
CoSTAR: Instructing Collaborative Robots

with Behavior Trees and Vision

Chris Paxton, Andrew Hundt, Felix Jonathan,

Kelleher Guerin, Gregory D. Hager

Abstract— For collaborative robots to become useful, end
users who are not robotics experts must be able to instruct
them to perform a variety of tasks. With this goal in mind, we
developed a system for end-user creation of robust task plans
with a broad range of capabilities. CoSTAR: the Collaborative
System for Task Automation and Recognition is our winning
entry in the 2016 KUKA Innovation Award competition at
the Hannover Messe trade show, which this year focused on
Flexible Manufacturing. CoSTAR is unique in how it creates
natural abstractions that use perception to represent the world
in a way users can both understand and utilize to author
capable and robust task plans. Our Behavior Tree-based task
editor integrates high-level information from known object
segmentation and pose estimation with spatial reasoning and
robot actions to create robust task plans. We describe the cross-
platform design and implementation of this system on multiple
industrial robots and evaluate its suitability for a wide variety
of use cases.

I. INTRODUCTION

While robots have not yet made inroads into homes or the

world at large, collaborative robots work alongside humans in

factories with increasing frequency. These industrial robots

are common in medium and large manufacturers, but are

often underutilized by small manufacturers due to the high

cost of retooling and reprogramming these robots to perform

a wide variety of tasks. There are two main problems with

existing systems for programming these robots: clumsy user

interfaces and their inability to perceive the world in ways

that are meaningful to humans. Other barriers to deployment

include setup time, managing configuration details, and lack

of robustness to changes in the environment.

These needs have been recognized by private enterprise.

KUKA Roboter GmbH posed the 2016 KUKA Innovation

Award competition as the Flexible Manufacturing Challenge;

indicating that “vision, manipulation and grasping, safe and
intuitive human-robot collaboration, machine learning and
cloud-based operations are considered most important” [1]

to the future of the industry. Our entry, CoSTAR: the Collab-
orative System for Task Automation and Recognition, placed

first among 6 finalists selected from 25 total applicants by

a jury of robotics experts from industry and academia. In

this work, we describe CoSTAR and how it is designed to

address the demand for effective collaborative robots.

We have identified three characteristics key to a system

for authoring robot task plans: capability, usability, and

This work was funded by NSF Grant 1227277. Authors are
from the Dept. of Computer Science, Johns Hopkins University, Bal-
timore, MD, USA. Email: {cpaxton, ahundt, fjonath1,
kguerin2}@jhu.edu and hager@cs.jhu.edu).

Fig. 1: The CoSTAR system set up to perform a wide variety

of tasks. Top: CoSTAR running on a KUKA LBR iiwa at

the Hannover Messe trade show. Bottom: CoSTAR running

on a UR5 in a workshop.

robustness. First, a system should be capable of performing

a wide variety of tasks. Second, end users should be able

to understand the system’s capabilities and efficiently create

new task plans that meet their needs. Finally, task plans

should be robust to variation, and repeated executions should

produce the expected result. We designed CoSTAR to take

these characteristics into consideration.

CoSTAR was originally proposed as a Behavior Tree based

system to create task plans for industrial robots that utilize

the tooling and human resources small manufacturers have

available today [2]. We extended the original system into a

modular, cross-platform architecture for authoring industrial

robot task plans. We integrated perception with an abstracted

world representation that allows end users to create task plans

that are robust to environmental variation. The system is

shown in Fig. 1 deployed on two different platforms.

Recent work has proposed to remedy the problems with

2017 IEEE International Conference on Robotics and Automation (ICRA)
Singapore, May 29 - June 3, 2017

978-1-5090-4633-1/17/$31.00 ©2017 IEEE 564

programming robots through kinesthetic teaching meth-

ods [3], improved graphical user interfaces (GUIs) [2], [4],

[5], or the use of symbols, ontologies, and natural language

to enable high-level task specification [6]–[10]. We combine

a powerful GUI with grounded sensor abstractions produced

by CoSTAR’s distributed components. While this approach

requires that users be more actively involved in constructing

task plans, it results in more robust and predictable task

plans [4]. CoSTAR can also rely on users’ domain knowledge

to solve problems without a complex ontology: it is our

philosophy that CoSTAR should empower end users to solve

their own problems rather than providing “one size fits all”

solutions.

CoSTAR is composed of Components, each of which is

associated with input data, output data, symbols, predicates,

and operations that it can perform. Input and output data

are represented by ROS topics [11]. Symbols represent

objects and positions, while predicates describe qualities of

these objects and positions. CoSTAR includes a knowledge

management component called “Predicator,” which gives

end users the ability to construct a wide range of different

tasks that integrate state-of-the-art object detection and pose

estimation proven to work in cluttered scenes [12].

Our contributions are: (1) a modular, cross-platform sys-

tem designed to emphasize capability, usability, and ro-

bustness; (2) abstract perception that exposes symbols and

predicates that can be used for authoring task plans; (3)

evaluation of the system on a series of increasingly complex

tasks; and (4) an open source implementation on a KUKA

LBR iiwa 14 R820 and a Universal Robots UR5, each with

different grippers.

II. RELATED WORK

There is broad interest in making robots into intelligent,

collaborative assistants that can be taught by end users

to perform complex tasks [4], [5], [13]. One approach to

end user collaboration is to build tasks purely from hu-

man demonstrations. This includes work which used a BP-

AR-HMM to automatically segment a task into primitive

actions [13]. End-to-end deep reinforcement learning has

proven effective at training individual actions [14].

A second approach is to allow users to provide high-

level task specifications using a domain specification lan-

guage such as PDDL [7] or from natural language [8], [9].

Balakirsky et al. [7] used an ontology to perform a simple

kitting task. Tenorth et al. describe KnowRob, an architecture

which allows robots to share knowledge, including object

models and action recipes, which can be used to accomplish a

variety of household chores [6], [15]. These methods provide

powerful high level descriptions, but they require a large

amount of built-in knowledge from an ontology which is

often found to be incomplete when attempting to create a

program that solves a new problem. By contrast, CoSTAR is

designed to offer a suite of basic capabilities which can be

recombined to solve new tasks on the fly.

A third approach is to implement an intuitive visual user

interface and allow users to construct their own solutions

to tasks. Mateo et al. implement Hammer for programming

industrial robots, a visual programming language based on

Snap running on an Android tablet [5]. Nguyen et al.

implemented ROS Commander as a system for building

Hierarchical Finite State Machines (HFSMs) describing tasks

for the PR2 [4]. We expand upon the Behavior Tree visual

user interface described in [2].

Behavior Trees have been used to describe complex

robotic manipulation tasks including a variety of object ma-

nipulation tasks [16], humanoid robot control [17], and brain

tumor ablation with a Raven II surgical robot [18]. They are

comparable in power to HFSMs [19], and are commonly used

in the video game industry due to their superior scalability

and modularity [20]. These characteristics make Behavior

Trees ideal for representing collaborative robot task plans [2].

We apply the algorithm described in [12] to object detec-

tion and pose estimation in cluttered scenes. This approach

is based on ObjRecRANSAC [21] with an additional step

that segments objects from their environments.

III. SYSTEM DESIGN

We laid out three goals for CoSTAR: (1) it should have

the capability of performing a wide variety of tasks, (2) it

should be usable by non-experts, and (3) it should be robust

to environmental change. Incorporating perception makes

the system more capable (as perception-based tasks such as

sorting are now possible) and makes the system far more

robust (as tasks can be performed regardless of the movement

of objects and goals). For usability, CoSTAR exposes only

symbolic and qualitative information to the end user. This

means that end users can formulate tasks in human terms. In

the following section, we describe the modular architecture

that allows us to add new system knowledge and actions

to ensure CoSTAR has the capability to perform any given

task. We also describe how this connects to our usability

goals via a Behavior Tree-based graphical user interface. Our

approach to end user task specification can be contrasted

against approaches based on ontologies and symbolic task

planning such as [6], [7]. Rather than relying on a large

ontology, CoSTAR components define a relatively small set

of geometric predicates such as LeftOf, RightOf, and

InFrontOf, relying on end users to combine and use these

symbols to specify tasks. In total we use six geometric

predicates plus class identity predicates and occupancy.

A. Software Architecture

Components are an extension of the system capabilities

described in our previous work [2], and are associated

with a set of input data, output data, operations, predicates,

and symbols. Examples of CoSTAR components include

the Perception component described in Sec. IV, the

Gripper component, and the Arm component. Consider

a CoSTAR component C:

C =< I,O, p, s, u >

where p = {pi}Ni=1 is the set of predicates produced by

component C, s = {si}Ni=1 is the set of symbols produced

565

Fig. 2: Overview of the CoSTAR system. Symbols and predicates are produced by components such as Perception, Arm,

and Gripper, and are aggregated by Predicator. The Behavior Tree unifies this information and uses it to encode a task,

calling operations exposed by each of the individual components. Individual components can be modified or extended to

add new capabilities, but the Behavior Tree only acts on abstracted information and operations directly.

by C, and u = {ui}Ni=1 is the set of operations made

possible by C. I and O represent continuous input and output

from an individual component. Different components can

be concatenations of multiple sub-components, as shown in

Fig. 2: continuous data flows between sub-components of

Perception and Predicator. However, I and O are

never explicitly exposed to the end user or the task plan.

The current world state used by the Behavior Tree is wholly

defined by the set of predicates and symbols produced by

all of the current components. Predicates can be viewed as a

special set of boolean-valued symbols that describe qualities

of other symbols, and allow more complex queries such as

the SmartMoves discussed in Sec. IV-B.

A key part of the modularity of the CoSTAR software

design is in inheritance of components. A particular com-

ponent Cp can provide a list of symbols, predicates, and

operations, some of which are abstract and have not yet

been implemented. All of these must be implemented by a

particular instantiation of this abstract component. For an ex-

ample of an abstract component see Arm in Fig. 2: it requires

implementation of basic Teach and Move operations. They

must also expose an endpoint symbol as a coordinate

frame indicating the end of the arm. Both our LBR IIWA and

UR5 components extend this Arm component, and implement

this functionality in different ways.

Symbols s are populated from continuous input data as a

function of the raw state of the world, and represent objects,

positions, and object classes.

Predicates p describe qualities of existing symbols and

relationships between symbols. More formally, predicates are

functions

p(I, s0, . . . , sn) → [TRUE,FALSE]

that map continuous input data and a set of symbols to a

boolean value. In effect, they discretize I into meaningful

subsets that can be used to create generalizable task plans.

Predicates are functions only of symbols and of the con-

tinuous input space: this prevents an explosion in predicate

number and complexity.

Operations u are the specific actions that have an effect on

the world. They can change the value of stored symbols, the

state of the robot, or result in some other real-world effect.

Operations typically appear as leaf nodes in the Behavior

Tree; one example of an operation is Move.

Predicator is a special component which consists of

multiple sub-components producing descriptive predicates,

and provides operations allowing task plans to test the

values of generated predicates. Its sub-components can be

activated and deactivated according to the needs of the

current system. In practice, each CoSTAR component is

responsible for reporting the set of currently true predicates

and the set of valid predicates and symbols to be aggregated

by Predicator. Predicator then exposes operations

that allow the Behavior Tree to perform queries over these

predicates and symbols.

The basic components of the CoSTAR system necessary

for task plan execution are Perception, Gripper, Arm,

and Predicator, as shown in Fig. 2. The user interface

can combine exposed operations as leaf nodes in a Behavior

Tree. Additional components (such as a PowerTool com-

ponent for turning external tools on and off in Sec. V-A) can

be added as necessary.

For example, the Gripper component implements five

operations, and also produces predicates describing the cur-

rent state of the gripper. All grippers can open or close. In

addition, grippers have various modes, which determine how

they are going to act when being told to open or close. For

the more complex adaptive gripper, these are BasicMode,

PinchMode, WideMode, and ScissorMode. The paral-

lel C-Model gripper mounted on the UR5 robot, for example,

is limited to only being able to function in PinchMode. Any

attempt to use one of the other operations would fail.

566

The software was implemented in ROS [11], and Orocos

KDL [22] was used for computing robot kinematics as a part

of the Arm component. Different components expose ROS

services and topics that can be run on different machines

for distributed processing and execution. The system layout,

with its principal components, is given in Fig. 2.

B. User Experience

The goal of the CoSTAR user experience is to allow users

to teach the robot naturally, through hands-on kinesthetic

teaching, and to be able to create complex task plans that can

be composed quickly and visually. The guiding principle is

to allow users to teach a robot in the way they might teach

a human, through a mixture of demonstration and explicit

instruction.

As such we present users with two separate methods of

interacting with the robot: (1) they can physically teach a

robot to specify trajectories or learn skill models, and (2) they

can interact with a graphical user interface that allows them

to author a Behavior Tree. Behavior Trees are a formalism for

task construction that has been previously applied to robotics

in a variety of contexts [2], [16], [18] that represent tasks

hierarchically. Each tree starts at a root node which generates

ticks that propagate from left to right “down” the tree until it

reaches a leaf, which will report one of SUCCESS, BUSY, or

FAILURE. Internal nodes control the flow of operations, and

send these ticks to children according to their own internal

rules and state. Operations are represented by leaf nodes in

the tree. In the UI shown in Fig. 3, internal nodes are blue,

leaf nodes representing actions undertaken by the robot are

green, and leaf nodes representing knowledge updates and

queries are purple.

Internal nodes are key to creating complex task plans.

Examples of internal nodes are:

• Sequence node (->): tick children in order, one at a

time, until each one reports SUCCESS. If a child fails,

the sequence will fail.

• Selection node (?): ticks children in order until one

returns success. This can be used in conjunction with

logical queries to determine which case in a complex

program should be executed.

• Repeat node (REPEAT N): ticks children until N suc-

cesses or failures have been reported.

• Reset node (RESET N): returns the same value as child,

but resets the child up to N times on a failure. This has

the effect of trying a child, then allowing error handling

on a failure, as shown in Fig. 6.

The key advantage of behavior trees from our point of

view is that they allow end users to visually create pro-

grams with the same amount of complexity and power as

traditionally-written programs. Our implementation does not

include (a) user specified variables or (b) variable scope.

Instead, all operations must be handled within specific nodes.

For a more in-depth examination of our implementation of

the behavior tree formalism, see [2].

One goal of our system is to allow end users to quickly

set up the platform in a new environment. To facilitate

Fig. 4: The training algorithm for the CoSTAR perception

system. This procedure is a straightforward part of system

setup and needs to be performed for each new object.

this, we added a HandEyeCalibration component and

a corresponding Calibrate button to the user interface shown

in Fig. 3(8). To facilitate system setup, we fix an AR marker

to the end effector of the robot (visible in Fig. 2). We

utilized dual quaternion hand eye calibration as implemented

by CamOdoCal [23] to compute the transform from the tip

of the last joint on the robot arm’s model to the marker

fixed to the gripper. After this marker transform has been

computed and saved, the user can press the Calibrate button

on the CoSTAR menu to calibrate a robot to a camera as long

as the arm-mounted marker is visible via this pose estimate

from CamOdoCal.

IV. PERCEPTION

The key challenge of integrating perception into an inter-

active programming environment is to ensure the usability

of the system by exposing that perception in a way that

makes sense to a human user and allows the user to build

robust, comprehensible task plans. In addition, perception

must produce high-level knowledge that allows users to

create task plans that are robust to environmental variations

such as the exact positions and orientations of particular parts

or manipulation goals.
Fig. 2 shows data flow through our perception component

and to the rest of our system. Raw RGB-D camera data

is consumed by the AR marker tracker and by an object

classification sub-component based on [12]. In our case we

use a Primesense Carmine. Segmented point clouds are sent

as raw input to an ObjRecRANSAC component [21] which

performs pose estimation, creating a set of symbols describ-

ing individual object detections. These symbols are then sent

to Predicator which produces predicates describing those

symbols in terms useful to the end user. This behavior is

exposed through a DetectObjects operation performed

at specific known points in a task plan.
Our graphical programming system reasons over way-

points stored as 6-DOF coordinate frames that can come

from one of three sources: (1) robot kinematics, (2) AR

markers, and (3) the object detection and pose estimation

pipeline. These coordinate frames are currently produced by

ObjRecRANSAC [21] in the Pose Estimation step shown in

Fig. 2.
Most symbols used by the CoSTAR system represent a

position, either expressed in 6-DOF Cartesian space relative

to a world frame or a joint space coordinate. The perception

pipeline produces these symbols and associated predicates

567

Fig. 3: Behavior Tree-based user interface. (1,2) Detected objects and associated SmartMoves. (3) Waypoint UI. (4)

User’s workspace containing the Behavior Tree. (5) SmartMove creation pane; Similar panes allow customization of other

operations. (6) List of available operations. (7) Expanded menu containing simple operations the user can perform during

plan development.

describing object class, and Predicator modules use these

to assign values such as LeftOf and RightOf that de-

scribe relationships and other information pertaining to these

frames.

A. Object Pose Estimation Pipeline

While the approach outlined above is effective at produc-

ing 6-DOF object pose estimates in cluttered environments,

there are several challenges that must be handled specifically

within the object pose estimation pipeline to ensure robust

performance as part of a tool for authoring new task plans:

• It must be straightforward to adapt this system to new

objects and new environments.

• Rotational ambiguities must be resolved consistently to

allow for intuitive training of grasping approaches by

end users.

• For some tasks, the identities of individual objects must

be consistent across perception updates.

• Perceptual operations must be appropriately integrated

with the CoSTAR behavior tree implementation to allow

construction of complex programs.

Our object detection and pose estimation pipeline reduces

sensor noise with a median filter before SVM segmentation

and pose estimation. This produces accurate estimates of

coordinate frames from the frame of reference of the camera.

However, objects can contain pose ambiguities and symme-

tries that affect grasping angles. For example, an axis aligned

solid cube can be rotated by 90 degree increments on any

of three rotation axes and remain semantically equivalent.

We define the function setCanonicalOrientation()
which re-orients objects in the world frame based on a

canonical orientation utilizing these symmetries, a prioritized

axis ordering, and the particulars of the physical object

model.

To retain object identities across multiple

DetectObjects calls, we define the function

persistenceUpdate(). This uniquely numbers

each new detection instance and enters the frame position of

each object into an R*-Tree [24], [25] spatial data structure,

ideally bulk loaded via the R-Tree packing algorithm [26].

We utilize the Boost.Geometry Spatial Index R*-Tree [27]

implementation. Upon each subsequent detection call a

nearest neighbor lookup is performed and neighbors of

the same class and within a certain threshold distance are

assigned the names of previous detections. Objects new

to the scene are assigned new names. See Alg. 1 for the

complete procedure. This method has limitations, including

velocity limits imposed by the perception update rate and

ambiguities for objects with concavities.

When deploying our system in a new environment, we

need three inputs: (1) an SVM for classifying point cloud

data according to object type implemented as per [12],

and (2) 3D models for each object class identified by the

SVM for use with ObjRecRANSAC [21], and (3) symmetry

568

Algorithm 1 Maintaining persistent object identities across

perception updates.

given R*Tree R, detected objects Odetected, maximum

distance dmax

function PERSISTENCEUPDATE(R,Odetected, dmax)

Opersistant = ∅
for o in Odetected do

SETCANONICALORIENTATION(o) � optional line

fnearestNeighbor = NEARESTNEIGHBOR(o)
fwithin = WITHINDISTANCE(dmax)

1

fsameType = SAMETYPE(o)
� Query the R*Tree for the nearest neighbor p with

� the same model type and within the max distance

n = R.QUERY(fnearestNeigbor&fwithin&fsameType)
if EXISTS(n) then

R.REMOVE(n) � enforce one match per object

else
SETUNIQUEID(o) � new object

end if
INSERT(Opersistant, o)

end for
� Construct R*Tree with packing algorithm [26]

return RTREE(Opersistant)
end function

information for these same objects. We outline a relatively

quick data collection procedure that allows us to adapt to

new environments and lighting conditions, shown in Fig. 4.

The training algorithm used for the state-of-the-art object

segmentation approach in [12] requires a large amount of

organized point clouds that provides multiple views of the

object. Data collection is an intuitive process that can be

performed by a non-expert user requiring only an RGB-

D camera and a clear workspace. We use an AR tracking

library2 to specify the center of the workspace. Afterward,

we do box segmentation with the center of table point cloud

as the center of the box to isolate the table point cloud from

its background. We also collect a large amount of “negative”

data showing objects and surfaces that the system will not

need to manipulate or will need to ignore, which in practice

includes the robot and gripper. These point clouds are used

in the SVM training in Fig. 4.

B. Perceptual Operations

We provide specific operations that allow users to in-

tegrate perception into a CoSTAR Behavior Tree. The

DetectObjects operation updates the CoSTAR system’s

current representation of the world from RGB-D data, and

the SmartMove operation performs queries that select sym-

bols representing movement goals based on a list of required

predicates.

The DetectObjects operation runs the perception al-

gorithm described in Sec. IV-A and updates the robot’s set

1Spatial relations based on the OGC Simple Feature Specification [28]
2AR Track Alvar: http://wiki.ros.org/ar_track_alvar

of known waypoints and associated predicates. After a call

to DetectObjects, the robot will have an updated list of

the position, orientation, and object type of all objects it can

identify in a scene. This is crucial for creation of robust task

plans: it creates fixed points in the program at which the

robot will update its knowledge of the world. Since users

know when the DetectObjects operation is called, they

can ensure the robot will have a non-occluded view of its

workspace.

When authoring generalizable robot task plans, users need

to be able to specify which objects they which to manipulate

in an intelligent way. Our answer to this is the SmartMove
operation. This operation queries Predicator to retrieve

a list of all possible symbols matching a set of predicates. In

our implementation, users can choose an object class and a

geometry predicate, as shown in the user interface Fig. 3(6).

For example, one might to find all objects of type Part
that are RightOf a marker. The system will return the set

of all symbols such that p(s)∀p ∈ p, where P is the set of

predicates to be matched. The SmartMove then uses object

symmetry information for s to populate a list of possible

poses that satisfy the given condition.

Then the operation selects and executes a feasible motion

that will take it to one of these frames according to a

cost function f . A cost function that minimizes joint space

and Cartesian distance to the end effector provided reliable

and believable behavior. This also allows us to intelligently

choose between multiple object symmetries, for objects that

can be grabbed or manipulated in several different ways.

We use this capability to create structure assembly and

collaborative tasks in Sec. V.

V. EVALUATION

As discussed in the introduction, there are three character-

istics that determine the power of a framework for authoring

task plans:

• Capability: can the system in question perform a par-

ticular task?

• Usability: how easily can an end-user take an existing

system and adapt it to a particular task?

• Robustness: will performances of a particular task plan

be the same from one trial to the next, given reasonable

environmental variation?

In this section we show these characteristics of our system

by demonstrating the range of tasks that can be implemented

with CoSTAR on each of our robots, and discuss task plan

creation and repeatability. We published a YouTube playlist

of experiments and use of our user interface. We assess our

system through its applicability to a wide variety of tasks,

and through a test of the repeatability of a structure assembly

task using perception.

A. LBR iiwa Experiments

Our proposed system allowed us to quickly construct a

wide variety of different tasks on-site at the Hannover Messe

trade show. The LBR IIWA can carry a larger gripper from

the UR5 (in this case a Robotiq S Model 3-finger gripper)

569

Fig. 5: Selected tasks implemented on the LBR iiwa using the CoSTAR system. From left to right: wire bending, polishing a

surface, and collaborative structure assembly. For more videos see https://www.youtube.com/playlist?list=
PLCv90iHFljI3-VuVpUczGrNwvQOru3coZ

and is mounted on a mobile cart. All tasks were constructed

on site in roughly 30 minutes at the Hannover Messe trade

show. Fig. 5 shows examples of these tasks.

Wire Bending: Our wire bending case study used a custom

made wire bending jig. This use case demonstrates roughly

the same set of capabilities as the system in [2]: we can

quickly program a set of different capabilities, but this is

all “blind”: perception is not used because the wires are too

small to detect and localize with our object detection system.

Sanding and Polishing: These tasks are very similar

because they both use a similar tool that relies on Cartesian

impedance movements. The robot must pick up the tool when

it is available and move it along a known path to sand or

polish some object until it is interrupted.

This task demonstrates the integration of arbitrary external

hardware into the system with an additional component that

exposes ToolOn and ToolOff operations. It also provides

an example of preemption in behavior trees: we set up a

Behavior Tree that uses a selector (“?”) node, which means

that it executes each child in order until one succeeds. This

would either tick a subtree containing a “wait” gesture that

moved the arm up and down to indicate that the robot was

ready to pick up a tool, or it would tick a subtree containing

a RESET node guarding a polishing procedure. The child

of the RESET node would check to see if the tool was in

position, and if this condition was false it would reset the

child and return failure. The tree is shown in Fig. 6.

Collaborative Assembly: The robot picked up nodes from

the right side of a table and waited. When a human made

a particular gesture, the robot would hand the node to the

human user or drop it and retry. Fig. 5(right) shows an

example of this block task using the SmartMove operation

described in Sec. IV-B.

B. UR5 Experiments

We created plans for three different tasks to demonstrate

CoSTAR’s ability to to construct multi-step tasks requiring

precise manipulation using perception. We then completed

the assembly task in three steps. First, the user programmed

the UR5 to pick up any feasible node and lift it up. Then,

the user used the existing task plan to pick up two nodes

and move them from the right to the left side of the table.

Finally, the user modified the node-manipulation program to

pick up a new node and place it at the base of a structure.

Fig. 7: UR5 performing assembly task.

After this the robot picked up a long connecting link, then

finally a node to add to the task. The experimental setup is

shown in Fig. 7.

We performed 10 trials of the final structure assembly task,

completing it successfully in 10 out of 10 trials. We saw no

perception failures in all 10 trials, although there was one

experiment a notable pose inaccuracy due to sensor noise.

In this case, the robot approached the block from a bad

angle but was still able to successfully grasp it and place

it because the position was corrected by the closure of the

gripper. In general, we observed that barring sensor noise, the

robot could complete the assembly with any set of objects

for which it could find feasible grasps.

VI. CONCLUSION

We described a modular, cross-platform system for au-

thoring robot task plans that is capable of capturing a wide

variety of tasks, that is usable thanks to a powerful Behavior

Tree-based user interface, and that is robust to changes

thanks to abstract perception. Most importantly, our system

grows more and more useful over time as users create task

plans and develop new components. A user study to formally

assess CoSTAR’s usability is planned future work. Source

code for basic CoSTAR components, including the Arm

and Gripper components, perception, and controlling KUKA

LBR iiwa hardware is available open source as a set of ROS

packages3.

3https://github.com/cpaxton/costar_stack

570

Fig. 6: Example of a complex task plan created for the polishing demo. The Behavior Tree includes iterator, sequence, and

reset nodes. The subtree containing the actual polishing behavior has been collapsed for readability.

REFERENCES

[1] KUKA AG, “Call for participation KUKA Innovation Award
2016 Flexible Manufacturing Challenge sponsored by KUKA
AG,” https://www.kuka.com/-/media/kuka-corporate/documents/
about-kuka/kuka innovation award 2016 call for participation.pdf.

[2] K. R. Guerin, C. Lea, C. Paxton, and G. D. Hager, “A framework
for end-user instruction of a robot assistant for manufacturing,” in
Proceeding of IEEE International Conference on Robotics and Au-
tomation. IEEE, 2015.

[3] C. Schou, J. S. Damgaard, S. Bøgh, and O. Madsen, “Human-robot
interface for instructing industrial tasks using kinesthetic teaching,” in
Robotics (ISR), 2013 44th International Symposium on. IEEE, 2013,
pp. 1–6.

[4] H. Nguyen, M. Ciocarlie, K. Hsiao, and C. C. Kemp, “Ros commander
(rosco): Behavior creation for home robots,” in Robotics and Automa-
tion (ICRA), 2013 IEEE International Conference on. IEEE, 2013,
pp. 467–474.

[5] C. Mateo, A. Brunete, E. Gambao, and M. Hernando, “Hammer: An
Android based application for end-user industrial robot programming,”
in Mechatronic and Embedded Systems and Applications (MESA),
2014 IEEE/ASME 10th International Conference on. IEEE, 2014,
pp. 1–6.

[6] M. Beetz, D. Jain, L. Mosenlechner, M. Tenorth, L. Kunze, N. Blodow,
and D. Pangercic, “Cognition-enabled autonomous robot control for
the realization of home chore task intelligence,” Proceedings of the
IEEE, vol. 100, no. 8, pp. 2454–2471, 2012.

[7] S. Balakirsky, Z. Kootbally, C. Schlenoff, T. Kramer, and S. Gupta,
“An industrial robotic knowledge representation for kit building ap-
plications,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2012, pp. 1365–1370.

[8] D. K. Misra, J. Sung, K. Lee, and A. Saxena, “Tell me dave: Context-
sensitive grounding of natural language to manipulation instructions,”
Proceedings of Robotics: Science and Systems (RSS), Berkeley, USA,
2014.

[9] J. Fasola and M. J. Matarić, “Interpreting instruction sequences in
spatial language discourse with pragmatics towards natural human-
robot interaction,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2014, pp. 2720–2727.

[10] Z. Kootbally, C. Schlenoff, C. Lawler, T. Kramer, and S. Gupta,
“Towards robust assembly with knowledge representation for the plan-
ning domain definition language (PDDL),” Robotics and Computer-
Integrated Manufacturing, vol. 33, pp. 42–55, 2015.

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[12] C. Li, J. Bohren, E. Carlson, and G. D. Hager, “Hierarchical semantic
parsing for object pose estimation in densely cluttered scenes,” in IEEE
International Conference on Robotics and Automation (ICRA), 2016.

[13] S. Niekum, S. Chitta, A. G. Barto, B. Marthi, and S. Osentoski,

“Incremental semantically grounded learning from demonstration.” in
Robotics: Science and Systems, vol. 9, 2013.

[14] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning hand-
eye coordination for robotic grasping with deep learning and large-
scale data collection,” arXiv preprint arXiv:1603.02199, 2016.

[15] M. Tenorth and M. Beetz, “Knowrob: A knowledge processing infras-
tructure for cognition-enabled robots,” The International Journal of
Robotics Research, vol. 32, no. 5, pp. 566–590, 2013.

[16] J. A. Bagnell, F. Cavalcanti, L. Cui, T. Galluzzo, M. Hebert,
M. Kazemi, M. Klingensmith, J. Libby, T. Y. Liu, N. Pollard, et al.,
“An integrated system for autonomous robotics manipulation,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2012, pp. 2955–2962.

[17] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ogren, “Towards a
unified behavior trees framework for robot control,” in Robotics and
Automation (ICRA), 2014 IEEE International Conference on, 2014.

[18] D. Hu, Y. Gong, B. Hannaford, and E. J. Seibel, “Semi-autonomous
simulated brain tumor ablation with raven-ii surgical robot using
behavior tree,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2015, pp. 3868–3875.

[19] M. Colledanchise, A. Marzinotto, and P. Ogren, “Performance analysis
of stochastic behavior trees,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on, 2014.

[20] D. Isla, “Halo 3-building a better battle,” in Game Developers Con-
ference, 2008.

[21] C. Papazov, S. Haddadin, S. Parusel, K. Krieger, and D. Burschka,
“Rigid 3d geometry matching for grasping of known objects in
cluttered scenes,” The International Journal of Robotics Research, p.
0278364911436019, 2012.

[22] R. Smits, “KDL: Kinematics and Dynamics Library,” http://www.
orocos.org/kdl.

[23] L. Heng, B. Li, and M. Pollefeys, “Camodocal: Automatic intrinsic
and extrinsic calibration of a rig with multiple generic cameras and
odometry,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2013, pp. 1793–1800.

[24] A. Guttman, R-trees: a dynamic index structure for spatial searching.
ACM, 1984, vol. 14, no. 2.

[25] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-
tree: an efficient and robust access method for points and rectangles,”
in ACM SIGMOD Record, vol. 19, no. 2. Acm, 1990, pp. 322–331.

[26] S. T. Leutenegger, M. A. Lopez, and J. Edgington, “STR: A simple
and efficient algorithm for R-tree packing,” in Data Engineering, 1997.
Proceedings. 13th International Conference on. IEEE, 1997, pp. 497–
506.

[27] A. Wulkiewicz and Others, “Boost.geometry spatial indexes,” http:
//www.boost.org/libs/geometry.

[28] Open Geospatial Consortium, “OpenGIS implementation specification
for geographic information - simple feature access - part 1: Common
architecture,” http://www.opengeospatial.org/standards/sfa.

571

