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Imitation of Skills by Planning Sequences of Actions*
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Abstract— We propose a learning-from-demonstration ap-
proach for grounding actions from expert data and an al-
gorithm for using these actions to perform a task in new
environments. Our approach is based on an application of
sampling-based motion planning to search through the tree
of discrete, high-level actions constructed from a symbolic
representation of a task. Recursive sampling-based planning
is used to explore the space of possible continuous-space
instantiations of these actions. We demonstrate the utility of
our approach with a magnetic structure assembly task, showing
that the robot can intelligently select a sequence of actions
in different parts of the workspace and in the presence of
obstacles. This approach can better adapt to new environments
by selecting the correct high-level actions for the particular
environment while taking human preferences into account.

I. INTRODUCTION

Learning from demonstration has emerged as a useful
paradigm to teach robots the skills they need to interact
with the real world. The challenge in learning from demon-
stration is to generalize what is learned to new contexts
and new tasks. Consider a moderately complex task such as
assembling part of a structure, shown in Fig. 1 and defined
by the PDDL in Fig. 3. The precise movements and the
particular movement goals and parameters will vary from
one situation to the next. When attempting to execute this
task in a new environment, the robot must be able to select
the particular actions, motions, and manipulation goals that
will allow completion of the task in this new environment.
By exploiting learned models for actions, we are able to
demonstrate a planner that is able to produce solutions for
performing tasks in an effective manner, is able to improve
with additional demonstration data, and can adapt to new
circumstances.

Adapting to new environments in the context of task and
motion planning poses several challenges when attempting
to generalize learned actions. Recently there has been sig-
nificant progress in integrating symbolic task planning and
continuous motion planning [1]-[6], which have in the past
evolved as two separate fields. At the same time, learning
from demonstration has been established as a powerful tool
for learning models of individual actions [7], [8]. Learning
from demonstration has previously been connected to sym-
bolic task planning [9]-[11], but these approaches are yet to
be incorporated in the context of a motion-constrained task
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Fig. 1: URS performing part of a structure assembly task
by grabbing a link object in order to connect it to a node.
Actions and goals were defined by human demonstrations.
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Fig. 2: Approach for grounding actions in symbolic planning.
Training data represents actions connecting symbolic states
in the graph of possible actions that constitute valid solutions
to the task plan.

planning in a principled manner. This paper aims to address
this gap.

In our approach, probabilistic models over features associ-
ated with each action are learned from human demonstrations
and later refined in a supervised manner using additional
robot-generated examples scored by a human teacher. At the
core of this approach lies a mapping from symbolic actions
(e.g. approach, grasp) to physical motions encoded
probabilistically as a distribution over observed features
along each motion trajectory. Fig. 2 shows this relationship:
multiple demonstrations connect predicate states, which al-
low us to learn a model of each action. Features = are defined
as a set of functional relations between the robot and its
environment (e.g. relative position and orientation between
robot end-effector and desired object to grasp).

Planning in a new environment is accomplished by updat-
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(define (domain structure —assembly)
(:requirements :typing :adl)
(:types link node grasp—pt)
(:predicates

(colliding) (hand—occupied)

(near ?x — link) (near—grasp ?g — grasp—pt)
(in—hand ?x — link) (standing ?x — link)
(aligned ?x — link ?y — node)
(grasp—feasible ?g — grasp—pt)
(grasp—for ?x — link ?g — grasp—pt)
(grasp—for ?y — node ?g — grasp—pt)
(attached ?x — link ?y — node)
(approach—feasible ?x — link))

(:action approach
:parameters (?x — link)

:precondition (and
(not (in—hand ?x))
(approach—feasible ?x))
ceffect(near ?x))

(:action grasp ...)
(:action align ...)
(:action place ...)
(:action release ...)
(:action disengage ...))

(define (problem build—simple—structure)
(:domain structure —assembly)

(:objects
linkl — link link2 — link
nodel — node node2 — node
(:goal (exists (?x — link ?y — node) (attached ?x ?y))))

Fig. 3: Partial PDDL domain and problem definition for the
structure assembly task. The domain can be thought of as a
version of the basic blocks world task, where the goal is to
latch two pieces together.

ing each action distribution to remain as close as possible
to the prior while satisfying new environment constraints
such as different obstacles and object shapes. This is ac-
complished through importance sampling and optimal dis-
tribution re-estimation using the cross-entropy method [12],
[13]. Transitions from symbolic states to actions are similarly
encoded as a discrete probability distribution representing
the “preference” of executing different actions. A product
model is induced over a complete task from the sequence of
probabilistic action models, together with discrete transition
models. Planning a complete task then corresponds to opti-
mally updating this model to reproduce the prior and satisfy
the new scenario.

The contributions of this paper are: (1) a new method for
reproducing demonstrated actions in novel environments, de-
rived from sampling-based motion planning; (2) an algorithm
for combining these learned actions for executing multi-
step tasks with multiple valid plans; and (3) experimental
validation of this algorithm on a simple assembly task as
shown in Fig. 1. Experiments in a 2D Android game domain
were omitted for reasons of space.

II. RELATED WORK

Prior work exists in describing the relationship between
high- and low-level actions and in learning representations
of actions from demonstration, but does not combine learning
with action selection and motion planning.

Object-Action Complexes (OACs) have been proposed as
a way of formalizing actions unifying perception and learn-
ing that can be associated with learned low-level actions,

and sequenced based on predicate effects by a symbolic
planner [10]. The proposed method is similar to work such
as [14], which grounded PDDL position predicates with
Gaussian Mixture Models, and [11], which associated Dy-
namic Movement Primitives (DMPs) for particular actions
with expected visual features.

Probabilistic models are commonly used in imitation
learning, e.g. [15], [16]. Dynamic Movement Primitives
(DMPs) are a policy representation that has proven useful
for modeling low-level actions from demonstration as a set
of dynamical systems [17]. Prior work has added object
avoidance to these methods through potential fields [18], [19]
or through reinforcement learning [20].

Pastor et al. used Path Integral Policy Improvement with
DMPs and multiple human demonstrations to learn a model
of expected features when executing two robotic tasks
in [21]: shooting pool and flipping over a box with a pair
of chopsticks. This method was expanded upon by Stulp et
al., who proposed Path Integral Policy Improvement with
Covariance Matrix Adaptation [22]. These techniques are
closely related to the Cross-Entropy Method for motion
planning [13] from which we draw inspiration.

Our work is also related to the method proposed by
Engbert et al. use the KL divergence between an expert
demonstration and trajectories sampled from a Gaussian
Process forward model to optimize imitation learning poli-
cies [23]. Similarly in [24] the authors propose a method
for inverse reinforcement learning based on minimization of
relative entropy. In addition, the proposed approach can be
thought of as a parameterized set of actions; this has been
shown to improve performance on policy learning in Markov
Decision Processes [25].

Other work combines learned motion primitives into state
machines for execution, but in a purely reactive way: se-
lecting only the next action, rather than the next sequence.
Examples include Niekum et al. [26], who build a task
plan from unstructured demonstrations. Manschitz et al. [27]
learned classifiers to determine the next action when se-
quencing motion primitives. Work by Kappler et al. [28] uses
Associative Skill Memories to perform dexterous tasks.

Symbolic task planning and motion planning have com-
monly been integrated through algorithms that “fill in the
gaps” in symbolic plans with callouts to continuous-space
motion planners. Recent work in combined task and motion
planning include work by by Plaku et al. [1], by Shivashankar
et al [3], by Wolfe et al [2], and by Lagriffoul et al. [4]. These
works do not analyze actions with a wide variety of goals and
cost functions, focusing instead on exploration and pick-and-
place tasks. Similarly, Srivastava et al. [29] efficiently inte-
grate task planning with continuous-space reasoning about
goal positions, but still rely on callouts to a traditional
motion planner to instantiate trajectories. Work by Toussaint
describes a hierarchal approach for integrated task and mo-
tion planning that first examines feasible end states before
optimizing kinematics and motion planning [30]. Unlike
these methods, our approach jointly optimizes sequences of
trajectories by adaptively allocating trajectory simulations to
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different actions. However, the proposed approach suggests
directions for future work in improving efficiency in complex
domains.

IIT. TASK DESCRIPTION

We assume existence of (1) a symbolic description of a
task, and (2) labeled training data associating features with
each low-level action that can appear in this domain. The
symbolic description naturally decomposes the task into a
sequence of predicate world states wg, w1, ..., wy For the
structure assembly task, part of the symbolic description is
shown in Fig. 3. A world state w is then defined as a com-
bination of predicates. In turn, actions a are the connections
between these predicate states as shown in Fig. 2. Each a in
a given task is represented as a probability distribution over
a set of features associated with a successful instantiation of
a skill in a new environment given w.

The features are denoted by = € R™ and defined using
the function ¢ through relationship x = ¢(t, s, u), where
t € [to, ts] denotes time in the action starting at ¢y and ending
at ty, s € S is the robot state, and u € U are the applied
controls. With these definitions, a probabilistic model associ-
ated to each action a is denoted by p,(z|a) and is computed
using unsupervised learning from expert demonstrations,
typically assuming a parametric density py. A joint model
of a task T" consisting of multiple actions can be constructed
using a density pq(z|T) x pg(z|ag) - - - pa(x|an, ) assuming
conditional independence between actions.

Specific features are derived from the PDDL description
of the task. For example, in Fig. 3, the approach action
describes the arm moving to pick up a 1ink object without
knocking it over. In this case z = ¢(¢,s,u) would return
the relative position, orientation, and velocity between the
robot end effector and the 1ink object. To use the proposed
method, one would provide the identifier for an action and
a list of associated symbols from perception.

An optimal task T* is a sequence of actions 7 = {a;} ¥,
that takes the robot from the initial state wg to goal wy that
have the highest probability given our expert model, while
also avoiding hard constraints such as collisions and joint
limits:

T* = arg max p(T'|wo, wgy) (1)
T
N
= argmax | | p(a;|w;, wy) 2)
al,y...,aN B

3

Our goal is to learn a stochastic “symbolic” policy 7(a|w)
over the sequence of predicate states, as well as continuous-
space “physical” policy p(u|s,&,) generating trajectories for
each action a. We represent trajectories using parameters £ €
Z, where Z represents the space of all possible parameters
resulting in valid trajectories in the new environment. Since
robot perception and motion are uncertain, each parameter
induces a density p(7|§) where

T = {<t0,SO,U0> ) <t15817u1>7"'7<tN75NauN>}

denotes the system trajectory. For instance, £ would typically
define a reference trajectory and an associated tracking
control law resulting in the density

N-1

p(71€) = p(so) [ plsisalsi wip(uilsi,€).

i=0
In practice, given ¢ the trajectory 7 will either be sampled
using a high-fidelity simulator or generated by the real robot.

IV. PLANNING ALGORITHM
A. Local Planning Algorithm

First, we consider adaptation of only a single action a to a
new environment. When presented with a new environment,
we pose the planning task as the problem of learning a new
parameterized policy £*. To do so we employ a stochastic op-
timization technique using a surrogate distribution £ ~ 7(-|v)
which is iteratively updated so that generated trajectories 7
produce feature observations x with high likelihoods under
the expert distribution p4(z|a) for action a € A(w), where
A(w) is the set of actions available from predicate state w.

We follow the Cross Entropy Method described by Ru-
binstein et al. [12], particularly following its application to
motion planning by Kobilarov [13]. This is accomplished
by introducing an artificial surrogate distribution over V
that will induce a distribution over trajectories 7 and over
the corresponding features = along these trajectories. The
surrogate will then be iteratively optimized until it becomes
optimally close (in a distribution sense) to the expert density
pa(z|a) without violating the constraints of the environment
such as obstacles and joint limits. The surrogate model is
built using a parametric density 7(£|v) such as a multivariate
Gaussian or a GMM with parameters v. Assuming that a
nominal (prior) parameter vy is known the problem can be
formalized as the optimal estimation of the expecation

= EP(I|UO)[pd(x|a)]. (3)

The optimal importance sampling density [12] for estimating
this integral is

q* _ pd(xla)lp(IWO) (4)
where the numerator in (4) can be thought of as the correla-
tion between the expert feature distribution p,(-|a) and the
parameterized distribution p(+|vg). Unfortunately we cannot
compute the solution to (4) as it involves computing the
estimator ! from (3). Instead, we approximate this optimal ¢*
by finding the appropriate parameters v of p(x|v). A logical
way of doing this is to minimize the Kullback-Leibler (KL)
divergence:

min Dicr ("[[p(:[0)) )

To find the value of v that minimizes this expression,
we approximate this solution by drawing M i.i.d. samples
&1,..., & from vy. In this case z; ; = ¢(t;, s;,5,u;;) is a
generated feature from robot state s; ; at time ¢; along the
sampled trajectory 7; ~ p(-|¢;) for & ~ 7(-|vg).
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This can be more formally expressed as
v —argmax [ pa(e)p(alon) logp(ale) ©)

1
zargf)nax NI Zzpd(fﬂi,j)l()gp(xi,j‘v) (7
i

If we assume that there is a bijection between a tuple
(t,s,u) along a trajectory 7 and a feature x € ¢(7) then we
have the following approximation

p(&;lv)
p(&5lvo)’
since &; were sampled under vy, and substituting (8) into (7)
results in:

arg max — Z Z palx;, J ) log p(fg |v). ©))

pxijlv) = 8

The necessary conditions for a minimum correspond to
setting the gradient of (9) to zero, i.e. by solving the equality:

N M
3N 2V logm(éle) = 0

i=0 j=1

(10)

where the weights z; ; are given by z; ; £ pd(xi’j).

When 7(-|v) = N(|p, X)|y (ie. a single multivariate
Gaussian with domain restricted to feasible parameter set
Z), the relationship (10) can be solved in closed form as

M M
p=Y %¢&, T=Y zp-)nE-&" an
j=1 j=1
N - M
where z; = >,"2z,; and z; = z;/ > 7 z;. When 7(-[v)
is a GMM the minimization from Eq. (9) is performed using
a weighted expectation maximization (EM) algorithm.

In practice, the optimal parameter v is computed iteratively
starting with some nominal choice vy which approximately
covers the trajectory space of interest. At each iteration we
draw M samples &; ~ 7(-|vg),j € 1,...,M and compute
the next v by minimizing (9). At the next iteration vy is set
to v and the process continues until the cost converges.

We add a fixed normalization term to the diagonal entries
in ¥ of pg and of 7(-|v) to make sure covariances stay well-
defined. In addition, to prevent premature convergence, we
introduce an extra parameter 0 < o < 1, which controls the
size of steps taken at each iteration. In the case where v is
multivariate Gaussian, with X7 as the optimal ¥ at iteration
i, we compute f; 41 and X; 41 as:

pivr = (1= a)u; — opg

12
EiJrl = (]. — a)EZ — aEf ( )

Avoiding Obstacles and Joint Limits: We constrain Z to
consist only of the space of valid trajectories, removing any
samples that would collide with objects or pass joint limits.
This means that when drawing our M samples, we remove
samples currently in collision or past joint limits in our new
environment and continue to draw sample trajectories until
we have all M valid examples. This works effectively in

practice as long as the task does not require generalization
in environments with very narrow passages that the system
has never been trained on. Such cases are extremely difficult
since the probability of obtaining samples in the narrow
passage is close to zero, unless an informative nominal
density parameter vy is used with enough probability mass
over such regions.

B. Task Planning Algorithm

We wish to optimize parameters for all possible actions
in a successful execution of the task, where our cost is the
joint probability over any sequence of actions that represent
a valid execution of the task as per Eq. (2). Our task planning
approach takes the algorithm described in Section IV-A and
expands it into a recursive algorithm similar to Monte Carlo
Tree Search.

First, consider the problem of choosing one of N4y
possible actions. We think of this as the choice of which
action would be most similar to our expert’s demonstrations
in other scenes, starting in symbolic state w. The optimal
action is given by:

a* = argmax/pd(a\wo)pd(x\a) (13)
a€A(w) Jz
N M
~ argmax—zzpd alw)pa(wila)  (14)

a€A(w

Action selection is modeled as a stochastic policy over
possible worlds. We introduce a surrogate distribution into
our trajectory search that captures the probability of choosing
each future action from the current w. When sampling
trajectories, we draw the next action a ~ (-|w) according
to this probability.

Furthermore, we can extend this reasoning to consider
which of a whole tree of possible actions is the most
similar to an expert tree, allowing us to capture expert
preferences for particular actions in addition to continuous-
space trajectories. Assuming that all actions in a branch of
the tree are independent given time, we can define the expert
probability of a particular action starting at continuous robot
state sg:

N M
Q(s,a ZZpd zila)V(sn;) (15
V(s) = Z pd(a |w)Q(s,a’) (16)

a’'€A(w)

Where sy ; is the final state in sampled trajectory 7; and
w represents the world after symbolic action a. Eq. (16)
describes the probability of all possible actions from a
continuous world state s occurring after execution of an
action a.

When recording a set of V,, demonstrations starting in
the same predicate state w, we compute the conditional
probability for action a € A(w):
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Algorithm 1 Pseudocode algorithm for optimal reproduction
of demonstrated tasks in new environments.

Given: initial state sg, horizon H, step size «, max
iterations N ier
for i € Ny, do
for a € A(wp) do
Q(s0,a) = SAMPLE(a,W (a),sq,1,H,M)
end for
Vi(so) = >_Q(s0,a)
if V(sg) has converged then
Break;
end if
end for

NU}
>i " Aa=asy
Ny

We specify a surrogate distribution over possible choices

of actions for a world w given as p(a|w). This probability

is initialized as 7(a|w) = NAI( . In the case where H = 0

pa(alw) = a7

this is updated as 7(a|w) o< 27 Z;u z; where M trajectory
samples 7 have been drawn from a. Otherwise we compute
this as:

m(alw) = % Z Q(s0,a)

for starting state sg € Sy and action a € A(w). In practice
we use the step size « to prevent this term from converging
too quickly.

Each predicate state w corresponds to a range of valid
continuous-space states. The algorithm recursively samples
from the trajectories associated with each successive action to
map to continuous states. As shown in Alg. 1, we repeatedly
call the SAMPLE function from Alg. 2, providing it with the
set of possible start states Sy. We select a start state from
these sg according to the cumulative probability of these
actions. The process continues until we reach a user-provided
horizon H. This approach allows us to maintain a constant
number of samples: over successive iterations, more samples
will be devoted to promising regions of the search space.

This results in a recursive search strategy outlined in
Alg. 1. The return of the SAMPLE function is the average
probability of all future actions and trajectories associated
with each current start state. This value is used to compute a
version of the weights in Eq. (9), where pq is replaced by the
probability of all future actions from each trajectory. Fig. 4
illustrates how the algorithm works in practice.

V. EXPERIMENTS

We performed experiments in a simulated Barrett WAM
arm and on a Universal Robot URS, applied to an object
manipulation task. The goal of this task was to build a
structure of increasing complexity out of magnetic blocks, as
per the task described in [31]. In our case, we only perform
a part of the whole structure assembly task: we combine
one link and one node object to create a sub-structure. The

a, —_——— T~

(a) At the first iteration of the algorithm, we sample trajectories
(dashed lines) corresponding to a1, a2, as, etc. according to and
compute pq(7|a,w). Trajectory distributions for 7(-|v1),7(-|v2),
etc. are updated, as are w(a|w)

as
a; —
T =<
— | ~=F==_
~ = -a
] 7 e
Wo ‘ a— — —\/\ ~ L
wy ~ ™
-+
J s
az
w2 S |
ay

(b) On subsequent iterations, trajectory sampling is biased towards
a1 due to the comparatively high probability of valid trajectories
for each action in this space.

Fig. 4: Ilustration of the proposed algorithm. Boxes w1, wa,
etc. indicate regions corresponding to the predicate state after
each action, while dashed lines represent continuous state
trajectories.

connections between different skills are described by the
PDDL specification in Figure 3. We used FastDownward [32]
to translate the PDDL into a graph of possible actions that
can be performed assuming all feasibility predicates are true.

Figure 5 shows how the planner works in practice. It
iteratively sampled out different motions for each selected
action, choosing to approach the link from the front and
then to mate it to the leftmost node. As the algorithm
progressed, successively fewer samples were drawn from
actions associated with the rightmost node.

We use three types of features: (1) the time in a par-
ticular state, (2) the gripper command variables, (3) the
transforms between the end frame and the objects. Rele-
vant features are determined by the parameters specified
in the task description in Fig. 3. In cases where two ob-
jects are parameters, we used the transform between the
in-hand object and the other object. For these examples,
oL, s,u) = [t, Pz, Py, Pz, 7wy Ty, Tz T, 1PN Py By B2 P[]
where values are computed from the offset between the
current manipulation frame and and the relevant object.
The values (r4,7y,7,7) define a unit quaternion. The
manipulation frame is either an end effector position or the
coordinate frame associated with the object in the gripper,
for actions defined where the hand-occupied predicate
is true.

We parameterize trajectories ¢ with Dynamic Movement
Primitives with 5 basis functions in the robot’s joint space,
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Algorithm 2 Recursive trajectory sampling and update step.

function SAMPLE(a, Sy, p(So), H, M)
w = W{(a) > Predicate world after performing action
for j €1,...,M] do
S0 ~ Sp x p(S)

> Sample start points

& ~m(-|vg) > Sample parameters
7j ~ p(-1&;, so0) > Compute trajectories
end for
if H > 0 then

So = [sn]ii, > Set start points
p(S5) = [p(s0,5)pa(7jla)] ),
> Compute probabilities of each start point
for o’ € A(w) do
H =H-1 > update horizon
M = n(a|w)M > Number of samples
Q(Sy,a") = SAMPLE(a’ S),p(Sp).H',.M")
m(aw) = G 5, Qs )
end for ’
end if
for j€[1,...,M] do
V() = Swre (e Pal@0)Q(s, )
zj = 22 pa(Tijla)V (sn ;)
> Compute update weights from child probability
end for
for so € Sy do
Viso) = =5
> Average pré)b;li]ility from continuous start state
end for
v, = argmin, £ 0,37, 2 log p(&;va)
return V(Sp)
end function

plus a goal pose g € SO(3). This allows us to find paths in
the space of the robot arm, but to adapt to different possible
continuous-space goals. We implemented the system using
ROS [33] with Orocos KDL for inverse kinematics [34].

In practice, the “link” object can shift in unpredictable
ways after a grasp action, so we adjust the plan after com-
pletion of the grasp action. We add noise to the parameters
of the trajectory distribution associated with the subsequent
align and place actions and replan. In the real robot
experiment we omit this step due to the lack of accurate
position information once the object is in the gripper.

The current implementation of the planner is single-
threaded. The single largest inefficiency was detecting col-
lisions, followed by computation of inverse kinematics. Par-
ticularly in scenes with more obstacles, both of these are
very important: inverse kinematics are required to adapt
trajectories to different possible grasp points, and accurate
collision detection guarantees safe execution. As inverse
kinematics and collision detection are outside the purview
of this paper, we did not focus on efficiency.

A. Simulation Experiments

We collected three demonstrations of each of the different
skills with a dynamic simulation of the Barrett WAM arm.

Approach

Fig. 5: Graphic showing example plan for the simple struc-
ture assembly task discussed here. Different colors indicate
approach, align, and place actions. The planner has
selected the leftmost node, and chose to grasp the link from
the right.

We then place these pieces in different positions in the
environment, and validated our method by performing the
task in different locations. The results of one performance in
a novel environment are shown in Fig. 5.

To create a model of each of these skills, we collect three
demonstrations of the object manipulation action using the
same grasp, with two of the Barrett Hand’s fingers on the left
side of the link and one on the right. The simulated WAM
arm was teleoperated with a Razer Hydra to collect training
data. The user provided examples of three different grasps:
a direct approach and approaching from the left or the right.
The user specified p;(approach|w,) to indicate a preference
for a direct approach.

We perform our task on scenes with one link and two
nodes at different positions, and demonstrate task effec-
tiveness for 10 trials with different configurations of the
world. The key measure of performance is how easily we
can add extra training data to our model and how close
these results will be to the target mate. We set o« = 0.5
and used M = 200 trajectories, with a maximum of 15
iterations. Our full algorithm used a depth of H = 5: a long
enough horizon to plan the whole assembly task. Average
likelihood of sampled trajectories converged exponentially
as we proceeded through various iterations. Fig 6 shows
distance to an ideal final mate after outliers were removed.

By way of comparison, we remove one or both of two parts
of our algorithm. We use a single randomly selected task
plan (“no options” in Fig. 6). We also compare against the
case where our planner only examines the currently available

3783



0.025

T T
[ No Options/No Lookahead
[ No Options/Lookahead
[ Options/No Lookahead
[ Options/Lookahead b

0.02
[ Auto/No Options/No Lookahead
[ Auto/No Options/Lookahead
[]Auto/Options/No Lookahead
[ Auto/Options/Lookahead

1 il IIIlH IILZHHH

Fig. 6: Plot showing absolute error in distance, X, y, and z
from “perfect” mate position between link and the selected
node. Our full algorithm (”Options/Lookahead”) achieved
high mate accuracy, roughly equivalent to the version with
no options, and was able to complete the task in more
challenging scenarios.
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actions, setting H = 1 (“no lookahead” in Fig. 6). The “no
options/no lookahead” case functions as our baseline: it uses
the algorithm in Sec. IV-A to reproduce an action based on
a GMM. While our approach is technically unconstrained,
due to the sampling method we implicitly constrain the
trajectory search to a feasible set of valid trajectories. To
demonstrate how we can improve performance by improving
action models, a human user selected three successful trials
from the automatic performance of this task and added them
to the model (“auto” in Fig. 6).

Table I shows the number of planning failures associated
with different environments. These are cases where the
algorithm failed to find a trajectory with nonzero probability
under the expert distributions defining each of our actions.
Without the full algorithm, either the robot often cannot find
a solution that will accomplish the task or performance is
significantly degraded. The case where there are options and
no lookahead is a good example. While the robot is almost
always able to find a plan in this situation, the quality of plans
is far worse, as shown by Fig. 6. In the higher-performing
“Auto” case, the robot was always able to find a plan but
few of these plans were successful: only 4/10 achieved high-
quality mates, and several outliers fell off the node and the
table completely. This is because without knowledge of the
place and release actions, the align action will often
not terminate in a good state to complete the task.

Fig. 6 shows a comparison on successful trials in dif-
ferent environments without obstacles. The full algorithm
was highly reliable and accurate, achieving less than 1 cm
of placement error. Other versions of the algorithm made
mistakes that planning alone could not recover from. In
addition, performance of all versions of the algorithm showed
improvement when extra data was added, though the full
version of the algorithm was still better and more flexible.

We also introduced different obstacles into the environ-
ment. In these cases, the algorithm is able to avoid these
objects and still complete its required task. Figure 7 shows
examples of these results. Since the planner removes paths
that are in collision, this restricts the set of feasible tra-

Expert Data Only ~ With Auto Data
No Options/No Lookahead 7 4
No Options/Lookahead 3 |
Options/No Lookahead 1
Options/Lookahead*

TABLE I: Number of failures when generalizing to novel
environments. (*) indicates the full algorithm. Columns rep-
resent whether model was taught using only expert demon-
strations or whether extra data was added from successful
executions.

Fig. 7: Performance of the planner in different environments
with the addition of obstacles. The planner chooses paths
that are consistent with taught actions as much as possible.

jectories. As in the upper left of Figure 7, the most likely
action in a particular scenario might be an approach from a
particular direction. Once this grasp is blocked, the planner
can either attempt a less likely trajectory that results in that
grasp, or it can approach from a different direction. This
tradeoff illustrates why our approach is more powerful than
adding a potential field term to action primitives as in [18]
or similar work.

B. Real Robot Experiments

Finally, we explore how we can use human preferences
to improve our planning. The URS was given the option of
grabbing either of two links or a node object and combining
them to create the same structure as in the simulation
experiments. Demonstrations were provided in which the
robot grasped a node and mated it with a link, and in which
the robot grasped a link and mated it with a node. The object
localization technique described by Li et al. [35] was used
to determine the poses of all objects in the scene.

Our system intelligently selected whether to grasp the link
or the node, and it was able to select which face of the link
to grasp based on feasibility and presence of other obstacles.
The URS had a fairly limited workspace and has a limited
ability to interact with objects when compared to the Barrett
WAM arm used in the simulation experiments, making this
a more challenging problem. However, the robot was able to
grasp both node and link objects and complete the task. Our
video supplement provides examples of the URS performing
this task in different configurations, as well as an overview
of the algorithm and videos of the simulation experiments.
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In particular, when presented with both link and node ob-
jects in different orientations, the robot was able to correctly
select available faces not blocked by other obstacles. If the
node was better aligned with the robot’s gripper, then the
algorithm chose to grasp the node; if one of the links was
better aligned, it would grasp this link.

VI. CONCLUSIONS

We have described a practical approach for task and
motion planning based on models of skills grounded from
expert demonstrations of skills. By representing actions as
probability distributions learned from expert demonstrations,
we create a framework that allows us to describe a broad
range of actions and combine them to accomplish a task.
We validated this approach with experiments in a structure
assembly domain both in simulation and in a real robot.

While we did not address efficiency in the implementation
used in this paper, this is a serious concern moving forward,
and we will examine strategies for decreasing the number of
costly trajectory evaluations and collision checks. In addition,
we will apply our planner to larger and more complex tasks.
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