2014b) , but

e also experiment with Poisson regression models for count data

i.e., f ( C i jgkt ) = log ( C i jgkt ) ) and find qualitatively similar results. 

An important issue in both sets of course-taking models is

odeling the error terms in Eqs. (2) and (3) . While in the achieve-

ent models our primary concern was with dependence between

tudents taught by the same teacher (so we clustered errors at the

eacher level), in the course-taking models we are concerned both

ith dependence between students taught by the same teacher

nd dependence between students who attend the same high
27 We focus on seventh and eighth graders in these years because we observe all 

our years of high school for these students. 
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school. We therefore cluster the error terms ɛ ijgst in Eqs. (2) and
(3) at both the teacher and high school level using two-way clus-

ter robust standard errors described in Cameron & Miller (2015) . 

4.3. Potential sources of bias 

We conclude this section by discussing four potential sources

of bias in the estimates from the models described above. 28 First,

as we discuss in Section 3 , candidates can submit scores on other

tests (e.g., PRAXIS or SAT) to satisfy the state’s WEST-B require-

ment, and not all teacher candidates go on to take the WEST-

E to get a teaching credential in Washington. In each case, this

means that a nonrandom subset of teacher candidates in Washing-

ton State has taken each test. This could lead to bias if the relation-

ship between licensure test scores and student outcomes for the

group of test takers is different than it would have been for non-

test takers. We have no way to account for the potential source of

bias, so all results reported in this paper are only generalizable to

the population of candidates who take these licensure tests. 

Second, teacher candidates who take these tests—and particu-

larly, teacher candidates who do not pass a given test on the first

attempt—may non-randomly select into the public teaching work-

force, raising the concern that candidates with a given licensure

score who enter the workforce are not representative of all teacher

candidates with that score. It is not clear that there is a convincing

way to account for this potential sample selection bias. 29 Indeed, it

is quite plausible teacher candidates who fail a given test the first

time may be more likely to re-take the test and ultimately enter

the workforce if they have a greater commitment to teaching. 30 If

these individuals become more effective teachers than teacher can-

didates with similar scores but who did not enter the workforce

would have been had they entered the workforce, this would cause

a downward bias in the estimated relationships between licensure

test scores and student outcomes. We are more concerned about

this potential sample selection bias in models that consider licen-

sure tests with low passing rates (such as the WEST-E tests shown

in Fig. 3 ) than in models that consider the WEST-B tests that most

candidates in the sample passed on the first attempt. 

Third, ample evidence suggests that teacher candidates who en-

ter the teaching workforce are non-randomly sorted into differ-

ent schools and classrooms (e.g., Clotfelter, Ladd, & Vigdor, 2005;

Goldhaber, Lavery, & Theobald, 2015b; Kalogrides & Loeb, 2013 ). 31 

While this sorting on observables does not bias our estimates (since

we explicitly control for a suite of observables), our estimates will

be biased if there are unobserved variables that are correlated both

with teachers’ licensure scores and the student outcomes we in-
28 If our primary goal was to estimate the relationship between a teacher’s math 

and science skills (as opposed to the observed licensure test scores) and stu- 

dent outcomes, we would be concerned about a fifth potential source of bias—

attenuation bias due to the fact that teacher licensure test scores are an imperfect 

measure of a candidate’s true basic skills or content knowledge. However, given that 

the relationship between the observed licensure test scores and student outcomes 

is the relevant relationship for most policy purposes, we are not concerned about 

this source of bias in our application. 
29 For instance, while attempts have been made to account for sample selection 

of this type in prior work in Washington State (e.g. Goldhaber et al., 2014, 2017b ), 

there is not an obvious instrumental variable in this context that could be used to 

redict workforce entry for teacher candidates who fail the test on the first attempt. 
30 Along observable dimensions, candidates who pass the WEST-E Math test on 

the first attempt scored 31% of a standard deviation higher on the WEST-B math test 

than candidates who fail the first time and eventually pass, and 56% of a standard 

deviation higher on the WEST-B math test than candidates who never pass the test. 
31 In particular, prior work in Washington ( Goldhaber et al., 2015b ) has shown 

that low-performing students are more likely to be assigned to teachers with low 

EST-B scores than higher-performing students in other districts, in other schools 

n the same district, and—particularly in middle school math—in other classrooms 

ithin the same school. This is borne out in the specification checks described in 

ection 4 a. 
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estigate. A broad literature has considered this potential source

f bias in estimating the impacts of individual teachers on student

est performance (e.g., Bacher-Hicks, Kane, & Staiger, 2014; Chetty

t al., 2014a; Jackson, 2014; Kane & Staiger, 2008; Kane, McCaffrey,

iller, & Staiger, 2013; Koedel, Mihaly, & Rockoff, 2015; Rothstein,

010, 2014 ) and generally suggests that the student achievement

odels described above are sufficient to control for non-random

orting, though the evidence is more tenuous at the higher grade

evels considered in this paper. Jackson (2014) , for instance, illus-

rates that the prevalence of ability tracking at the high school

evel can bias the estimates from models that do not explicitly ac-

ount for these tracks. 

We aim to minimize and/or bound this potential source of bias

n four ways. First, the specifications with school and school-by-

ear fixed effects com pare students and teachers within the same

chool, and thus minimize the impact of sorting across different

chools. Further, the models that include school-year-grade-track

xed effects help account for potential bias due to non-random

orting across tracks within schools. Third, we follow Clotfelter

t al. (2006) and Horvath (2015) and estimate models restricted

o schools in which students are distributed relatively equitably

cross classrooms according to observable characteristics, on the

ssumption that these schools are also the least likely to non-

andomly sort students to classrooms along unobserved dimen-

ions. Finally, we follow the approach of Altonji, Elder, and Taber,

20 05, 20 08) and estimate the relative amount of sorting on un-

bservables that is required to explain the relationships we find.

ur general conclusion (discussed in Section 5 c) is that, given the

xtent of non-random sorting in middle school grades, our results

n middle school may be more sensitive to this potential source of

ias than the high school results. 

A final potential source of bias arises from non-random

eacher attrition. A relationship between licensure tests, unob-

erved teacher traits associated with effectiveness, and the propen-

ity of teachers to leave the profession would bias our findings. 32 

e check for this potential source of bias in two ways. First, we

stimate models predicting teacher attrition as a function of expe-

ience, degree level, prior estimated effectiveness, WEST-B scores,

nd an interaction between prior effectiveness and WEST-B scores.

f there exists a relationship between attrition, licensure tests, and

eacher effectiveness, we would expect a significant interaction

erm. However, we do not find evidence that teachers with differ-

nt WEST-B scores are any more or less likely to leave the work-

orce as a function of their prior estimated effectiveness. We also

stimate models solely for first-year teachers (before any teach-

rs have left the workforce), and generally find stronger rela-

ionships between licensure test scores and student outcomes. 33 

his could reflect the decreasing importance of teachers’ preser-

ice experiences and skills as they gain teaching experience (see

oldhaber, Liddle, & Theobald, 2013 ), but could also suggest that

on-random teacher attrition biases the estimates discussed in the

ext section downwards. 

. Results 

Before describing the results relating teacher licensure test

cores to student achievement in secondary STEM subjects, we

rst provide some context for our findings note two peripheral

hat lend context to our findings. First, estimates from the mod-

ls in Eq. (1) predict that students taught by a first-year teacher

ill score 0.08 standard deviations lower in middle school math,
32 Goldhaber et al. (2011) find that teachers who leave the profession tend to have 

higher licensure scores but lower prior estimates of value-added. See also Feng and 

Sass (2016) and Hanushek et al. (2016) . 
33 This parallels findings from Goldhaber (2007) . 
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.07 standard deviations lower in high school math, and 0.02 stan-

ard deviations lower in ninth-grade biology, all else equal, than

tudents taught by teachers with 5 or more years of experience.

econd, when we estimate models with a teacher fixed effect and

alculate the standard deviation of these estimated teacher effects

the teacher “effect size”), we find that the teacher effect size is

.17 in middle school math, 0.39 in high school math, and 0.29

n ninth-grade biology. 34 Finally, when we estimate similar mod-

ls in elementary math and middle school reading (both consid-

red in the prior literature), we find that the expected difference

n student test performance associated with a one standard devia-

ion increase in a teacher’s basic-skills licensure test score is 0.03

tandard deviations in elementary math and 0.01 standard devia-

ions in middle school reading. 

.1. Licensure tests and student achievement 

Table 3 shows the estimated relationships between different

icensure test scores and student performance in middle school

ath (Panel A), ninth-grade algebra and geometry (Panel B), and

inth-grade biology (Panel C). 35 We first focus on the results for

he general basic-skills tests (the WEST-B Math). The results in

iddle school math and ninth-grade algebra and geometry are

roadly consistent with the findings from the existing literature

iscussed in Section 2 , and quite robust across different specifi-

ations of our student achievement model, though only the re-

ults in middle school math are statistically significant. Specif-

cally, a one standard deviation increase in a teacher’s WEST-B

ath score is correlated with a 0.01-0.03 standard deviation in-

rease in student math performance, and importantly, statistically

ignificant even in the specification with school-year-grade-track

xed effects (in which teachers are compared only with teachers

n the same school, year, grade, and track). Thus, the expected in-

rease in student performance associated with a one standard de-

iation increase in the teacher’s WEST-B score is roughly equiva-

ent to one-seventh to one-third of the expected increase in stu-

ent performance associated with having a teacher with 5 or more

ears of experience relative to a first-year teacher. Though we

ould characterize these relationships as modest, they are quite

omparable to relationships reported at the elementary level (e.g.,

oldhaber, 2007 ) and greater than the only reported relationship

t the secondary level ( Clotfelter et al., 2010 ). 36 

We plot estimated effects on student achievement by quartile of

eacher WEST-B Math score in Fig. 6 , derived from a model that in-

ludes quartile indicators rather than the continuous licensure test

core. This figure illustrates that the expected difference in student

erformance associated with having a teacher who scored in the

op quartile of the WEST-B Math relative to the bottom quartile is

.05 standard deviations of student performance in middle school
34 These statistics come from Empirical Bayes shrunken VAM estimates. The mid- 

le school effect size is comparable to earlier estimates from the elementary level 

n Washington State ( Goldhaber et al., 2012 ), while the high school effect sizes are 

bout twice as large as comparable effect sizes reported in Mansfied (2015). The 

ffect sizes calculated from a model with school fixed effects is 0.32 for middle 

chool math, 0.45 for 9th grade Algebra and Geometry, and 0.27 for 9th grade Biol- 

gy teachers. 
35 We also estimate models that consider other WEST-B tests, separately and 

ointly, the mean WEST-B score across subtests, and the maximum WEST-B score 

ather than the first WEST-B score. These results are available from the authors 

pon request. One important conclusion is that the relationships between WEST- 

 math scores and student math performance are robust to controlling for WEST-B 

eading and writing scores, and the coefficients on the WEST-B reading and writing 

cores are not statistically significant in these specifications. 
36 The coefficient on teacher test score from the base model in 

lotfelter et al. (2010) is 0.0071. 
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ath. 37 This is roughly one-third of a standard deviation of teacher

erformance in these grades. On the other hand, the comparable

ifference in ninth-grade algebra and geometry is just 0.01 stan-

ard deviations of student performance (see Fig. 6 ). 38 

Perhaps surprisingly, the relationships in Table 3 between

EST-B Math scores and student performance in ninth-grade bi-

logy are considerably stronger than in other grade levels; a one

tandard deviation increase in a teacher’s WEST-B Math score is

orrelated with a .072 to .161 standard deviation increase in stu-

ent biology performance. 39 As illustrated in Fig. 6 , the expected

ifference in student performance associated with having a teacher

ho scored in the top quartile of the WEST-B Math relative to the

ottom quartile is 0.19 standard deviations of student performance,

hich is almost four times as large as the comparable relationship

n middle school. To put this in context, this means that the ex-

ected difference in student biology performance associated with

aving a teacher in the top quartile of the WEST-B Math distri-

ution relative to the bottom quartile is about two thirds a stan-

ard deviation of teacher effectiveness in ninth-grade biology, or

oughly equivalent to the expected difference associated with hav-

ng a teacher at the 75th percentile of the ninth-grade biology

alue-added distribution relative to an average teacher. 

We now turn our attention to the estimated relationships be-

ween WEST-E (the subject-specific licensure tests) scores and stu-

ent performance in middle and high school math. The estimates

n Panel A of Table 3 give somewhat mixed evidence about the re-

ationship between WEST-E Middle-Level Math (MLM) scores and

tudent performance in middle school math (note that we do not

onsider MLM scores in high school math due to low sample sizes).

pecifically, the relationships between WEST-E MLM scores and

tudent performance tend to be statistically significant (and com-

arable in magnitude to the WEST-B estimates) when comparisons

re made within schools, but not in the models without school or

chool-by-year fixed effects. The estimates in Panels A and B of

able 3 show little evidence that WEST-E Math scores are predic-

ive of student performance in middle school math or ninth-grade

lgebra and geometry, although the magnitude of the cross-school

stimates for ninth-grade algebra and geometry—shown in the

argin plots in Fig. 7 —are positive, relatively large, and marginally

tatistically significant. 40 

Finally, Panel C of Table 3 presents estimates of the relation-

hips between each of the WEST-E tests that teachers can pass

o teach high school biology (the Science and Biology tests) and

tudent biology performance in ninth grade. Echoing the results

or the WEST-B Math, the relationships between these test scores

nd student performance in ninth-grade biology tend to be large

nd statistically significant. The magnitudes of these coefficients

re striking; for example, the expected increase in student test

cores associated with a one standard deviation increase in a Bi-

logy teacher’s WEST-E Science score is over one third of a stan-
37 The quartile models estimated for Fig. 6 include the same suite of of covariates 

n the models estimated in column 3 of Table 3 . 
38 Estimates from a student fixed-effects model in middle school math are broadly 

onsistent with these results (available from the authors upon request). 
39 These results are robust to controlling for WEST-B reading and writing scores, 

hough WEST-B writing scores are also a statistically-significant predictor of stu- 

ent biology performance in some specifications. The stronger results in biology 

ay suggest that the lagged science test score does not adequately control for prior 

erformance when compared to the lagged math score in the 9th grade Algebra 

nd Geometry models. By comparing the correlation between prior performance 

nd performance on the EOC, we do not find this to be the case. The correlation 

f a student’s lagged science test and his or her EOC biology exam is 0.759, and 

he correlation between a student’s lagged math score and their EOC algebra exam 

s 0.633. Similarly, the correlation between a student’s lagged math score and their 

OC geometry exam is 0.627. 
40 These results are not robust to the inclusion of school, school-by-year, or 

chool-year-grade-track fixed effects. 
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Table 3 

OLS student achievement models. 

Panel A: Predicting student achievement in middle school math 

WEST-B Math Standardized Score .024 ∗ .026 ∗ .027 ∗ .031 ∗∗ .026 ∗∗ .033 ∗∗

(.012) (.012) (.011) (.010) (.010) (.011) 

WEST-E MLM Standardized Score .017 .017 .029 ∗∗ .029 ∗ .026 

(.011) (.011) (.011) (.014) (.018) 

WEST-E Math Standardized Score −.004 −.011 −.0 0 0 −.015 .020 

(.013) (.012) (.013) (.015) (.017) 

Teacher controls No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Course track No No Yes Yes Yes No No Yes Yes Yes No No Yes Yes Yes No 

School fixed effects No No No Yes No No No No Yes No No No No Yes No No 

School-year fixed effects No No No No Yes No No No No Yes No No No No Yes No 

Schl-track-yr fixed effects No No No No No Yes No No No No Yes No No No No Yes 

Number of unique teachers 914 914 914 820 701 595 387 387 285 223 163 256 256 161 106 83 

Number of unique students 119,411 119,411 119,411 109,323 84,430 54,574 47,011 47,011 33,656 20,4 4 4 11,326 34,273 34,273 21,061 11,445 7,072 

Panel B: Predicting student achievement in ninth grade math 

WEST-B Math Standardized Score .033 .031 .031 .013 .012 .018 

(.022) (.023) (.023) (.016) (.015) (.016) 

WEST-E Math Standardized Score .040 + .040 + .010 .013 .013 

(.022) (.022) (.013) (.014) (.016) 

Teacher controls No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Course track No No Yes Yes Yes No No Yes Yes Yes No 

School fixed effects No No No Yes No No No No Yes No No 

School-year fixed effects No No No No Yes No No No No Yes No 

Schl-track-yr fixed effects No No No No No Yes No No No No Yes 

Number of unique teachers 767 767 767 686 596 516 425 425 331 248 211 

Number of unique students 53,794 53,794 53,794 48,650 39,147 30,651 24,689 24,689 19,680 12,363 9,925 

Panel C: Predicting student achievement in ninth grade biology 

WEST-B Math Standardized Score .161 ∗∗∗ .155 ∗∗∗ .152 ∗∗∗ .072 ∗ .081 ∗∗∗ .085 ∗∗∗

(.033) (.033) (.032) (.028) (.018) (.017) 

WEST-E Biology Standardized Score .067 + .072 + .018 .038 ∗ .047 ∗

(.040) (.040) (.021) (.018) (.019) 

WEST-E Science Standardized Score .100 ∗∗ .106 ∗∗ .010 −.002 −.005 

(.033) (.035) (.048) (.079) (.078) 

Teacher controls No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Course track No Yes Yes Yes Yes No No Yes Yes Yes No No Yes Yes Yes No 

School fixed effects No No No Yes No No No No Yes No No No No Yes No No 

School-year fixed effects No No No No Yes No No No No Yes No No No No Yes No 

Schl-track-yr fixed effects No No No No No Yes No No No No Yes No No No No Yes 

Number of unique teachers 185 185 185 141 113 113 92 92 48 39 39 90 90 47 25 25 

Number of unique students 15,116 15,116 15,116 11,391 8,302 8,075 6,046 6,046 3,692 2,705 2,592 5,141 5,141 3,042 1,543 1,460 

NOTE: p-values from two-sided t-test: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. All models control for prior year test scores, gender, race/ethnicity, learning disability status, and free or reduced-priced lunch eligibility, along with program 

indicators for gifted/highly capable, limited English proficiency (LEP), and special education. Teacher controls include experience level and degree type. Standard errors are clustered at the teacher level. 
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Fig. 6. Non-linear relationships between WEST-B math scores and student achievement. 

NOTE: All models control for prior year test scores, gender, race/ethnicity, learning disability status, and free or reduced-priced lunch eligibility, program indicators for 

gifted/highly capable, limited English proficiency (LEP), and special education, teacher experience level and degree type, and course track. Error bars illustrate 95% confidence 

intervals calculated from standard errors that are clustered at the teacher level. 
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c  
ard deviation of teacher effectiveness in ninth-grade biology (29).

ig. 7 reinforces that, as for the WEST-B Math, the WEST-E tests are

 much stronger predictor of student performance in ninth-grade

iology than in the other grade levels we consider. 

.2. Licensure tests and student high school course taking 

We next consider relationships between teacher licensure test

cores and the probability that students take advanced STEM

ourses in high school by variants of the linear probability model

escribed in Eq. (2) . The estimates from these models are pre-

ented in Table 4 . In Panel A, we consider the relationship between

he WEST-B score of the student’s middle school math teacher and

he probability that the student takes an advanced math course in

igh school, while Panel B considers the probability that the stu-

ent takes an advanced science course in high school. Since none

f these coefficients are statistically significant, our interpretation

s that the results in Table 4 provide little to no evidence of a rela-

ionship between middle school teachers’ licensure test scores and

he probability that their students take an advanced math or sci-

nce course in high school. 

Finally, Table 5 explores estimated relationships between a mid-

le school math teacher’s WEST-B math test and the number of

dvanced science or math courses taken in high school by their

tudents from the OLS regression in Eq. (3) . Basic skills test scores

re marginally predictive of taking more advanced math courses

hen school-year and school-year-track controls are included, and

he magnitudes of these relationships are relatively large; for ex-

mple, the coefficient of .154 in the school-year-grade-track fixed

ffects model represents an 18% increase over the mean number

f advanced courses taken in high school. However, given that this
esult is not consistent across specifications, our overall conclusion

rom Table 5 is that there is only mixed evidence of a relation-

hip between middle school teachers’ licensure test scores and the

umber of advanced math or science courses that their students

ake in high school. 

.3. Extensions and robustness checks 

We pursue a number of extensions and robustness checks to

he results described in Sections 5 a and 5 b. First, given that the

chievement results for the subject-specific WEST-E tests are quite

imilar to the results for the basic skills WEST-B tests, a natural

uestion is whether WEST-E test scores provide any more signal

bout future teacher effectiveness than is already contained in the

EST-B test scores. To investigate this, we estimate models of the

elationships between WEST-E scores and student performance in

iddle and high school math controlling for each teacher’s WEST-

 scores. In middle school math, estimates from models based on

ithin-school comparisons suggest that WEST-E MLM and WEST-E

ath test scores do provide additional signal about future teacher

ffectiveness beyond WEST-B scores. That said, this does not ap-

ear to be the case in high school math, and perhaps more sur-

risingly, it does not appear to be the case when we investigate

elationships between WEST-E scores and student performance in

inth-grade biology controlling for each teacher’s WEST-B scores.

his suggests that the large and statistically significant relation-

hips between WEST-E scores and student performance in ninth-

rade biology can largely be explained by the portion of the WEST-

 scores that are already captured in the basic-skills test. 

In another extension of the achievement results in Table 3 , we

onsider models that interact teacher licensure test scores with dif-
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Fig. 7. Non-linear relationships between WEST-E scores and student achievement. 

NOTE: All models control for prior year test scores, gender, race/ethnicity, learning disability status, and free or reduced-priced lunch eligibility, program indicators for 

gifted/highly capable, limited English proficiency (LEP), and special education, teacher experience level and degree type, and course track. Error bars illustrate 95% confidence 

intervals calculated from standard errors that are clustered at the teacher level. 

Table 4 

Linear probability model of advanced STEM course taking in high school 

Panel A: Middle school math teacher predicting probability of advanced high school math course 

WEST-B Math Standardized Score .014 .017 .019 .012 .008 .016 

(.030) (.028) (.026) (.024) (.026) (.031) 

Teacher controls No Yes Yes Yes Yes Yes 

Course Track No No Yes Yes Yes No 

School fixed effects No No No Yes No No 

School-year fixed effects No No No No Yes No 

School-track-year fixed effects No No No No No Yes 

Number of unique teachers 357 357 357 238 214 161 

Number of unique students 19,994 19,994 19,994 14,679 12,276 7,415 

Panel B: Middle school math teacher predicting probability of advanced high school science course 

WEST-B Math Standardized Score .021 .023 .023 .007 .003 .002 

(.027) (.027) (.026) (.018) (.019) (.025) 

Teacher controls No Yes Yes Yes Yes Yes 

Course Track No No Yes Yes Yes No 

School fixed effects No No No Yes No No 

School-year fixed effects No No No No Yes No 

School-track-year fixed effects No No No No No Yes 

Number of unique teachers 359 359 359 241 213 157 

Number of unique students 20,223 20,223 20,223 14,955 12,236 7,356 

NOTE: p-values from two-sided t-test: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. All models control for prior year 

test scores, gender, race/ethnicity, learning disability status, and free or reduced-priced lunch eligibility, 

along with program indicators for gifted/highly capable, limited English proficiency (LEP), special edu- 

cation, and number of advanced courses offered in the student’s high school. Teacher controls include 

experience and degree type. Coefficients are reported as average marginal effects. Standard errors are 

clustered at the middle school teacher level and the high school level. 
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Table 5 

OLS model of number of advanced STEM courses taken in high school 

Panel A: Middle school math teacher predicting number of high school math courses 

WEST-B Math Standardized Score .034 .038 .045 .064 .078 + .154 ∗

(.057) (.053) (.050) (.042) (.047) (.082) 

Teacher controls No Yes Yes Yes Yes Yes 

Course Track No No Yes Yes Yes No 

School fixed effects No No No Yes No No 

School-year fixed effects No No No No Yes No 

School-track-year fixed effects No No No No No Yes 

Number of unique teachers 357 357 357 238 214 161 

Number of unique students 19,994 19,994 19,994 14,679 12,276 7,415 

Panel B: Middle school math teacher predicting number of high school science courses 

WEST-B Math Standardized Score .019 .024 .023 .014 .004 .019 

(.053) (.054) (.053) (.031) (.034) (.038) 

Teacher controls No Yes Yes Yes Yes Yes 

Course Track No No Yes Yes Yes No 

School fixed effects No No No Yes No No 

School-year fixed effects No No No No Yes No 

School-track-year fixed effects No No No No No Yes 

Number of unique teachers 359 359 359 241 213 157 

Number of unique students 20,223 20,223 20,223 14,955 12,236 7,356 

NOTE: p-values from two-sided t-test: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001. All models control for prior 

year test scores, gender, race/ethnicity, learning disability status, and free or reduced-priced lunch 

eligibility, along with program indicators for gifted/highly capable, limited English proficiency (LEP), 

special education, and number of advanced courses offered in the student’s high school. Teacher 

controls include experience and degree type. Coefficients are reported as average marginal effects. 

Standard errors are clustered at the middle school teacher level and the high school level. 
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erent student characteristics (e.g., prior performance, participation

n FRL, student URM indicator) to test whether licensure test scores

re differentially predictive of student performance for different

ypes of students. 41 We find little evidence of differential effects

y student prior performance or demographics. Likewise, to test

hether the predictive power of subject-specific licensure tests for

tudent achievement might matter more depending on the track

f the course, we estimate models that interact teacher licensure

est scores with the track indicators discussed in Section 3 . Due

o sample size limitations, we were able to estimate these mod-

ls only for middle and high school math classes. We find little

vidence of differential impacts between course track and subject-

pecific licensure exams. 

As discussed in Section 4 c, we also perform several robustness

hecks of the achievement results designed to investigate whether

he estimates described above may be biased by the non-random

ssignment of students to teachers ( Rothstein, 2009, 2010 ). Be-

ause both robustness checks require large sample sizes, we re-

trict these checks to the WEST-B models. We first pursue the

pproaches of Clotfelter et al. (2006) and Horvath (2015) , who

reate “apparently random samples” by dropping students and

eachers in schools that display considerable tracking of students

o classroom along observed dimensions. 42 This approach works

ell in the ninth-grade samples (both algebra/geometry and bi-

logy), and we find that all statistically-significant coefficients re-

orted in Table 3 are still statistically-significant when the mod-

ls are estimated in the apparently random sample. This suggests

hat the ninth-grade results are not driven solely by the non-

andom sorting of students to classrooms. Unfortunately, as dis-

ussed in Section 4 a, apparent within-school sorting of students

ith low prior performance to teachers with low WEST-B scores
41 These estimates are available from the authors upon request. 
42 In our application of the Clotfelter et al. (2006) approach, we drop all schools in 

hich at least one Chi-square test rejects the null hypothesis that classrooms within 

chools do not predict student gender, race, FRL status, or an indicator for scoring 

bove the mean on the prior year test. In our application of the Horvath (2015) ap- 

roach, we drop all schools in which an F-test rejects the null hypothesis that class- 

ooms within schools do not predict student prior performance. In both approaches, 

e reject at the α = 0.05 level. 

a  

9

F

i

A

s more prevalent in the middle school math sample than in the

inth-grade samples. As a consequence, both the Clotfelter et al.

2006) and Horvath (2015) approaches drop at least 90% of the

iddle schools in the sample, meaning that the apparently random

ample in middle school is not large enough to make a meaningful

omparison to the results in Table 3. 43 

As a second robustness check we adopt the approach of Altonji

t al. (20 05, 20 08 ), who calculate the relative amount of selec-

ion on unobservables required to explain a given effect. Given

hat this approach requires a dichotomous treatment variable, we

rst create a binary indicator for whether a teacher scored in the

owest quartile of the distribution of WEST-B scores, and estimate

he model in Eq. (1) with this indicator as the variable of inter-

st ( Score j ). 
44 We then use the Altonji et al. (20 05, 20 08 ) approach

o estimate that the magnitude of sorting on unobservables would

eed to be at least 13% of the magnitude of the observed sort-

ng on observables to explain the estimated relationship between

EST-B Math scores and student math performance reported in

able 3. 45 While this may seem like a small percentage, the mag-

itude of sorting on observables is quite large in middle school

rades due to the relationship between teacher WEST-B scores and

tudent prior performance, and as discussed in Section IV, the prior

iterature that explores bias due to the sorting of students to teach-

rs along unobservable dimensions (e.g., Bacher-Hicks et al., 2014;

hetty et al., 2014a; Jackson, 2014; Kane & Staiger, 2008; Kane et

l., 2013; Koedel et al., 2015; Rothstein, 2010, 2014 ) suggests that

his magnitude of sorting on unobservables is unlikely. 

. Conclusions 

The results from this study suggest several broad conclusions

nd directions for future research. First, the achievement findings
43 Both the Clotfelter et al. (2006) approach and the Horvath (2015) approach drop 

1% of middle schools. 
44 The estimated coefficient of interest in this model is 0.025. 
45 This estimate uses the specification from column 3 of Panel A of Table 3 . 

or reference, the corresponding estimates from the analogous specification 

s 50% in ninth-grade Algebra/Geometry and 70% in ninth-grade Biology. See 

ltonji et al. (2008) , pp. 348-349, for a succinct summary of this methodology. 
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from middle and high school math about the modest, positive re-

lationships between the WEST-B Math scores and student math

performance reinforce conclusions from the existing literature (e.g.,

Clotfelter et al., 2007; Goldhaber, 2007; Hendricks, 2014 ) that ba-

sic skills licensure test scores provide a significant, if modest, sig-

nal about future math teacher effectiveness. Given the very lim-

ited evidence about pre-service predictors of future teacher effec-

tiveness (e.g., Harris & Sass, 2011 ), this suggests that basic skills

test scores could be used for reasons beyond the pass/fail require-

ment for initial teacher credentialing (for example, as a measure

of candidates’ general skills for hiring and other personnel deci-

sions). Unfortunately, our data do not allow us to consider other

measures of candidate skills that may be observable to hiring offi-

cials (e.g., GPA and letters of recommendation), so further research

that considers licensure test scores alongside these additional mea-

sures that have been considered in prior work (e.g., Goldhaber,

Grout, & Huntington-Klein, 2014; Jacob, Rockoff, Taylor, Lindy, &

Rosen, 2016 ) could provide more information about whether licen-

sure tests provide information about future teacher effectiveness

beyond these other measures. 

The second broad conclusion is that subject-specific licensure

test scores provide some additional signal about student achieve-

ment in some subjects, although the relationships are not always

statistically significant. The key policy question, then, is whether

these results justify the barrier to entry they represent to po-

tential STEM teachers. Our preliminary analysis in Section 3 sug-

gests that the WEST-E tests in STEM fields are much more dif-

ficult to pass than the WEST-E tests in other fields like elemen-

tary education. Moreover, teachers who fail the WEST-E the first

time they take it are about 10 percentage points less likely to en-

ter the workforce, and teacher candidates of color tend to be more

likely to fail these tests than white teacher candidates ( Goldhaber

& Hansen, 2010 ), so are disproportionately impacted by this bar-

rier to entry. These trends could be particularly problematic given

the well-documented difficulty of school districts, and districts in

Washington State in particular, to attract STEM teachers and teach-

ers of color ( Goldhaber, Krieg, Theobald, & Brown, 2015a, Gold-

haber, Theobald, & Tien 2015c ). Thus policymakers must balance

the positive (and only sometimes statistically significant) relation-

ships between subject-specific licensure tests and student achieve-

ment documented in this paper with the potential impact of these

licensure test requirements on the pool of potential STEM teachers

in the state. 

Another conclusion, and a unique contribution of this paper, re-

lates to our investigation of the impact of teachers on science test

scores and, specifically, the finding that relationships between li-

censure test scores and student performance in ninth-grade biol-

ogy are considerably stronger than in math classrooms. One possi-

ble explanation is that teacher content knowledge (as measured by

licensure tests) is simply more important to student performance

in science than in math, but given that there is so little evidence

about what predicts the effectiveness of science teachers, we cau-

tion against such a broad interpretation based on the relatively

small ninth-grade biology sample sizes in this paper. 

Finally, our investigation of the relationship between teacher

licensure test scores and student high school STEM course tak-

ing suggests little relationship between basic licensure test per-

formance and students’ STEM course taking in high school. That

said, the development of P-20 data warehouses across the country

might allow researchers to investigate the role of STEM teachers in

influencing other important ( Long, Conger, & Iatarola, 2012; Feder-

man, 2007, Schneider, Swanson, & Riegle-Crumb, 1998 ) long-term

student outcomes, such as majoring in STEM fields and employ-

ment in STEM industries. 
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