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Environmental risk analysis (RA) and life-cycle assessment 
(LCA) are the predominant methods for characterization of 
the systemic environmental and toxicological impacts of pro-

cesses, products, and their concomitant chemical releases1. RA 
quantifies both the potential exposure and hazard associated with 
a specific material in specific release scenarios to generate an abso-
lute estimate of risk, and typically reports results relative to external 
thresholds, such as maximum contaminant level2. In contrast, LCA 
estimates potential impacts in diverse impact categories by aggre-
gating emissions from all processes from the cradle to the grave of 
a product, and reports these impacts relative to the function or ser-
vice provided3. Seeking to take advantage of the strengths of each 
method, several prominent research organizations recommend 
integrating elements from both RA and LCA for proactive assess-
ment of emerging technologies, such as nanotechnology4,5. 

Efforts to integrate RA and LCA at the methodological level 
appeared in scholarly literature at least 15 years ago6,7, while reviews 
provide a typology of the burgeoning literature8 and methodological 
advancements continue to be published9–11. Lack of data is a recur-
ring concern, although most scholars express optimism that further 
integration is achievable so long as toxicological data accumulates and 
rapid assay tools advance. Nonetheless, it is now clear that engineered 
nanomaterials (ENMs) present a serious challenge to this view. The 
rapid pace of nanotechnology development, high uncertainty in envi-
ronmentally relevant parameters, and unique properties and behav-
iour of nanomaterials compared with the conventional chemicals for 
which RA and LCA methods were developed present serious obstacles 
to application of both LCA and RA to nanotechnologies. For example, 
nanomaterials typically violate the equilibrium assumptions employed 
in multi-media box models used widely in RA and LCA12. Although 
testing methods continue to evolve for nanomaterials, it remains 
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unclear in what forms nanomaterials are present in the environment 
or even how nanotoxicological dosages should be determined13. 

Pushing the limits of RA and LCA
Partly because of these practical difficulties, methodological integra-
tion of RA and LCA has remained limited to largely two points of 
connectivity: (1) use of LCA to guide a comprehensive identification 
of sources terms relevant to RA, and (2) use of risk models from RA in 
the development of characterization factors for LCA—both of which 
are important drivers of regulatory decision-making and policy fram-
ing. Beyond these two points, it has long been clear that RA and LCA 
have different objectives, create different boundaries for analysis, and 
consider different environmental and human health end points1. 
Figure  1 shows a schematic representation of RA and LCA and 
emphasizes the two principal connections and differences between 
them. For example, RA (left side) is reported relative to the identifica-
tion of a specific hazard, whereas LCA (right side) is reported relative 
to a functional unit. The principal differences are found at the bot-
tom of the figure, in their contrasting applications. RA is motivated 
by hazard reduction, whereas LCA is motivated by gaining an under-
standing of the systemic environmental consequences of a product, 
process or service that fulfils a valuable economic or social func-
tion. LCA seeks to elucidate a broader assessment of environmental 
impacts relative to the benefits quantified in the functional unit. 

The two perspectives are joined in what LCA practice refers to as 
a characterization factor, which expresses the potential deleterious 
effects of a chemical release to the environment in terms of a specific 
impact category—such as magnitude of human or ecological effects 
or interacting factors, such as global warming. In relation to ENMs, 
LCA requires thousands of characterization factors that relate mass 
quantities of chemical releases to human and ecotoxicological 
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impact categories, whereas RA has historically focused on one class 
of chemical at a time. Models used to establish characterization fac-
tors in LCA (such as relative toxicity) are derived from RA14, and 
require similar physiochemical and toxicological data. 

However, LCA quantifies the potential impacts associated with 
marginal increases in emissions15. The broad scope of LCA requires 
generalized models and assumptions that lack the specificity typical 
of RA16,17. For example: (1) contaminant fate and transport models 
in LCA represent average landscape conditions of whole regions or 
the globe, and (2) human populations are modelled generically and 
do not include variations in potential exposure for different groups. 
Whereas LCA researchers have long sought to increase the spatial 
and temporal resolution of toxicity impact assessment models, even 
advanced methods, such as those using geographic information sys-
tem tools to specify emission locations, will never match the level of 
detail provided by on-site measurements used in RA to verify regu-
latory compliance. This is particularly problematic in the context 
of ENMs, where even small differences in the local environmental 
conditions can have significant impacts on the fate, transport, and 
toxic properties of ENMs. Thus, despite sharing common modelling 
structures (for example, simplified box models, routine exposure 
pathways), life-cycle impact assessment differs substantially in prac-
tice and results from RA. While it has been argued that, in theory, the 
specificity of RA could be applied generally to the broad boundaries 
of LCA if only sufficient datasets could be generated, this Perspective 
argues against this and proposes instead that RA and LCA methods 
be maintained separately, only to be integrated as results feeding into 
a structured environmental decision-making process.

Methodological integration strategies
At the core of the differences between RA and LCA is a matter of 
perspective. Whereas RA focuses principally on receptors, LCA 
focuses principally on emitters. The two dominant strategies used 
to integrate RA and LCA on a methodological level are: (1) life-
cycle risk analysis (LCRA), which seeks to apply RA across the 
different life-cycle stages of a product containing nanomaterials18, 
and (2) including near-field exposure pathways and impacts as an 
additional impact category in LCA9,11,19. The first strategy aims to 
complement the relative precision of RA with the broad life-cycle 
boundaries inherent to LCA. The second strategy seeks to elevate in 
LCA the visibility of the occupational and consumer outcomes that 
have historically been the domain of RA.

LCRA requires quantification of the dominant nanomate-
rial emissions (or other hazardous releases of concern) and 
exposure pathways associated with each life-cycle phase18 (for 
example, potential inhalation during a coating process in manu-
facturing or dermal exposure during consumer use) as well as the 
toxicological response to this exposure. True to its roots in RA, 
LCRA is exclusively focused on toxic impacts and thereby con-
siderably narrower in scope than LCA, but nonetheless adopts 
broader boundaries than traditional RA. This life-cycle-extended 
approach to RA is applauded, as significant potential for exposure 
to hazardous substances exists along the life cycle. However, the 
practical difficulties of fulfilling the broader boundaries of LCA, 
including a complete chemical inventory and impact points that 
include non-toxicological considerations, in the case of ENMs, are 
rarely acknowledged. 

At the opposite end of the spectrum from LCRA are attempts 
to incorporate near-field emissions and associated impacts into 
LCA9,11, which at present quantifies impact potentials from only far-
field sources. Proponents of this approach recognize that indoor and 
occupational exposure typically exceeds that from far-field sources19 
and posit that omission of near-field impacts may result in shifting 
burdens from the general population to workers. Unfortunately, this 
strategy faces both theoretical and practical barriers. In practice, 

indoor environments differ greatly in size, ventilation rates, back-
ground concentrations, and implemented risk management con-
trols in various regulatory contexts. Overlooking this variability 
and attempting to model a generic indoor environment may yield 
grossly misleading results and undermines the measurements and 
precision that motivates RA. 

While more data may hypothetically provide the bridge between 
the emitter (LCA) and receptor (RA) perspectives, the differences 
in boundaries, purpose, and emphases that contrast the two meth-
ods means that they suggest different, incompatible strategies for 
managing data gaps, simplifying data requirements and reporting 
uncertainty. Thus, methodological integration is only possible in the 
case of fully complete datasets—now understood to be a practical 
impossibility. As a consequence, integration of RA and LCA must 
proceed at later stages of analysis.

Decision analysis integrates results 
Reconciling the fundamental differences between RA and LCA 
limits integration at the methodological level. Furthermore, inte-
gration potentially undermines the strengths that make each 
approach unique: LCA generates a systemic understanding of 
potential impacts in numerous categories, and RA develops specific 
toxics management strategies based on measurements and models 
with greater precision. An alternative to integration of LCA and 
RA on the methodological level is to apply each method in par-
allel—which is already done in practice—and then devote greater 
resources to developing decision support methods capable of com-
bining disparate types of data inputs20. Incorporation of results at 
the decision-level takes advantage of the strengths that make each 
approach valuable.  

Multi-criteria decision analysis (MCDA) is a family of methods 
designed to reveal the complicated tradeoffs or compromises inher-
ent in complicated problems21. The results of RA and LCA form 
decision criteria that can be compared alongside non-environ-
mental criteria, such as cost and material performance. Examples 
already exist in emerging technologies, environmental manage-
ment, and occupational health and safety, where qualitative and 
semi-quantitative data, such as with subject expert assessment, can 
inform properties and characteristics that are otherwise difficult to 
quantify at present22–24. Use of MCDA in environmental application 
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Figure 1 | Schematic representation of RA and LCA connections in the 
context of nanotechnology applications.
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is growing both in government25 and in academic literature26. 
Orienting RA and LCA towards informing a specific decision can 
reduce data needs for both RA and LCA by blending qualitative and 
quantitative measures22–24. Furthermore, such an integrative pro-
cess allows us to utilize both RA and LCA, which methodologically 
answer different questions, and ultimately generate information and 
decision support for ENMs that uses results from RA and LCA to 
inform ENM policy27.

Decision-driven approaches
Integration of LCA and RA results for ENMs conceptually follows a 
three-step process20:

(1)	Elicitation of criteria, values, and boundaries from stake-
holder groups.

(2)	 Generation and assessment of alternatives relative to these crite-
ria by subject experts.

(3)	 Ranking of preferred alternatives by decision analysts.

The integration of results starts in the first step, which demands 
effort to structure criteria for which LCA and RA can produce 
measures, and about which stakeholders can provide judgements. 
It is LCA and RA that populate the assessment matrices essential 
in the second step20,21. MCDA utilizes data using natural (quantita-
tive) and constructed (qualitative) scales, probabilistic and point 
estimates, or mixed methods20. When data is missing or highly 
uncertain, of particular importance is the need to select a robust 
and representative sample of subject experts, where it is necessary 
to account for (1) those experts that may or may not be directly 
affected by the decision at hand, and (2) the various disciplinary 
and experiential backgrounds from which these experts draw their 
opinions, beliefs and advice. For many iterations of MCDA, robust 
decision support depends largely on whether appropriate and 
knowledgeable subject experts are chosen for inclusion. Special 
attention should be placed on selecting appropriate methods for 
weight elicitation28–29.

This structure gives decision analysts in the third step the com-
paratively simple cognitive task of considering tradeoffs among 
alternatives in a given decision context separately from consider-
ing the complex drivers of the technical measures used. Alternatives 
are typically rank-ordered from most preferred to least preferred 
based on tradeoff-weighted aggregation of normalized criteria per-
formance scores. These scores support more complex analyses, such 
as sensitivity analysis showing under which weights conditions 
rankings may change, and graphical representations for compar-
ing and ranking alternatives20–22. This is particularly important in 
an environment of high scientific uncertainty insofar as stochastic 
exploration of uncertainty relative to decision confidence can pri-
oritize new data needs in a way that improves the decision applica-
bility of new research23. Although aligning environmental research 
strategy with decision imperatives has been a high priority at least 
since publication of Understanding Risk30, more recent reviews still 
bemoan the lack of decision applicability in nano-specific environ-
mental research4,31. Provided the rate of innovation in nanotech-
nology can be expected to outstrip the rate of usable, high-quality 
environmental data generation, methodological integration of RA 
and LCA, which places additional data requirements on analysts 
and decision-makers, is at best impractical. Rather, integration of 
RA and LCA results (not methods) in the context of MCDA is a 
more promising route to mitigating environmental impacts and 
satisfying the long-standing recommendations of the National 
Research Council.
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