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Abstract
Purpose Product developers using life cycle toxicity charac-
terization models to understand the potential impacts of chem-
ical emissions face serious challenges related to large data
demands and high input data uncertainty. This motivates
greater focus on model sensitivity toward input parameter var-
iability to guide research efforts in data refinement and design
of experiments for existing and emerging chemicals alike.
This study presents a sensitivity-based approach for estimat-
ing toxicity characterization factors given high input data un-
certainty and using the results to prioritize data collection ac-
cording to parameter influence on characterization factors
(CFs). Proof of concept is illustrated with the UNEP-SETAC
scientific consensus model USEtox.
Methods Using Monte Carlo analysis, we demonstrate a
sensitivity-based approach to prioritize data collection with
an illustrative example of aquatic ecotoxicity CFs for the

vitamin B derivative niacinamide, which is an antioxidant
used in personal care products. We calculate CFs via 10,000
iterations assuming plus-or-minus one order of magnitude var-
iability in fate and exposure-relevant data inputs, while uncer-
tainty in effect factor data is modeled as a central t distribution.
Spearman’s rank correlation indices are used for all variable
inputs to identify parameters with the largest influence on
CFs.
Results and discussion For emissions to freshwater, the nia-
cinamide CF is near log-normally distributed with a geometric
mean of 0.02 and geometric standard deviation of 8.5
PAF m3 day/kg. Results of Spearman’s rank correlation show
that degradation rates in air, water, and soil are the most influ-
ential parameters in calculating CFs, thus benefiting the most
from future data refinement and experimental research. Kow,
sediment degradation rate, and vapor pressure were the least
influential parameters on CF results. These results may be
very different for other, e.g., more lipophilic chemicals, where
Kow is known to drive many fate and exposure aspects in
multimedia modeling. Furthermore, non-linearity between in-
put parameters and CF results prevents transferring sensitivity
conclusions from one chemical to another.
Conclusions A sensitivity-based approach for data refinement
and research prioritization can provide guidance to database
managers, life cycle assessment practitioners, and experimen-
talists to concentrate efforts on the few parameters that are
most influential on toxicity characterization model results.
Researchers can conserve resources and address parameter
uncertainty by applying this approach when developing new
or refining existing CFs for the inventory items that contribute
most to toxicity impacts.
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1 Introduction

Integrated fate-exposure-effect models like USEtox
(Rosenbaum et al. 2008), Impact2002 (Pennington et al.
2005), and USES-LCA (van Zelm et al. 2009) are widely used
to calculate characterization factors (CFs) for human toxicity
and ecotoxicity impacts in life cycle assessment (LCA). CFs
allow practitioners and decision makers to quantify potential
toxicity-related impacts associated with chemical emissions
into the environment quantified in the life cycle inventory
(LCI) phase of LCA. Life cycle impact assessment (LCIA)
models for characterizing human toxicity and ecotoxicity are
relatively complex and require various substance-specific in-
put parameters, and their results are typically characterized by
an overall uncertainty of two-to-three orders of magnitude
depending on emission compartment, exposure scenario, and
data availability (Jolliet and Fantke 2015; Rosenbaum 2015).
Thus, these models require continuous improvement, al-
though significant achievements have been made over the last
decade. For example, sustained harmonization efforts between
divergent toxicity LCIA models resulted in the UNEP-
SETAC scientific consensus model USEtox (Rosenbaum
et al. 2008; Westh et al. 2015) and the more recent release of
USEtox 2.0 (http://usetox.org), which are considered best
practice (Hauschild et al. 2013), recommended by the ILCD
handbook (EC 2011), and implemented in various LCIA
methods such as TRACI (Bare et al. 2012).

The extensive inter-model comparisons and streamlining
activities addressed model uncertainty and improved transpar-
ency and credibility (Hauschild et al. 2008). However, further
development and adoption of current human toxicity and
ecotoxicity LCIA models faces challenges related to the large
number and diverse properties of potentially emitted sub-
stances, limited availability of high-quality data, and sparse
treatment of parameter uncertainty or variability (Alfonsín
et al. 2014; Gust et al. 2016; Rosenbaum 2015). For example,
there is a large discrepancy between the ≈10,000 substances
included in the latest Ecoinvent inventory library (Weidema
et al. 2013) and the ≈1200 human toxicity and 2500
ecotoxicity CFs available from USEtox 2.0 currently consti-
tuting the largest substance coverage in an LCA toxicity char-
acterization model.

Calculating each individual CF requires approximately ten
substance-specific input parameters, some of which are ex-
trapolated from underlying background data. Thus, database
validation and expansion requires extensive efforts in data
collection and curation, including potentially costly experi-
ments. As a result, many CFs in USEtox (and any other
LCIA toxicity model) often rely on substance data estimated
using outputs from, e.g., quantitative structure activity rela-
tionship (QSAR) models, such as models in the EPISuite pro-
gram (USEPA 2015b), which are essential for filling data gaps
but often lack experimental evidence and therefore are, for

many parameters, considered of lower representativeness than
measured values (Huijbregts et al. 2010a). There is a critical
need to explore the sensitivity of human toxicity and
ecotoxicity LCIA results to variability and uncertainty in re-
quired substance input data, which may help expedite data-
base expansion, refinement, and prioritization of future data-
related research needs (Cellura et al. 2011; Cucurachi and
Heijungs 2014).More broadly, using sensitivity analysis with-
in life cycle environmental models to prioritize environmental
research and technology development decisions is an example
of anticipatory LCA (Ravikumar et al. 2013; Ravikumar et al.
2017; Wender et al. 2014a).

One available method to evaluate LCIA model sensitivity
to variability in substance data is to use Monte Carlo analysis
to sample from specified distributions (Sonnemann et al.
2003) and calculate CFs as frequency distributions as opposed
to point estimates (Lloyd and Ries 2007; van Zelm and
Huijbregts 2013). Calculating stochastic CFs enables sensitiv-
ity analyses that can help expedite data collection by identify-
ing the substance-specific parameters with the greatest influ-
ence onmodel output variability (Saltelli et al. 2008). This can
help conserve resources by focusing future research on exper-
iments with the greatest potential to reduce uncertainty of
model results, while substance data with little impact on re-
sults may be revealed as a low investigative priority (Fantke
et al. 2016).

The present paper introduces a Monte Carlo approach that
can be combined with toxicity characterization models to
specify substance input data as variable distributions, and pre-
sents resulting CFs as frequency distributions. To illustrate
this sensitivity-based approach, we apply it to USEtox 1.01
to develop stochastic aquatic ecotoxicity CFs for the vitamin
B derivative niacinamide (CAS 98-92-0), currently used at
low concentrations in commercial personal care products be-
cause of its antioxidant properties (Bissett et al. 2006). This
illustration represents a hypothetical case in which personal
care product developers are unsure about the potential
ecotoxicity impacts and want to improve their confidence. It
is critically important to align LCA interpretation methods to
support complex environmental decision-making under un-
certainty (Prado-Lopez et al. 2015). Results identify parame-
ters with most influence over the resulting CF.

2 Methods

USEtox calculates freshwater ecotoxicity CFs stored in a ma-
trix CF where matrix elements are expressed in comparative
toxicity units CTUe (PAF m3 d) per unit mass of emitted
substance, and calculated as the product of a matrix FF of fate
factors (kgin compartment per kgemitted/d), a matrix XF of ecosys-
tem exposure factors (kgbioavailable/kgin compartment), and a ma-
trix EF of ecosystem effect factors (PAF m3/kgbioavailable)
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(Eq. 1). Fate factors, eco-exposure factors, and ecotoxicity
effect factors represent the chemical residence time in fresh-
water (for an emission to freshwater), dissolved fraction in
freshwater, and aggregated multi-species toxicological re-
sponse, respectively (Henderson et al. 2011; Huijbregts et al.
2010a).

CF ¼ EF XF FF ð1Þ

Model structure, assumptions, and landscape data of
USEtox are not targeted in our study as they have been
assessed elsewhere, whereas the focus in the present study is
exclusively on prioritization of research regarding substance
input data.

2.1 Sensitivity-based approach

The sensitivity-based approach builds upon an existing toxic-
ity characterization model, except data inputs are specified as
probability distributions as opposed to point estimates. Input
data distributions are sampled independently 10,000 times,
and the values were used as input to USEtox to calculate fate,
eco-exposure, and ecotoxicity effect factors, and resulting CFs
plotted as frequency distributions along with descriptive sta-
tistics. To evaluate the relative influence of input parameter
variability on calculated CFs, we compare Spearman’s rank
correlation indices for all inputs that are not point estimates.

2.2 Fate and exposure data and modeling assumptions

Data are collected primarily from EPISuite (USEPA 2015b)
and supplemented with available literature as summarized in
Table 1. Niacinamide is included in USEtox 2.0 (http://usetox.
org) with fate- and exposure-relevant parameter values nearly
identical to those presented in Table 2 (Electronic
SupplementaryMaterial, Section 2.2). We collected parameter
estimates from an OECD Screening Information Dataset,
which reports experimentally-determined estimates for Kow
of 0.42 L/L and water solubility of 6.9–10 × 105 mg/L (UNEP
2002), which correspond closely with values reported by
EPISuite (USEPA 2015b). The National Center for
Biotechnology Information database reports Henry’s
Constant (Kh) as 2.9 × 10−7 Pa m3/mol and a vapor pressure
of 0.05 Pa (PubChem 2015b). We combine EPISuite outputs
and the USEtox organics manual (Huijbregts et al. 2010b) to
model CFs assuming uniform distributions for all degradation
rate constants and bioaccumulation factors (BAF) in fish fol-
lowing the baseline scenario of plus-or-minus one order of
magnitude from these point estimates as one possible way of
varying input parameters. A uniform distribution was applied
to all parameters (except the molecular weight which is a
known quantity) to illustrate the sensitivity-based approach

given little formal uncertainty information and to reduce ef-
forts in data collection.

2.3 Effect factor data and modeling assumptions

We calculate freshwater ecotoxicity effect factors (EF) for
niacinamide using variable toxicology data from acute and
chronic toxicity tests on producers (algae), primary consumers
(invertebrates), and secondary consumers (fish) (Hauschild
and Huijbregts 2015; Huijbregts et al. 2010a). Toxicity data
used in the present paper are reported as the concentration at
which 50% of the exposed organisms over background exhibit
the studied effect (EC50), inhibited growth (IC50), or lethality
(LC50) (Müller et al. 2017), and were taken from available
literature as summarized in Table 2. These studies correspond
with values reported in the REACH database, with the excep-
tion of reported acute toxicity to the common guppy fish
(Poecilia reticulata) which we report as >1000 mg/L and the
REACH database reports at 4 g/L (REACH 2017).

We divide the acute toxicity data points reported in Table 2
by a generic acute-to-chronic conversion factor of 2 to extrap-
olate the chronic equivalent EC50, which in itself is a rough and
uncertain extrapolation due to general lack of chronic data that
is worthy of further research. It is noteworthy that for niacin-
amide, only acute toxicity data were available, in part, because
chronic tests may be considerably more expensive, which
points to a broader research need to fill data gap related to
chronic toxicity impacts. The dataset contains a misclassified
acute EC50 value of 0.34 mg/L reported in the ECOTox and
RIVM ETox databases (RIVM 2015; USEPA 2015a), which
references to a study that considers nicotine and 6-
aminonicotinamide (Dawson and Wilke 1991) instead of nia-
cinamide, which has been brought to the attention of the re-
spective database managers. Unfortunately, this is the only val-
ue implemented in the recently released USEtox 2.0, which
results in a niacinamide ecotoxicity CF for emission to fresh-
water on the order of 105 PAFm3 d/kg—surprisingly large for a
vitamin B derivative widely considered to be innocuous at rel-
evant commercial and environmental concentrations (CIREP
2005). Thus, we exclude this value in calculating EFs for nia-
cinamide, although the influence of the data point on aggregate
multi-species hazardous concentration (avLog EC50) estima-
tion and standard error on the mean (SEM) calculation is sig-
nificant (Electronic Supplementary Material, Section 2.3.1).

To calculate hazardous concentrations avLog EC50 from
the individual studies reported in Table 2, we take the log of
the geometric mean across all reported EC50 values per spe-
cies and then calculate the average of these values across all
species (Huijbregts et al. 2010a; Müller et al. 2017)
(Electronic Supplementary Material, Section 2.3.2). This rep-
resents the concentration at which half of the exposed aquatic
species are affected above their median EC50 values, and is
103.2 = 1850 mg/L for niacinamide with a standard error on

Int J Life Cycle Assess

http://usetox.org
http://usetox.org


the mean (SEM) of 0.04 for niacinamide (Electronic
Supplementary Material, Section 2.3.2). Uncertainty in the
average toxicity ( �avLog ) follows a Student’s t distribution
(Golsteijn et al. 2012; Van Zelm et al. 2007) centered around
avLog EC50 and scaled by the SEM, shown in Eq. 2:

�avLog ¼ avLog EC50 þ SEM*t ð2Þ

where t represents a two-tailed t distribution with n-1 degrees
of freedom from n different species with reported toxicity data
(Electronic Supplementary Material, Section 2.3.2).

3 Results and discussion

Freshwater aquatic ecotoxicity CFs for niacinamide emitted
directly into air, water, and soil compartments (Fig. 1) show
two or more orders of magnitude variability resulting from the
assumed plus-or-minus one order of magnitude variation of
input data in the baseline scenario. These results are generated
through the full sampling of distributions specified in Table 1
as well as �avLog, and thus represent freshwater aquatic
ecotoxicity CFs resulting from simultaneous changes in all
variable substance input data.

Table 1 Fate and exposure-relevant data for USEtox 1.0 and modeled variance

Parameter Description Units
Point 

value(s)

Baseline 

variance
Reference

MW
Molecular 

weight
g/mol 122

122
Chemical formula

Kow

Octanol-water 

partitioning 

coefficient

L/L 0.42
4.2×10–2

 − 4.2
OECD SIDS

Koc

Soil organic 

carbon-water 

partitioning 

coefficient

L/kg 8.5
0.85 − 85 

EPISuite, Kocwin

Kh

Henry’s law 

constant Pa m
3
/mol

2.9 × 10–7

6.45 ×10–6 2.9×10–8 − 2.9×10–
 

6

PubChem database

USEtox Guidance

Pvap Vapor pressure Pa
0.026
0.05 5×10–3 − 0.5

EPISuite, MPBPVP

PubChem database

Solubility
Solubility in 

water
mg/L

5e5

6.9−10 × 10
5

5×104
 − 5×106

EPISuite, exper.

OECD SIDS

kdeg, air
Degradation rate 

constant in air

L/s

1.8 × 10–6

1.8×10–7 − 1.8×10–

5

EPISuite, AOPWin

USEtox manual

kdeg, 

water

Degradation rate 

constant in water
2.1 × 10–7

2.1×10–8 − 2.1×10–

6

EPISuite, Biowin

USEtox manual
kdeg, soil

Degradation rate 

constant in soil
1 × 10–7

1×10–8 − 1×10–6

kdeg, sed
Degradation rate 

constant in 

sediment

2.3 × 10–8 
2.3×10–9

 − 2.3×10–

7

BAF fish
Bioaccumulation 

factor in fish
L/kg 0.9

0.09 − 9.0
EPISuite, BCFBAF

Int J Life Cycle Assess



Results in Fig. 1e are obtained from USEtox 1.01,
where niacinamide (nicotinamide USEtox) is treated as
neutral as opposed to a weak dissociating base. Table 3
compares the results from Fig. 1 to those reported by
USEtox 2.0, which includes dissociation of the weak
base niacinamide. The geometric mean of the CF distri-
butions from Fig. 1 (rows 6) are consistently smaller in
magnitude than the point estimate CFs obtained using
parameter values from USEtox 2.0 (rows 1 and 2),
whereas the arithmetic mean is within one order of
magnitude for each emission scenario. Inclusion of the

misclassified ecotoxicity data point from the RIVM and
EPA databases discussed in Section 2.3 above results in
CF estimates two or three orders of magnitude larger
(rows 1 and 3) than calculations for which this data
point is omitted (rows 2 and 4), regardless of which
USEtox model version or emission compartment is con-
sidered. Comparison of rows 2 and 4 shows that inclu-
sion of dissociation has relatively small influence on the
CFs calculated for niacinamide, and that using USEtox
version 1.01 is justifiable for illustrating our approach
for this chemical.

Fig. 1 Stochastic freshwater aquatic ecotoxicity CFs for the antioxidant
niacinamide emitted to urban air (a), continental freshwater (b), natural
soil (c), rural air (d), marine water (e), and agricultural soil compartments

(f). Solid lines are frequency distributions from 10,000 Monte Carlo runs
and dashed lines are normal distributions fit to the log-transformed data

Table 2 Data from individual acute ecotoxicity studies

Reference Species n = 3 Test type and endpoint Reported value(s) (mg/L) Chronic eqiv. EC50 value (mg/L)

Producers

OECD SIDS, 2002 S. subspicatus 72 h acute EC50 >1000 500

Algae—generic QSAR, 96 h Acute EC50 8934 4500

Primary consumers

OECD SIDS, 2002 D. magna 24 h acute EC50 >1000 500

Daphnid—generic 48 h acute EC50, QSAR 16,456 8000

Secondary consumers

OECD SIDS, 2002 P. reticulata 96 h acute LC50 >1000 500

Fish—generic 96 h acute LC50, QSAR 18,189 9000

ECOTox database, 2015a X. laevis 96 h acute EC50, embryonic 0.34 0.17

aMisclassified data point contained in ECOTox database
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3.1 Identifying the most influential substance input
parameters

To estimate the relative influence of varied input parameters
used to calculate niacinamide freshwater ecotoxicity CFs, we
take the absolute value of the Spearman’s rank correlation

index for emissions to all six considered compartments
(Fig. 2). Spearman rank correlation assumes independence
of observations within each parameter and makes no assump-
tions about the distribution type (Gauthier 2001). However,
many of the substance parameters in USEtox are themselves
calculated as a function of other substance input parameters

Table 3 Comparison of our results to USEtox 1.01 and 2.0 CFs

Model description Freshwater ecotoxicity CF [PAF m3 d/kg] for emission to:

Urban air Rural air Freshwater Marine water Natural soil Agricultural soil

USEtox 2.0 1.98E + 04 1.90E + 04 1.15E + 05 8.72E-03 2.72E + 04 2.74E + 04

USETox 2.0 w/ correct data 3.2 3.1 19.3 1.4E-6 4.5 4.5

USEtox 1.0 w/ erroneous data point 3.4E + 04 3.4E + 04 1.2E + 05 8.9E-03 4.8E + 04 4.8E + 04

USEtox 1.0 w/ correct data 3.6 3.6 12 9.5E-07 5.2 5.2

Arithmetic mean from stochastic CF 0.29 0.25 3.0 1.4e-7 0.46 0.46

Geometric mean from stochastic CF 0.02 0.01 9.0 4e-21 0.04 0.04

Fig. 2 The Spearman rank
correlation indices with the
greatest magnitude out of all
variable inputs for six
niacinamide freshwater aquatic
ecotoxicity CFs as shown in
Fig. 1. Greater magnitude
indicates that the input parameter
has a greater influence on CF
variability for that emission
compartment
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using simple regressions, for example, calculating degradation
rate constants for soil and sediment with linear extrapolation
factors, and are therefore not independent. We do not account
for the interdependence of input parameters, as the focus here
is on identifying only the few most influential substance
properties, although, e.g., Fantke et al. (2012) demonstrate
how it is possible to decouple parameter uncertainty (e.g., in
Koc) from regression-related uncertainty for correlated pa-
rameters (e.g., estimating Koc from Kow).

Spearman’s rank correlation results show that degradation rate
constants in the receiving compartment are the most influential
parameters in calculating CFs, with aquatic degradation rate con-
stants always first or second in all emission scenarios (Fig. 2). In
addition to degradation rate constants, Henry’s constant is influ-
ential for air and water emissions, whereas soil organic carbon-
water partitioning coefficient is more influential for emissions to
soil. The toxicity indicator �avLog is within the top five most
influential parameters for all emission scenarios, but is generally
less influential than the aforementioned fate-relevant parameters.
The remaining parameters have little influence on CF variability
for the studied chemical, thus narrowing the assumed variability
will have little impact. Uncertainty in degradation rate constants
were evaluated as a range of plus-or-minus one order of magni-
tude based on EPISuite point estimates (Table 2). Given the im-
portance of degradation rate constants in estimating the potential
freshwater ecotoxicity, further research into degradation mecha-
nisms are high priorities for reducing uncertainty in niacinamide
freshwater aquatic ecotoxicity CFs. Because CFs are not linear
with respect to input parameters such as Kow, these results should
not be interpreted across chemicals, as many will likely be most
sensitive to changes in this parameter (Fantke and Jolliet 2016).

3.2 Decomposing CFs into fate, exposure, and effect
components

Decomposition of niacinamide CFs into the component fate
factor (FF) for emission to freshwater, the dissolved fraction
(exposure factor XF), and aggregate multi-species toxicity

(effect factor EF) (Fig. 3a–c) shows that XF is essentially one,
whereas FF and EF show approximately two orders of magni-
tude variability from the assumed plus-or-minus one order of
magnitude variability assumed around input parameters.

Figure 3 shows that the average residence time for niacin-
amide in freshwater is approximately 14 days, with the dom-
inant removal pathway being degradation. XF is effectively a
point value of 1, which represents 100% of emitted niacin-
amide as dissolved and bioavailable in freshwater. EF has an
average value of 0.27 compared to 2900 PAF m3/kg that is
obtained when using reported freshwater ecotoxicity data
from the Etoxbase database as applied in USEtox 2.0, with
the large difference due to the omission of one misclassified
data point in Etoxbase. The lower value is intuitive for the
vitamin B derivative and on the same order of magnitude as
chemicals such as urea and isopropyl alcohol.

Overall, it is important to note that sensitivity of character-
ization factors toward the different input parameters used in
USEtox or other models will differ largely between chemicals.
For example, it has been shown that fate and bioaccumulation
factors are very sensitive to Kow, particularly for very lipo-
philic chemicals, where Kow is known to drive many fate and
exposure processes (MacLeod et al. 2002; Fantke et al. 2016).
Furthermore, any non-linear relationship between input and
output parameters will not allow for transferring sensitivity
conclusions from one chemical to another as soon as
chemicals have different physicochemical property values.
Nonetheless, for each chemical individually, our sensitivity
analysis is able to identify further research and data priorities
to improve toxicity characterization modeling.

4 Conclusions

LCIA method developers can apply this sensitivity-based ap-
proach in combination with existing LCIA toxicity character-
ization models to expedite expansion and review of toxicity
databases by identifying the most influential substance input
data for distinct chemical classes, and then focusing their

Fig. 3 Component fate (a), exposure (b), and effect factors (c) for niacinamide. Solid lines are frequency distributions of 10,000 Monte Carlo runs and
dashed lines are log normal and normal distributions fit to the FF and EF data, respectively
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efforts on reducing parameter uncertainty on these estimates
by finding or providing experimental data or otherwise im-
proved estimates. Analogous to the case of niacinamide
discussed within this manuscript , it is likely that only few
model input parameters are significant for each chemical,
and analyzing uncertainty estimates for these parameters
may allow future quantification of parameter uncertainty for
all chemicals currently included and foreseen for inclusion in
LCIA models (similar to what has been done for global esti-
mates of model uncertainty). Furthermore, we encourage
LCA practitioners to apply this same approach to the life cycle
inventory items that contribute most to ecotoxicity impacts to
increase confidence in interpretation of LCIA results.

The approach outlined in the present paper has potential for
broader application to different LCIA models and other im-
pact categories that use simplified fate and effect modeling
based on variable substance properties. Uncertainty surround-
ing calculation of potential environmental impacts represents
an opportunity to reevaluate LCIA estimates for commercially
available, well-studied chemicals. In the context of emerging
contaminants, calculating CFs stochastically allows identifi-
cation of which input parameters are most influential to char-
acterization results, and use this information to help prioritize
experimental research. Our results suggest that focusing ex-
perimental resources on improving data for degradation in air,
water, and soil has the greatest potential to reduce uncertainty
of current niacinamide CF estimates. In this capacity, stochas-
tic evaluation of impact assessment models to identify the
most influential parameter uncertainties and inform future re-
search constitutes an example of anticipatory LCA (Wender
et al. 2014b; Ravikumar et al. 2016).
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