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Abstract—We show that it is possible to achieve information
theoretic location privacy for secondary users (SUs) in database-
driven cognitive radio networks (CRNs) with an end-to-end
delay less than a second, which is significantly better than
that of the existing alternatives offering only a computational
privacy. This is achieved based on a keen observation that,
by the requirement of Federal Communications Commission
(FCQ), all certified spectrum databases synchronize their records.
Hence, the same copy of spectrum database is available through
multiple (distinct) providers. We harness the synergy between
multi-server private information retrieval (PIR) and database-
driven CRN architecture to offer an optimal level of privacy with
high efficiency by exploiting this observation. We demonstrated,
analytically and experimentally with deployments on actual cloud
systems that, our adaptations of multi-server PIR outperform
that of the (currently) fastest single-server PIR by a magnitude
of times with information theoretic security, collusion resiliency
and fault-tolerance features. Our analysis indicates that multi-
server PIR is an ideal cryptographic tool to provide location
privacy in database-driven CRNs, in which the requirement of
replicated databases is a natural part of the system architecture,
and therefore SUs can enjoy all advantages of multi-server PIR
without any additional architectural and deployment costs.

Keywords—Database-driven cognitive radio networks, location
privacy, dynamic spectrum access, private information retrieval.

I. INTRODUCTION

The rapid growth of connected wireless devices has dra-
matically increased the demand for wireless spectrum and
led to a serious shortage in spectrum resources. Cognitive
radio networks (CRNs) [1] have emerged as a promising
technology for solving this shortage problem by enabling dy-
namic spectrum access (DSA), which improves the spectrum
utilization efficiency by allowing unlicensed/secondary users
(SUs) to exploit unused spectrum bands (aka spectrum holes
or white spaces) of licensed/primary users (PUs).

Currently, two approaches are being adopted to iden-
tify these white spaces: spectrum sensing and geolocation
spectrum databases. In the spectrum sensing-based approach,
SUs need to sense the PU channel to determine whether
the channel is available for opportunistic use. The spec-
trum database-based approach, on the other hand, does not
require that SUs perform sensing to check for spectrum
availability. It instead requires that SUs query a database
(DB) to learn about spectrum opportunities in their vicinity.
This approach, already promoted and adopted by the Federal
Communications Commission (FCC), was introduced as a
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way to overcome the technical hurdles faced by the spectrum
sensing-based approaches, thereby enhancing the efficiency
of spectrum utilization, improving the accuracy of available
spectrum identification, and reducing the complexity of ter-
minal devices [2]. Moreover, it pushes the responsibility and
complexity of complying with spectrum policies to DB and
eases the adoption of policy changes by limiting updates to
just a handful number of databases, as opposed to updating
large numbers of devices [3].

FCC has designated nine entities (e.g. Google [4], iconec-
tiv [5], and Microsoft [6]) as TV bands device database
administrators which are required to follow the guidelines
provided by PAWS (Protocol to Access White Space) stan-
dard [3]. PAWS sets guidelines and operational requirements
for both the spectrum database and the SUs querying it.
These include: SUs need to be equipped with geo-location
capabilities, SUs must query DB with their specific location
to check channel availability before starting their transmis-
sions, DB must register SUs and manage their access to the
spectrum, DB must respond to SUs’ queries with the list of
available channels in their vicinity along with the appropriate
transmission parameters. As specified by PAWS standard, SUs
may be served by several spectrum databases and are required
to register to one or more of these databases prior to querying
them for spectrum availability. The spectrum databases are
reachable via the Internet, and SUs querying these databases
are expected to have some form of Internet connectivity [7].

A. Location Privacy Issues in Database-Driven CRN's

Despite their effectiveness in improving spectrum utiliza-
tion efficiency, database-driven CRN's suffer from serious
security and privacy threats. Since they could be seen as a
variant of of location based service (LBS), the disclosure of
location information of SU's represents the main threat to SUs
when it comes to obtaining spectrum availability from DBs.
This is simply because SUs have to share their locations
with DBs to obtain spectrum availability information in
their vicinity. The fine-grained location, when combined with
publicly available information, can easily reveal other personal
information about an individual including his/her behavior,
health condition, personal habits or even beliefs. For instance,
an adversary can learn some information about the health
condition of a user by observing that the user regularly goes to
a hospital for example. The frequency and duration of these
visits can even reveal the seriousness of a user illness and
even the type of illness if the location corresponds to that of a
specialty clinic. The adversary could even sell this information
to pharmaceutical advertisers without the user’s consent.

Being aware of such potential privacy threats, SUs may



refuse to rely on DB for spectrum availability information,
which may present a serious barrier to the adoption of
database-based CRNs, and to the public acceptance and
promotion of the dynamic spectrum sharing paradigm. There-
fore, there is a critical need for developing techniques to
protect the location privacy of SUs while allowing them to
harness the benefits of the CRN paradigm without disrupting
the functionalities that these techniques are designed for to
promote dynamic spectrum sharing.

B. Research Gap and Objectives

Despite the importance of the location privacy issue in
CRNs, only recently has it started to gain interest from the
research community [8]. Some works focus on addressing this
issue in the context of collaborative spectrum sensing [9]—
[13]; others address it in the context of dynamic spectrum auc-
tion [14]. Protecting SUs’ location privacy in database-driven
CRN's is a more challenging task, merely because SUs are
required, by protocol design, to provide their physical location
to DB to learn about spectrum opportunities in their vicini-
ties. The existing location privacy preservation techniques for
database-driven CRN (e.g., [2], [15]-[19]) generally rely on
three main lines of privacy preserving technologies, (i) k-
anonymity [20], (ii) differential privacy [21] and (iii) single-
server Private Information Retrieval (PIR) [22]. However, the
direct adaptation of k-anonymity based techniques have been
shown to yield either insecure or extremely costly results [23].
The solutions adapting differential privacy (e.g., [18]) not only
incur a non-negligible overhead, but also introduce a noise
over the queries, and therefore they may negatively impact
the accuracy of spectrum availability information.

Among these alternatives, single-server PIR seems to
be the most popular alternative in the context of CRNs.
PIR technology is a suitable choice for database-driven
CRN s, as it permits privacy preserving queries on a pub-
lic database, and therefore can enable a SU to retrieve
spectrum availability information from the database without
leaking his/her location information. However, single-server
PIR protocols rely on highly costly partial homomorphic
encryption schemes, which need to be executed over the entire
database for each query. Indeed, as we also demonstrated
with our experiments in Section IV, the execution of a single
query even with some of the most efficient single-server
PIR schemes [24] takes approximately 20 seconds with a
80 Mbps/ 30 Mbps bandwidth on a moderate size database
(e.g., 109 entries). An end-to-end delay with the orders of 20
seconds might be undesirable for spectrum sensing needs of
SUs in real-life applications. Also, some of the state-of-the-
art efficient computational PIR schemes [25] that are used
in the context of CRN's have been shown to be broken [24].
We provide a discussion about the existing privacy enhancing
techniques and their potential adaptations to database-driven
CRN settings in Sections IV and V.

There is a significant need for practical location privacy
preservation approaches for database-driven CRN's that can
meet the efficiency and functionality requirements of SU's.

C. Our Observation and Contribution

The objective of this paper is to develop efficient tech-
niques for database-driven CRN's that preserve the location
privacy of SUs during their process of acquiring spectrum

availability information. Specifically, we will aim for the
following design objectives: (i) (location privacy) Preserve
the location privacy of SUs while allowing them to re-
ceive spectrum availability information; (ii) (efficiency and
practicality) Incur minimum computation, communication and
storage overhead. The cryptographic delay must be minimum
to permit fast spectrum availability decision for the SUs,
and storage/processing cost must be low to enable practical
deployments. (iit) (fault-tolerance and robustness) Mitigate
the effects of system failures or misbehaving entities (e.g.,
colluding databases). It is a very challenging task to meet all
of these seemingly conflicting design goals simultaneously.

The main idea behind our proposed approaches is to
harness special properties and characteristics of the database-
driven CRN systems to employ private query techniques that
can overcome the significant performance, robustness and pri-
vacy limitations of the state-of-the-art techniques. Specifically,
our proposed approach is based on the following observation:

Observation: FCC requires that all of its certified
databases synchronize their records obtained through regis-
tration procedures with one another [26], [27] and need to
be consistent across the other databases by providing exactly
the same spectrum availability information, in any region, in
response to SUs’ queries [28]. That is, the same copy of spec-
trum database is available and accessible to the SUs via mul-
tiple (distinct) spectrum database administrators/providers.
Is it possible exploit this observation to achieve efficiency
location preservation techniques for database-driven CRN ?

In practice, as stated in PAWS standard [3], SUs have the
option to register to multiple spectrum databases belonging to
multiple service providers. Currently, many companies (e.g.
Google [4], iconectiv [5], etc) have obtained authorization
from FCC to operate geo-location spectrum databases upon
successfully complying to regulatory requirements. Several
other companies are still underway to acquire this authoriza-
tion [29]. Thus, it is more natural and realistic to take this fact
into consideration when designing privacy preserving proto-
cols for database-based CRN's. Based on this observation, our
main contribution is as follows:

TABLE I: Performance Comparison

Scheme Comm. Delay Privacy
DB SU end-to-end
LP-Chor 753 KB 0.48 s | 0.008 s 0.62 s (¢ —1)-private
LP-Goldberg 6000 KB 1.21s 0.32s 1.78 s t-private (-comp.-private
PriSpectrum (2] || 512.8 KB 21s 0.084 s 24.2 underlying PIR broken
Troja et al [17] 84 KB 11760 s | 5.62s 11766 s computationally-private
Troja et al [16] 12120 KB || 11760 s 48s 11820 s computationally-private
XPIR [24] 4321 KB 17665 | 0.34s 20.53 s computationally-private

Parameters: n = 560 M B, b =560 B, r =10% £ =6, w =8, k=6

Our Contribution: 7o the best of our knowledge, we
are the first to exploit the observation that multiple copies
of spectrum DBs are available by nature in database-driven
CRNs, and therefore it is possible to harness multi-server
PIR techniques [22], [30] that offer information-theoretic
privacy with substantial efficiency advantages over single-
server PIR. We show, analytically and experimentally with
deployments on cloud systems, that our adaptation of multi-
server PIR techniques significantly outperforms the state-
of-the-art location privacy preservation methods as demon-



strated in Table I and detailed in Section IV. Moreover, our
adaptations achieve the information theoretical privacy while
existing alternatives offer only computational privacy. This
feature provides an assurance against even post-quantum ad-
versaries [31] and can avoid recent attacks on computational
PIR [24].

Notice that, multi-server PIR techniques require the avail-
ability of multiple (synchronized) replicas of the database.
Therefore, despite their high efficiency and security, they
received a little attention from the practitioners. For instance,
in traditional data outsourcing settings (e.g., private cloud
storage), the application requires a client to outsource only a
single copy of its database. The distribution and maintenance
of multiple copies of the database across different service
providers brings additional architectural and deployment costs,
which might not be economically attractive for the client.

In this paper, we showcased one of the first natural use-
cases of multi-server PIR, in which the multiple copies of
synchronized databases are already available by the original
design of application (i.e., spectrum availability information in
multi-database CRNs), and therefore multi-server PIR does
not introduce any extra overhead on top of the application. Ex-
ploiting this synergy between multi-database CRN and multi-
server PIR permitted us to provide informational theoretical
location privacy for SUs with a significantly better efficiency
compared to existing single-server PIR approaches.

Desirable Properties: We outline the desirable properties
of our approaches below.

o Computational efficiency: The adapted approaches are much
more efficient than existing location privacy preserving
schemes. For instance, as shown in Table I, LP-Chor and
LP-Goldberg are more than 3 orders of magnitudes faster
than the schemes proposed by Troja et al. [16], [17], and
10 times faster than XPIR [24] and PriSpectrum [2].

e [nformation Theoretical Privacy Guarantees: They can
achieve information-theoretic privacy which is the optimal
privacy level that could be reached as opposed to computa-
tional privacy guarantees offered by existing approaches. In
fact some of these approaches are prone to recent attacks
on computational- PIR protocols [24] and are not secure
against post-quantum adversaries [31].

e Low communication overhead: Both approaches provide a
reasonable communication overhead that is a middle ground
between the fastest computational PIR [24] and the most
communication efficient computational PIR [32].

e Fault-Tolerance and Robustness: Our proposed approaches
are resilient to the issues that are associated with multi-
server architectures: failures, byzantine behavior, and col-
lusion. Both LP-Chor and LP-Goldberg can handle collu-
sion of multiple DBs. In addition, LP-Goldberg can also
handle faulty and byzantine DBs.

e FExperimental evaluation on actual cloud platforms: We
deploy our proposed approaches on a real cloud platform,
GENI [33], to show their feasibility. In our experiment,
we create multiple geographically distributed VMs each
playing the role of a DB. A laptop plays the role of a
SU that queries DBs, i.e. VM s. Our experiments confirm
the superior computational advantages of the adaption of
multi-server PIR over the existing alternatives.

II. PRELIMINARIES AND MODELS
A. Notation and Building Blocks

We summarize our notations in Table II. Our adaptations
of multi-server PIR rely on the following building blocks.

TABLE II: Notations

DB Spectrum database

SU Secondary user

CRN  Cognitive radio network

Number of spectrum databases

Matrix modeling the content of DB
Number of records in D

Size of the database in bits

Size of one record of the database in bits
Size of one word of the database in bits
Number of words per block

Index of the record sought by SU
Privacy level (tolerated number of colluding DBs)
Number of responding DBs

Number of byzantine DBs

TR g 3 ﬁb(\

Private Information Retrieval (PIR): PIR allows a user
to retrieve a data item of its choice from a database, while
preventing the server owning the database from gaining infor-
mation on the identity of the item being retrieved [34]. One
trivial solution to this problem is to make the server send an
entire copy of the database to the querying user. Obviously,
this is a very inefficient solution to the PIR problem as
its communication complexity may be prohibitively large.
However, it is considered as the only protocol that can provide
information-theoretic privacy, i.e. perfect privacy, to the user’s
query in single-server setting. There are two main classes of
PIR protocols according to their privacy level: information-
theoretic PIR (itPIR) and computational PIR (cPIR).

o Information-theoretic or multi-server PIR: It guarantees
information-theoretic privacy to the user, i.e. privacy against
computationally unbounded servers. This could be achieved
efficiently only if the database is replicated at k£ > 2 non-
communicating servers [22], [30]. The main idea behind
these protocols consists on decomposing each user’s query
into several sub-queries to prevent leaking any information
about the user’s intent.

o Computational or single-server PIR: It guarantees privacy
against computationally bounded server(s). In other words,
a server cannot get any information about the identity of
the item retrieved by the user unless it solves a certain
computationally hard problem (e.g. prime factorization of
large numbers), which is common in modern cryptography.
Thus, they offer weaker privacy than their ¢P/R counter-
parts [25], [35].

Shamir Secret Sharing: This is a concept introduced by
Shamir et al. [36] to allow a secret holder to divide its secret
S into ¢ shares Sq,---,Sy and distribute these shares to
¢ parties. In (¢, ¢)-Shamir secret sharing, where ¢ < ¢, if ¢ or
fewer combine their shares, they learn no information about S.
However, if more than ¢ come together, they can easily recover
S. Given a secret S chosen arbitrarily form a finite field,
the (¢, ¢)-Shamir secret sharing scheme works as follows: the
secret holder chooses ¢ arbitrary non-zero distinct elements
aq, - ,ap € F. Then, it selects ¢ elements o1, --- ,0; € F
uniformly at random. Finally, the secret holder constructs the
polynomial f(z) = o¢ + o1z + o92? + -+ + 0!, where



oo = S. The ¢ shares S1, - - - , Sy, that are given to each party,
are (a1, f(aq)), -+, (g, f(ag)). Any ¢ 4+ 1 or more parties
can recover the polynomial f using Lagrange interpolation
and thus they can reconstruct the secret S = f(0). However,
t or less parties can learn nothing about S. In other words, if
t+1 shares of S are available then S can be easily recovered.

B. System Model and Security Definitions

We consider a database-driven C'RN that contains ¢ DBs,
where ¢ > 2, and a SU registered to these DBs to learn
spectrum availability information in its vicinity. We assume
that these DBs share the same content and that they are
synchronized as mandated by PAWS standard [3]. We also
assume that DBs may collude in order to infer SU’s location.
In the following, we present our security definitions.

Definition 1. Byzantine DB: This is a faulty DB that runs
but produces incorrect answers, possibly chosen maliciously
or computed in error. This might be due to a corrupted or
obsolete copy of the database caused by a synchronization
problem with the other DDBs.

Definition 2. ¢-private PIR: The privacy of the query is
information-theoretically protected, even if up to t of the
¢ DBs collude, where t < (.

Definition 3. J-Byzantine-robust PIR: Even if ¥ of the re-
sponding DBs are Byzantine, SU can reconstruct the correct
database item, and determine which of the DBs provided
incorrect response.

Definition 4. k-out-of-¢ PIR: SU can reconstruct the correct
record if it receives at least k-out-of-f responses, 2 < k < /.

Definition 5. Robust PIR: It can deal with DBs that do not
respond to SU’s queries and allows SU to reconstruct the
correct output of the queries in this situation.

III. PROPOSED APPROACHES

In the proposed approaches, we tailor multi-server PIR to
the context of multi-DB CRNs. We start by illustrating the
structure of the spectrum database that we consider. Then, we
give two approaches, each adapts a multi-server PIR protocol
with different security and performance properties. We model
the content of each DB as an r x s matrix D of size n bits,
where s is the number of words of size w in each record/block
of the database and r is the number of records in the database,
ie. r=n/b, where b = s x w is the block size in bits. The
k" row of D is the k' record of the database.

W11 wi2 ... W1s

w21 W22 ... W2
D =

Wr1 Wr2 ... Wrs

We further assume that each row of the database corresponds
to a unique combination of the tuple (l;,1,, C,ts), where
l; and [, represent one location’s latitude and longitude,
respectively, C' is a channel number, and ¢s is a time-
stamp. We also assume that SUs can associate their location
information with the index [ of the corresponding record of
interest in the database using some inverted index technique
that is agreed upon with DBs. An SU that wishes to retrieve
record D g without any privacy consideration can simply send
to DB arow vector eg consisting of all zeros except at position

B where it has the value 1. Upon receiving eg, DB multiplies
it with D and sends record Dg back to SU as we illustrate
below:

w11 w12 W1s
w1 wo2 Was
0 ... 01 0 ... 0
Wr1 W2 Wyrs
= [wg1  wp2 wps]

This trivial approach makes it easy for DBs to learn SU’s
location from the vector eg as D is indexed based on location.
In the following we present two approaches that try to hide
the content of eg from DBs, and thus preserve SU’s location
privacy. The approaches present a tradeoff between efficiency,
and some additional security features.

A. Location Privacy with Chor (LP-Chor)

Our first approach, termed LP-Chor, harnesses the simple
and efficient it PIR protocol proposed by Chor et al. [22]. We
describe the different steps of LP-Chor in Algorithm 1 and
highlight these steps in Fig. 1. Elements of D in this scheme
belong to GF'(2), i.e. w =1 bit and b = s.

-D

SU
R1€9"'€BR@:€§~D

Fig. 1: Main steps of LP-Chor Algorithm

Algorithm 1 Dg < LP-Chor({, r, b)

SU

B+ Invindex(l;, 1, C,ts)

Sets standard basis vector eg <— 13 € Z"
Generates p1, - ,pe—1 €Eg GF(2)"
Pr<—p1D---Deg

Sends p; to DB, for 1 <i </

AN

Each DB;
6: Receives p; = pi1 -+ pir € {0,1}"
7. R+ & Dj, Dj is the j'" block of D
pij=1
8: Sends R; to SU
SU

9: Receives R, -+ , Ry
10 Dg+— R ®--- @Ry

In LP-Chor, SU starts by invoking the inverted index
subroutine InvIndex(l,1,, C,ts) which takes as input the
coordinates of the user, its channel of interest, and a time-
stamp and returns a value (3. This value corresponds to the
index of the record D g of D that SU is interested in. SU then
constructs eg, which is a standard basis vector 15 € Z"
having 0 everywhere except at position 3 which has the value



1 as we discussed previously. SU also picks £—1 r-bit binary
strings p1,- - , p¢e—1 uniformly at random from GF(2)", and
computes py = p1 B - - - P eg. Finally, SU sends p; to DB;,
for 1 < ¢ < ¢. Upon receiving the bit-string p; = p;1D- - - pir
of length r, DB; computes R; = p; - D, which could be seen
also as the XOR of those blocks D; in D for which the jth
bit of p; is 1, then sends R; back to SU. SU receives R;s
from DB;s, 1 < i < ¢, and computes R, @ --- ® Ry =
(p1® - @ pe) - D =es- D, which is the 3" block of the
database that SU is interested in, from which it can retrieve
the spectrum availability information.

LP-Chor is very efficient thanks to its reliance on simple
XOR operations only as we discuss in Section IV. It is also
(¢ — 1)-private, by Definition 2, as collusion of up to £ — 1
DBs cannot enable them to learn eg, and consequently its
location. In fact, only if £ DBs collude, then they will be able
to learn e by simply XORing their {p;}¢_,. However this
approach suffers from two main drawbacks. First, it is not
robust since even if one DB fails to respond, SU will not be
able to recover Dg. Second, it is not byzantine robust; if one
or more DBs return a wrong response, SU will reconstruct
a wrong block and also will not be able to recognize which
DB misbehaved so as not to rely on it for future queries. In
Section III-B we discuss a second approach that improves on
these two aspects but with some additional overhead.

B. Location Privacy with Goldberg (LP-Goldberg)

Our second approach, termed LP-Goldberg, is based on
Goldberg’s it PIR protocol [30] which uses Shamir secret shar-
ing to hide eg, i.e. SU’s query. It is a modification of Chor’s
scheme [22] to achieve both robustness and byzantine robust-
ness. Rather than working over GF'(2) (binary arithmetic),
this scheme works over a larger field ¥, where each element
can represent w bits. The database D = (w,) € F™** in this
scheme, is an 7 X s matrix of elements of F = GF(2"). Each
row represents one block of size b bits, consisting of s words
of w bits each. Again, D is replicated among ¢ databases
DB;. We summarize the main steps of LP-Goldberg protocol
in Algorithm 2 and illustrate them in Fig. 2.

k responding DBs
'

~
9 byzantine DBs  { — k non-responding DBs
- - A

r Rl r R
DBy_y-1 DBy DBjy1 DBy
-8
X X
Pk+1 Pt

Fig. 2: Tllustration of LP-Goldberg

To determine the index (3 of the record that corre-
sponds to its location, SU starts by invoking the subroutine
Invindex(l;,1,, C,ts) then constructs the standard basis
vector eg € F” as explained earlier. SU then uses (¢, ¢)-
Shamir secret sharing to divide the vector e into ¢ inde-
pendent shares («q,,p1)- -, (ay, pg) to ensure a t-private
PIR protocol as in Definition 2. That is, SU chooses ¢ distinct

non-zero elements o; € F* and creates r random degree-¢
polynomials fi,---, f, satisfying f;(0) = eg[j]. SU then
sends to each DB; its share corresponding to the vector p; =
(fi(a), -, fr(a;)). Each DB; then computes the product
Ri = pi- D = (3, filow)wji, -+, 305 filag)w;s) € F*
and sends R; to SU.

Some DBs may fail to respond to SU’s query and only k-
out-of-¢ send their responses to SU. SU collects k responses
from the k responding DBs and tries to recover the record at
index $3 from the R;s by using the EasyRecover() subroutine
from [30] which uses Lagrange interpolation to recover Dg
from the secret shares (a1, Ry),- -, (ak, Ry). This is possi-
ble thanks to the use of (¢, ¢)-Shamir secret sharing as long
as k > t and these £k DBs are honest. In fact, by the linearity
property of Shamir secret sharing, since {(c;,p;)}f_; is a
set of (¢, t)-Shamir secret shares of eg, then {(a;, R;)}¢_;
will be also a set of (¢, ¢)-Shamir secret shares of es - D,
which is the Bth block of the database. Thus, it is possible
for SU to reconstruct Dg using Lagrange interpolation as
explained in Section II, by relying only on the k responses
which makes LP-Goldberg robust by Definition 5. Also, the
EasyRecover() can detect the DBs that responded honestly,
thus those that are byzantine as well, which should discourage
DBs from misbehaving. More details about this subroutine
could be found in [30].

Algorithm 2 Dg < LP-Goldberg(¢,r,b, t, w)

SU

B« Invindex(l;,1,, C,ts)

Sets standard basis vector eg <— 15 € Z"
Chooses /¢ distinct a;g, - -+, € F*

Creates r random degree-t polynomials fi,---
Flz] st £;(0) = esi] Vj € [L-- 7]

pi < (filai), - fr(aq)), Vi€ 1, /]

6: Sends p; to DB;, Vi € [1,--- ,{]

b

7fr €Rr

b

Each honest DB;
7. Receives p;
8 Ry« pi- D=3 filawji, -+, 305 filas)wgs)
9: Sends R; to SU

SU
10: Receives Ry, -+, Ry,
11: if £ > ¢ then
12: Dg <+ EasyRecover(t,w,[aq, ..., ], [R1, -+, Ri])
13: else if Recovery fails and ¢ < k — [V/kt| then
14: Sq+ (Rilql, -, Rilq]), Vg € [1, 5]
15:  Dg < HardRecover(t, w, [aq, ..., ag], [S1, - - -

H))

Moreover, Y DBs among the k responding ones may
even be byzantine, as in Definition 1, and produce incorrect
response. In that case, it would be impossible for SU to
simply rely on Lagrange interpolation to recover the correct
responses. Since Shamir secret sharing is based on polyno-
mial interpolation, the problem of recovering the response
in the case of byzantine failures corresponds to noisy poly-
nomial reconstruction, which is exactly the problem of de-
coding Reed-Solomon codes [37]. Thus, SU would rather
rely on error correction codes and more precisely on the
Guruswami-Sudan list decoding [38] algorithm which can
correct ¥ < k — [Vkt| incorrect responses. In fact, the



vector (R1(q], R2[q],--- , R¢[q]) is a Reed-Solomon code-
word encoding the polynomial g, = j fjw;q, and the client
wishes to compute g,(0) for each 1 < ¢ < s to recover all the
s words forming the record Dg = (g1(0),- -, g5(0)). This is
done through the HardRecover() subroutine from [30]. This
makes LP-Goldberg also ¥-Byzantine-robust, by Definition 3,
and solves the robustness issues that LP-Chor suffers from,
however, this comes at the cost of an additional overhead as
we discuss in Section IV.

Corollary 1. LP-Chor and LP-Goldberg directly inherit the
security properties of Chor’s [22] PIR and Goldberg’s [30]
PIR respectively.

IV. EVALUATION AND ANALYSIS
A. Analytical Comparison

We start by studying LP-Chor and LP-Goldberg’s per-
formance analytically and we compare them to existing ap-
proaches. For LP-Goldberg, we choose w = 8 to simplify the
cost of computations as in [37]; since in GF (28), additions
are XOR operations on bytes and multiplications are lookup
operations into a 64 KB table [37]. We summarize the system
communication complexity and the computation incurred by
both DB and SU and we illustrate the difference in architec-
ture and privacy level of the different approaches in Table III.
As we mentioned earlier, existing research focuses on the sin-
gle DB setting. We compare LP-Chor and LP-Goldberg to
these approaches despite the difference of architecture to
show the great benefits that multi-server P/R brings in terms
of performance and privacy as we discuss next. We briefly
discuss these approaches in the following.

Gao et al. [2] propose a PIR-based approach, termed
PriSpectrum, that relies on the PIR scheme of Trostle et
al. [25] to defend against the new attack that they identify. This
new attack exploits spectrum utilization pattern to localize
SUs. Troja et al. [16], [17] propose two other PIR-based
approaches that try to minimize the number of PIR queries
by either allowing SUs to share their availability information
with other SUs [16] or by exploiting trajectory information
to make SUs retrieve information for their current and future
positions in the same query [17].

Despite their merit in providing location privacy to SUs
these PIR-based approaches incur high overhead especially in
terms of computation. This is due to the fact that they rely on
¢PIR protocols to provide location privacy to SUs, which are
known to suffer from expensive computational cost. In fact,
answering an SU’s query through a cPIR protocol, requires
DB to process all of its records, otherwise DB would learn
that SU is not interested in them and would then learn partial
information about the record D g, and consequently SU’s lo-
cation. This makes the computational cost of most cPIR based
location preserving schemes linear on the database size from
DB side as we illustrate in Table III. Now this is not exclusive
to cPIR protocols as even itPIR protocols may require
processing all the records to guarantee privacy, however, the
main difference with c¢PIR protocols is that the latter have
a very large cost per bit in the database, usually involving
expensive group operations like multiplication modulo a large
modulus [24] as opposed to multi-server «tPIR protocols.
This could be seen clearly in Table III as both LP-Chor and
LP-Goldberg require DB to perform a very efficient XOR
operation per bit of the database. The same applies to the

overhead incurred by SU which only performs XOR opera-
tions in both LP-Chor and LP-Goldberg, while performing
expensive modular multiplications and even exponentiations
over large primes in the cPIR-based approaches.

In terms of communication overhead, the proposed ap-
proaches incur a cost that is linear in the number of records
r and their size b. As an optimal choice of these parameters
is usually » = b = /n [22], [24], [30], [37] then this cost
could be seen as O(y/nw) to retrieve a record of size \/nw
bits, which is a reasonable cost for an information theoretic
privacy.

Moreover, as illustrated in Table III, existent approaches
fail to provide information theoretic privacy as the underlying
security relies on computational PIR schemes. The only
approaches that provide information theoretic location privacy
are LP-Chor and LP-Goldberg which are (¢ —1)-private and
t-private, respectively, by Definition 2. It is worth mentioning
that PriSpectrum [2] relies on the well-known cPIR of
Trostle et al. [25] representing the state-of-the-art in efficient
cPIR. However, this ¢PIR scheme has been broken [24], [39].
Since the security of PriSpectrum follows that of Trostle et
al. [25] broken cPIR, then PriSpectrum fails to provide the
privacy objective that it was designed for. However, we include
it in our performance analysis for completeness.

B. Experimental Evaluation

We further evaluate the performance of the proposed
schemes experimentally to confirm the analytical observations.

Hardware setting and configuration. We have deployed the
proposed approaches on GENI [33] cloud platform using the
percy++ library [40]. We have created 6 virtual machines
(VMs), each playing the role of a DB and they all share the
same copy of D. We deploy these GENI VMs in different
locations in the US to count for the network delay and
make our experiment closer to the real case scenario where
spectrum service providers are located in different locations.
These VMs are running Ubuntu 14.04, each having 8 GB
of RAM, 15 GB SSD, and 4 vCPUs, Intel Xeon X5650
2.67 GHz or Intel Xeon E5-2450 2.10 GHz. To assess the
SU overhead we use a Lenovo Yoga 3 Pro laptop with 8 GB
RAM running Ubuntu 16.10 with an Intel Core m Processor
5Y70 CPU 1.10 GHz. The client laptop communicates with
the remote VMs through ssh tunnels. We are also aware of
the advances in cPIR technology, and more precisely the
fastest cPIR protocol in the literature which is proposed by
Aguilar et al. [24]. We include this protocol in our experiment
to illustrate how multi-server PIR performs against the best
known c¢PIR scheme if it is to be deployed in CRN's. We use
the available implementation of this protocol provided in [41]
and we deploy its server component on a remote GENI VM
while the client component is deployed on the Lenovo Yoga
3 Pro laptop.

Dataset. Spectrum service providers (e.g. Google, Microsoft,
etc) offer graphical web interfaces and APIs to interact with
their databases allowing to retrieve basic spectrum availability
information for a user-specified location. Access to full data
from real spectrum databases was not possible, thus, we
generated random data for our experiment. The generated data
consists of a matrix that models the content of the database,
D, with a fixed block size b = 560 kB while varying the
number of records r. The value of b is estimated based on



TABLE III: Comparison with existent schemes

Scheme Communication Computation Setting Privacy
DB \ SU
LP-Chor (r+b)-¢ ntg (r+b)-((£—=1)-tg) ¢ DBs (£ — 1)-private
LP-Goldberg rew-L4+k-b (n/w) - tg 0-(0—=1)-rte+ 30 (L+ 1)tg { DBs || t-private {-comp.-private
PriSpectrum [2] (2¢/7 +3) - [log p] O(r) - Mulp 4y/r - Mulp 1 DB || underlying PIR broken
Troja et al [17] 126 - b O(n) - Mulp 4y/n - Mulp 1 DB computationally-private
Troja et al [16] | ng -7 -logy ¢+ (2¢/n +3) - [logp] O(n) - Mulp ng - - (2Expp + Mulp) +4y/n - Mulp | 1 DB computationally-private
XPIR [24] d-(rfa)/.C+X-F?. b 2d - (r/a) - (b/lo) - Mulp | d-(r/a)"/? - Enc+d-a-b/ly- Dec 1 DB computationally-private

Variables: tg, is the execution time of one XOR operation. p is a large prime, and Mulp and Expp are the execution time of performing one modular multiplication, and one
modular exponentiation respectively. 7 denotes the number of bits that an SU shares with other SU's in [16], ng is the number of SUs within a same group in [16]. § is the
number of DB segments in [17]. d is the recursion level, v is the aggregation level, C is the Ring-LWE ciphertext size, A is the number of elements returned by DB, F is the
expansion factor of the Ring-LWE cryptosystem, £¢ is the number of bits absorbed in a cyphertext, all are used in [24]. (Enc, Dec) are respectively the encryption and decryption

cost for Ring-LWE cryptosystem used in [24].

the public raw data provided by FCC [42] on a daily basis
and which service providers use to populate their spectrum
databases.

Results and Comparison. We first measure the query end-to-
end delay of the proposed approaches and plot the results in
Fig. 3. We also include the delay introduced by the existing
schemes based on our estimation of the operations included
in Table III. The end-to-end delay that we measure takes into
consideration the time needed by SU to generate the query,
the network delay, the time needed by DB to process the
query, and finally the time needed by SU to extract the 3"
record of the database. We consider two different internet
speed configurations in our experiment. We first rely on a
high-speed internet connection of 80M bps on the download
and 30M bps on the upload for all compared approaches. Then
we use a low-speed internet connection of 1Mbps on the
upload and download to assess the impact of the bandwidth
on LP-Chor and LP-Goldberg, and also on XPIR as well.
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Fig. 3: Query RTT of the different PIR-based approaches

Fig. 3 shows that the proposed schemes perform much
better than the existing approaches in terms of delay even
with low-speed internet connection. They also perform better
than the fastest existing cPIR protocol XPIR. This shows the
benefit of relying on multi-server ¢tPIR in multi-DB CRNs.
Also, and as expected, LP-Chor scheme performs better than
LP-Goldberg thanks to its simplicity. As we will see later,
LP-Goldberg also incurs larger communication overhead than
LP-Chor as well. This could be acceptable knowing that
LP-Goldberg can handle collusion of up-to ¢ DBs, and
is robust in the case of (¢ — k) non-responding DBs, and
9 byzantine DBs, as opposed to LP-Chor. This means that

LP-Goldberg could be more suitable to real world scenario
as failures and byzantine behaviors are common in reality.
Fig. 3 also shows that the network bandwidth has a significant
impact on the end-to-end latency. This is due to the relatively
large amount of data that needs to be exchanged during the
execution of these protocols which requires higher internet
speeds.
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Fig. 4: Computation Comparison

We also compare the computational complexity expe-
rienced by each SU and DB separately in the different
approaches as shown in Table III. We further illustrate this
through experimentation and we plot the results in Fig. 4a,
which shows that the proposed schemes incur lower overhead
on the SU than the existing approaches. The same observation
applies to the computation experienced by each DB which
again involves only efficient XOR operations in the proposed
schemes. We illustrate this in Fig. 4b.

We also study the impact of non-responding DBs on the
end-to-end delay experienced by the SU in LP-Goldberg as
illustrated in Fig. 5. This Figure shows that as the number of
faulty DBs increases, the end-to-end delay decreases since
SU needs to process fewer shares to recover the record
Dg. As opposed to LP-Chor, in LP-Goldberg, SU is still
able to recover the record 8 even if only k out-of-¢ DBs
respond. Please recall also that our experiment was performed
on resource constrained VMs to emulate DBs, however in
reality, DBs should have much more powerful computational
resources than of those of the used VMs which will have a
tremendous impact on further reducing the overhead of the
proposed approaches.
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Fig. 5: Impact of the number of faulty DBs on the query RTT.

In terms of communication overhead, most of the ap-
proaches, including LP-Chor and LP-Goldberg, have linear
cost in the number of records in the database as shown
in Table III. What really makes a difference between these
schemes’ communication overheads is the associated con-
stant factor which could be very large for some protocols.
Based on our experiment and the expressions displayed in
Table III, we plot in Fig. 6, the communication overhead that
the CRN experiences for each private spectrum availability
query issued by SU for the different schemes. The scheme
with the lowest communication overhead is that of Troja et
al. [17] thanks to the use of Gentry et al. PIR [32] which
is the most communication efficient single-server protocol
in the literature having a constant communication overhead.
However this scheme is computationally expensive just like
most of the existing cPIR-based approaches as we show
in Fig. 3. LP-Chor is the second best scheme in terms
of communication overhead but it also provides information
theoretic privacy. As shown in Fig. 6, LP-Chor incurs much
lower communication overhead than LP-Goldberg thanks to
the simplicity of the underlying Chor PIR protocol. However,
as we discussed earlier, LP-Goldberg provides additional
security features compared to LP-Chor. XPIR has a rela-
tively high communication overhead especially for smaller
database size but its overhead becomes comparable to that of
LP-Goldberg when the database’s size gets larger as shown in
Fig. 6. This could be a good alternative to the ¢cPIR schemes
used in the context of CRN's especially that it introduces much
lower latency which is critical in the context of CRN's. Still,
the proposed approaches have better performance and also
provide information-theoretic privacy to SUs, which shows
their practicality in real world.
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Fig. 6: Comparison of the communication overhead of the
different approaches: b = 560 B, k = /¢, ¥ = 0.

V. RELATED WORK

There are other approaches that address the location pri-
vacy issue in database-driven CRN's. However, for the below
mentioned reasons we decided not to consider them in our
performance analysis. For instance, Zhang et al. [15] rely on
the concept of k-anonymity to make each SU queries DB by
sending a square cloak region that includes its actual location.
k-anonymity guarantees that SU’s location is indistinguishable
among a set of k points. This could be achieved through
the use of dummy locations by generating £ — 1 properly
selected dummy points, and performing k queries to DB,
using the real and dummy locations. Their approach relies
on a tradeoff between providing high location privacy level
and maximizing some utility. This makes it suffer from the
fact that achieving a high location privacy level results in
a decrease in spectrum utility. However, k-anonymity-based
approaches cannot achieve high location privacy without
incurring substantial communication/computation overhead.
Furthermore, it has been shown in a recent study led by Sprint
and Technicolor [23] that anonymization based techniques
are not efficient in providing location privacy guarantees,
and may even leak some location information. Grissa et
al [19], [43] propose an information theoretic approach which
could be considered as a variant of the trivial P/R solution.
They achieve this by using set-membership probabilistic data
structures/filters to compress the content of the database and
send it to SU which then needs to try several combinations of
channels and transmission parameters to check their existence
in the data structure. However, LPDB is only suitable for
situations where the structure of the database is known to SUs
which is not always realistic. Also, LPDB relies on proba-
bilistic data structures which makes it prone to false positives
that can lead to erroneous spectrum availability decision and
cause interference to PU’s transmission. Zhang et al. [18]
rely on the e-geo-indistinguishability mechanism [44], derived
from differential privacy to protect bilateral location privacy
of both PUs and SUs, which is different from what we try to
achieve in this paper. This mechanism helps SUs obfuscate
their location, however, it introduces noise to SU’s location
which may impact the accuracy of the spectrum availability
information retrieved.

VI. CONCLUSION

In this paper, with the key observation that database-driven
CRN's contain multiple synchronized DBs having the same
content, we harnessed multi-server P/R techniques to achieve
an optimal location privacy for SUs with high efficiency.
Our analytical and experimental analysis indicate that our
adaptation of multi-server PIR for database-driven CRN's
achieve magnitudes of time faster end-to-end delay compared
to the fastest state-of-the-art single-server PIR adaptation with
an information theoretical privacy guarantee. Specifically, we
adapted two multi-server PIR techniques into CRN settings
as LP-Chor and LP-Goldberg. LP-Chor achieves an end-to-
end delay below a second with high collusion resiliency, while
LP-Goldberg offers fault tolerance and byzantine robustness
with a significantly higher efficiency compared to single-
server PIR based approaches. Given the demonstrated benefits
of multi-server PIR approaches without incurring any extra
architectural overhead on database-driven CRN's, we hope this
work will provide an incentive for the research community
to consider this direction when designing location privacy
preservation protocols for CRNs.
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