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An educated, innovative, motivated workforce—human capital—
is the most precious resource of any country in this new, flat
world. Yet there is widespread concern about our K-12 science
and mathematics education system, the foundation of that hu-
man capital in today’s global economy (National Academies of
Sciences, 2007).

1. Introduction

There is significant policy focus on the human capital of the na-
tion’s STEM teachers. This is motivated both by a desire to improve
STEM outcomes for students in K-12 schools and college (e.g.,
President’s Council of Advisors on Science and Technology, 2010)
and by the vast body of empirical evidence showing the impor-
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tance of teacher quality for student achievement (Aaronson, Bar-
row, & Sander, 2007; Goldhaber & Hansen, 2013; Rivkin, Hanushek,
& Kain, 2005)." One way that states try to ensure a high-quality
teacher workforce is by requiring teacher candidates to pass li-
censure tests, often of both their basic skills and content knowl-
edge, as a requirement for receiving a teaching license. Although
several studies (e.g., Clotfelter, Ladd, & Vigdor, 2007; Goldhaber
& Hansen, 2010; Goldhaber, 2007) find modest positive correla-
tions between teacher performance on licensure exams and stu-
dent math achievement gains in elementary grades, there is little
evidence on whether licensure tests provide a useful “signal” of
the future quality of secondary STEM teachers. Moreover, there is
no existing evidence about whether teacher licensure test scores
are predictive of longer-term student outcomes like course taking
in STEM fields.

In this paper we use data from Washington State to investigate
whether STEM teachers with higher licensure test scores are also

T This focus on the human capital of STEM teachers is not new. In fact, there ex-
ists an extensive body of literature tracking the progress that the nation is (or is
not) making toward having a high-capacity STEM teacher workforce. Unfortunately,
the indicators often used to evaluate this progress—e.g., teacher credentials and de-
gree type—have not been found to be highly predictive of student achievement (e.g.,
Wilson, Floden, & Ferrini-Mundy, 2001).
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more effective at improving student outcomes. We focus on three
subject/grade combinations—middle school (seventh-eighth grade)
math, ninth-grade algebra and geometry, and ninth-grade biology—
and estimate whether a teacher’s score on licensure tests required
to teach these subjects are predictive of student test achievement
and high school course taking. To our knowledge this is one of
the first papers to assess the predictive validity of teacher licen-
sure test scores in secondary math and science classrooms, and the
first to investigate the potential longer-term impacts of exposure to
teachers with different licensure test scores.

We find that basic skills licensure test scores—which can be con-
sidered as a measure a candidate’s general skills in math, reading,
and writing—are modestly predictive of student achievement in
middle and high school math (though only statistically significant
in middle school math) and highly predictive of student achieve-
ment in high school biology. The relationships between teacher
candidate performance on subject-specific licensure test scores—
which can be considered as a measure of a candidate’s job-specific
skills in the subject they will be endorsed to teach—and student
performance are similar in magnitude to the relationships for basic
skills tests, though less consistently statistically significant. Finally,
we find little evidence that students assigned to middle school
math teachers with higher basic-skills test scores are more likely
to take advanced math and science courses in high school.

The paper proceeds as follows. In Section 2, we provide back-
ground and context for this study. We introduce our data and dis-
cuss summary statistics in Section 3, outline our analytic models
in Section 4, and describe our results in Section 5. We then offer
some concluding thoughts in Section 6.

2. Background

There is overwhelming policy interest in improving student
outcomes in STEM fields, exemplified by a Report to the President
(President’s Council of Advisors on Science and Technology, 2010)
stating that “STEM education will determine whether the United
States will remain a leader among nations and whether we will be
able to solve immense challenges in such areas as energy, health,
environmental protection, and national security” (p. v). This focus
on STEM outcomes has in turn prompted calls to improve the qual-
ity of the nation’s STEM teacher workforce (e.g., White House Of-
fice of Science and Technology Policy, 2012), since teacher qual-
ity has repeatedly been shown to be one of the most important
school-related influences on student achievement (Aaronson et al.,
2007; Coleman et al., 1966; Rivkin et al., 2005; Rockoff, 2004). Un-
fortunately, relatively few teacher credentials (like degree level or
licensure status) appear to predict whether teachers affect student
outcomes in ways that are detectible by student test performance
(e.g. Aaronson et al., 2007; Goldhaber & Brewer, 1997, 2000; Harris
& Sass, 2011).2

That said, there is evidence that more nuanced measures
of teachers’ content knowledge predict student achievement.
Monk and King (1994), for instance, find that the number of un-
dergraduate mathematics and physical science courses a teacher
takes is positively related with how well students perform on math
and science tests, respectively. Goldhaber and Brewer (1997) find
that teachers with Baccalaureate and Master’s degrees in math are
more effective at improving the math performance of their stu-
dents. Hill, Rowan, and Ball (2005) find that a survey-based mea-
sure of teachers’ content knowledge for teaching is predictive of
student achievement gains in first and third grades. Boyd, Gross-
man, Lankford, Loeb, and Wyckoff, (2009) find that first-year el-

2 For instance, prior work has found little relationship between teacher degree
type (e.g., Monk & King, 1994; Aaronson et al., 2007) or college entrance exam
scores (e.g., Kane et al.,, 2008) and student achievement in mathematics.

ementary teachers from teacher education programs that require
mathematics courses are more effective at improving student per-
formance in math.

One way that states try to ensure that prospective teachers
have sufficient content knowledge for teaching is through require-
ments that they pass various licensure tests designed to assess
both basic skills and subject area knowledge. Licensure tests have
a long history, dating back to the 1930s when the first national
licensure exam, the National Teacher Examination, was developed
(Ravitch, 2003). Today all but one state require teachers to pass
various licensure tests to participate in the public school labor
market.

Public debates about teacher licensure often center on the ex-
tent to which traditional licensure exams are a useful screen as
opposed to an inefficient barrier to entry to the teacher work-
force (e.g., Angrist & Guryan, 2008; Goldhaber, Cowan, & Theobald,
2017a). Advocates argue that teacher licensure tests are an impor-
tant quality screen needed to professionalize teaching, often com-
paring them to tests taken by lawyers and doctors before they are
certified to practice (Maeroff, 1985). On the other side, critics of-
ten point to empirical evidence that licensure tests may negatively
impact efforts to diversify the teacher workforce (e.g., Goldhaber
& Hansen, 2010). We unfortunately have limited ability to test
these theories for two reasons. First, our data does not predate the
introduction of licensure tests in Washington, so we cannot test
whether the existence of licensure tests has an overall impact on
the quality of the teacher workforce. Second, as described in the
next section, very few candidates in Washington fail the licensure
tests that are the focus of this paper, so it is difficult to assess
the impact of these tests as a screen for ineffective teachers. That
said, the low pass rates we report are important in themselves,
as they suggest that this mechanism through which licensure tests
could impact the quality of the teacher workforce (i.e, as a pass/fail
screen) is unlikely to have much impact.

Although teacher licensure test scores are typically not used
for any additional personnel decisions (e.g., hiring or professional
development)—and indeed, test developers actively discourage the
use of licensure tests for decisions other than licensure itself—
teacher test scores may be predictive of student achievement away
from the high-stakes cut-point used to determine employment el-
igibility. In fact, empirical evidence at the elementary level shows
positive and significant relationships between teachers’ perfor-
mance on some licensure exams and student test scores through-
out the teacher test score distribution (Clotfelter, Ladd, & Vigdor,
2006, 2007; Goldhaber & Hansen, 2010; Goldhaber, 2007; Hen-
dricks, 2014). Goldhaber (2007), for instance, analyzes data from
North Carolina and finds that having a teacher who passed the
Praxis Il tests rather than one who failed is correlated with an in-
crease in a student’s mathematics achievement of about 6% of a
standard deviation, and that a one standard deviation increase in a
teacher’s test score is predictive of an increase in student mathe-
matics achievement of about 3% of a standard deviation. Most re-
cently, Hendricks (2014) documents increases in student achieve-
ment associated with the movement of a teacher with a high licen-
sure score into the student’s grade and school. This paper builds on
this prior evidence by investigating the extent to which continuous
licensure test scores provide a signal of future teacher effectiveness
in secondary STEM subjects.

3 The test developer (Pearson) for the WEST-B (a basic skills test used in Wash-
ington state), for instance, states: “The subtest scores indicated on this report are
only for the purposes of admission to state-approved teacher preparation pro-
grams and for teacher certification. They are NOT intended to be used for em-
ployment decisions, other college admissions decisions, or any other purpose.”
http://www.west.nesinc.com/Content/Docs/WESTB_ScoreReport_backer.pdf.
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Most of the existing evidence about the predictive validity of li-
censure tests for student achievement is focused at the elementary
level. But the relative importance of teachers’ content knowledge
may increase as teachers are expected to teach more complex ma-
terial in higher grades (Appleton, 2013). This is supported by re-
sults in Sass (2015), who finds that teachers who entered Florida’s
teaching workforce by passing a professional teaching knowledge
exam and a subject area exam administered by ABCTE are more
effective than the average teacher in the state, and that this result
is strongest when the sample is restricted to students in grades 6-
10.

To our knowledge, Clotfelter, Ladd, and Vigdor, (2010) is the
only existing evidence about the predictive validity of traditional
teacher licensure test scores at the secondary level, but due to data
limitations, they use a very different methodology than prior work
at the elementary level.* Specifically, Clotfelter et al. (2010) esti-
mate a student fixed-effects model that relies on within-student,
cross-subject comparisons (e.g., they find that students in high
school math classrooms score higher on a subject test relative to
tests in other subjects when they have a teacher in that sub-
ject who has high licensure test scores relative to their teach-
ers in other subjects).” In the next section, we describe the data
that will allow us to build on this existing work and estimate
models predicting student achievement that rely on cross-student,
within-subject comparisons (e.g., do students in secondary math
classrooms score higher on math tests, all else equal, when they
have a math teacher who has higher licensure test scores than a
math teacher with lower licensure test scores?) and produce sepa-
rate estimates for different course levels and subjects. Importantly,
we restrict our analysis to grades and subjects in which same-
subject prior year test scores are available. This is important be-
cause prior work (e.g., Chetty, Friedman, & Rockoff, 2014a; Kane &
Staiger, 2008; Jackson, 2014) has shown that controlling for prior
test scores and other student and course information in a “value
added” specification is sufficient to control for bias from the non-
random sorting of students to classes and teachers.

In addition to concerns about student STEM achievement, there
is also considerable policy interest in pushing more students to-
wards STEM pathways. As noted by the President’s Council of Advi-
sors on Science and Technology (2010), “It is important to note that
the problem is not just a lack of proficiency among American stu-
dents; there is also a lack of interest in STEM fields among many
students” (p. vi). There is some survey evidence relating teacher
quality to future student interest in STEM fields (Gross, 1988), sug-
gesting that focusing on STEM teachers may be fruitful.

The impact of teachers on future student STEM pathways could
come in one of two forms. First, there is clear evidence that
higher-achieving students are more likely to pursue STEM path-
ways (Gottfried, Bozick, Rose, & Moore, 2016), so teachers may
have an indirect effect on the future STEM interest of their stu-
dents through their impacts on student achievement. Second, there
is a growing literature documenting that teachers have significant
impacts on student non-cognitive outcomes independent of their
impacts on student achievement (e.g., Blazar & Kraft, 2016; Ger-
shenson, 2016; Jackson, 2012; Petek & Pope, 2016), so teachers may
similarly have a direct effect on the future STEM interest of their
students. We test each of these hypotheses in our investigation of
the relationship between teacher licensure test scores and future
student course taking in STEM fields.

4 Sass (2015) also finds that teachers who entered Florida’s teaching workforce
by passing a professional teaching knowledge exam and a subject area exam ad-
ministered by ABCTE are more effective than the average teacher in the state, and
this result holds when the sample is restricted to students in grades 6-10.

5 Clotfelter et al. (2010) consider the average of a teacher’s normalized licensure
test scores across all tests the teacher has taken.

3. Data and summary statistics
3.1. Data

This study combines four databases, all maintained and sup-
plied by the Washington State Office of the Superintendent of Pub-
lic Instruction (OSPI), to construct one panel data set containing
student-teacher-classroom-year observations. These databases are
the Washington State Credentials Database, the Washington State
S-275 personnel report, the Comprehensive Education Data and Re-
search System (CEDARS), and the State Testing database.

The Washington State Credentials Database contains a complete
history of scores on the state’s teacher licensure tests. In this study,
we focus on two tests that have been required for teacher licensing
in Washington State in recent years. Since 2002, prospective teach-
ers in Washington have had to pass the Washington Educator Skills
Test-Basic (WEST-B)—an assessment of basic skills in reading, writ-
ing, and mathematics—as a requirement for admission into teacher
education programs. The test is designed to reflect general knowl-
edge and skills described in textbooks, the Washington Essential
Academic Learning Requirements, curriculum guides, and licensure
standards. Because the state accepts a number of alternative tests
that meet the WEST-B testing requirement for receiving a teach-
ing credential,® only 82% of new teachers from 2006 through 2015
have taken the WEST-B. For these individuals, we observe their
scores on the math, reading, and writing subtests for each time
they took the test.

From 2010 to 2014, all teacher education program graduates
also had to pass the Washington Educator Skills Test-Endorsements
(WEST-E), a subject knowledge test for individual teaching en-
dorsements that is intended to measure the job-specific skills in
the subject in which the candidate will receive an endorsement, as
a requirement for receiving a teaching credential.” Different WEST-
E exams were required for teachers to become certified in different
subject areas and grade levels, but every credentialed teacher had
to pass at least one of these tests as a requirement for licensure.
For this study, we focus on scores on four WEST-E tests observed
most frequently for teachers in our sample: Mathematics, Middle
Level Mathematics (MLM), Science, and Biology.

The licensure exam data set is linkable to the state’s S-275
database, which contains information from the state’s personnel-
reporting process. It includes a record of all certified employees
in school districts and educational service districts (ESDs), their
place(s) of employment, annual compensation, and demographic
characteristics. The data set also includes highest degree earned
and experience, which we consider as other potential predictors
of teacher effectiveness.

Since the 2009-10 school year, teachers can be linked to the
students in their classrooms using a unique classroom ID in the
state’s CEDARS database.? For the 2009-10 through 2014-15 school
years, the CEDARS database contains information on individual stu-
dent background variables including gender, race/ethnicity, learn-
ing disability status, and free or reduced-priced lunch eligibility, as
well as participation in the following programs: gifted/highly capa-

6 Passing scores for Praxis I, California Basic Educational Skills Test (CBEST), or
the Pearson NES Essential Academic Skills test, as well as scores on the SAT and ACT
above certain cutoffs (e.g., 515 on the math SAT) can be submitted as alternatives
to the WEST-B exam (RCW 28A.410.220 & WAC 181-01-002).

7 Prior to the WEST-E, the state required a passing score on the Praxis-II tests. Be-
ginning in September 2014, thestate replaced some WEST-E tests with assessments
from the National Evaluation Series (NES). For parsimony, we only consider WEST-E
scores in this paper.

8 CEDARS data includes fields designed to link students to their individual teach-
ers, based on reported schedules. However, limitations of reporting standards and
practices across the state may result in ambiguities or inaccuracies around these
links.
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ble; limited English proficiency (LEP); and special education. These
student-level variables are used as control variables in all our mod-
els. From this data set, we are also able to create indicators for
different course “tracks” (basic, average, or advanced).’

Student test score data come from the State Testing database.
The database contains annual student test scores on the Measures
of Student Progress (MSP) exams for 2009-10 through 2013-14 in
reading (Grades 3-8), math (Grades 3-8), and science (Grades 5
and 8), as well as high school End-of-Course (EOC) exams in Alge-
bra, Geometry, and Biology.!? For 2014-15, the state transitioned to
the Smarter Balance Assessment (SBA) for Grades 3-8 in both math
and reading. Our student achievement analysis focuses on middle
school math (seventh and eighth grade), ninth-grade math (algebra
and geometry), and ninth-grade biology, all grades in which both
current and same-subject prior-year test scores are available.

The range of years we can consider varies across these differ-
ent subject/year combinations. Because sixth through eighth grade
math test scores are available for the entire range of years that
students may be linked to teachers, 2009-10 through 2014-15, and
scores from the predecessor to the MSP exam—the Washington As-
sessment of Student Learning (WASL)—are also available for the
2008-09 academic year (i.e., a prior-year math score for 2009-10),
we can estimate models for middle school math in all years of
available CEDARS data (2009-10 through 2014-15). On the other
hand, the Algebra and Geometry EOC exams were introduced in
the 2010-2011 academic year, and the Biology EOC exam started
in the 2011-12 school year. Thus we can only estimate models
for ninth-grade algebra and geometry for 2010-11 through 2014-
15, and for ninth-grade biology for 2011-12 and 2014-15. Across
the different years, subjects, and tests, our analytic datasets in-
clude 204,549 student-teacher-year observations (156,210 unique
students and 1,687 unique teachers).!!

We also use the CEDARS data to create several variables that
describe student course taking in STEM fields in high school. First,
we identify students who take at least one advanced math and
science courses in high school by considering all math and sci-
ence courses taken by students between ninth and twelfth grade
as reported in the CEDARS data. We define high school courses as
“advanced” following the procedure described in Gottfried (2015),
which relies on a taxonomy outlined in Burkham et al. (2003).'? In
our primary results, advanced math courses include trigonometry,
statistics, pre-calculus, and higher courses, while advanced science

9 Tracks are classified by the use of course names and grade levels in the CEDARS
schedule files. In middle school, courses in a “basic” track are courses below grade
level and math courses labeled “Basic”, “Remedial”, or “LAP”. Courses in an “av-
erage” track are all general math courses at grade level, while courses in an “ad-
vanced” track are math courses above grade level or courses at or above algebra 1.
In high school algebra, geometry, and biology, courses are considered in an “aver-
age” track unless labeled as “Honors”, “Advanced”, “Accelerated ", or “IB”, in which
case they are considered in an “advanced” track, or are labeled as “Basic”, “Support”,
and“Remedial”, in which case they are considered in a “basic” track.

10 Approximately one-third of Washington state schools serving Grades 3-8 par-
ticipated in a pilot of the SBA in the 2013-2014 school year, and the state did not
collect student test scores from these schools. Students from these schools there-
fore are not included in the 2013-14 data (because they are missing current-year
test scores) or the 2014-15 data (because they are missing prior-year test scores).

" We make a number of additional restrictions to the data set to derive these
analytic datasets. Specifically, we only include student/teacher/year combinations in
which the student has valid current and prior-year test scores, received instruction
from a single teacher in that subject and year, and (in the case of ninth-graders)
was enrolled in the course aligned with the EOC test we consider (Algebra, Geome-
try, or Biology). Likewise, for each combination of grade level and teacher licensure
test, we only consider student/teacher/year combinations in which the teacher has
at least one valid licensure test score.

12 At the high school level, courses are classified via state course codes
and state course names. In cases where a course is not mentioned in
Burkham et al. (2003) we use out best judgment to determine which level a course
aligns with, and delete observations in schools with all missing state course names.

courses include chemistry, physics, and higher courses. We also ex-
periment with other definitions of advanced courses, including the
full taxonomy described in Burkham, Lee, and Smerdon, (2003).
Finally, we calculate the total number of advanced math courses
and advanced science courses each student took over the course of
their time in high school.

3.2. Summary statistics

The grades and subjects considered in this paper vary consid-
erably both in terms of the number and characteristics of the stu-
dents and teachers. Table 1 presents student-year-level summary
statistics for each of the grade level and subject combinations con-
sidered in this analysis. The first column of Table 1, for example,
provides summary statistics for all seventh and eighth-grade stu-
dents in the analytic dataset whose math teacher has at least one
valid WEST-B Math score. We standardize all student test scores
within grade and year, so the means in column 1 of Table 1 for
“Lagged Math” and “Lagged Reading” mean that students in this
sample scored about 10% of a standard deviation higher on last
year’s tests than the average student in the same grade and year.
The other summary statistics in column 1 are broadly representa-
tive of the demographics of public school students in Washington
state, about 50% of whom are eligible for free/reduced priced lunch
and about 25% of whom are underrepresented minorities (Ameri-
can Indian, Black, or Hispanic).

Columns 2 and 3 of Table 1 illustrate some important differ-
ences between the ninth-grade algebra/geometry sample and the
ninth-grade biology sample. Specifically, far fewer students in the
ninth grade are enrolled in biology than in one of the ninth-grade
math courses, and these students tend to be both more advan-
taged and higher performing.’®> Roughly 24% of students take bi-
ology in 9th grade compared to about 88% of students who take
algebra or geometry. This is likely because higher-performing stu-
dents often take biology (and the biology EOC) in 9th grade rather
than wait until 10th grade when students are required to take the
biology EOC'4. That students enrolled in different courses appear
quite different from each other along observable dimensions sug-
gests the need to carefully consider the implications of tracking
(Jackson, 2014) for the estimated achievement and course-taking
models described below.

In Table 1 (and in the analytic models described in the next
section), teacher licensure test scores come from the first time each
teacher took the test and are standardized across all teacher candi-
dates who have ever taken these tests. For example, the mean for
“WEST-B Math” in column 1 of Table 1 implies that the average
student in the WEST-B Math middle school sample has a teacher
who scored over 50% of a standard deviation higher on their first
WEST-B Math test than the average teacher candidate who took
this test.

Our decision to standardize licensure test scores across all years
of data is important because, as shown in Fig. 1, average scores
on all three WEST-B tests have been increasing steadily over time.
These trends could be explained by the increased availability and
use of test preparation materials, a drop in test difficulty, or an
increase in the average qualifications of teachers. The first two ex-
planations would suggest that we should only standardize teacher
test scores within years (since the time trends would have nothing
to do with the qualifications of different cohorts of teacher candi-
dates), while the latter explanation would suggest that we should

13 The most common science courses taken in 9th grade are “Physical Science”
(39.9%) followed by “General Science” (24.2%) and then “Biology” (23.8%). The
most common math courses taken in 9th grade are “Algebra” (61.1%), “Geometery”
(28.1%), and “General Math” (15.5%).

4 www.k12.wa.us/assessment/StateTesting/BiologyEnd-of-CourseExams.aspx
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Table 1
Student-year level summary statistics by course.
7th & 8th Grade 9th Grade  9th Grade
Middle Sch. Math  Alg./Geo. Biology
Student Variables
Lagged Math 0.105 -0.017 0.425
(0.928) (0.808) (0.988)
Lagged Reading 0.095 0.032 0.356
(0.920) (0.859) (0.914)
Lagged Science —0.009 0.378
(0.862) (0.970)
Female 0.496 0.501 0.516
Multi-racial 0.048 0.044 0.043
Am. Ind./ Alaska Nat. 0.017 0.018 0.017
Asian/ Pac. Isl. 0.109 0.090 0.132
Black 0.059 0.060 0.052
Hispanic 0.213 0.216 0.160
Gifted 0.074 0.027 0.075
LEP 0.050 0.044 0.023
Spec. Ed. 0.061 0.051 0.058
FRL 0.483 0.486 0.376
Learning Disability 0.033 0.028 0.033
Basic Track 0.009 0.020 0.000
Average Track 0.724 0.943 0.846
Advanced Track 0.266 0.037 0.136
Advanced H.S. Math Course* 0.539
Advanced H.S. Science Course* 0.257
Number of Advanced High School Math Courses* 0.854
(0.963)
Number of Advanced High School Science Courses*  0.925
(0.861)
Teacher Variables
Standardized WEST-B Math 0.567 0.687 0.635
(0.553) (0.533) (0.506)
Standardized WEST-B Reading 0.234 0.189 0.593
(0.820) (0.870) (0.641)
Standardized WEST-B Writing 0.207 0.189 0.584
(0.801) (0.860) (0.672)
Proportion with a WEST-E score 0.375 0.367 0.413
Standardized WEST-E MLM 0.129
(0.788)
Standardized WEST-E Math —-0.024 0.241
(0.812) (0.722)
Standardized WEST-E Science —0.020
(0.930)
Standardized WEST-E Biology 0.189
(0.956)
Observations 135,079 54,354 15,116

NOTE: Each sample is defined as student-year observations by course type linked to teachers with WEST-
B scores. Blank cells are ommited due to small sample sizes. *Summary statistics from advanced course

models (see Table 4).

standardize teacher test scores across years (as the time trends
would reflect differences in average qualifications across test co-
horts).

We test these explanations directly by estimating predictive va-
lidity models (described in the next section) with and without
teacher licensure test-year (or “cohort”) fixed effects. The year in
which candidates take the WEST-B is highly predictive of the per-
formance of their students (F=36.20), and there is little evidence
that the within-cohort relationship between WEST-B scores is any
different than the cross-cohort relationship (t=0.19)."> This sug-
gests that changes in average WEST-B scores over time do re-
flect true differences in teacher candidate quality. This is consistent
with evidence from other studies showing that average SAT scores
of prospective teachers have increased over the past two decades

15 We note that recent cohorts of teachers appear to be more effective conditional
on other observed covariates, which does not support the narrative that the “war on
teachers” (e.g., Gamson, 2015) is having detrimental impacts on the teacher work-
force.

(Goldhaber & Walch, 2014; Lankford, Loeb, McEachin, Miller, &
Wycoff, 2014),'6 recent cohorts of prospective teachers have higher
undergraduate GPAs than their predecessors (Gitomer, 2007), and
new teachers are now coming from more competitive undergrad-
uate institutions than in past years (Lankford et al., 2014). Finally,
the developer of the WEST-B and WEST-E (Pearson) describes the
tests as “criterion-referenced,” meaning that they are “designed to
measure a candidate’s knowledge and skills in relation to an es-
tablished standard (a criterion), rather than in relation to the per-
formance of other candidates.”’” For these reasons, we standardize
licensure test scores across all years in our primary analysis.!8

16 The increase in SAT scores documented in Lankford et al. (2014) is 0.10 stan-
dard deviations from 2002 to 2010, which is not as dramatic as the 0.19 standard
deviation increase in WEST-B scores over the same time period.

17 https://www.west.nesinc.com/PageView.aspx?f=GEN_AboutTheTests.html.

18 We also experiment with models that consider test scores standardized within
year, and the results are qualitatively similar (results available from authors upon
request).
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Fig. 1. Average WEST-B scores by subtest and testing year.

Means of the standardized teacher licensure test scores in
Table 1 permit some comparisons across different kinds of teach-
ers, but we summarize the complete distribution of scores for each
sample with kernel density plots of WEST-B scores (on the original
scoring scale) for six mutually exclusive groups of test takers in
Fig. 2. The first three groups are considered in this study: middle
school math teachers, ninth-grade algebra and geometry teachers,
and ninth-grade biology teachers.’® For comparison, we also in-
clude elementary teachers in tested grades and subjects (analogous
to teachers considered in prior studies of teacher licensure tests),
all other teachers (i.e., those who are in the workforce but not in
one of these other samples), and all test takers who never become
teachers in Washington State public schools. The figure shows that
ninth-grade teachers tend to score higher on all three WEST-B tests
than middle school math teachers, and both groups of teachers
tend to score dramatically higher on the WEST-B Math test than
elementary teachers, other teachers, and test takers who are never
observed in the teaching workforce.

Fig. 3 shows similar kernel density plots for WEST-E tests;
again, we include the WEST-E tests required for elementary teach-
ers for comparison purposes. The first two panels of Fig. 3 show
that ninth-grade algebra and geometry teachers tend to score con-
siderably higher than middle school math teachers on both WEST-E
Math tests, though both groups perform better, on average, than
test takers who are not observed in the state’s teaching work-
force.20 For the other WEST-E tests, teachers in our samples do not
perform much better, on average, than other teachers or test takers
not observed in the workforce. The fact that ninth-grade teachers
tend to score higher on both the WEST-B tests and WEST-E tests
compared to other teachers is not surprising given the high degree
of correlation between these tests; for instance, the correlation be-

19 For the purposes of this figure, teacher type was determined by the number of
students in each subject-grade combination taught in the analytic sample or ele-
mentary sample.

20 39,6% of teacher candidates who fail the WEST-E Math on their first test admin-
istration eventually pass it, while another 31.8% eventually pass the WEST-E MLM
test.

tween the WEST-B math test and the WEST-E Middle Level Math
test is 0.59.%!

The “Cut Score” line in each plot within Figs. 2 and 3 illustrates
two important points for our analysis. First, failure rates on these
tests for the population of interest (future secondary math and sci-
ence teachers) are extremely low. As we discuss in the next sec-
tion, this limits our ability to test the predictive validity of these
cut scores. Second, while the passing score is nominally set to
the same scale score (240) for all tests, some of these licensure
tests appear much more difficult to pass than others. Figs. 4 and
5 show overall passing rates for these tests across all teacher can-
didates in Washington state and compares these passing rates to
those in other states (California, Florida, and Michigan) that report
these numbers. Generally speaking, the passing rates on the WEST-
B tests are much higher than the passing rates for basic skills li-
censure tests in these other states, while the passing rates on the
WEST-E tests considered in our primary analysis are more in line
with (and even lower than in some cases) the passing rates for
subject-specific licensure tests in these other states. Figs. 4 and
5 illustrate that, unless the underlying skillsets of teacher candi-
dates in these states are wildly different, cut scores for passing li-
censure tests are set at very different levels in different settings.

We can also directly compare the difficulty of different WEST-
E tests by comparing the WEST-E performance of candidates who
took different WEST-E tests but had similar scores on the WEST-
B. We find that candidates tend to perform 16-20 points (or
about one standard deviation) higher on the Elementary Educa-
tion WEST-E tests than candidates with similar WEST-B scores per-
form on the Middle Level Math, Science, or Biology WEST-E exam,
and 40 points (or about two standard deviations) higher than can-
didates with similar WEST-B scores perform on the Mathematics
WEST-E test. These differences in test difficulty have important
policy implications that we discuss in the conclusion.??

As a final exploration, we explore the extent to which there is
non-random sorting of different students to teachers with different

21 Correlations between the licensure tests we consider range from 0.44 (between
the WEST-E Biology and Middle Level Math test) to 0.80 (between the WEST-E Math
and the Middle Level Math test).

22 These comparisons are calculated from predicted values from separate regres-
sions of each individual WEST-E score against WEST-B scores in math, reading, and
writing.
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Fig. 2. WEST-B scores by subtest and teacher type.

licensure test scores. Table 2 focuses on the middle school sample,
and presents summary statistics of students assigned to a teacher
in different quartiles of the distribution of WEST-B Math scores
(where Q1 in column 1 represents the lowest quartile). We see
clear evidence that students with higher prior performance and
in advanced tracks are more likely to be assigned to teachers in
the highest quartile of WEST-B scores; for example, the average
student assigned to a top quartile teacher scored over 20% of a
standard deviation higher on the previous year’s math test than
the average student assigned to a bottom quartile teacher. As dis-
cussed in Section 4c, this evidence of non-random sorting strongly
informs the analytic approach we describe in the next section and
the robustness checks outlined in Section 5.

4. Analytic approach
4.1. Student achievement models

Our student achievement models can be situated within a
larger literature that attempts to separate the impact of various in-
terventions (including teacher characteristics) from other variables
that influence student test performance.”®> Following the existing

2 In the case of individual teacher evaluation, estimates from these models—
commonly called “value-added models”, or VAMs—have been shown to be unbiased
despite the presence of student sorting (Chetty et al. 2014a; Kane & Staiger, 2008),
and a recent review of the literature surrounding value-added methodologies con-
cluded, “To date, the studies that have used the strongest research designs provide
compelling evidence that estimates of teacher value-added from standard models
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Fig. 5. Subject-specific licensure test passing rates by subtest and state.

Table 2

Summary statistics by teacher quartile of basic skills math licensure test

Teacher Q1 (168-282)

Teacher Q2 (283-289)

Teacher Q3 (291-294)  Teacher Q4 (295-300)

Lagged Math 0.015 0.078
(0.919) (0.906)
Lagged Reading 0.027 0.079
(0.930) (0.911)
Female 0.497 0.499
Multi-racial 0.047 0.052
Am. Ind./ Alaska Nat.  0.017 0.014
Asian/ Pac. Isl. 0.095 0.106
Black 0.056 0.063
Hispanic 0.233 0.215
Gifted 0.047 0.064
LEP 0.057 0.049
Spec. Ed. 0.066 0.057
FRL 0.504 0.486
Learning Disability 0.036 0.031
Advanced Track 0.236 0.244
Average Track 0.755 0.749
Basic Track 0.009 0.008
Observations 34,410 30,813

0.082 0.235
(0.914) (0.954)
0.081 0.188
(0.909) (0.920)
0.497 0.492
0.047 0.048
0.017 0.019
0.108 0.127
0.060 0.057
0231 0.176
0.071 0111
0.055 0.038
0.061 0.060
0.502 0.444
0.032 0.030
0.256 0325
0.727 0.672
0.018 0.004
33,858 35,998

Note: The summary statistics reported here are from the middle school math sample and are student-year averages. Quartiles

are calculated within the sample.

literature about the predictive validity of teacher licensure tests
at the elementary level (e.g., Clotfelter et al., 2007; Goldhaber &
Hansen, 2010; Goldhaber, 2007), we estimate variants of the fol-
lowing student achievement model for each subject/grade com-
bination (middle school math, ninth-grade algebra and geometry,
and ninth-grade biology):

Yigt = Bo+ BiYig 1 1+ BXig + BsZje + PaScorej + &ijgst

(1)

In Eq. (1), Yjgs is the test score (MSP, SBA, or EOC) of stu-
dent i in grade g, subject s, and year t, while in teacher j’s class-

are not meaningfully biased by student-teacher sorting along observed or unob-
served dimensions” and that “there is not any direct counter evidence indicating
that value-added estimates are substantially biased” (Koedel et al., 2015).

room. Y, , ;. 4 is a vector of student i’s prior test scores in read-
ing, mathematics, and (for ninth-graders) science. The student test
scores in both Yj and Y,.,gfl,tf1 are standardized by test, grade,
and year across all test takers. Therefore, the units of the coeffi-
cients on the right hand side of Eq. (1) are standard deviations of
student performance (relative to other scores on the same test in
the same grade and year). X is a vector of student covariates for
student i, in grade g and year t, which includes indicators for stu-
dent race/ethnicity, gender, free or reduced-priced lunch eligibility,
gifted/highly capable, limited English proficiency (LEP), special ed-
ucation, and learning disabled. In some specifications, we include
a vector Z;; of additional teacher covariates that includes indicators
for teacher experience level in year t and an indicator for whether
or not the teacher possesses an advanced degree in year t. We es-
timate the model in Eq. (1) by ordinary least squares (OLS) and
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cluster the error terms g, at the teacher level to account for cor-
relation between the errors of students taught by the same teacher.

In our primary specifications of the model in Eq. (1), Score; is
the licensure test score of teacher j standardized across all years
of test takers. The coefficient 84 in these specifications can be in-
terpreted as the extent to which continuous licensure test scores
provide a “signal” of future teacher effectiveness (i.e., the expected
increase in student performance associated with a one standard
deviation increase in the licensure test score of teacher j). We can
also mitigate concerns about nonlinearities and ceiling effects in
test scores (see Fig. 2) by estimating additional specifications that
replace Score; with a vector of indicators for the quartile of the
distribution of test scores for teachers in that sample (Q2, Q3, or
Q4, with the reference category being Q1) that the test score of
teacher j falls into.?* In these specifications, B4 is actually a vector
of coefficients, each of which represents the expected increase in
a student’s test score associated with having a teacher with a test
score in the second, third, or fourth quartile (respectively), relative
to having a teacher with a test score in the lowest quartile.2> We
do not consider indicators for whether candidates passed the test
because, as discussed in the previous section and as illustrated by
Figs. 2 and 3, very few candidates in the sample failed these tests
on the first attempt.

We estimate a number of different specifications of the model
in Eq. (1). We first estimate a specification without any teacher
covariates, so teachers are compared to all other teachers in the
sample, and then a specification that adds teacher covariates, so
teachers are compared to all other teachers in the sample with the
same experience and degree level. We also estimate a specification
that controls for student “track” (basic, regular, or advanced), so
comparisons are only made within the same types of courses; note
that this makes comparisons between teachers and students in the
same track but across schools.

Finally, we consider a number of specifications that add var-
ious fixed effects intended to account for potential sources of
bias (discussed in Section 4c). We estimate one specification with
school fixed effects (so teachers are compared to other teachers
in the sample in the same school), and another with school-by-
year fixed effects (so teachers are compared to other teachers in
the same school and year). Finally, we follow Jackson (2014) and
Protik, Walsh, Resch, Isenberg, and Kopa, (2013) and estimate mod-
els that explicitly control for student tracking within schools by in-
cluding school-year-grade-track fixed effects. These specifications
only make comparisons within the same track within the same
grade, year, and school.?®

As a preliminary check on the extent to which the differ-
ent model specifications above control for non-random sorting of
students to teachers by student performance and teacher licen-
sure test scores, we estimate the specifications of the model in
Eq. (1) but using student prior performance as the outcome vari-
able (and dropping it from the list of predictor variables). We
find that teacher WEST-B scores are a statistically-significant pre-
dictor of student prior performance in all specifications in mid-
dle school math, but are not consistently statistically-significant

24 We calculate quartiles within each sample because very few teachers in the
analytic sample scored in the bottom quartile of the overall distribution of WEST-B
Math scores.

2> As a further check for nonlinearities, we also estimate models that replace the
licensure scores with a teacher fixed effect and plot the resulting value-added esti-
mates against teacher licensure scores.

26 We also experiment with the models described in Hendricks (2014) that are
identified by the movement of teachers between school-grade-year-subject com-
binations. However, our relatively sparse data on licensure test scores means that
these cells do not capture the average licensure test score for all teachers within
the cell, so within-cell changes could be due to true changes in teacher skills or
changes in the composition of teachers with an observed licensure test score.

in ninth-grade algebra and geometry or ninth-grade biology. This
suggests that there is more non-random sorting by student perfor-
mance and teacher licensure test scores in our middle school sam-
ple than in our high school sample. This is likely because our high
school samples focus on students in specific courses (i.e., Algebra,
Geometry, and Biology) because the high-school tests are course-
specific, and much of the non-random sorting at the high school
level is likely to be between different kinds of courses.

4.2. Student course taking models

To investigate the relationships between teacher licensure test
scores and STEM course taking in high school, we first estimate
variants of the following model predicting whether seventh grade
students in 2009-2010 and eighth grade students in 2009-10 and
2010-11 take an advanced math or science course in high school?”:

f(pijgkt) = Yo+ VY .1+ Yo Xig + V3Zjr+ yaScore; + ysSy
(2)

In Eq. (2), pjjgr is the probability that student i who has teacher j
in middle school in year t takes an advanced course in high school
k (conditional on the observed values of the variables on the right
side of Eq. (2)), while S, is the number of advanced math or sci-
ence courses offered by high school k (to control for differential
opportunities to take advanced STEM courses for students in dif-
ferent high schools). All other control variables are the same as
the model in Eq. (1), and we also consider similar specifications for
Eq. (2) as those described above. For example, we estimate models
in which Score; is the licensure test score of teacher j standardized
across all years of test takers. The coefficient y,4 in these specifi-
cations can be interpreted as the expected increase in the proba-
bility that student i takes an advanced course in subject s in high
school associated with a one standard deviation increase in the li-
censure test score of teacher j. Our primary specifications of the
model in Eq. (2) is a linear probability model (i.e., f(Pjjgx) = Pijgke)
because this allows us to isolate teacher effects by grade as out-
lined by Chetty, Friedman, and Rockoff, (2014b), but we also exper-
iment with logistic regression models (i.e., f(pjjgrr) = log(; Liigke_y)

1-Djjgie
and find qualitatively similar results.

Finally, we estimate variants of a model predicting the num-
ber of advanced math and science courses taken by the same co-
horts of seventh and eighth-grade students once they get to high
school:

f(Cijgkt) = 0o+ alYi,g—], -1+ aZX,-gt + (¥3th + a4Score]-
+VsSk+ Eijer 3)

In Eq. (3), Gijg is the number of advanced STEM courses taken
in high school by student i who has teacher j in eighth grade in
year t. As with the model in Eq. (2), our primary specifications
of the model in Eq. (3) is an OLS model (i.e., f(Gjg) = Gijgir) SO
we can isolate teacher effects by grade (Chetty et al. (2014b), but
we also experiment with Poisson regression models for count data
(e, f(Gijgkr) = 10g(Cijgrr)) and find qualitatively similar results.

An important issue in both sets of course-taking models is
modeling the error terms in Eqgs. (2) and (3). While in the achieve-
ment models our primary concern was with dependence between
students taught by the same teacher (so we clustered errors at the
teacher level), in the course-taking models we are concerned both
with dependence between students taught by the same teacher
and dependence between students who attend the same high

27 We focus on seventh and eighth graders in these years because we observe all
four years of high school for these students.
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school. We therefore cluster the error terms eje in Egs. (2) and
(3) at both the teacher and high school level using two-way clus-
ter robust standard errors described in Cameron & Miller (2015).

4.3. Potential sources of bias

We conclude this section by discussing four potential sources
of bias in the estimates from the models described above.?® First,
as we discuss in Section 3, candidates can submit scores on other
tests (e.g., PRAXIS or SAT) to satisfy the state’s WEST-B require-
ment, and not all teacher candidates go on to take the WEST-
E to get a teaching credential in Washington. In each case, this
means that a nonrandom subset of teacher candidates in Washing-
ton State has taken each test. This could lead to bias if the relation-
ship between licensure test scores and student outcomes for the
group of test takers is different than it would have been for non-
test takers. We have no way to account for the potential source of
bias, so all results reported in this paper are only generalizable to
the population of candidates who take these licensure tests.

Second, teacher candidates who take these tests—and particu-
larly, teacher candidates who do not pass a given test on the first
attempt—may non-randomly select into the public teaching work-
force, raising the concern that candidates with a given licensure
score who enter the workforce are not representative of all teacher
candidates with that score. It is not clear that there is a convincing
way to account for this potential sample selection bias.?” Indeed, it
is quite plausible teacher candidates who fail a given test the first
time may be more likely to re-take the test and ultimately enter
the workforce if they have a greater commitment to teaching.?? If
these individuals become more effective teachers than teacher can-
didates with similar scores but who did not enter the workforce
would have been had they entered the workforce, this would cause
a downward bias in the estimated relationships between licensure
test scores and student outcomes. We are more concerned about
this potential sample selection bias in models that consider licen-
sure tests with low passing rates (such as the WEST-E tests shown
in Fig. 3) than in models that consider the WEST-B tests that most
candidates in the sample passed on the first attempt.

Third, ample evidence suggests that teacher candidates who en-
ter the teaching workforce are non-randomly sorted into differ-
ent schools and classrooms (e.g., Clotfelter, Ladd, & Vigdor, 2005;
Goldhaber, Lavery, & Theobald, 2015b; Kalogrides & Loeb, 2013).3!
While this sorting on observables does not bias our estimates (since
we explicitly control for a suite of observables), our estimates will
be biased if there are unobserved variables that are correlated both
with teachers’ licensure scores and the student outcomes we in-

28 If our primary goal was to estimate the relationship between a teacher’s math
and science skills (as opposed to the observed licensure test scores) and stu-
dent outcomes, we would be concerned about a fifth potential source of bias—
attenuation bias due to the fact that teacher licensure test scores are an imperfect
measure of a candidate’s true basic skills or content knowledge. However, given that
the relationship between the observed licensure test scores and student outcomes
is the relevant relationship for most policy purposes, we are not concerned about
this source of bias in our application.

29 For instance, while attempts have been made to account for sample selection
of this type in prior work in Washington State (e.g. Goldhaber et al., 2014, 2017b),
there is not an obvious instrumental variable in this context that could be used to
predict workforce entry for teacher candidates who fail the test on the first attempt.

30 Along observable dimensions, candidates who pass the WEST-E Math test on
the first attempt scored 31% of a standard deviation higher on the WEST-B math test
than candidates who fail the first time and eventually pass, and 56% of a standard
deviation higher on the WEST-B math test than candidates who never pass the test.

31 In particular, prior work in Washington (Goldhaber et al., 2015b) has shown
that low-performing students are more likely to be assigned to teachers with low
WEST-B scores than higher-performing students in other districts, in other schools
in the same district, and—particularly in middle school math—in other classrooms
within the same school. This is borne out in the specification checks described in
Section 4a.

vestigate. A broad literature has considered this potential source
of bias in estimating the impacts of individual teachers on student
test performance (e.g., Bacher-Hicks, Kane, & Staiger, 2014; Chetty
et al., 2014a; Jackson, 2014; Kane & Staiger, 2008; Kane, McCaffrey,
Miller, & Staiger, 2013; Koedel, Mihaly, & Rockoff, 2015; Rothstein,
2010, 2014) and generally suggests that the student achievement
models described above are sufficient to control for non-random
sorting, though the evidence is more tenuous at the higher grade
levels considered in this paper. Jackson (2014), for instance, illus-
trates that the prevalence of ability tracking at the high school
level can bias the estimates from models that do not explicitly ac-
count for these tracks.

We aim to minimize and/or bound this potential source of bias
in four ways. First, the specifications with school and school-by-
year fixed effects compare students and teachers within the same
school, and thus minimize the impact of sorting across different
schools. Further, the models that include school-year-grade-track
fixed effects help account for potential bias due to non-random
sorting across tracks within schools. Third, we follow Clotfelter
et al. (2006) and Horvath (2015) and estimate models restricted
to schools in which students are distributed relatively equitably
across classrooms according to observable characteristics, on the
assumption that these schools are also the least likely to non-
randomly sort students to classrooms along unobserved dimen-
sions. Finally, we follow the approach of Altonji, Elder, and Taber,
(2005, 2008) and estimate the relative amount of sorting on un-
observables that is required to explain the relationships we find.
Our general conclusion (discussed in Section 5c¢) is that, given the
extent of non-random sorting in middle school grades, our results
in middle school may be more sensitive to this potential source of
bias than the high school results.

A final potential source of bias arises from non-random
teacher attrition. A relationship between licensure tests, unob-
served teacher traits associated with effectiveness, and the propen-
sity of teachers to leave the profession would bias our findings.??
We check for this potential source of bias in two ways. First, we
estimate models predicting teacher attrition as a function of expe-
rience, degree level, prior estimated effectiveness, WEST-B scores,
and an interaction between prior effectiveness and WEST-B scores.
If there exists a relationship between attrition, licensure tests, and
teacher effectiveness, we would expect a significant interaction
term. However, we do not find evidence that teachers with differ-
ent WEST-B scores are any more or less likely to leave the work-
force as a function of their prior estimated effectiveness. We also
estimate models solely for first-year teachers (before any teach-
ers have left the workforce), and generally find stronger rela-
tionships between licensure test scores and student outcomes.>3
This could reflect the decreasing importance of teachers’ preser-
vice experiences and skills as they gain teaching experience (see
Goldhaber, Liddle, & Theobald, 2013), but could also suggest that
non-random teacher attrition biases the estimates discussed in the
next section downwards.

5. Results

Before describing the results relating teacher licensure test
scores to student achievement in secondary STEM subjects, we
first provide some context for our findings note two peripheral
that lend context to our findings. First, estimates from the mod-
els in Eq. (1) predict that students taught by a first-year teacher
will score 0.08 standard deviations lower in middle school math,

32 Goldhaber et al. (2011) find that teachers who leave the profession tend to have
higher licensure scores but lower prior estimates of value-added. See also Feng and
Sass (2016) and Hanushek et al. (2016).

33 This parallels findings from Goldhaber (2007).
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0.07 standard deviations lower in high school math, and 0.02 stan-
dard deviations lower in ninth-grade biology, all else equal, than
students taught by teachers with 5 or more years of experience.
Second, when we estimate models with a teacher fixed effect and
calculate the standard deviation of these estimated teacher effects
(the teacher “effect size”), we find that the teacher effect size is
0.17 in middle school math, 0.39 in high school math, and 0.29
in ninth-grade biology.3* Finally, when we estimate similar mod-
els in elementary math and middle school reading (both consid-
ered in the prior literature), we find that the expected difference
in student test performance associated with a one standard devia-
tion increase in a teacher’s basic-skills licensure test score is 0.03
standard deviations in elementary math and 0.01 standard devia-
tions in middle school reading.

5.1. Licensure tests and student achievement

Table 3 shows the estimated relationships between different
licensure test scores and student performance in middle school
math (Panel A), ninth-grade algebra and geometry (Panel B), and
ninth-grade biology (Panel C).>> We first focus on the results for
the general basic-skills tests (the WEST-B Math). The results in
middle school math and ninth-grade algebra and geometry are
broadly consistent with the findings from the existing literature
discussed in Section 2, and quite robust across different specifi-
cations of our student achievement model, though only the re-
sults in middle school math are statistically significant. Specif-
ically, a one standard deviation increase in a teacher’'s WEST-B
Math score is correlated with a 0.01-0.03 standard deviation in-
crease in student math performance, and importantly, statistically
significant even in the specification with school-year-grade-track
fixed effects (in which teachers are compared only with teachers
in the same school, year, grade, and track). Thus, the expected in-
crease in student performance associated with a one standard de-
viation increase in the teacher’'s WEST-B score is roughly equiva-
lent to one-seventh to one-third of the expected increase in stu-
dent performance associated with having a teacher with 5 or more
years of experience relative to a first-year teacher. Though we
would characterize these relationships as modest, they are quite
comparable to relationships reported at the elementary level (e.g.,
Goldhaber, 2007) and greater than the only reported relationship
at the secondary level (Clotfelter et al., 2010).36

We plot estimated effects on student achievement by quartile of
teacher WEST-B Math score in Fig. 6, derived from a model that in-
cludes quartile indicators rather than the continuous licensure test
score. This figure illustrates that the expected difference in student
performance associated with having a teacher who scored in the
top quartile of the WEST-B Math relative to the bottom quartile is
0.05 standard deviations of student performance in middle school

34 These statistics come from Empirical Bayes shrunken VAM estimates. The mid-
dle school effect size is comparable to earlier estimates from the elementary level
in Washington State (Goldhaber et al., 2012), while the high school effect sizes are
about twice as large as comparable effect sizes reported in Mansfied (2015). The
effect sizes calculated from a model with school fixed effects is 0.32 for middle
school math, 0.45 for 9th grade Algebra and Geometry, and 0.27 for 9th grade Biol-
ogy teachers.

35 We also estimate models that consider other WEST-B tests, separately and
jointly, the mean WEST-B score across subtests, and the maximum WEST-B score
rather than the first WEST-B score. These results are available from the authors
upon request. One important conclusion is that the relationships between WEST-
B math scores and student math performance are robust to controlling for WEST-B
reading and writing scores, and the coefficients on the WEST-B reading and writing
scores are not statistically significant in these specifications.

36 The coefficient on teacher test score from the base
Clotfelter et al. (2010) is 0.0071.

model in

math.?” This is roughly one-third of a standard deviation of teacher
performance in these grades. On the other hand, the comparable
difference in ninth-grade algebra and geometry is just 0.01 stan-
dard deviations of student performance (see Fig. 6).38

Perhaps surprisingly, the relationships in Table 3 between
WEST-B Math scores and student performance in ninth-grade bi-
ology are considerably stronger than in other grade levels; a one
standard deviation increase in a teacher’s WEST-B Math score is
correlated with a .072 to .161 standard deviation increase in stu-
dent biology performance.>® As illustrated in Fig. 6, the expected
difference in student performance associated with having a teacher
who scored in the top quartile of the WEST-B Math relative to the
bottom quartile is 0.19 standard deviations of student performance,
which is almost four times as large as the comparable relationship
in middle school. To put this in context, this means that the ex-
pected difference in student biology performance associated with
having a teacher in the top quartile of the WEST-B Math distri-
bution relative to the bottom quartile is about two thirds a stan-
dard deviation of teacher effectiveness in ninth-grade biology, or
roughly equivalent to the expected difference associated with hav-
ing a teacher at the 75th percentile of the ninth-grade biology
value-added distribution relative to an average teacher.

We now turn our attention to the estimated relationships be-
tween WEST-E (the subject-specific licensure tests) scores and stu-
dent performance in middle and high school math. The estimates
in Panel A of Table 3 give somewhat mixed evidence about the re-
lationship between WEST-E Middle-Level Math (MLM) scores and
student performance in middle school math (note that we do not
consider MLM scores in high school math due to low sample sizes).
Specifically, the relationships between WEST-E MLM scores and
student performance tend to be statistically significant (and com-
parable in magnitude to the WEST-B estimates) when comparisons
are made within schools, but not in the models without school or
school-by-year fixed effects. The estimates in Panels A and B of
Table 3 show little evidence that WEST-E Math scores are predic-
tive of student performance in middle school math or ninth-grade
algebra and geometry, although the magnitude of the cross-school
estimates for ninth-grade algebra and geometry—shown in the
margin plots in Fig. 7—are positive, relatively large, and marginally
statistically significant.*?

Finally, Panel C of Table 3 presents estimates of the relation-
ships between each of the WEST-E tests that teachers can pass
to teach high school biology (the Science and Biology tests) and
student biology performance in ninth grade. Echoing the results
for the WEST-B Math, the relationships between these test scores
and student performance in ninth-grade biology tend to be large
and statistically significant. The magnitudes of these coefficients
are striking; for example, the expected increase in student test
scores associated with a one standard deviation increase in a Bi-
ology teacher’s WEST-E Science score is over one third of a stan-

37 The quartile models estimated for Fig. 6 include the same suite of of covariates
in the models estimated in column 3 of Table 3.

38 Estimates from a student fixed-effects model in middle school math are broadly
consistent with these results (available from the authors upon request).

39 These results are robust to controlling for WEST-B reading and writing scores,
though WEST-B writing scores are also a statistically-significant predictor of stu-
dent biology performance in some specifications. The stronger results in biology
may suggest that the lagged science test score does not adequately control for prior
performance when compared to the lagged math score in the 9th grade Algebra
and Geometry models. By comparing the correlation between prior performance
and performance on the EOC, we do not find this to be the case. The correlation
of a student’s lagged science test and his or her EOC biology exam is 0.759, and
the correlation between a student’s lagged math score and their EOC algebra exam
is 0.633. Similarly, the correlation between a student’s lagged math score and their
EOC geometry exam is 0.627.

40 These results are not robust to the inclusion of school, school-by-year, or
school-year-grade-track fixed effects.



Table 3
OLS student achievement models.

Panel A: Predicting student achievement in middle school math

WEST-B Math Standardized Score .024* .026* 027+ 031+ .026%* .033**
(.012) (.012) (.011) (.010) (.010) (.011)
WEST-E MLM Standardized Score .017 .017 .029%* .029* .026
(.011) (.011) (.011) (.014) (.018)
WEST-E Math Standardized Score —.004 -.01n —-.000 —-.015 .020
(.013) (.012) (.013) (.015) (.017)
Teacher controls No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Course track No No Yes Yes Yes No No Yes Yes Yes No No Yes Yes Yes No
School fixed effects No No No Yes No No No No Yes No No No No Yes No No
School-year fixed effects No No No No Yes No No No No Yes No No No No Yes No
Schl-track-yr fixed effects No No No No No Yes No No No No Yes No No No No Yes
Number of unique teachers 914 914 914 820 701 595 387 387 285 223 163 256 256 161 106 83
Number of unique students 119,411 119,411 119,411 109,323 84,430 54,574 47,011 47,011 33,656 20,444 11,326 34,273 34,273 21,061 11,445 7,072
Panel B: Predicting student achievement in ninth grade math
WEST-B Math Standardized Score .033 .031 .031 .013 .012 .018
(.022) (.023) (.023) (.016) (.015) (.016)
WEST-E Math Standardized Score .040+ .040+ .010 .013 .013
(.022) (.022) (.013) (.014) (.016)
Teacher controls No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Course track No No Yes Yes Yes No No Yes Yes Yes No
School fixed effects No No No Yes No No No No Yes No No
School-year fixed effects No No No No Yes No No No No Yes No
Schl-track-yr fixed effects No No No No No Yes No No No No Yes
Number of unique teachers 767 767 767 686 596 516 425 425 331 248 211
Number of unique students 53,794 53,794 53,794 48,650 39,147 30,651 24,689 24,689 19,680 12,363 9,925
Panel C: Predicting student achievement in ninth grade biology
WEST-B Math Standardized Score 161%** 155%** 152+ 072 .081*** .085%**
(.033) (.033) (.032) (.028) (.018) (.017)
WEST-E Biology Standardized Score 067+ 072+ .018 .038* .047+
(.040) (.040) (.021) (.018) (.019)
WEST-E Science Standardized Score .100%* .106%* .010 —.002 —-.005
(.033) (.035) (.048) (.079) (.078)
Teacher controls No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Course track No Yes Yes Yes Yes No No Yes Yes Yes No No Yes Yes Yes No
School fixed effects No No No Yes No No No No Yes No No No No Yes No No
School-year fixed effects No No No No Yes No No No No Yes No No No No Yes No
Schl-track-yr fixed effects No No No No No Yes No No No No Yes No No No No Yes
Number of unique teachers 185 185 185 141 113 113 92 92 48 39 39 90 90 47 25 25
Number of unique students 15,116 15,116 15,116 11,391 8,302 8,075 6,046 6,046 3,692 2,705 2,592 5,141 5,141 3,042 1,543 1,460

NOTE: p-values from two-sided t-test: *p<0.05, **p<0.01, ***p<0.001. All models control for prior year test scores, gender, race/ethnicity, learning disability status, and free or reduced-priced lunch eligibility, along with program
indicators for gifted/highly capable, limited English proficiency (LEP), and special education. Teacher controls include experience level and degree type. Standard errors are clustered at the teacher level.

vl

6ZL-ZI1 (210Z) 19 M31Ady uoypInpy fo SO0 /o 39 19qpYypjoo ‘d



D. Goldhaber et al./Economics of Education Review 61 (2017) 112-129 125

Middle School Math Sample

™
N
' T
o ____ - T _———71
o 1 l
—
v
T T T T
1 4
Quartiles
Ninth Grade Biology Sample
27 T
T
T | I
o A |
: I I -
-~ /|_ _____ I-_ !
S A P - Jl_ | l
-~
P 1
o |-
L
: T T T T
1 2 3 4

Quartiles

Fig. 6. Non-linear relationships between WEST-B math scores and student achievement.
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intervals calculated from standard errors that are clustered at the teacher level.

dard deviation of teacher effectiveness in ninth-grade biology (29).
Fig. 7 reinforces that, as for the WEST-B Math, the WEST-E tests are
a much stronger predictor of student performance in ninth-grade
biology than in the other grade levels we consider.

5.2. Licensure tests and student high school course taking

We next consider relationships between teacher licensure test
scores and the probability that students take advanced STEM
courses in high school by variants of the linear probability model
described in Eq. (2). The estimates from these models are pre-
sented in Table 4. In Panel A, we consider the relationship between
the WEST-B score of the student’s middle school math teacher and
the probability that the student takes an advanced math course in
high school, while Panel B considers the probability that the stu-
dent takes an advanced science course in high school. Since none
of these coefficients are statistically significant, our interpretation
is that the results in Table 4 provide little to no evidence of a rela-
tionship between middle school teachers’ licensure test scores and
the probability that their students take an advanced math or sci-
ence course in high school.

Finally, Table 5 explores estimated relationships between a mid-
dle school math teacher’'s WEST-B math test and the number of
advanced science or math courses taken in high school by their
students from the OLS regression in Eq. (3). Basic skills test scores
are marginally predictive of taking more advanced math courses
when school-year and school-year-track controls are included, and
the magnitudes of these relationships are relatively large; for ex-
ample, the coefficient of .154 in the school-year-grade-track fixed
effects model represents an 18% increase over the mean number
of advanced courses taken in high school. However, given that this

result is not consistent across specifications, our overall conclusion
from Table 5 is that there is only mixed evidence of a relation-
ship between middle school teachers’ licensure test scores and the
number of advanced math or science courses that their students
take in high school.

5.3. Extensions and robustness checks

We pursue a number of extensions and robustness checks to
the results described in Sections 5a and 5b. First, given that the
achievement results for the subject-specific WEST-E tests are quite
similar to the results for the basic skills WEST-B tests, a natural
question is whether WEST-E test scores provide any more signal
about future teacher effectiveness than is already contained in the
WEST-B test scores. To investigate this, we estimate models of the
relationships between WEST-E scores and student performance in
middle and high school math controlling for each teacher’'s WEST-
B scores. In middle school math, estimates from models based on
within-school comparisons suggest that WEST-E MLM and WEST-E
Math test scores do provide additional signal about future teacher
effectiveness beyond WEST-B scores. That said, this does not ap-
pear to be the case in high school math, and perhaps more sur-
prisingly, it does not appear to be the case when we investigate
relationships between WEST-E scores and student performance in
ninth-grade biology controlling for each teacher’s WEST-B scores.
This suggests that the large and statistically significant relation-
ships between WEST-E scores and student performance in ninth-
grade biology can largely be explained by the portion of the WEST-
E scores that are already captured in the basic-skills test.

In another extension of the achievement results in Table 3, we
consider models that interact teacher licensure test scores with dif-
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Fig. 7. Non-linear relationships between WEST-E scores and student achievement.

NOTE: All models control for prior year test scores, gender, race/ethnicity, learning disability status, and free or reduced-priced lunch eligibility, program indicators for
gifted/highly capable, limited English proficiency (LEP), and special education, teacher experience level and degree type, and course track. Error bars illustrate 95% confidence
intervals calculated from standard errors that are clustered at the teacher level.

Table 4
Linear probability model of advanced STEM course taking in high school

Panel A: Middle school math teacher predicting probability of advanced high school math course

WEST-B Math Standardized Score  .014 .017 .019 .012 .008 .016
(.030) (.028) (.026) (.024) (.026) (.031)
Teacher controls No Yes Yes Yes Yes Yes
Course Track No No Yes Yes Yes No
School fixed effects No No No Yes No No
School-year fixed effects No No No No Yes No
School-track-year fixed effects No No No No No Yes
Number of unique teachers 357 357 357 238 214 161
Number of unique students 19,994 19,994 19,994 14,679 12,276 7,415
Panel B: Middle school math teacher predicting probability of advanced high school science course
WEST-B Math Standardized Score ~ .021 .023 .023 .007 .003 .002
(.027) (.027) (.026) (.018) (.019) (.025)
Teacher controls No Yes Yes Yes Yes Yes
Course Track No No Yes Yes Yes No
School fixed effects No No No Yes No No
School-year fixed effects No No No No Yes No
School-track-year fixed effects No No No No No Yes
Number of unique teachers 359 359 359 241 213 157
Number of unique students 20,223 20,223 20,223 14,955 12,236 7,356

NOTE: p-values from two-sided t-test: *p<0.05, **p<0.01, ***p<0.001. All models control for prior year
test scores, gender, race/ethnicity, learning disability status, and free or reduced-priced lunch eligibility,
along with program indicators for gifted/highly capable, limited English proficiency (LEP), special edu-
cation, and number of advanced courses offered in the student’s high school. Teacher controls include
experience and degree type. Coefficients are reported as average marginal effects. Standard errors are
clustered at the middle school teacher level and the high school level.
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Table 5

OLS model of number of advanced STEM courses taken in high school

Panel A: Middle school math teacher predicting number of high school math courses

WEST-B Math Standardized Score  .034 .038 .045 .064 078+ 154
(.057) (.053) (.050) (.042) (.047) (.082)
Teacher controls No Yes Yes Yes Yes Yes
Course Track No No Yes Yes Yes No
School fixed effects No No No Yes No No
School-year fixed effects No No No No Yes No
School-track-year fixed effects No No No No No Yes
Number of unique teachers 357 357 357 238 214 161
Number of unique students 19,994 19,994 19,994 14,679 12,276 7,415
Panel B: Middle school math teacher predicting number of high school science courses
WEST-B Math Standardized Score  .019 .024 .023 .014 .004 .019
(.053) (.054) (.053) (.031) (.034) (.038)
Teacher controls No Yes Yes Yes Yes Yes
Course Track No No Yes Yes Yes No
School fixed effects No No No Yes No No
School-year fixed effects No No No No Yes No
School-track-year fixed effects No No No No No Yes
Number of unique teachers 359 359 359 241 213 157
Number of unique students 20,223 20,223 20,223 14,955 12,236 7356

NOTE: p-values from two-sided t-test: *p<0.05, **p<0.01, ***p<0.001. All models control for prior
year test scores, gender, race/ethnicity, learning disability status, and free or reduced-priced lunch
eligibility, along with program indicators for gifted/highly capable, limited English proficiency (LEP),
special education, and number of advanced courses offered in the student’s high school. Teacher
controls include experience and degree type. Coefficients are reported as average marginal effects.
Standard errors are clustered at the middle school teacher level and the high school level.

ferent student characteristics (e.g., prior performance, participation
in FRL, student URM indicator) to test whether licensure test scores
are differentially predictive of student performance for different
types of students.*! We find little evidence of differential effects
by student prior performance or demographics. Likewise, to test
whether the predictive power of subject-specific licensure tests for
student achievement might matter more depending on the track
of the course, we estimate models that interact teacher licensure
test scores with the track indicators discussed in Section 3. Due
to sample size limitations, we were able to estimate these mod-
els only for middle and high school math classes. We find little
evidence of differential impacts between course track and subject-
specific licensure exams.

As discussed in Section 4c, we also perform several robustness
checks of the achievement results designed to investigate whether
the estimates described above may be biased by the non-random
assignment of students to teachers (Rothstein, 2009, 2010). Be-
cause both robustness checks require large sample sizes, we re-
strict these checks to the WEST-B models. We first pursue the
approaches of Clotfelter et al. (2006) and Horvath (2015), who
create “apparently random samples” by dropping students and
teachers in schools that display considerable tracking of students
to classroom along observed dimensions.*> This approach works
well in the ninth-grade samples (both algebra/geometry and bi-
ology), and we find that all statistically-significant coefficients re-
ported in Table 3 are still statistically-significant when the mod-
els are estimated in the apparently random sample. This suggests
that the ninth-grade results are not driven solely by the non-
random sorting of students to classrooms. Unfortunately, as dis-
cussed in Section 4a, apparent within-school sorting of students
with low prior performance to teachers with low WEST-B scores

41 These estimates are available from the authors upon request.

42 In our application of the Clotfelter et al. (2006) approach, we drop all schools in
which at least one Chi-square test rejects the null hypothesis that classrooms within
schools do not predict student gender, race, FRL status, or an indicator for scoring
above the mean on the prior year test. In our application of the Horvath (2015) ap-
proach, we drop all schools in which an F-test rejects the null hypothesis that class-
rooms within schools do not predict student prior performance. In both approaches,
we reject at the o =0.05 level.

is more prevalent in the middle school math sample than in the
ninth-grade samples. As a consequence, both the Clotfelter et al.
(2006) and Horvath (2015) approaches drop at least 90% of the
middle schools in the sample, meaning that the apparently random
sample in middle school is not large enough to make a meaningful
comparison to the results in Table 3. 43

As a second robustness check we adopt the approach of Altonji
et al. (2005, 2008), who calculate the relative amount of selec-
tion on unobservables required to explain a given effect. Given
that this approach requires a dichotomous treatment variable, we
first create a binary indicator for whether a teacher scored in the
lowest quartile of the distribution of WEST-B scores, and estimate
the model in Eq. (1) with this indicator as the variable of inter-
est (Score;).** We then use the Altonji et al. (2005, 2008) approach
to estimate that the magnitude of sorting on unobservables would
need to be at least 13% of the magnitude of the observed sort-
ing on observables to explain the estimated relationship between
WEST-B Math scores and student math performance reported in
Table 3. > While this may seem like a small percentage, the mag-
nitude of sorting on observables is quite large in middle school
grades due to the relationship between teacher WEST-B scores and
student prior performance, and as discussed in Section IV, the prior
literature that explores bias due to the sorting of students to teach-
ers along unobservable dimensions (e.g., Bacher-Hicks et al., 2014;
Chetty et al., 2014a; Jackson, 2014; Kane & Staiger, 2008; Kane et
al., 2013; Koedel et al., 2015; Rothstein, 2010, 2014) suggests that
this magnitude of sorting on unobservables is unlikely.

6. Conclusions

The results from this study suggest several broad conclusions
and directions for future research. First, the achievement findings

43 Both the Clotfelter et al. (2006) approach and the Horvath (2015) approach drop
91% of middle schools.

44 The estimated coefficient of interest in this model is 0.025.

4> This estimate uses the specification from column 3 of Panel A of Table 3.
For reference, the corresponding estimates from the analogous specification
is 50% in ninth-grade Algebra/Geometry and 70% in ninth-grade Biology. See
Altonji et al. (2008), pp. 348-349, for a succinct summary of this methodology.
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from middle and high school math about the modest, positive re-
lationships between the WEST-B Math scores and student math
performance reinforce conclusions from the existing literature (e.g.,
Clotfelter et al., 2007; Goldhaber, 2007; Hendricks, 2014) that ba-
sic skills licensure test scores provide a significant, if modest, sig-
nal about future math teacher effectiveness. Given the very lim-
ited evidence about pre-service predictors of future teacher effec-
tiveness (e.g., Harris & Sass, 2011), this suggests that basic skills
test scores could be used for reasons beyond the pass/fail require-
ment for initial teacher credentialing (for example, as a measure
of candidates’ general skills for hiring and other personnel deci-
sions). Unfortunately, our data do not allow us to consider other
measures of candidate skills that may be observable to hiring offi-
cials (e.g., GPA and letters of recommendation), so further research
that considers licensure test scores alongside these additional mea-
sures that have been considered in prior work (e.g., Goldhaber,
Grout, & Huntington-Klein, 2014; Jacob, Rockoff, Taylor, Lindy, &
Rosen, 2016) could provide more information about whether licen-
sure tests provide information about future teacher effectiveness
beyond these other measures.

The second broad conclusion is that subject-specific licensure
test scores provide some additional signal about student achieve-
ment in some subjects, although the relationships are not always
statistically significant. The key policy question, then, is whether
these results justify the barrier to entry they represent to po-
tential STEM teachers. Our preliminary analysis in Section 3 sug-
gests that the WEST-E tests in STEM fields are much more dif-
ficult to pass than the WEST-E tests in other fields like elemen-
tary education. Moreover, teachers who fail the WEST-E the first
time they take it are about 10 percentage points less likely to en-
ter the workforce, and teacher candidates of color tend to be more
likely to fail these tests than white teacher candidates (Goldhaber
& Hansen, 2010), so are disproportionately impacted by this bar-
rier to entry. These trends could be particularly problematic given
the well-documented difficulty of school districts, and districts in
Washington State in particular, to attract STEM teachers and teach-
ers of color (Goldhaber, Krieg, Theobald, & Brown, 2015a, Gold-
haber, Theobald, & Tien 2015c). Thus policymakers must balance
the positive (and only sometimes statistically significant) relation-
ships between subject-specific licensure tests and student achieve-
ment documented in this paper with the potential impact of these
licensure test requirements on the pool of potential STEM teachers
in the state.

Another conclusion, and a unique contribution of this paper, re-
lates to our investigation of the impact of teachers on science test
scores and, specifically, the finding that relationships between li-
censure test scores and student performance in ninth-grade biol-
ogy are considerably stronger than in math classrooms. One possi-
ble explanation is that teacher content knowledge (as measured by
licensure tests) is simply more important to student performance
in science than in math, but given that there is so little evidence
about what predicts the effectiveness of science teachers, we cau-
tion against such a broad interpretation based on the relatively
small ninth-grade biology sample sizes in this paper.

Finally, our investigation of the relationship between teacher
licensure test scores and student high school STEM course tak-
ing suggests little relationship between basic licensure test per-
formance and students’ STEM course taking in high school. That
said, the development of P-20 data warehouses across the country
might allow researchers to investigate the role of STEM teachers in
influencing other important (Long, Conger, & latarola, 2012; Feder-
man, 2007, Schneider, Swanson, & Riegle-Crumb, 1998) long-term
student outcomes, such as majoring in STEM fields and employ-
ment in STEM industries.
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