
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017 2627

Real-Time Digital Signatures for
Time-Critical Networks

Attila Altay Yavuz, Member, IEEE, Anand Mudgerikar, Ankush Singla,

Ioannis Papapanagiotou, Senior Member, IEEE, and Elisa Bertino Fellow, IEEE

Abstract— The secure and efficient operation of time-critical
networks, such as vehicular networks, smart-grid, and other
smart-infrastructures, is of primary importance in today’s soci-
ety. It is crucial to minimize the impact of security mechanisms
over such networks so that the safe and reliable operations
of time-critical systems are not being interfered. For instance,
if the delay introduced by the crypto operations negatively
affects the time available for braking a car before a collision,
the car may not be able to safely stop in time. In particular,
as a primary authentication mechanism, existing digital signa-
tures introduce a significant computation and communication
overhead, and therefore are unable to fully meet the real-time
processing requirements of such time-critical networks. In this
paper, we introduce a new suite of real-time digital signatures
referred to as Structure-free and Compact Real-time Authenti-
cation (SCRA), supported by hardware acceleration, to provide
delay-aware authentication in time-critical networks. SCRA is
a novel signature framework that can transform any secure
aggregate signature into a signer efficient signature. We instan-
tiate SCRA framework with condensed-RSA, BGLS, and NTRU
signatures. Our analytical and experimental evaluation validates
the significant performance advantages of SCRA schemes over
their base signatures and the state-of-the-art schemes. Moreover,
we push the performance of SCRA schemes to the edge via highly
optimized implementations on vehicular capable system-on-chip
as well as server-grade general purpose graphics processing units.
We prove that SCRA is secure (in random oracle model) and
show that SCRA can offer an ideal alternative for authentication
in time-critical applications.

Index Terms— Applied cryptography, digital signatures,
real-time authentication, hardware-acceleration.

I. INTRODUCTION

TECHNOLOGICAL advances in sensors and embed-

ded systems are making the deployment of “smart”

Manuscript received December 25, 2016; revised April 12, 2017 and
May 29, 2017; accepted June 3, 2017. Date of publication June 19,
2017; date of current version July 26, 2017. This material is partially
based upon work supported by the Department of Energy under Award
DE-OE0000780 and by the NSF CAREER Award CNS-1652389 at Oregon
State University. This work was supported in part by NSF under Award
CNS-1719369 and Award ACI-1547390 at Purdue University. The associate
editor coordinating the review of this manuscript and approving it for
publication was Prof. Qian Wang. (Corresponding author: Attila Altay Yavuz.)

A. A. Yavuz is with the School of Electrical Engineering and Computer
Science, Oregon State University, Corvallis, OR 97331 USA (e-mail:
attila.yavuz@oregonstate.edu).

A. Mudgerikar, A. Singla, and E. Bertino are with the Computer Science
Department, Purdue University, West Lafayette, IN 47907 USA (e-mail:
amudgeri@purdue.edu; asingla@purdue.edu; bertino@purdue.edu).

I. Papapanagiotou is with Netflix Inc., Los Gatos, CA 95032 USA,
and also with Purdue University, West Lafayette, IN 47907 USA (e-mail:
ipapapa@ncsu.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIFS.2017.2716911

infrastructures possible. Such infrastructures will usher

automation in a large number of application domains such as

transportation, manufacturing, smart-grid and urban life (e.g.

Smart-city).

Because of their control capabilities and pervasive data

acquisition, securing such smart-infrastructures is a critical

requirement. Even though many security techniques are avail-

able, their application to smart infrastructures is not straight-

forward, especially when such infrastructures are based on

networks that include mobile devices, and for safety reasons,

they have to meet real-time requirements. We refer to such

networks as time-critical networks.

An example is a vehicular network in which events from

vehicles, such as sudden brake of a vehicle, have to be

communicated promptly to the other vehicles in the network

so that they can timely react to the events. Scalability

is also crucial as many envisioned time-critical networks

involve huge numbers of devices and systems. A key security

technique for any comprehensive solution is represented

by authentication as it is critical for establishing trust

and securing communications among parties in a network.

Authentication techniques have been widely investigated.

However, to meet the real-time and scalability requirements of

large scale time-critical networks, we need techniques that are

far more efficient than the currently available ones. It is critical

that devices in such a network should be able to respond

and/or to initiate a large number of authentications in a small

time-frame.

To address such a requirement, in this paper we develop

a series of fast digital signatures, supported by hardware-

acceleration, to enable real-time authentication in time-critical

networks. We introduce a generic signature framework,

referred to as Structure-free and Compact Real-time

Authentication (SCRA), that can be instantiated with any

secure aggregate signature. We then develop specific

SCRA instantiations from Condensed-RSA [30], BGLS [7],

NTRU [27] and PASSSign [18], and demonstrate that these

SCRA schemes are significantly more computationally effi-

cient than their counterparts in modern CPUs. We also

computationally parallelize SCRA across thousands light-

weight threads commonly supported by modern GPUs. We

use several optimizations and show that the performance

can be higher compared to the performance obtained when

the CPU is used. Finally, we apply similar optimiza-

tions to SoCs commonly used by car manufacturers and

IoT deployments.

1556-6013 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2628 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

A. State-of-the-Art Methods and Limitations

We outline the advantages and limitations of authentication

mechanisms that are most relevant to our work.

1) Message Authentication Codes and Standard Digital

Signatures: Symmetric crypto-based authentication mecha-

nisms rely on Message Authentication Code (MAC) [28].

Despite their computational efficiency, these methods are

not practical for broadcast authentication in large-scale dis-

tributed systems, as they require pairwise key distribution

among all signers and verifiers. They also cannot achieve

non-repudiation and public verifiability. Digital signatures

(e.g., RSA [35], ECDSA [3]) rely on the Public Key Infrastruc-

tures (PKIs) [28], which makes them publicly verifiable and

scalable for large systems. Hence, they are considered as

a primary authentication mechanism for large-scale delay-

aware systems. For instance, the vehicular WAVE architecture

mandates the use of PKI mechanisms to sign critical mes-

sages [2]. Despite their scalability, standard digital signature

schemes require several expensive operations such as modular

exponentiation and pairing (e.g., BLS [8]). Therefore, they are

not suitable for time-critical authentication. It has been shown

that they introduce significant delays, which are unacceptable

in time-critical networks such as vehicular networks [33].

2) Delayed Key Disclosure and Amortized Signatures:

Delayed key disclosure methods [32] are efficient as they

introduce an asymmetry between signer and verifier via a

time factor. However, these methods require packet buffering,

and therefore cannot achieve immediate verification (which is

vital for delay-aware authentication). Signature amortization

(e.g., [25]) computes a signature over a set of messages instead

of individual messages. Hence, the cost of signature generation

and verification is amortized over multiple messages. However,

these methods require packet buffering and introduce packet

loss risk due to the use of hash chains.

3) Specialized Signatures: One-Time Signatures (OTSs)

(e.g., [34]) offer fast signature generation and verification.

However, they incur very large signature and public key sizes,

and also public keys must be renewed frequently. Various

customizations of traditional signatures (along with crypto-

graphic pairing [8]) and OTSs for time-critical systems such

as vehicular networks (e.g., [16]) and smart-grids have been

proposed. However, these schemes still suffer from computa-

tional inefficiency (due to heavy use of pairings) or public key

distribution issues (OTSs).

The offline-online signatures (e.g., [31]) pre-compute a

token for each message to be signed at the offline-phase, and

then use it to compute a signature on a message very effi-

ciently at the online-phase. Despite their merits, offline-online

signatures incur significant storage overhead (i.e., linear with

respect to the number of messages to be signed). Moreover,

they require heavy computation for applications with high

message throughput, since the signer depletes pre-computed

tokens rapidly and is forced to regenerate them at the online-

phase. Hence, offline-online signatures are not suitable for

time-critical networks with high message throughput.

Our prior work Rapid Authentication (RA) [41] is an

efficient offline-online signature, which leverages the already

available pre-defined message structures in certain applications

(e.g., smart-grid) to reduce the computational and storage

overhead of RSA-type offline-online constructions. Despite its

advantages, RA is only suitable for applications that have a pre-

defined message structure with a limited number of message

components. Moreover, RA requires pre-computed tokens (i.e.,

one-time masking signatures) to be stored/renewed per item as

in traditional offline-online techniques. Hardware-Accelerated

Authentication (HAA) [39] exploits hardware acceleration to

speed up RA in various settings. HAA demonstrates the ben-

efit of hardware acceleration to reduce the end-to-end delay

of digital signature schemes. In particular, HAA shows the

performance advantages offered by GPUs for offline-online

signatures to batch regenerate tokens as they are depleted.

B. Our Contribution

We develop a new suite of delay-aware signatures that we

refer to as Structure-Free and Compact Authentication (SCRA)

to enable fast authentication for time-critical networks.

1) Main Idea: SCRA is based on the observation that the

signature aggregation operation of some signature schemes is

several magnitudes of times faster than that of their signature

generation. We leverage this fact to shift the expensive opera-

tions of signature generation phase to the key generation phase.

That is, at the key generation (offline), we compute a set of

signatures on the bit-structures of a hash output domain. Later,

we can combine these pre-computed signatures very efficiently

based on the hash of each message without enforcing a

message format (e.g., unlike [41]) or storage/regeneration of a

token per-message (e.g., unlike offline-online signatures (e.g.,

RA [9], [41]) that incurs linear storage and re-computation

overhead). This simple but elegant strategy enables SCRA to

achieve very fast signature generation, a low end-to-end cryp-

tographic delay, small-constant signature sizes with a constant-

size private/public key. Figure 1 further outlines our main idea.

2) Properties: We outline below the relevant properties of

our schemes.

• Generic and Simple Design: SCRA can be instantiated

from any aggregate signature. We prove that SCRA is

EU-CMA-secure if its base scheme is IA-EU-CMA secure

(see Section II). We show that SCRA is at least a magnitude

times faster than standard signatures as shown in Table I even

without optimization.

• Highly Fast Signing, Low Delay and Compactness: We

develop several instantiations of SCRA offering performance

trade-offs with different computational overhead, signature and

key sizes.

- SCRA-C-RSA is constructed from C-RSA [30], which trans-

forms the highly costly exponentiation of RSA signing into

a few modular exponentiations, followed by already efficient

signature verification. Therefore, SCRA-C-RSA offers the

lowest end-to-end delay among all of its counterparts (e.g.,

7 and 18 times faster than ECDSA and RSA, respec-

tively) with a signature size of standard RSA. This makes

SCRA-C-RSA an ideal choice for time-critical applications

with a reasonable signature size.

- SCRA-BGLS is constructed from BGLS [7], which reduces

the signing cost from an exponentiation to a few modular

YAVUZ et al.: REAL-TIME DIGITAL SIGNATURES FOR TIME-CRITICAL NETWORKS 2629

Fig. 1. The main idea behind our preliminary construction.

TABLE I

THE ESTIMATED EXECUTION TIME (IN msec) OF SCRA AND ITS COUNTERPARTS

multiplications. SCRA-BGLS offers the smallest signature

size among all counterparts with a minimal signer overhead,

making it suitable for resource-limited devices.

- SCRA-NTRU is based on the NTRU [27] signature scheme.

It is important to mention that we use the NTRU scheme

that is secure against transcript attacks [13]. Signatures are

aggregated using the lattice based aggregation technique

described in [15]. The lattice based sequential aggregate

signature is proven to be secure in the random oracle security

model [4]. Due to its moderate signature and key sizes and

low end-to-end delay, SCRA-NTRU is ideal for time-critical

applications.

- SCRA-NTRUPASS is based on the PASS [18] signature

scheme. It is also a lattice based cryptographic scheme based

on the partial Fourier recovery problem.

• Performance Enhancements via Hardware-Acceleration:

We improve the performance of SCRA by developing vari-

ous hardware-acceleration and software-optimizations, which

enable significant speed improvements (see Section VI).

II. DEFINITIONS AND MODELS

We first introduce our notation and definitions, followed

by our system and threat model. We then give our security

model, in which we clarify the security properties of the

SCRA schemes.

A. Notation and Definition

|S| denotes the cardinality of set S. {xi}
l
i=0 denotes (x0, . . . ,

xl). x
$

← S denotes that variable x is randomly and uniformly

selected from set S. ||, |x | and {0, 1}∗ denote the concatenation

operation, the bit length of variable x and the set of binary

strings of any finite length, respectively.

Definition 1: A signature scheme SGN is a tuple of three

algorithms (Kg, Sig, Ver) defined as follows:

- (sk, PK) ← SGN.Kg(1κ): Given the security

parameter 1κ , the key generation algorithm returns

a private/public key pair (sk, PK) as the output.

- s ← SGN.Sig(m, sk): The signing algorithm takes a

message m ∈ {0, 1}∗ and a private key sk as the input,

and returns a signature s as the output.

- {0, 1} ← SGN.Ver(m, s, PK): The verification algorithm

takes a message m ∈ {0, 1}∗, signature σ and public key

PK as the input. It returns a bit: 1 means valid and 0

means invalid.

SCRA relies on aggregate signatures [7], which can aggregate

multiple signatures into a single compact signature. SCRA uses

a single-signer aggregate signature (e.g., [30], [43]), which

aggregates signatures computed under the same private key.

Definition 2: A single-signer aggregate signature ASig is

defined as follows:

2630 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

- (sk, PK) ← ASig.Kg(1κ): Given the security parameter

1κ , the key generation algorithm returns a private/public

key pair (sk, PK) as the output.

- γi ← ASig.Sig(mi , sk): The signing algorithm takes a

message mi ∈ {0, 1}∗ and private key sk as the input.

It returns a signature γi computed under sk as the output.

- s ← ASig.Agg(γ1, . . . , γL , params): The aggregation

algorithm takes a set of signatures γ1, . . . , γL and option-

ally some parameters params as the input. It returns

a single-compact signature s as the output. Optional

params may include sk (aggregation under private key)

or PK (public aggregation) depending on specific instan-

tiations. We will omit params for the sake of simplicity.

- {0, 1} ← ASig.Ver(−→m , s, PK): The verification algorithm

takes messages −→
m = (m1, . . . , mL), aggregate signa-

ture s and PK as the input. It returns a bit: 1 means valid

and 0 means invalid.

B. System and Threat Model

Our system model follows the traditional PKC-based broad-

cast authentication model (e.g., [41]), in which a signer

computes a digital signature on a message and broadcasts a

message-signature pair to the verifiers. This model is com-

patible with our target time-critical applications. For instance,

in vehicular networks, a vehicle or road infrastructure broad-

casts authenticated messages to the surrounding entities as

described in vehicular communication standards [2]. Our threat

model reflects how a standard digital signature-based broadcast

authentication works. That is, an adversary A can observe

message-signature pairs computed under a private key. A also

can actively intercept, modify, inject and replay messages

transmitted over the network. A aims at producing existential

forgeries against the digital signatures computed by signers.

C. Security Model

The security notion for a signature is Existential Unforge-

ability under Chosen Message Attacks (EU-CMA).

Definition 3: The EU-CMA experiment for SGN is as

follows:
- Setup. Algorithm B runs (sk, PK) ← SGN.Kg(1κ) and

provides PK to the adversary A .

- Queries. A queries B on any message m j of her

choice for j = 1, . . . , qs . B replies to each query with

a signature s j ← SGN.Sig(m j , sk).

- Forgery. A outputs a forgery (m∗, s∗) and wins the

EU-CMA experiment, if SGN.Ver(PK, m∗, s∗) = 1 and

m∗ was not queried to B .
SGN is (t, qs, ε)-EU-CMA secure, if no A in time t making

at most qs queries has an advantage with probability ε.

SCRA is constructed from a single-signer aggregate signa-

ture that achieves the signature immutability (described in

detail below). The basic security notion for aggregate sig-

natures is Aggregate-EU-CMA (A-EU-CMA) [7], [20], which

captures the homomorphic properties of aggregate signatures.

Later, the security of aggregate signatures has evolved to cap-

ture improved security properties such as signature immutabil-

ity. Intuitively, signature immutability refers to the difficulty of

computing new valid aggregated signatures from a set of other

aggregated signatures [29]. To describe Immutable-A-EUCMA

(IA-EU-CMA) [26], [43] security, we first define the aggregate

signature extraction argument as below.

1) Aggregate Signature Extraction: The L-aggregate signa-

ture extraction problem, referred as AE problem, means that

for a given aggregate signature s ← ASig.Agg(γ1, . . . , γL)

computed on L individual data items, it is difficult to extract

the individual signatures (γ1, . . . , γL) provided that only s

is known to the extractor. Moreover, it is difficult to extract

any aggregate signature subset s′ from a given aggregate

signature s [42]. The AE problem was first introduced by

Boneh et al. in [7] for the security of BGLS signatures,

but as an intractability assumption without a proof. Coron

and Naccache [10] later showed that Boneh’s AE problem

for BGLS scheme is equivalent to the Computational Diffie

Hellman Assumption (CDH) [21]. Yavuz et al. [43] analyzed

the log truncation problem for forward-secure and aggregate

signatures [26], and produced formal proofs with AE argu-

ment for only the DLP-based schemes [43]. A related problem

in the context of one-way accumulators for RSA have been

considered in [6], which extends to other aggregate RSA

variants (e.g., C-RSA [29]).

Definition 4: The AE experiment for a ASig is as

follows [42]:

- Setup. Algorithm B runs (sk, PK) ← ASig.Kg(1κ) and

provides PK to the adversary A .

- Queries. A queries B on any batch message comprised

of L individual messages −→
m j = (m j,1, . . . , m j,L) of her

choice for j = 1, . . . , qs . B replies to each query j with

an aggregate signature s j ← ASig.Agg(γ j,1, . . . , γ j,L),

where {γ j,i ← ASig.Sig(m j,i , sk)}L
i=1.

- Aggregate Extraction. A outputs (−→m ∗, σ ′), where −→
m ∗ =

(m∗
1, . . . , m∗

k), 1 ≤ k ≤ L and wins the AE experiment,

if

1. ASig.Ver({m∗
i }i∈{1,...,k}, σ

′, PK) = 1,

2. −→
m ∗ is a subset of previously queried or some combi-

nation of previously queried batch messages: ∃I ′ ⊆

{1, . . . , qs} : −→m ∗ ⊆ ||k∈I ′
−→m k . This implies that

−→
m ∗ itself as a batch query never has been queried

directly to B (but individual data items in −→
m ∗ have

been queried as an element of different batch queries

before, but not individually),

3. The extraction is non-trivial: If −→m ∗ is combined with

any previously queried or a combination of previously

queried batch messages, the combination is not equal

to one of the previously queried batch message itself:

∀I ⊆ {1, . . . , qs} : [
−→
m ∗||(|| j∈I

−→
m j)] �= {

−→
m l}

qs

l=1.

ASig is (t, qs, ε)-AE secure, if no A in time t making at most

qs queries has an advantage with probability ε.

We now provide the definition of Immutable-A-EUCMA

(IA-EU-CMA) security [26], [43] as below:

Definition 5: The IA-EU-CMA experiment for a ASig is as

follows [42]:

- Setup. Algorithm B runs (sk, PK) ← ASig.Kg(1κ) and

provides PK to the adversary A .

- Queries. A queries B on any batch message comprised

of L individual messages −→
m j = (m j,1, . . . , m j,L) of her

choice for j = 1, . . . , qs . B replies to each query j with

YAVUZ et al.: REAL-TIME DIGITAL SIGNATURES FOR TIME-CRITICAL NETWORKS 2631

an aggregate signature s j ← ASig.Agg(γ j,1, . . . , γ j,L),

where {γ j,i ← ASig.Sig(m j,i , sk)}L
i=1.

- Forgery. A outputs a forgery (−→m ∗, γ ∗) and wins the

experiment IA-EU-CMA, if

1. The forgery is valid as ASig.Ver(−→m ∗ , γ ∗, PK) = 1,

2. −→
m ∗ is a subset of previously queried or some com-

bination of previously queried batch messages: ∃I ′ ⊆

{1, . . . , qs} :
−→
m ∗ ⊆ ||k∈I ′

−→
m k ,

3. Batch query −→
m ∗ has not been queried previously

as −→m ∗ �⊆ {−→m j }
qs

j=1. This implies one of the two

conditions: (i) At least one item m∗′ ⊆
−→
m ∗ has never

been queried to B , or (ii) the AE experiment wining

conditions 2-3 hold as described in Definition 4.

ASig is (t, qs, ε)-IA-EU-CMA-secure, if no A in time t

making at most qs queries has an advantage at least with

probability ε.

III. PROPOSED SCHEMES

In this section, we present our proposed schemes. We

first describe the SCRAdigital signature framework. We

then provide several instantiations of the generic SCRA,

each offering a unique performance benefit compared to

the others.

A. Structure-Free and Compact Real-Time Authentication

SCRA can transform any aggregate signature into a signer-

efficient signature scheme, whose signing operation is as

fast as just the aggregation (i.e., simple modular addition

or multiplication) of a small set of pre-computed signatures.

SCRA has several advantages over the state-of-the-art sig-

natures: (i) SCRA is a magnitude(s) of times more efficient

with respect to signature generation than standard signatures

(e.g., RSA [35], ECDSA [3], BGLS [7]). (ii) Unlike message-

formatted signature schemes [41], SCRA does not require

any pre-defined message formats. (iii) Unlike offline-online

signatures [31], [37], [41], SCRA does not require linear-

sized token storage. (iv) SCRA offers compact signature and

public key sizes, and therefore is more scalable than one-time

signatures (e.g., [34]).

The detailed description of SCRA is given in Algorithm 1.

We further elaborate as follows:

Let (sk′, PK ′) ← ASig.Kg(1κ) be a ASig key pair and H :

{0, 1}∗ → {0, 1}d be an ideal hash function (i.e., H behaves

as a Random Oracle (RO) [4]), where d-bit denotes the output

length of the cryptographic hash function.
1) Key Generation (Offline): We apply a divide-and-

conquer strategy over the hash output H : {0, 1}∗ → {0, 1}d .

That is, a d-bit hash output can be interpreted as integers

(j1, . . . , jL), where each ji is a b-bit integer such that b · L =

d . We then compute a signature on each b-bit integer j

with its corresponding index i as m̃i, j ← i || j ||P , γi, j ←

ASig.Sig(m̃i, j , sk ′), i = 1, . . . , L, j = 0, . . . , 2b − 1, where

P is a random padding. The index (i, j) will enable the signer

to select the corresponding pre-computed signature from the

table � in the online phase for a given message, and therefore

ensure the correctness of the scheme. Moreover, the index i

enforces the order of the bit chunks in the online phase.

The random padding P is added to ensure that, for practical

applications, the input of hash function remains larger than d

as required.

We construct a pre-computed sub-message/signature table

� = {m̃i, j , γi, j }
L ,2b−1
i=1, j=0, which supports very efficient signa-

ture generation. � is constant-size (e.g., unlike [9], [31]) and

imposes no structure/length constraints on the online messages

to be signed (e.g., unlike [41]).

2) Signature Generation: Given m ∈ {0, 1}∗, the signer

computes (M∗
1 , . . . , M∗

L) ← H (m||r), and fetches the cor-

responding signatures γ ′
i of i ||M∗

i ||P from �, where r
$

←

{0, 1}κ , i = 1, . . . , L. The rest is to combine signatures

efficiently as s ← ASig.Agg(γ ′
1, . . . , γ ′

L), where σ ← (r, s).

3) Signature Verification: The verifier computes

(M∗
1 , . . . , M∗

L) ← H (m||r) and verifies σ as

{0, 1} ← ASig.Ver(〈1||M∗
1 ||P, . . . , L||M∗

L ||P〉, s, PK ′).

B. Instantiations of SCRA

An ideal aggregate signature to instantiate SCRA must

achieve very efficient signature aggregation and

IA-EU-CMA security. We identified three signatures to

instantiate SCRA: Condensed-RSA (C-RSA) [30] based

on RSA [35], BGLS [7] based on pairing and aggregate-

NTRU signatures [15], [36] based on NTRU [13]. We

summarize important operations of our SCRA instantiations

in Algorithms 2-5. For the sake of brevity, we only give the

dominant signature operations that are performed in each

algorithm. The rest of the SCRA operations are as described

in Algorithm 1 and are not repeated. Moreover, we only

give the private/public keys of each instantiation without

describing key generation steps and parameters in detail.

We refer interested readers to C-RSA [30], BGLS [7] and

NTRU [15], [36] for the details.

SCRA-C-RSA is based on Condensed-RSA (C-RSA) [30]

and therefore it obtains the highest computational efficiency

benefit from SCRA among all instantiations. That is, C-RSA is

by default a verifier efficient signature scheme but its sig-

nature generation is expensive (i.e., an exponentiation under

a large modulo). Since the SCRA significantly reduces the

signing cost, SCRA-C-RSA achieves the lowest end-to-end

delay among all instantiations with a moderate signature size

(e.g., 2KB RSA signature size). SCRA-C-RSA is described in

Algorithm 2.

SCRA-BGLS is based the BGLS signatures [7], and there-

fore has the smallest signature/key size among all instantia-

tions (e.g., 320 bits). The SCRA strategy also significantly

increases the signature efficiency of BGLS. However, since

BGLS has an expensive signature verification due to crypto-

graphic pairing operations, SCRA-BGLS has a larger end-to-

end cryptographic delay compared to our other instantiations.

SCRA-BGLS is described in Algorithm 3.

SCRA-NTRU is based on NTRU aggregate signature [15].

Note that SCRA-NTRU achieves the highest signing effi-

ciency among all instantiations (it is even more efficient than

SCRA-C-RSA at the signer side). It also has a low end-to-

end delay, which is comparable to SCRA-C-RSA but slightly

2632 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

Algorithm 1 Structure-Free Compact Real-Time Authentication (SCRA) Scheme

(sk, PK) ← SCRA.Kg(1κ): Executed offline (once).

1: (sk′, PK ′) ← ASig.Kg(1κ), P
$

← {0, 1}d .

2: Select integers (b, L) such that b · L = d .

3: m̃i, j ← i || j ||P , γi, j ← ASig.Sig(m̃i, j , sk ′), i = 1, . . . , L, j = 0, . . . , 2b − 1.

4: sk ← (sk′, �) and PK ← (PK ′, P), where � ← (m̃i, j , γi, j) for i = 1, . . . , L, j = 0, . . . , 2b − 1.

σ ← SCRA.Sig(m, sk): Given a message m ∈ {0, 1}∗, compute its signature as follows:

1: (M∗
1 , . . . , M∗

L) ← H (m||r), where r ← {0, 1}κ and M∗
i ∈ [0, 2b − 1], i = 1, . . . , L.

2: m′
i ← i ||M∗

i ||P , and fetch corresponding signature γ ′
i of m′

i from table �, i = 1, . . . , L.

3: s ← ASig.Agg(γ ′
1, . . . , γ

′
L) and σ = (r, s).

{0, 1} ← SCRA.Ver(m, σ, PK): Given m ∈ {0, 1}∗, verify its signature σ under PK as follows:

1: (M∗
1 , . . . , M∗

L) ← H (m||r),

2: m′
i ← i ||M∗

i ||P , i = 1, . . . , L,

3: {0, 1} ← ASig.Ver(〈m′
1, . . . , m′

L〉, s, PK ′).

Algorithm 2 SCRA Instantiation With Condensed-RSA [30]: SCRA-C-RSA

(sk, PK) ← SCRA-C-RSA.Kg(1κ): Given 1κ , generate C-RSA and SCRA-C-RSA parameters as follows:

1: Randomly generate two large primes (p, q) and computes n = p · q . The public and secret exponents (e, d) ∈ Z∗
n satisfies

e · d ≡ 1 mod φ(n), where φ(n) = (p − 1)(q − 1). Set sk′ ← (n, d) and PK ′ ← (n, e). Let H ′ be a full domain hash

function (e.g., [5]) defined as H ′ : {0, 1}∗ → Zn .

2: Compute γi, j ← H ′(m̃i, j)
d mod n, i = 1, . . . L, j = 0, . . . , 2b − 1, set (�, sk, PK) as in Algorithm 1.

σ ← SCRA-C-RSA.Sig(m, sk): Execute Algorithm 1 SCRA.Sig Step 1-2, and obtain γ ′
i of m′

i from �, i = 1, . . . , L.

Compute s ←
∏L

i=1(γi) mod n. Set σ as in Algorithm 1 SCRA.Sig Step 3.

{0, 1} ← SCRA-C-RSA.Ver(m, σ, PK): Execute Algorithm 1 SCRA.Ver Step 1-2. In Step 3 (i.e., aggregate signature

verification), if se =
∏L

i=1 H ′(m′
i) mod n, return 1, else return 0.

Algorithm 3 SCRA Instantiation With BGLS [7]: SCRA-BGLS

(sk, PK) ← SCRA-BGLS.Kg(1κ): G1 and G2 are two (multiplicative) cyclic groups of prime order p. g1 and g2 are

generators of G1 and G2, respectively. GT is an additional group such that |G1| = |G2| = |GT |. ê is a bilinear pairing

ê : G1 ×G2 → GT such that (i) Bilinear: for all u ∈ G1, v ∈ G2, ê(ua, vb) = ê(u, v)a·b. (ii) Non-degenerate: ê(g1, g2) �= 1

(please refer to [7] for details). Finally, H ′ : {0, 1}∗ → G1 is a Full Domain Hash [19] modeled as RO [4].

1: Set sk′ = x and PK ′ = gx
2 ∈ G2 [7], where x

$
← Z p .

2: Compute γi, j ← H ′(m̃i, j)
x ∈ G1, i = 1, . . . L, j = 0, . . . , 2b − 1, set (�, sk, PK) as in Algorithm 1.

1: σ ← SCRA-BGLS.Sig(m, sk): Execute Algorithm 1 SCRA.Sig Step 1-2, and obtain γ ′
i of m′

i from �, i = 1, . . . , L.

Compute s ←
∏L

i=1(γi) ∈ G1. Set σ as in Algorithm 1 SCRA.Sig Step 3.

1: {0, 1} ← SCRA-BGLS.Ver(m, σ, PK): Execute Algorithm 1 SCRA.Ver Step 1-2. In Step 3 (i.e., aggregate signature

verification), if ê(s, g2) =
∏L

i=1 ê(H ′(m′
i), gx

2 ∈ G2), return 1, else return 0.

Note: We implement SCRA-BGLS on an elliptic curve E, in which modular exponentiation and multiplication correspond

point scalar multiplication and point addition on E [17], respectively.

less efficient, since NTRU aggregate signature verification

algorithm in [15] is less efficient than that of SCRA-NTRU and

a low end-to-end delay but with a larger signature size.

SCRA-NTRUPASS is based on the PASS [18] signature

scheme. It provides similar performance to SCRA-NTRUin

terms of both latency and storage but the lattice based scheme

is more practical to use. This means that SCRA-NTRUPASS is

secure for usage even with smaller parameters as it is based on

the partial Fourier recovery problem rather than the approxi-

mate CVP problem for SCRA-NTRU.

IV. SECURITY ANALYSIS

We now present our security analysis for SCRA schemes.

Theorem 1: SCRA is (t, qs, ε)-EU-CMA secure, if the

underlying ASig is (t ′, qs, ε)-IA-EU-CMA secure, where t ′ =

O(t)+(ASGN +RO(.))·qs . RO(.) and ASGN denote the cost of

YAVUZ et al.: REAL-TIME DIGITAL SIGNATURES FOR TIME-CRITICAL NETWORKS 2633

Algorithm 4 SCRA Instantiation With Lattice-Based Sequential Aggregate Signatures [15]: SCRA-NTRU

(sk, PK) ← SCRA-NTRU.Kg(1κ): We use lattice-based sequential aggregate signature schemes AggSign and AggVerify as

described in [15], that is secure in the random oracle model [4]. Let AggSign and AggVerify are functions as described

in [15].

1: Set fA : Bn → Rn as a family of preimage-sampleable trapdoor function NTRUSign [27], where PK ′ ← A = g/ f ∈ Rq
X ,

sk′ ← T =

[
f g

F G

]
, T is the trapdoor and Bn is the domain of fA. ωi represents the list of i partial aggregate

signatures.

2: Compute γi, j ← NT RU Sign(sk, H (m̃i, j)), i = 1, . . . L, j = 0, . . . , 2b − 1, set (�, sk, PK) as in Algorithm 1.

1: σ ← SCRA-NTRU.Sig(m, sk): Execute Algorithm 1 SCRA.Sig Step 1-2, and obtain γ ′
i of m′

i from �, i = 1, . . . , L.

Compute s ← AggSign(T, γi , ωi−1) for i = 1, . . . , L. Set σ as in Algorithm 1 SCRA.Sig Step 3.

1: {0, 1} ← SCRA-NTRU.Ver(m, ω, PK): Execute Algorithm 1 SCRA.Ver Step 1-2. In Step 3 (i.e., aggregate signature

verification), if AggVerify(A, m, s, {ωi }
L
i), return 1, else return 0.

Algorithm 5 SCRA Instantiation With Lattice-Based Sequential Aggregate Signatures [15]: SCRA-NTRUPASS

(sk, PK) ← SCRA-NTRUPASS.Kg(1κ): We again use lattice-based sequential aggregate signature schemes AggSign and

AggVerify as described in [15], that is secure in the random oracle model [4]. Let AggSign and AggVerify are functions as

described in [15].

1: Set fA : Bn → Rn as a family of preimage-sampleable trapdoor function PASSSign [18], where sk′ is a polynomial L∞

norm equal to 1(coefficients are chosen independently from the set [−1, 0, 1]), PK ′ ← A = F	 · sk′ , T is the trapdoor

and Bn is the domain of fA . ωi represents the list of i partial aggregate signatures.

2: Compute γi, j ← P ASSSign(sk, H (m̃i, j)), i = 1, . . . L, j = 0, . . . , 2b − 1, set (�, sk, PK) as in Algorithm 1.

1: σ ← SCRA-NTRUPASS.Sig(m, sk): Execute Algorithm 1 SCRA.Sig Step 1-2, and obtain γ ′
i of m′

i from �, i = 1, . . . , L.

Compute s ← AggSign(T, γi , ωi−1) for i = 1, . . . , L. Set ω as in Algorithm 1 SCRA.Sig Step 3.

1: {0, 1} ← SCRA-NTRUPASS.Ver(m, σ, PK): Execute Algorithm 1 SCRA.Ver Step 1-2. In Step 3 (i.e., aggregate signature

verification), if AggVerify(A, m, s, {
∑

i }
L
i), return 1, else return 0.

random oracle invocation and aggregate signature generation,

respectively.

Proof: Suppose that A breaks (t, qs, ε)-EU-CMA secure

SCRA. We construct a simulator F , which breaks

(t ′, qs, ε)-IA-EU-CMA secure ASig by using A as a subroutine

with the experiment below:

Setup: F is provided with two oracles as below:

1. A random oracle h ← RO(m), which returns h
$

← {0, 1}d

if m ∈ {0, 1}∗ has not been queried before, else it

returns the same answer h for the given m. That is, the

cryptographic hash function H in SCRA is modeled as a

random oracle.

2. A signature oracle s ← Osk′(−→m) as in

IA-EU-CMA experiment (i.e., Definition 5). That

is, given a query −→
m = (m1, . . . , mL), O returns an

aggregate signature as s ← ASig.Agg(γ1, . . . , γL),

where (sk′, PK ′) ← ASig.Kg(1κ) and {γi ←

ASig.Sig(mi , sk′)}L
i=1.

3. F gives PK ← (PK ′, P) to A , where P
$

← {0, 1}d as

in Algorithm 1 SCRA.Kg Step 4.
Queries: A queries F on m j ∈ {0, 1}∗ for j = 1, . . . , qs .

For each query j , F performs the following operations:
1. F queries RO(.) on (m j ||r j), and receives an answer as

(m̃ j,1, . . . , m̃ j,L) ← RO(m j ||r j), where r j
$

← {0, 1}κ

such that {|m̃ j,i | = b}L
i=1 and b · L = d (as in Algorithm

1 SCRA.Kg Steps 2-3 and SCRA.Sig Step 1).

2. F queries s j ← Osk′(
−→
M j), where

−→
M j = 1||m̃ j,1||P, . . . ,

L||m̃ j,L ||P . F sends σ j = (s j , r j) to A (as in Algorithm

1 SCRA.Kg Step 3 and SCRA.Sig Steps 2-3).

Forgery: A outputs a forgery (m∗, σ ∗ = 〈s∗, r∗〉) and

wins the EU- CMA experiment, if (i) SCRA.Ver(m∗, σ ∗,

PK) = 1 and (ii) m∗ /∈ {m1, . . . , mqs }. If A loses

in the EU-CMA experiment, then B also loses in the

IA-EU-CMA experiment and aborts. Otherwise, F returns

a ASig forgery as (
−→
M ∗, s∗), where

−→
M ∗ = (1||m̃∗

1||P, . . . ,

L||m̃∗
L ||P) such that (m̃∗

1, . . . , m̃∗
L) ← RO(m∗||r∗) (as

in Query phase Step 1). F check the forgery condi-

tions for IA-EU-CMA experiments as in Definiton 5 as

follows:

1) Validity: Given that SCRA.Ver(m∗, σ ∗, PK) = 1 holds,

ASig.Ver(
−→
M ∗, s∗, PK ′) = 1 also holds. Therefore,

ASig forgery is valid.

2) Non-triviality: F checks if
−→
M ∗ �⊆ {

−→
M 1, . . . ,

−→
M qs } holds.

This implies of the conditions below:

a) At least one data item (j ||m̃∗
j ||P) ∈

−→
M ∗ has never

been queried to O (i.e., the forgery condition 3.i in

Definition 5). Hence, the IA-EU-CMA-secure ASig is

broken.

2634 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

b) The signature extraction occurs by Definition 4 condi-

tion 2-3 as ∃I ′ ⊆ {1, . . . , qs} :
−→
M ∗ ⊆ ||k∈I ′

−→
M k (i.e.,

the forgery condition 3.ii in Definition 5). This implies

that
−→
M ∗ as a batch query has never been queried to O.

At the same time, each data item { j ||m̃∗
1||P}L

j ∈
−→
M ∗

has been queried as a part of a batch query k ∈ I ′−→M k ,

and s∗ is the aggregation of their corresponding indi-

vidual signatures (i.e., individual signatures have been

extracted and combined as in Definition 4). Finally,

the signature extraction is non-trivial since
−→
M ∗ is

comprised of L data items and therefore it cannot be a

trivial combination of previously asked batch queries.

Hence, the IA-EU-CMA-secure ASig is broken.

If the above conditions hold, F wins in the

IA-EU-CMA experiment against ASig. Otherwise, F aborts.

The probability that F wins in the IA-EU-CMA experiment

is identical to that of A winning in the EU-CMA experiment.

Note that H is modeled as a random oracle, and therefore

the probability that H is not target collision-resilient or

subset-resilient [34] is a negligible probability in terms of κ

(i.e., 1/2d/2). For each query of A , F performs a query

to RO(.) and another query to O. Hence, the execution time

of F is that of A plus (ASGN + RO(.)) · qs . �

We now prove that the SCRA-C-RSA and SCRA-BGLS

schemes are secure in Theorem 2 and Theorem 3, respectively.

Remark that, for the sake of brevity, we refer to the generic

proof in Theorem 1 for common steps, and only emphasize

the scheme-specific steps in these theorems.

Theorem 2: SCRA-C-RSA is (t, qs, ε)-EU-CMA secure, if

the underlying C-RSA is (t ′, qs, ε)-IA-EU-CMA secure, where

t ′ = O(t)+[RO(.)+ L · (Ex pn + Muln + H ′)] ·qs . RO(.), H ′,

Ex pn and Muln denote the cost of random oracle invocation,

hash function H ′, modular exponentiation and multiplication

under modulo n, respectively.

Proof: Suppose that A breaks (t, qs, ε)-EU-CMA secure

SCRA. We construct a simulator F , which breaks

(t ′, qs, ε)-IA-EU-CMA secure C-RSA by using A as a sub-

routine as follows:

Setup: F is given RO(.) and Osk′ as in Theorem 1 Setup

Phase. By Algorithm 2, (sk′ = 〈n, d〉, PK ′ = 〈n, e〉) and hash

function used by O is H ′ : {0, 1}∗ → Zn that behaves as a

RO. F gives PK ← (PK ′, P) to A , where P
$

← {0, 1}d as

in Algorithm 2.

Queries: A queries F on m j ∈ {0, 1}∗ for

j = 1, . . . , qs . For each query j , F queries O on

(1||m̃ j,1||P, . . . , L||m̃ j,L ||P) ← RO(m j ||r j) as in Theorem 1

Query Phase and gets s j ←
∏L

i=1 H ′(i ||m̃ j,i ||P)d mod n as

in Algorithm 2. F returns σ j = (s j , r j).

Forgery: A outputs a forgery (m∗, σ ∗ = 〈s∗, r∗〉) and checks

the EU- CMA experiment winning conditions (i)-(ii) as in

Theorem 1 Forgery Phase. If they hold, then F returns a

C-RSA forgery for IA-EU-CMA experiment as (
−→
M ∗, s∗) as in

Theorem 1 Forgery Phase and proceeds as follows:

1) Validity: SCRA.Ver(m∗, σ ∗, PK) = 1 implies

(s∗)e =
∏L

i=1 H ′(i ||m̃∗
i ||P) mod n holds. Therefore,

C-RSA forgery is valid.

2) Non-triviality: F checks if one these conditions hold:

i) At least one data item (j ||m̃∗
j ||P) ∈

−→
M ∗ has never

been queried to O. This implies that IA-EU-CMA-

secure C-RSA is broken, since by the validity condi-

tion, there is a signature as s′ = H ′(j ||m̃∗
j ||P)d mod

n, which was not obtained from O. ii) The signature

extraction occurs as defined in Theorem 1 Non-triviality

condition (b). That is, individual signatures {s∗
j =

H ′(j ||m̃∗
j ||P)d mod n}L

j=1 have never been individually

queried to O, but all were part of a batch query k ∈ I ′−→M k .

This implies IA-EU-CMA-secure C-RSA is broken by the

signature extraction argument as in [30] and [42]) (see

Section II-C). The non-triviality holds as in Theorem 1.

The success probability is as in Theorem 1 and the proba-

bility that H ′ produces a collision is 1/2|n|/2. For each query

of A , F performs a query to RO(.) and O, which requires a

H ′ computation, followed by an exponentiation/multiplication

under n for each item in (1||m̃ j,1||P, . . . , L||m̃ j,L ||P). Hence,

the execution time of F is that of A plus [RO(.)+L ·(Ex pn+

Muln + H ′)] · qs . �

Theorem 3: SCRA-BGLS is (t, qs, ε)-EU-CMA secure, if

the underlying BGLS is (t ′, qs, ε)-IA-EU-CMA secure, where

t ′ = O(t) + [RO(.) + L · (Ex p + Mul + H ′)] · qs . RO(.), H ′,

Ex p and Mul denote the cost of random oracle invocation,

hash function H ′, modular exponentiation and multiplication

in G1, respectively.

Proof: Suppose that A breaks (t, qs, ε)-EU-CMA secure

SCRA. We construct a simulator F , which breaks

(t ′, q ′
s , ε

′)-IA-EU-CMA secure BGLS by using A as a sub-

routine with the experiment below:

Setup: F is given RO(.) and Osk′ as in Theorem 1 Setup

Phase. By Algorithm 3, (sk′ = x, PK ′ = gx
2 ∈ G2) and H ′ :

{0, 1}∗ → G1 is a RO. F gives PK ← (PK ′, P) to A as in

Algorithm 3.

Queries: A queries F on m j ∈ {0, 1}∗ for

j = 1, . . . , qs . For each query j , F queries O on

(1||m̃ j,1||P, . . . , L||m̃ j,L ||P) ← RO(m j ||r j) as in Theorem 1

Query Phase and gets s j ←
∏L

i=1 H ′(m̃i, j)
x ∈ G1 as in

Algorithm 3. F returns σ j = (s j , r j).

Forgery: A outputs a forgery (m∗, σ ∗ = 〈s∗, r∗〉) and

checks EU- CMA experiment winning conditions (i)-(ii) as

in Theorem 1 Forgery Phase. If they hold then F returns a

BGLS forgery for IA-EU-CMA experiment as (
−→
M ∗, s∗) as in

Theorem 1 Forgery Phase and proceed as follows:

1) Validity: SCRA.Ver(m∗, σ ∗, PK) = 1 implies that that

ê(s∗, g2) =
∏L

i=1 ê(H ′(i ||m̃∗
i ||P), gx

2 ∈ G2) holds.

Therefore, BGLS forgery is valid.

2) Non-triviality: F checks if one of these conditions hold.

(i) At least one data item (j ||m̃∗
j ||P) ∈

−→
M ∗ has never

been queried to O. That is, IA-EU-CMA-secure BGLS is

broken, since by validity condition, there is a signature

as ê(s′, g2) = ê(H ′(j ||m̃∗
j ||P), gx

2 ∈ G2), which was not

obtained from O. (ii) The signature extraction occurs as

defined in Theorem 1 Non-triviality condition (b). That is,

individual signatures ê(s∗
j , g2) = ê(H ′(j ||m̃∗

j ||P), gx
2 ∈

G2), j = 1, . . . , L have never been individually queried

YAVUZ et al.: REAL-TIME DIGITAL SIGNATURES FOR TIME-CRITICAL NETWORKS 2635

to O, but all were part of a batch query k ∈ I ′−→M k .

This implies IA-EU-CMA-secure BGLS is broken by the

signature extraction argument as in [10] (see Section II-

C). The non-triviality of signature extraction holds as in

Theorem 1.

The success probability analysis is as in Theorem 1 and the

probability that H ′ produces a collision is 1/2|G1|/2. For each

query of A , F performs a query to RO(.) and an another

query to O, which requires a H ′ computation, followed by

an exponentiation and multiplication in G1 for each item in

(1||m̃ j,1||P, . . . , L||m̃ j,L ||P). Hence, the execution time of

F is that of A plus t ′ = O(t) + [RO(.) + L · (Ex pn +

Muln + H ′)] · qs . �

Remark 1: The formal proof of SCRA-NTRUand

SCRA-NTRUPASS follow a similar logic and therefore

will not be repeated here. At the same time, we note

that despite the existence of an A-EU-CMA analysis,

IA-EU-CMA proof and analysis for signature extraction

argument are not currently available for NTRU signatures.

Hence, a full formal reduction requires this gap to be filled

first, which is out of the scope of this paper.

V. PERFORMANCE ANALYSIS AND COMPARISON

In this section, we present the performance results of our

experiments. We first compare the results of the SCRA with

the state-of-the-art algorithms on a modern powerful CPU.

We then provide results for the GPU implementations of

SCRA-C-RSA and SCRA-NTRU as compared to their CPU

counterparts. For the GPU, we used an Nvidia Tesla K40c

card, which is comprised of 2880 computing cores with

12GB of GDDR5 device memory and 288GB/sec memory

bandwidth. Our base system is equipped with an Intel Core i7-

6700K 4.0GHz Quad-Core Processor and 16GB DDR4 2400

MT/s. This infrastructure represents a datacenter setting. We

also implemented SCRA on a System-on-Chip (SoC). We

used an Nvidia Tegra K1 SoC, which has a 4-Plus-1 quad-

core ARM Cortex A15 CPU with clock rate of 2.3 Ghz

and an embedded GPU with 192 computing cores. Such

SoCs represent smaller scale systems that are widely used in

IoT deployments. We open sourced the source code for the

research and academic community to use and evaluate.1

We summarize the results in Table I. Table I also provides

the implementation details, parameters and key/table sizes.

Table I shows the clear superiority of SCRA in terms of

signature generation efficiency and end-to-end cryptographic

delay (i.e., the sum of signature generation and verification

times) using a powerful CPU. That is, the signature gen-

eration of SCRA instantiations are 24, 18 and 516 times

faster than their non-SCRA counterparts for RSA, BGLS,

and NTRU, respectively. This indicates that SCRA is an

ideal choice for a very high-throughput signature generation,

especially for resource-limited devices in IoT deployments.

Similarly, SCRA-C-RSA and SCRA-NTRU offer 18 and 7 times

lower end-to-end crypto delay compared to RSA and NTRU,

respectively, making them ideal choices for time-critical

authentication.

1https://github.com/ipapapa/HWAcccelarated-Crypto

TABLE II

THE STORAGE SPACE OF SIGNATURE TABLE AND THE NUMBER

OF AGGREGATIONS REQUIRED FOR VARIOUS L AND b VALUES

In addition to their computational efficiency, the

SCRA schemes are also compact, since the signature

and public key sizes remain the same with their base

signature scheme (the transmission of |r | = κ is negligible).

By comparing to each other, SCRA-C-RSA achieves the

lowest end-to-end delay with a moderate signature size (e.g.,

256 bytes), while SCRA-BGLS offers the smallest signature

(20 bytes) but the highest end-to-end delay. SCRA-NTRU has

the lowest signing delay (0.0018 msec), low end-to-end delay

but with large signatures (e.g., 1587 bytes). Note that all

SCRA schemes require storing a pre-computed table �, which

introduces a constant-size extra storage overhead at the signer

side e.g., 160 KB, 2 MB and 12.33 MB for SCRA-BGLS,

SCRA-C-RSA and SCRA-NTRU respectively. This signer

storage is plausible even for some embedded devices (e.g.,

Raspberry PI 2 [1]), and negligible for vehicular networks.

Moreover, recall that, unlike offline-online signatures, the

signer overhead of SCRA is constant and it does not require

to regenerate tokens.

The offline stages of the algorithms take fairly minimal

times of 2.45, 8.65 and 12.83 seconds for SCRA-BGLS,

SCRA-C-RSA and SCRA-NTRU, respectively. The offline stage

will only be required to execute once during the system

deployment.

A. Space Versus Execution Time

We have a trade-off between the space taken to store the

signatures and the execution time of the signing and the

verification stages. As described in 1, an d-bit hash output

can be interpreted as integers (j1, . . . , jL), where each ji is

a b-bit integer such that b · L = d . The total number of

signatures that need to be calculated and stored in the offline

stage of an algorithm is thus L · 2b. The total storage cost

is thus L · 2b · S where S is the size of one signature. This

also implies that the number of aggregations to be performed

during the online phase increases linearly with L. Table II

provides for the SHA-256 hashing scheme various values of

(L, b) parameters and corresponding size of the signature

table � for each SCRA instantiation.

One may observe that the smallest storage overhead can

be attained with (L = 256, b = 1), wherein we store a

signature for every bit in the hash output domain. However,

this requires L = 256 signature aggregations in the online

signature generation phase (e.g., 256 modular multiplications

2636 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

for SCRA-C-RSA), which may not be computationally effi-

cient. Another end of the trade-off is (L = 16, b = 16),

wherein only L = 16 online aggregations are required during

the online phase. However, this requires substantially larger

table sizes, which may be suitable for some real-life appli-

cations. We observed that (L = 32, b = 8) offers a highly

favorable overall performance/storage performance, as shown

in Table I and Table II. The size of the pre-computed tables for

SCRA-BGLS, SCRA-C-RSA and SCRA-NTRUis 160 KB, 2 MB

and 12.33 MB, respectively, for signature-sizes of 20, 256 and

1578 bytes, respectively. This will require 32 signatures to be

aggregated in the online-signing phase of each SCRA scheme.

VI. HARDWARE-ACCELERATION OF SCRA

To accelerate SCRA, we leveraged the parallel processing

and optimization capabilities of GPUs both on server and

embedded in the SoCs. We have introduced several optimiza-

tions to parallelize the individual steps of SCRA algorithms.

We used optimizations specific to the architecture of the GPU

to harness the vast amount of available lightweight cores [11].

A. Accelerating SCRA-C-RSA With GPUs

- SCRA RSA - Server: In the offline signature stage, for

8192 messages, we achieve x1.3 times more through-

put with our GPU optimizations compared to the CPU

only implementations. In the online signature stage, we

achieve significantly high throughput gains, which can

reach up to x5.3 times. In the verify stage, the gain is

around x4.2 times. These results are reported in Figures 2

and 3. In terms of execution time, the GPU can process

a message in 0.367, 0.022, 0.031 milliseconds for the

offline, online and verify stages of the algorithm, respec-

tively. This is approximately x1.31, x5, x4 times faster

than the corresponding CPU execution times. The GPU

gives a worse performance than the CPU if a very small

number of messages are processed. This is mainly due to

the low clock speeds of the GPU cores as compared to the

CPU and also due to the time to copy the data from the

CPU memory to the GPU memory and vice-versa. Our

experiments show that the online signature and signature

verification stages are executed faster in the GPU than in

the CPU for message batches greater than 128 and 256,

respectively.

- SCRA RSA - SoC: In the offline signature stage, for 8192

messages, we achieve x3.2 times higher throughput with

our GPU optimizations compared to CPU only imple-

mentations. In the online signature stage, we achieve high

throughput gains up to x5.2 times. In the verify stage, the

gain is around x4.8 times. These results are reported in

Figures 4 and 5.

Below we describe the techniques we adopted to achieve

some of the performance speedups shown by above

experiments.

1) Chinese Remainder Theorem (CRT): We leverage

CRT [28] to accelerate SCRA on GPUs. We split a k-bit

signature σ into two k/2 bit signatures σ1 and σ2. σ1 =

Md mod p−1 mod p, σ2 = Md mod q−1 mod q , where M is

Fig. 2. SCRA-RSA: Time to sign a message on a server.

Fig. 3. SCRA-RSA: Time to verify a message on a server.

the message and (p, q) are the primes used. Then, we use

the mixed radix conversion algorithm [22] to combine the

two parts and recover the signature σ as σ = σ2 + [(σ1 −

σ2).(q
−1 mod p)].q These two parts are processed on separate

threads in the GPU, which is significantly faster than the k-bit

modular exponentiation.

2) Montgomery Multiplication: The modular multiplication

is inefficient in the GPUs since it requires a trial division to

determine the result and is not parallelizable. The Montgomery

multiplication is suitable for implementation in a GPU, since

it does not require a trial division and can be implemented

in parallel on separate words of the message. That is, given

a · b mod n, we first find two integers r−1 and n′ using the

Extended Euclidean Algorithm such that rr−1 − nn′ = 1.

We then transform a = ar mod n and b = br mod n. Later,

we compute a ·b mod n by using Montgomery reduction [28].

3) Batch Processing: The crypto operations for multi-

ple messages are performed concurrently in the GPU. This

requires that a batch of messages be passed to the GPU, instead

of a single message.

4) Breakup of Components Into Words: To optimize the

throughput on the GPU, each message component is divided

into words of size 32/64 bits, depending on the GPU capa-

bilities. Each operation being run on a single thread is run

over words rather than over entire message components.

We use standard multi-precision algorithms [12] to represent

and perform operations between large integers.

YAVUZ et al.: REAL-TIME DIGITAL SIGNATURES FOR TIME-CRITICAL NETWORKS 2637

Fig. 4. SCRA-RSA: Time to sign a message on SoC.

Fig. 5. SCRA-RSA: Time to verify a message on SoC.

5) GPU Warp Size Utilization: Warps are set of threads

(generally 32) that are considered as one single execution unit

inside a CUDA block. To gain maximum throughput from the

GPU, it is necessary to attain the maximum number of active

warps per streaming multiprocessor which is 64 in our case.

We achieve this by adjusting the number of threads per block

to the optimal value.

6) Memory Latency vs GPU Occupancy: The size of the

shared memory can limit the number of active warps on the

GPU at a particular point in time by reducing the occupancy of

the Streaming Multiprocessors (SM). The other limiting factor

in the performance output is the number of reads and writes

on the global memory on the device. We identified a balance

between the SM occupancy and the global memory read/write

latency by testing various permutations of memory allocations

among the shared and global memory.

7) Constant Length Non-Zero Window Technique: We scan

the bits of the exponent from the least significant bit to

the most significant bit. At each step, we compute a zero

window or a non-zero window [23]. With the binary square-

and-multiply method, we can process these windows and

reduce the number of modular multiplications, making the

exponentiation algorithm faster.

B. Accelerating SCRA-NTRU With GPUs

- SCRA NTRU - Server: In the online signature stage, for

4096 messages, we achieve x0.79 times more throughput

with our GPU optimizations compared to CPU only

implementations. In the verify signature stage and offline

Fig. 6. SCRA-NTRU: Time to sign a message.

Fig. 7. SCRA-NTRU: Time to verify a message.

stage, we achieve high throughput gains up to x6.5 and

x30 times respectively. These results are reported in

Figures 6 and 7, respectively.

The cryptographic operations for multiple messages are

performed concurrently on the GPU. This requires that

a batch of messages be passed to the GPU, instead of

a single message for the signing and verification stage.

We do not employ the GPU for the online stage of

SCRA-NTRU because the signature aggregation tech-

nique is computationally expensive and deploying it on

a GPU core provides little performance benefit. Due to

these reasons, the CPU performs better than the GPU

during the online stage of the protocol.

- SCRA NTRU - SoC: In the online signature stage, for

1024 messages, we achieve x0.81 times more throughput

with our GPU optimizations compared to CPU only

implementations. In the verify sign stage and offline

stage, we achieve high throughput gains upto x6.65 and

x17.7 times respectively. These results are reported in

Figures 8 and 9 respectively.

We summarize below the optimizations that have resulted

in the performance gains shown by the previous experiments.

1) Batch Processing: Message components are processed in

batches as in Section VI-A. As mentioned before, we do not

use the GPU for the online stage of SCRA-NTRU.

2) Convolution Operations: The convolution operations in

the NTRU in the signing and verification phase are accelerated

by employing GPUs. The convolution operation between two

2638 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 12, NO. 11, NOVEMBER 2017

Fig. 8. SCRA-NTRU: Time to sign a message.

Fig. 9. SCRA-NTRU: Time to verify a message.

n bit polynomials is divided into n cores for each operation

where each core is responsible for calculating one bit of the

resulting polynomial.

3) Fourier Transformations: Implementing the Fourier

transformation on GPUs further accelerates the signing, verifi-

cation and offline stages. Due to the use of faster convolution

and Fourier transformation operations on GPUs, the verify

stage of the protocol on GPUs is significantly faster than on

CPUs.

VII. CONCLUSION

In this paper, we developed a new series of delay-aware dig-

ital signatures for time-critical applications, which we refer to

as Structure-Free Compact Authentication (SCRA). SCRA can

transform any secure aggregate signature into a signer efficient

signature via a novel constant-size pre-computation strategy.

We proposed several instantiations of SCRA schemes based on

Condensed-RSA, BGLS, and NTRU signatures, each offering

a unique computation time, key and signature size trade-offs.

Our implementations and performance comparison with the

existing alternatives show that the SCRA schemes achieve

significantly faster signature generation and lower end-to-

end delay. We also formally proved that SCRA schemes are

secure (in ROM). Finally, we pushed the performance of

SCRA schemes to their edge by fully implementing them on

server-grade GPUs and SoCs, which indicated significant per-

formance gains. All these properties make the SCRA schemes

a suitable alternative for delay-aware authentication for time-

critical applications.

ACKNOWLEDGMENT

This work was done in part at Robert Bosch LLC Research

and Technology Center at North America (CR/RTC3-NA),

Pittsburgh, PA, USA, by Attila A. Yavuz during his employ-

ment at Bosch. The authors appreciate and gratefully acknowl-

edge the donation of a Tesla K40 GPU and the Tegra K1

System on Chip from the NVIDIA Corporation used for the

research described in this paper.

REFERENCES

[1] Raspberry Pi 2 Specs, accessed on Jun. 22, 2017. [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

[2] IEEE Guide for Wireless Access in Vehicular Environments (WAVE)—

Architecture, IEEE Standard 1609.0-2013, Mar. 2014, pp. 1–78.
[3] ANSI X9.62-1998: Public Key Cryptography for the Financial Services

Industry: The Elliptic Curve Digital Signature Algorithm (ECDSA),
Amer. Bankers Assoc., Washington, DC, USA, 1999.

[4] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in Proc. 1st ACM Conf. Comput.

Commun. Secur. (CCS), 1993, pp. 62–73.
[5] M. Bellare and P. Rogaway, “The exact security of digital signatures-

how to sign with RSA and rabin,” in Proc. 15th Int. Conf. Theory Appl.

Cryptogr. Techn., 1996, pp. 399–416.
[6] J. Benaloh and M. de Mare, “One-way accumulators: A decentralized

alternative to digital signatures,” in Proc. Workshop Theory Appl.
Cryptogr. Techn., 1994, pp. 274–285.

[7] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Proc. 22nd Int.
Conf. Theory Appl. Cryptogr. Techn. (EUROCRYPT), 2003, pp. 416–432.

[8] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil
pairing,” J. Cryptol., vol. 14, no. 4, pp. 297–319, 2004.

[9] D. Catalano, M. D. Raimondo, D. Fiore, and R. Gennaro, “Off-line/on-
line signatures: Theoretical aspects and experimental results,” in Proc.

Pract. Theory Public Key Cryptogr. (PKC), 2008, pp. 101–120.
[10] J. Coron and D. Naccache, “Boneh et al.’s k-element aggregate

extraction assumption is equivalent to the Diffie–Hellman assumption,”
in Proc. 9th Int. Conf. Theory Appl. Cryptol. (ASIACRYPT), 2003,
pp. 392–397.

[11] K. Diao, I. Papapanagiotou, and T. J. Hacker, “HARENS: Hardware
accelerated redundancy elimination in network systems,” in Proc. IEEE

Int. Conf. Cloud Comput. Technol. Sci. (CLOUDCOM), Dec. 2016,
pp. 237–244.

[12] E. K. Donald, “The art of computer programming,” in Sorting and
Searching, vol. 3. Redwood City, CA, USA: Addison Wesley, 1999,
pp. 426–458.

[13] L. Ducas and P. Q. Nguyen, “Learning a zonotope and more: Crypt-
analysis of NTRU sign countermeasures,” in Advances in Cryptology—
ASIACRYPT (Lecture Notes in Computer Science), vol. 7658. Berlin,
Germany: Springer, 2012, pp. 433–450.

[14] N. P. Smart et al., “Algorithms, key size and parameters report,” Eur.
Union Agency Netw. Inf. Secur. (ENISA), Heraklion, Greece, Tech.
Rep. TP-05-14-084-EN-N, Nov. 2014.

[15] R. El Bansarkhani and J. Buchmann, “Towards lattice based aggregate
signatures,” in Proc. Int. Conf. Cryptol. Africa, 2014, pp. 336–355.

[16] X. Fan and G. Gong, “Accelerating signature-based broadcast authen-
tication for wireless sensor networks,” Ad Hoc Netw., vol. 10, no. 4,
pp. 723–736, Jun. 2012.

[17] D. Hankerson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. New York, NY, USA: Springer-Verlag, 2004.

[18] J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and W. Whyte,
“Practical signatures from the partial Fourier recovery problem,” in Proc.
Int. Conf. Appl. Cryptogr. Netw. Secur., 2014, pp. 476–493.

[19] J.-S. Coron, “On the exact security of full domain hash,” in Proc. Annu.

Int. Cryptol. Conf. (CRYPTO), 2000, pp. 229–235.
[20] R. Johnson, D. Molnar, D. X. Song, and D. Wagner, “Homomorphic

signature schemes,” in Proc. CT-RSA, 2002, pp. 244–262.
[21] A. Joux and K. Nguyen, “Separating decision Diffie–Hellman from

computational Diffie–Hellman in cryptographic groups,” J. Cryptol.,
vol. 16, no. 4, pp. 239–247, 2003.

[22] C. K. Koc, “High-speed RSA implementation,” RSA Lab., Bedford, MA,
USA, Tech. Rep. TR 201, 1994.

[23] C. K. Koç, “Analysis of sliding window techniques for exponentiation,”
Comput. Math. Appl., vol. 30, no. 10, pp. 17–24, 1995.

[24] B. Lynn. The Pairing-Based Cryptography (PBC) Library, accessed on
Jun. 22, 2017. [Online] Available: http://crypto.stanford.edu/pbc

YAVUZ et al.: REAL-TIME DIGITAL SIGNATURES FOR TIME-CRITICAL NETWORKS 2639

[25] A. Lysyanskaya, R. Tamassia, and N. Triandopoulos, “Multicast authen-
tication in fully adversarial networks,” in Proc. IEEE Symp. Secur.

Privacy, May 2004, pp. 241–253.
[26] D. Ma and G. Tsudik, “A new approach to secure logging,” ACM Trans.

Storage, vol. 5, no. 1, p. 2, 2009.
[27] C. A. Melchor, X. Boyen, J.-C. Deneuville, and P. Gaborit, “Sealing

the leak on classical NTRU signatures,” in Post-Quantum Cryptogra-
phy (Lecture Notes in Computer Science), vol. 8772, M. Mosca, Ed.
Springer, 2014, pp. 1–21.

[28] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. Boca Raton, FL, USA: CRC Press, 1996,

[29] E. Mykletun, M. Narasimha, and G. Tsudik, “Signature bouquets:
Immutability for aggregated/condensed signatures,” in Proc. Eur. Symp.

Res. Comput. Secur., Sep. 2004, pp. 160–176.
[30] E. Mykletun and G. Tsudik, “Aggregation queries in the database-as-a-

service model,” in Proc. IFIP Annu. Conf. Data Appl. Secur. Privacy,
2006, pp. 89–103.

[31] D. Naccache, D. M’Raïhi, S. Vaudenay, and D. Raphaeli, “Can D.S.A.
be improved: Complexity trade-offs with the digital signature standard,”
in Proc. Workshop Theory Appl. Cryptogr. Techn., 1994, pp. 77–85.

[32] A. Perrig, R. Canetti, D. Song, and J. D. Tygar, “Efficient authentication
and signing of multicast streams over lossy channels,” in Proc. IEEE

Symp. Secur. Privacy, May 2000, pp. 56–73.
[33] J. Petit and Z. Mammeri, “Authentication and consensus overhead

in vehicular ad hoc networks,” Telecommun. Syst., vol. 52, no. 4,
pp. 2699–2712, 2013.

[34] L. Reyzin and N. Reyzin, “Better than BiBa: Short one-time signatures
with fast signing and verifying,” in Proc. 7th Austral. Conf. Inf. Secur.

Privacy (ACIPS), 2002, pp. 144–153.
[35] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[36] M. Rückert, “Lattice-based signature schemes with additional features,”
Ph.D. dissertation, Dept. Comput. Sci., Technische Univ. Darmstadt,
Darmstadt, Germany, 2010.

[37] A. Shamir and Y. Tauman, “Improved online/offline signature schemes,”
in Proc. 21st Annu. Int. Cryptol. Conf., 2001, pp. 355–367.

[38] Shamus. Multiprecision Integer and Rational Arithmetic C/C++
Library (MIRACL), accessed on Sep. 2014. [Online]. Available:
http://www.certivox.com/miracl/miracl-download/

[39] A. Singla, A. Mudgerikar, I. Papapanagiotou, and A. A. Yavuz, “HAA:
Hardware-accelerated authentication for Internet of Things in mis-
sion critical vehicular networks,” in Proc. IEEE Int. Conf. Military
Commun. (MILCOM), Oct. 2015, pp. 1–7.

[40] W. Whyte, M. Etzel, and P. Jenney. (2013). Open Source NTRU Public

Key Cryptography Algorithm and Reference Code. [Online]. Available:
https://github.com/NTRUOpenSourceProject/ntrucrypto

[41] A. A. Yavuz, “An efficient real-time broadcast authentication scheme for
command and control messages,” IEEE Trans. Inf. Forensics Security,
vol. 9, no. 10, pp. 1733–1742, Oct. 2014.

[42] A. A. Yavuz, “Immutable authentication and integrity schemes for out-
sourced databases,” IEEE Trans. Depend. Sec. Comput., to be published.

[43] A. A. Yavuz, P. Ning, and M. K. Reiter, “BAF and FI-BAF: Efficient and
publicly verifiable cryptographic schemes for secure logging in resource-
constrained systems,” ACM Trans. Inf. Syst. Secur., vol. 15, no. 2, p. 9,
2012.

Attila Altay Yavuz (M’11) received the M.S. degree
in computer science from Bogazici University,
Istanbul, Turkey, in 2006, and the Ph.D. degree
in computer science from North Carolina State
University in 2011. He is currently an Assistant
Professor with the School of Electrical Engineering
and Computer Science, Oregon State University. He
is broadly interested in design, analysis, and applica-
tion of cryptographic tools and protocols to enhance
the security of computer networks and systems.
He has authored over 40 research articles in top

conferences and journals along with several patents. His research on privacy
enhancing technologies (searchable encryption) and intra-vehicular network
security are in the process of technology transfer with potential world-wide
deployments. He is a member of ACM. He was a member of the Security
and Privacy Research Group with the Robert Bosch Research and Technology
Center, North America (2011–2014). He was a recipient of the NSF CAREER
Award (2017).

Anand Mudgerikar received the bachelor’s degree
in information and communication technology from
the Dhirubhai Ambani Institute of Information and
Communication Technology, India, and the mas-
ter’s degree in information security from CERIAS,
Purdue University, West Lafayette, IN, USA, where
he is currently pursuing the Ph.D. degree in informa-
tion security with the Computer Science Department.
His current research interests include cryptography,
intrusion detection systems, and network security.

Ankush Singla is currently pursuing the Ph.D. degree in information
security and assurance with the Computer Science Department, Purdue
University. He was involved in projects ranging from Hardware Accelerated
Authentication and Centralized Lighting management for Energy Saving. His
current research interests include blockchain usage for Internet of Things
authentication and certificateless cryptography.

Ioannis Papapanagiotou (SM’15) received the dual
major Ph.D. degree in computer engineering and
operations research from North Carolina State Uni-
versity. He has served in the faculty ranks of Purdue
University (tenure-track) and North Carolina State
University. From 2010 to 2013, he was with IBM’s
CTO Office. He is currently an Architect at Netflix
Inc., a Research Assistant Professor with the Univer-
sity of New Mexico, and a Graduate Faculty with
Purdue University. He has authored approximately
40 research articles and ten patent disclosures. He is

a Senior Member of ACM. He has also served as a TPC Chair in a number of
IEEE conferences. He has been awarded the NetApp Faculty Fellowship and
established an Nvidia CUDA Research Center, Purdue University. He has also
received the IBM Ph.D. Fellowship, the Academy of Athens Ph.D. Fellowship
for his Ph.D. research, and best paper awards in several IEEE conferences for
his academic contributions.

Elisa Bertino (F’02) is currently a Professor of
Computer Science with Purdue University, and
serves as the Director of the CyberSpace Security
Laboratory (Cyber2SLab). Prior to joining Purdue
University in 2004, she was a Professor and the
Department Head with the Department of Computer
Science and Communication, University of Milan.
She has been a Visiting Researcher with the IBM
Research Laboratory (currently Almaden), San Jose,
with the Microelectronics and Computer Technol-
ogy Corporation, with Rutgers University, and with

Telcordia Technologies. Her recent research focuses on database security,
digital identity management, policy systems, and security for web services.
She is a fellow of ACM and AAAS. She received the IEEE Computer
Society 2002 Technical Achievement Award, the IEEE Computer Society
2005 Kanai Award, and the ACM SIGSAC Outstanding Contributions Award.
She is currently serving as Editor-in-Chief of IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING.

