Session C1: Oblivious RAM

S3ORAM: A Computation-Efficient and Constant Client
Bandwidth Blowup ORAM with Shamir Secret Sharing

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Thang Hoang
EECS, Oregon State University
Corvallis, Oregon
hoangmin@oregonstate.edu

Jorge Guajardo
Robert Bosch RTC
Pittsburgh, PA

Ceyhun D. Ozkaptan
EECS, Oregon State University
Corvallis, Oregon
ozkaptac@oregonstate.edu

Jorge.GuajardoMerchan@us.bosch.com

ABSTRACT

Oblivious Random Access Machine (ORAM) enables a client to
access her data without leaking her access patterns. Existing client-
efficient ORAMs either achieve O(log N) client-server communi-
cation blowup without heavy computation, or O(1) blowup but
with expensive homomorphic encryptions. It has been shown that
O(log N) bandwidth blowup might not be practical for certain ap-
plications, while schemes with O(1) communication blowup incur
even more delay due to costly homomorphic operations.

In this paper, we propose a new distributed ORAM scheme re-
ferred to as Shamir Secret Sharing ORAM (S*ORAM), which achieves
O(1) client-server bandwidth blowup and O(1) blocks of client stor-
age without relying on costly partial homomorphic encryptions.
S30ORAM harnesses Shamir Secret Sharing, tree-based ORAM struc-
ture and a secure multi-party multiplication protocol to eliminate
costly homomorphic operations and, therefore, achieves O(1) client-
server bandwidth blowup with a high computational efficiency. We
conducted comprehensive experiments to assess the performance
of S’ORAM and its counterparts on actual cloud environments,
and showed that S°ORAM achieves three orders of magnitude lower
end-to-end delay compared to alternatives with O(1) client commu-
nication blowup (Onion-ORAM), while it is one order of magnitude
faster than Path-ORAM for a network with a moderate bandwidth
quality. We have released the implementation of S*ORAM for fur-
ther improvement and adaptation.

1 INTRODUCTION

Oblivious Random Access Memory (ORAM) [21] allows Alice to
access her data outsourced to a cloud without leaking to the server
which data blocks have been accessed. Despite recent progress, it
has been shown that existing ORAM designs are costly due to their
high communication and/or computation overhead [1, 6, 22, 29, 30].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CCS ’17, October 30-November 3, 2017, Dallas, TX, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4946-8/17/10...$15.00
https://doi.org/10.1145/3133956.3134090

491

Attila A. Yavuz
EECS, Oregon State University
Corvallis, Oregon
attila.yavuz@oregonstate.edu

Tam Nguyen
EECS, Oregon Sate University
Corvallis, Oregon
nguyetad@oregonstate.edu

The objective of this paper is to create an efficient ORAM scheme
that simultaneously achieves (i) a low client communication overhead
(i.e., O(1) client bandwidth blowup), (2) low computational overhead
by avoiding costly partial homomorphic encryptions, and (iii) low
client storage (i.e., O(1) block storage).

1.1 Research Gap and Problem Statement

ORAM with O(log N) bandwidth blowup. Stefanov et al. in [40]
proposed Path-ORAM scheme that achieves the optimal lower
bound of Q(log N) communication blowup under O(1) blocks of
client storage [7, 42]. However, Path-ORAM has been shown to
be costly for certain applications [6, 30, 36] due to the transmis-
sion cost of O(log N) blocks per access request. The client com-
munication blowup can be reduced by introducing computation
at the server side [3, 12]. Ring-ORAM [33] improved the commu-
nication efficiency of Path-ORAM by approximately 2.5 times by
allowing the server to perform XOR operations. However, it still
requires O(log N) communication blowup. Other ORAM schemes
(e.g., [11, 26]) used single-server PIR (e.g., [41]) to reduce the com-
munication overhead. However, they still require O(log N) band-
width blowup, and also incur significant computation cost due to
single-server PIR techniques (e.g., [41]).

ORAM with O(1) bandwidth blowup. Recent ORAM schemes
(e.g., Onion-ORAM [12], Bucket-ORAM [14], and [3]) rely on fully
or partial Homomorphic Encryption (HE) (e.g., [31]) to achieve O(1)
bandwidth blowup with O(1) blocks of client storage. However,
these ORAMs introduce an extremely high end-to-end delay due
to heavy computations incurred by HE operations. For instance,
it has been shown in [1, 28] that HE operations take much longer
execution time than the use of ORAMs with O(log N) communica-
tion blowup (e.g., Path-ORAM [40]). Therefore, distributed ORAM
schemes have been proposed to achieve a better computation per-
formance trade-off.

Distributed ORAM without Costly HE Operations. Stefanov
et al. proposed an ORAM scheme [37] that leverages two non-
colluding computation-capable servers to achieve O(1) client-server
bandwidth blowup with O(log N) server-server communication
blowup. However, it requires O(VN) blocks of client storage due to
its underlying ORAM primitive (i.e., Partition-ORAM [39]), which
is extremely costly for memory-limited clients.



Session C1: Oblivious RAM

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Table 1: Asymptotic and Experimental Performance Comparison of SSORAM and its Counterparts.

Scheme Bandwidth Blowup+ Server Client End-to-end # of servers
Client-server { Server-server Computation Block Storage: Delay (s)
Path-ORAM [40] O(log N) - - oW 20.3 1
Ring-ORAM [33] O(log N) - XOR oW 13.2 1
Onion-ORAM [12] o(1) - Additively HE [10] o(1) 104 1
Secure addition and
3
S"ORAM o OllogN) multiplication of SSS values o 25 3

This table presents the performance result of selected ORAM schemes with 40GB database containing 128-KB blocks and the network setting that offers a download and upload
throughput of approximately 27 and 6 Mbps, respectively. We refer the reader to Section 5 for the details of our experiments. A denotes the security parameter.

TBandwidth blowup is defined as the ratio between the communication introduced by ORAM and the base case where the access pattern is not hidden.

& Client block storage is defined as the number of data blocks that need to be temporarily stored at the client. This is equivalent to the stash component used in [33, 40].

Some ORAM schemes (e.g., [1, 27]) attempted to use multi-server
PIR (e.g., [9]) to decrease the communication overhead under O(1)
blocks of client storage without using costly homomorphic en-
cryption. Abraham et al. in [1] showed an asymptotically tight
sub-logarithmic communication blowup bound of Q(log.p N) for
composing ORAM with PIR, where c, D are the numbers of blocks
stored by the client and performed by PIR operations, respectively.
Therefore, although the CHf-ORAM scheme in [27] claimed to
achieve O(1) bandwidth blowup with O(1) blocks of client storage,
it has been shown to violate this bound with two concrete attacks
in [1]. To the best of our knowledge, there is no secure distributed
ORAM scheme that can achieve an O(1) client-server bandwidth
blowup with O(1) blocks of client storage overhead.

1.2 Our Contribution

We developed a new distributed ORAM that we refer to as Shamir Se-
cret Shared ORAM (S? ORAM). Below, we first present our main idea
followed by desirable properties and contributions of our scheme.

Main idea. Although Onion-ORAM [12] is considered a theoretical
construction due to its costly partial HE operations, it offers an
elegant eviction strategy, which is useful to achieve O(1) client
bandwidth blowup with O(1) blocks of client storage. Our main
idea is to harness the “homomorphic” properties of Shamir Secret
Sharing (SSS) along with a secure multi-party multiplication proto-
col to perform eviction operations in the line of Onion-ORAM, but
in a significantly more efficient and practical manner. By doing this,
S30ORAM inherits all desirable properties of Onion-ORAM without
the costly homomorphic operations and, thus, requiring only a
lightweight computation and suitability for larger block sizes. Table
1 outlines a high-level comparison of SSORAM and its counterparts.

Desirable properties and contributions. We summarize the
desirable properties of SSORAM and our contributions as follows:

o Low client-server communication: SSORAM achieves O(1) client
bandwidth blowup, compared with O(log N) of Path-ORAM [40]
and Ring-ORAM [33] (with a fixed number of servers). Moreover,
S3ORAM features smaller block sizes (i.e., Q(log N)) than those
of other ORAM schemes with O(1) communication blowup,
which require fully or partial HE operations (e.g., Q(log® N) in
Onion-ORAM [12], Q(log® N) in Bucket-ORAM [14]).

492

e Low server computation: In SSORAM, servers only perform light-
weight modular additions and multiplications, which are much
more efficient than partial HE (e.g., [10]) operations. In particular,
we show in Section 5 that, the server computation of SSORAM
is three orders of magnitude faster than that of Onion-ORAM.

e Low client computation: In SSORAM, the client only performs
lightweight computations for retrieval and eviction operations.
Thus, it is more efficient than Onion-ORAM which requires a
number of partial HE operations. For example, SSORAM requires
only a few milliseconds compared to minutes of Onion-ORAM
to generate encrypted select queries (see Section 5). Moreover,
since blocks in SSORAM are single encrypted, the decryption is
less costly and, therefore, faster than other ORAMs (e.g., [12, 37])
whose blocks are onion-encrypted.

e Low end-to-end delay: SSORAM is approximately three orders

of magnitude faster than Onion-ORAM, while it is one order of
magnitude faster than Path-ORAM in networks with moderate
bandwidth (e.g., < 240 Mbps).

e Compact client storage: SSORAM features O(1) blocks of client
storage, compared to O(A) in Path-ORAM and Ring-ORAM, re-
spectively, and O(VN) of Stefanov et al. in [39].

e High security: SSORAM relies on Shamir Secret Sharing and a se-

cure multi-party multiplication protocol, and therefore, it offers
information-theoretic security.

o Full-fledged implementation and experiments: We implemented

S30ORAM and evaluated its performance in an actual cloud envi-
ronment (i.e., Amazon EC2). The detailed experiments in Section
5 showed that SSORAM is efficient in practice, and it can even be
deployed on mobile devices with limited computation capacity
and network connection. We also release the source code of
S3ORAM for public use and wide adaptation?.

S30ORAM does not rely on the direct composition of PIR and ORAM,
and it requires servers to communicate with each other to execute
a secure multi-party multiplication protocol with the communica-
tion blowup of O(log N). Therefore, S’ ORAM does not violate the
asymptotic communication bound of Abraham et al. [1]. Note that
a high bandwidth is available for inter-cloud communications via
dedicated connections [23]. Hence, the inter-cloud communication

! Available at https://github.com/thanghoang/S30RAM



Session C1: Oblivious RAM

of S*ORAM has a minimal impact on the end-to-end client-server
delay as detailed in Section 5.

On the other hand, in many practical scenarios, it may not be
possible to guarantee a reliable high-bandwidth communication
link between the client and the servers. This is particularly true
in the case of home networks and mobile devices with wireless
network connectivity (e.g., Wi-Fi, LTE). Therefore, following re-
cent work, one of the main goals of this work is to minimize the
client communication overhead while at the same time requiring
a low computational overhead at the client and the server sides.
In Section 5, we demonstrate the advantages of SSORAM over its
counterparts with O(log N) and O(1) communication blowup for
such moderate bandwidth network settings. It turns out, that the
advantages of SSORAM over its counterparts with O(1) bandwidth
blowup such as Onion-ORAM are significant due to its computa-
tional efficiency. This efficiency is obtained, however, at the cost of
requiring multiple servers (at least three) in the distributed setting.

2 PRELIMINARIES AND BUILDING BLOCKS

Notation. x ﬁ S denotes that x is randomly and uniformly se-
lected from set S. |S| denotes the cardinality of set S. |x| denotes

the size of variable x. For any integer I, (x1, ..., x) & S denotes

(x1 i S,...,x] <i 8). We denote a finite field as Fp, where p is a
prime. Given u and v as vectors with the same length, u - v denotes
the inner product of u and v. Given an n-dimensional vector u and
amatrix I of size nXm, v = u-Idenotes the matrix product of u and
I resulting in an m-dimensional vector v. I[i, x| denotes accessing
data of row i of matrix I.

2.1 Model of Computation

Following the literature in distributed secure computation (e.g.,
[5, 19]), we assume a synchronous network which consists of a
client and ¢ > 2t + 1 semi-honest servers S = {Si,...,S¢}. Itis
also assumed that the channels between all the players are pairwise-
secure, i.e., no player can tamper, read, or modify the contents of the
communication channel of other players. We assume that all parties
behave in an “honest-but-curious” manner in which parties always
send messages as expected but try to learn as much as possible
from the shared information received or observed. Notice that in
this paper, we do not allow parties to provide malicious inputs, i.e.,
parties are not allowed to behave in a Byzantine manner.

A protocol is t-private [5] (see [19] for similar definitions in the
context of distributed PIR) if any set of at most ¢ parties cannot com-
pute after an execution of a protocol more than they could compute
individually from their set of private inputs and outputs. Alterna-
tively, the parties have not “learned” anything. Our protocols in
general, offer information-theoretic guarantees, unless something
is said explicitly to the contrary. This implies that our solutions
are secure against computationally unbounded adversaries. As it is
standard, we require that all computations by the servers and client
be polynomial time and efficient. Finally notice that in this paper,
not only is the interaction between the servers and client performed
in such a way that information-theoretic security is guaranteed but
also the database being accessed is shared among the servers in a

493

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

way that no coalition of up to t servers can find anything about the
database contents (also in an information-theoretic manner).

2.2 Shamir Secret Sharing

Werecall (¢, £)-threshold Shamir’s Secret Sharing scheme [34] which
comprises two algorithms SSS.Create and SSS.Recover as presented
in Algorithm 1. To share a secret a € F, among ¢ parties, a dealer
generates a random polynomial f where f(0) = a and evaluates
f(x;) for party P; for 1 < i < ¢, where x; € Fj, \ {0} is a determin-
istic non-zero element of F), that uniquely identifies party #; and
it is considered public information (SSS.Create algorithm). f(x;) is
referred to as the share of party P;, and it is denoted by [«];. To
reconstruct the secret a, the shares of at least t + 1 parties have to
be combined via Lagrange interpolation (SSS.Recover algorithm).

Algorithm 1 Shamir Secret Sharing (SSS) scheme [34]
([[0{]] 1s--

. [@]¢) < SSS.Create(a, t): Create t-private shares of «

1: (al,,..,at)in
2: fori=1,...,0do )
3: [[aﬂi <—a+2}t.=1 aj-x{

S [ele)

4 return ([a]1, . .

a < SSS.Recover(A, t): Recover the value « from > ¢ + 1 shares

Slalx., tin A

t+1
i=1

1: Randomly pick ¢t + 1 < € shares {[o]x,, - -
2: g(x) « Lagrangelnterpolation ({(xi, lalx;)
3 a « ¢(0)
4: return o

We extend the notion of secret share for a value into the share
for a vector in the natural way as follows: Given a vector v =
(V15 - -,on), [V]i = ([o1]is - - - » [vn]i) indicates the share of v for
party #;, which is a vector whose elements are the shares of the
elements in v. Similarly, given a matrix I, [I] denotes the share of I,
which is also a matrix with each cell [I[i, j]] being the share of the
cell I, j]. In some cases, to ease readability, we drop the subscript
i, when the party is understood from the context.

Shamir [34] showed that SSS is information-theoretic secure and
t-private in the sense that no set of t or less shares reveals any
information about the secret. More precisely, Ym, m’ € Fp, VI C
{1,...,¢{} st. || < t and for any set A = {a1,...,a 7|} where
a; € Fp, the probability distributions of {Sl‘GI D (S1,...,80) —
SSS.Create(m, t)} and {sle[ : (sfs...,s;) < SSS.Create(m’, t)}
are identical and uniform:

Pr({sics} = A) = Pr({s]. s} = A).
Ben-Or et al. [5] showed that SSS can be used to obtain t-private

protocols. Lemma 2.1 summarizes the homomorphic properties of
SSS and it was first described in [5].

LEMMA 2.1 (SSS HOMOMORPHIC PROPERTIES [5]). Let [[a]]gt) be
the Shamir share of value a € Fj, with privacy level t for P;. SSS
offers additively and multiplicatively homomorphic properties:

o Addition of two shares

[[0(1]]?) + [[az]]g.t) = [[0(1 + az]]g.t).

(1)



Session C1: Oblivious RAM

o Multiplication w.r.t a scalarc € F)

c- [[a]](it) = [c- (x]]E.t). ()
e Partial share multiplication
[[0!1]]?) : [[azﬂg-t) = [on -a2ﬂ§2t)~ (©)

The two-share partial multiplication (3) in Lemma 2.1 results
in a share of a; - @z which is ¢-private and represented by a 2t-
degree polynomial. It was first observed in [5] that the resulting
polynomial is not uniformly distributed. In order to achieve the
uniform distribution and computation consistency over [a; - az2], it
is required to reduce the degree of the polynomial representation
of a1 - a2] from 2t to t and re-share the polynomial. This multi-
plication operation with degree reduction can be achieved via a
secure multiplication protocol shown in the following section?.

2.3 Secure Multi-party Multiplication

Gennaro et al. [17] presents a Secure Multiplication Protocol (SMP)
for two Shamir secret-shared values among multiple parties. Given
a1, a2 € Fp shared by (t, £)-threshold SSS as [[al]]gt) and [[ag]]gt) for
1 < i < Crespectively, 2t + 1 parties $; among ¢ parties would like
to compute the multiplication of a1, a2 without revealing the value
of a1 and @z. The protocol requires a Vandermonde matrix V)
of size (2t + 1) X (2t + 1) having the structure as follows:

50 ol 2t
b } b
X2 ) X3
V{xx,---,xzzﬂ} = : : ., : ’ (4)
0 1 2t
Xor+1 Xor+1 Xot+1

where x; € Fp are unique identifiers of participating ;. We refer
to V7! as the inverse of Vandermonde matrix. Each P; locally
multiplies [[al]]gn and [[azﬂgt) resulting in o - az]]S.Zt), and creates
shares of [y - ag]]E.Zt) by a new random polynomial of degree ¢
for 2t + 1 parties and distributes them to other 2t parties. Finally,

each party locally performs the inner product between the received
shares and V7! | [1, ¥] to obtain a new share of &1 - 3 which is now

{xi}
represented by a polynomial of degree t as [y - az}]gt). Protocol 1
presents this multiplication protocol.

Protocol 1 SMP Protocol [17]

Input: £; owns [[al}](it), [[ag]]g.t) and wants to compute [a; -az}]gt)
Output: Each $; obtains [[ﬁ]]gt) where f = a1 - a2

1: for each P; € {P1,...,P2r+1} do

x o P = [l [l

s (B, « sss.Create([] "), 1)

4 Distribute [f]' toall P} € {(P1,.... Pors1} \ Pi

s: for each P; € {P1,...,P2r+1} do

26+
o 0 <3 VL 1)
]:

ZBenor et al. [5] proposed a secure multiplication protocol, however the protocol of
Gennaro et al. [17] is more efficient and thus, is the subject of Section 2.3.

494

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

LEmMMA 2.2 (SMP proTOCOL PRIVACY [17]). The SMP protocol in
[17] (denoted as x operator) offers homomorphic property for full
multiplication between two SSS-shares whose result is t-private as:

o - 2] = [ou ] % [a] 5)

2.4 Multi-server Private Information Retrieval

Private Information Retrieval (PIR) enables retrieval of a data item
from an (unencrypted) public database without revealing which
item being fetched. We follow the presentation of [4, 19] as follows.

Definition 2.3 (multi-server PIR [4, 9, 19]). Letb = (b1, ...,bn) be
a database consisting of n items being stored in ¢ servers. A multi-
server PIR protocol consists of three algorithms: PIR.CreateQuery,
PIR.Retrieve and PIR.Reconstruct. Given an item b; in b to be re-
trieved, the client creates queries (e, . . ., e¢) < PIR.CreateQuery(i)
and distributes e; to server S;. Each server responds with an answer
aj < PIR.Retrieve(ej, b). Upon receiving £ answers, the client com-
putes the value of item b; by invoking the reconstruction algorithm
b < PIR.Reconstruct(ay, ..., ap).

Security of the protocol is defined in terms of correctness and
privacy. A multi-server PIR protocol is correct if the client computes
the correct value of b from any ¢ answers via PIR.Reconstruct
algorithm with probability 1. The concept of t-privacy for protocols
is applied naturally to the PIR setting and follows directly from the
t-privacy of SSS and the fact that among the servers they only have
access to t shares of the query vector [19].

2.5 Multi-server ORAM Security

We now define the security of multi-server ORAM in the semi-
honest setting proposed in [1] as a straightforward extension of
the definition in [1] to the multi-server setting.

Definition 2.4 (Multi-server ORAM with server computation ). Let
x = ((opy,idy, datay), .. ., (opq, idg, datag)) be a data request se-
quence of length g, where op; € {Read, Write}, id; is the identifier
to be read/written and data; is the data identified by id; to be
read/written. Let ORAM;(x) represent the ORAM client’s sequence
of interactions with the server S; given a data request sequence x.
Correctness. A multi-server ORAM is correct if for any access
sequence X, {ORAM1 x),..., ORAMg(x)} returns data consistent
with x except with a negligible probability.
t-security. A multi-server ORAM is t-secure if V7 C {1,...,¢}
such that | 7| < ¢, for any two data access sequences x, y with |x| =

|y|, their corresponding transcripts {ORAMie I(x)} and {ORAMI-E I(y)}

observed by a coalition of up to t servers {S;c s} are statistically/
computationally indistinguishable.

3 THE PROPOSED S30RAM SCHEME

S3ORAM follows the typical procedure of tree-based ORAMs [35].
Specifically, given a block to be accessed, the client first retrieves it
from the outsourced ORAM structure via a secure retrieval oper-
ation. The retrieved block is then assigned to a random path, and
written back to the root bucket. Finally, an eviction operation is
performed in order to percolate data blocks to lower levels in the
ORAM structure. The intuition behind S°ORAM access protocol is
as follows: (1) to integrate SSS with a multi-server PIR protocol



Session C1: Oblivious RAM

Table 2: Notations.

Symbol Description
T,T[i] S’ORAM tree structure and the bucket indexing i.
B,b,c Block size, block and block chunk, resp.
N,m Number of blocks and number of chunks in a block.
H Height of the SSORAM tree T.
A Eviction frequency.
Z Bucket size.
pm Position map.
(pID, pldx) « pmlid] | Precise location (path ID & path index) of a block id.
I « P(pID) (Ordered) indexes of buckets residing in path pID.
i « P(pID, h) Index of the bucket on path pID at level-h.
Ne, Ny Current number of eviction and retrieval operations, resp.

to perform a private retrieval operation with some homomorphic
properties; and (2) to leverage these homomorphic properties of SSS
and a SMP protocol to perform block permutation and to preserve
t-privacy level of ORAM structure in the eviction phase, without
relying on costly partial HE operations. In Table 2, we outline the
notation used in the SSORAM scheme and throughout the rest of
the paper.

3.1 S30RAM Data Structure

The SSORAM structure is a balanced binary tree denoted as T with
a height of H. T can store up to N < A-2H~1 data blocks b;, where
constant A is the eviction frequency. A node in T is a bucket with
Z slots, which can store up to Z real blocks. We index buckets in
T according to the top-to-bottom, left-to-right order. Hence, leaf
buckets are indexed in [27, 2H*1) a5 exemplified in Figure 1. T[i]
and T[i, j] denote an access operation to the bucket with index
i, and to the slot j (1 < j < Z) of the i-th bucket, respectively.
S30ORAM has a position map pm := (id, {pID, pldx)) to store the
position of real blocks in T, where 2H < pID < 277+ denotes the
path assigned for the block id, and 1 < pldx < Z - (H + 1) denotes
the block’s index in the path pID. We present the construction
of SSORAM data structure in Algorithm 3. Given a database DB
organized into N B-bit blocks and an ORAM tree T as the input, the

Algorithm 3 ([T]y,..., [T]¢) < S?ORAM Setup(DB,T)

: Organize DB into blocks (b1, . . ., bn) with IDs (idy, . . ., idn)
CTlijl = {0}Bfor1<i<2Ht1<j<z

Ne «<— 0,n, <0

fori=1...,Ndo

H’__.,2H+1)

WY =

Z; i [2

Select (x;j,y;) s.t. x; € P(z;) and T[x;, y;] is empty

T[xi,yi] < bi

pmlid;] < (z;, [logy xi| - Z + y;)

o fori=1,...,2H"1 —1do

10: forj=1,...,Zdo

11 (cglj), e ,cg’r?)) « Tl[i, j], where cgcj) €Fp

12: fork=1,...,mdo

13: ([[cg’kj)]]l, cees [[cg’kj)]][) — SSS.Create(cS’kj), 1)
.,[cg;l)]]l), forall1<I<?¢

14 [Tl (e -
15: return ([T, ..., [T]e) >Send [T]; to Sj,for1 <i<¢

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

D S
[o] -t \
[b2]
[0]

denoted as [T[1,1]]

0] ; 0]
] [0]
z 2 ¥ 3
L] Bucket index [°]
" [o] [o]
[bs] [bu] [o] [o]
[o] [o] [0] [o]
[ | * o] |° o] | ° o) |’
[0] [o] [b7] [o]

[o] [o] [o] [b10] [o] [o] [o] [o]
[bs] [o] [b4] [o] [bo] [o] [bs] [o]
[o] [b16] [o] [o] [o] [o] [o] [bs]
[o] [o] [b12] [o] [o] [b13] [o] [o]

8 9 10 11 12 13 14 15

Figure 1: SSORAM tree structure.

S3ORAM Setup creates the shares of T as the output for £ servers
as follows. First, the client initializes every slot in each bucket of
T with a 0’s string of length B (step 2). The client organizes all
data blocks into T, wherein each b; is independently assigned to a
random leaf bucket of T. Notice that B can be larger than [log, p]
and therefore, it might not be suitable for arithmetic computation
over Fp. To address this, the client splits the data in each slot of T
into equal-sized chunks c; € Fj, (step 11)3. Finally, the client creates
shares of T via SSS.Create for each chunk in each slot in T (step
13). The distributed SSORAM structure consists of £ shares of T as
{[]1,....[T]¢}. Figure 1 outlines the structure of SSORAM.

3.2 S30RAM Access Protocol

Protocol 2 b — S3ORAM.Access(op, id, b*)
1. b < S?ORAM Retrieve(id)

2 pm[id].pID & [2H, ..., 2H+1)
3: if op = write then

4 b« b*

5: pm[id].pldx < n, +1
6

7

8

: (01,...,cm) —b
cforj=1...,mdo
(lejl1s - - -5 [ejle) < SSS.Create(cj, t)

9: fori=1...,fdo
10: Write ([e1]is - - - [em]i) to slot [T[1, n, +1]]; in server S;
11: np < n,+1 mod A
12: if n, = 0 then
13: Execute SSORAM.SSS-SMP-TripletEviction protocol
14: Ne «— ne +1 mod 2H
15: return b

The SORAM access protocol consists of two subroutines in-
cluding S ORAM .Retrieve and S>ORAM.SSS-SMP-TripletEviction

3We assume implicitly that we choose an appropriate prime p such that every string
c;j when interpreted as an element of F, is less than p.



Session C1: Oblivious RAM

as shown in Protocol 2. We first describe a SSS-based select scheme
that is used in the S ORAM .Retrieve subroutine. We then describe
our new eviction strategy based on Triplet Eviction [12]. SSORAM
eviction is performed after every A successive accesses as in [12, 33].

o SS5S-based Select Scheme: Our objective in this select scheme is to
privately retrieve a block of interest residing in the queried path
from the SSORAM structure. Recall that in single-server HE-based
ORAM schemes (e.g., [3, 12]), the select query is encrypted with
costly additive/fully HE. In our case, we “encrypt” SSORAM struc-
ture with SSS that offers highly efficient additive and multiplica-
tive homomorphic properties. We observe that multi-server PIR
scheme in [4, 19] relies on SSS to create select queries and, there-
fore, it can serve as a suitable private retrieval tool to be used
for SSORAM structure. We describe SSS-based select scheme in
Algorithm 5, and further outline it as follows:

Algorithm 5 SSS-based Select Scheme

([[e]]l, ..
1: Lete:=(ey,...,ep), whereej < 1,¢; < Ofor1<i#j<n
2: fori=1,...,ndo
3: ([[ei]](t), AU [[ei}](;)) « SSS.Create(e;, t)

& [e]D =[], fen] ) for1 < i<

1. el

., [[e]¢) < PIR.CreateQuery(j): Create select queries

s: return (e

[[b]]E.Zt) — PIR.Retrieve([[e}]gt), [[b]](l.t)): Retrieve the queried block
v [0 e o]

2: return [b] EZt)

b« PlR.Reconstruct([[b]](lm), ce [[b]](;t)): Reconstruct the block

b e SSS.Recover([[b}](IZt), e [[bﬂf[), 2t)
2: return b

Assume that each server S; stores a share of the database b con-
taining n items denoted as [b];, which can be interpreted as a vector
with each i-th component being the share of the i-th item in b. Let
Jj be the index of the item in b to be privately retrieved. The client
creates an n-dimensional select vector with all zero coordinates
except the j-th coordinate being set to 1 and then, secret-shares it
with SSS (PIR.CreateQuery algorithm). The client then distributes
these shares to their corresponding servers, each answering with
the result of the inner product between the received share vector
and its share of b (PIR.Retrieve algorithm). Finally, the client in-
vokes SSS.Recover function over ¢ answers to recover the desired
item (PIR.Reconstruct algorithm). Note that b in this context is SSS-
secret shared, instead of being unencrypted as in [4, 19]. Therefore,
our PIR.Reconstruct algorithm requires at least 2t + 1 shares instead
of t + 1 to recover the item correctly.

S30RAM Retrieval: We present SSORAM retrieval protocol in
Subroutine 1, which employs three functions of the aforementioned
SSS-based select scheme. Given a block to be read, the client first
determines its location in the SSORAM structure via the position
map pm and then, retrieves it using SSS-based select protocol. In

496

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Subroutine 15 «— S?ORAM.Retrieve(id)
Client:

1: (s,)) « pmlid]

2: ([[e]](t), s [[e]]((,t)) « PIR.CreateQuery(j)

3: Send (s, [[eﬂgt)) to server Sj,for1 <i < ¢

Server: each S; € {S1,...,S¢} receiving (s, [[e]](it)) do
4 T « P(S)
s: forj=1,...,mdo
6: Let [[Cjﬂgt) contain j-th chunk of Z slots in [[T[i']]]g.t), Vi‘el
7: [[Cj]]gm) — PIR.Retrieve([[e]]Y), [[Cj]]gt))
(21) (20) )
& Send ([e1];”, ..., [em];™) to client
Client: On receive ({[[clﬂgm)}[ . {[[cm}](im)}f:l)

=1
9. forj=1,...,mdo
cj PIR.Reconstruct([[Cj]](IZt), ce [[Cj]](gm))

11: b« (c1,..
12: return b

10:

-»Cm)

this case, we interpret all slots in the retrieval path as the database
input b in PIR.Retrieve algorithm. Hence, the size of b and the
length of the query vector is n = Z - (H + 1). Note that there
are m separate chunks in each slot, the servers need to invoke
PIR.Retrieve algorithm m times with the same select query but
over different bj, where each b; contains the j-th chunk of all
slots in the retrieval path. Finally, the client obtains the desired
block by recovering all chunks upon receiving their shares with
PIR.Reconstruct algorithm (steps 9-11).

After the block is retrieved, the client creates its new SSS-shares
(steps 7-8, Protocol 2), and then writes the share to an empty slot
in the root bucket of the corresponding server (step 10). After
A successive retrievals, the background eviction is performed as
described below.

SSS-SMP-based Triplet Eviction: For each eviction operation,
the client selects a deterministic eviction path according to the
reverse lexicographical order as proposed in [18]. Given a binary
ORAM tree of height H, where edges in each level are indexed by
either 0 (left) or 1 (right), the collection of edges of the eviction
path at the n.-th eviction operation is determined as:

(6)
where DigitReverse,(a) denotes the order-reversal of base-2 digits
of the integer a.

The S*ORAM eviction strategy is inspired on the “Triplet Evic-
tion” strategy of Onion-ORAM [12]. Specifically, it percolates real
data blocks in the eviction path to lower levels as much as possible,
in which each real block b from each bucket T; can be moved to
one of T;’s children such that b still resides in its own path. This
strategy incurs significant cost in Onion-ORAM due to the fol-
lowing reasons: (i) Onion-ORAM relies on additively HE so that
after each pushdown operation, a layer of encryption is added to
blocks, which increases the cost of select query creation and block
decryption in the retrieval phase. (ii) It requires multiple rounds
of client-server communication to (ii-1) get the precise location of

v = DigitReverse,(n, mod 2M),



Session C1: Oblivious RAM

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

v 1YL [ v D3 3

Server 1 Server 2
= =

Triplet Eviction Triplet Eviction

»

Iy ]2

Triplet Eviction

* {[[Ih]](t> 1, [Ty]s (1) Send permutation matrices

1 Server 3 Client
— %
e

Source bucket

“. O Destination bucket
:

.

Sibling bucket

Eviction path

H ) i E (é): Data in source bucket are pushed down via matrix product
REELEL R L L R (4) SMP Protocol [€============emcmccncuans (3): Data in source bucket are copied to (non-leaf) sibling bucket

Figure 2: The SSS-SMP-based Triplet Eviction.

Subroutine 3 SSORAM.SSS-SMP-TripletEviction

Client:
1: v « DigitReverse,(n, mod 2H)

2 Let# = (u1,...,up) be the ordered indexes of source buckets on the path indicated by v, starting from the root

3: forh=1,...,H-1do

4 Let I, be a 2Z x Z matrix, set I[*, ] «— 0. Let i@, be the index of destination bucket of T[uy,]

5: for each real block with id in T[@,] do

6: ILj—-Z -(h—-1),j— Z-h] « 1 where j « pm[id].pldx
7: for each real block with id” in T[uy] do

8: (s”,j") « pm[id’]

9: if P(s’,h) = 4y, then

10: L -Z-(h-1),j] < 1, pm[id'].pldx — Z - h + j”
11: else

12: pm[id’].pldx « j' + Z

—_

—-

—_

17: Send (o, {[[Ih]](t)}h oy ]](t)) toS;j,for1 <i<?¢

Server: each S; € {S1,...,Sp} receiving (v, {[[Ih]](t>}h . [[I;i]](it)) do

18: Let & = (uy, ..., up) be the ordered indexes of source buckets on the path indicated by v, starting from the root

19: [T[apl]i < [Tlupl]i for1 <h <H

20: forh=1,...,Hdo

21: Let @, be the index of destination bucket of T[uy,]
22: forj=1,...,mdo

, where j” is the index of an empty slot selected in T[]

3. Execute steps (3)—(10) with h = H producing Iy for source-to-destination permutation at leaf level
4 Execute steps (3)-(10) with h = H, iy, = index of sibling bucket of T[u},] producing I}, for source-to-sibling permutation at leaf level

5 [l 1. [IaLi 1)) SSS.Create(ty[i,jl.t) for 1 < h < H,1<i<2Z,1<j<Z
6 [ L1, [0, L1 $SS.Create(T), [i,jl.t) for 1 < i < 2Z,1<j < Z

> Replace sibling bucket with source bucket at non-leaf levels

23: [, J]](Zt) [en j]](t) . [[Ihﬂ(t) where [cp, j]](t) contains j-th chunks from Z slots of [T[uy] ]](t) and [[T[dy] ﬂ(t)
24: Execute SMP protocol to reduce [c, J]](ZI) to [[c ﬂ( ) and update j-th chunks in [T[uy] ﬂ(t) and [T[ay] ]](t) with [[c ]](t)
25: Execute steps (20)—(24) with h = H, [[Ihﬂ(t) = 1 ]](t) uh = index of sibling bucket of T[u]

the real blocks for select query creation (since this info is stored in
the bucket’s metadata) and, (ii-2) bound the number of encryption
layers at the leaf buckets. Notice that the latter also requires the
client to perform a number of costly homomorphic encryptions
and decryptions.

497

o Our New Triplet Eviction Strategy: In this paper, we propose
a Triplet Eviction strategy that only requires single-round client-
server communication and lightweight client computation and avoids
accumulating multi-layer of encryption to the ORAM structure. The
main idea is to leverage SSS and SMP protocol to perform block
permutation and maintain the consistency of privacy level. We
present this strategy as follows:



Session C1: Oblivious RAM

Remark that since the precise location of real blocks is locally
stored in the position map, the client is not required to interact with
the server(s) to read the metadata. For each level in the eviction path,
we obliviously move blocks from source bucket T; to its children Ty;,
T2i+1. We follow the terminology used in [12] to denote the buckets
involved in each Triplet Eviction operation: if one child of the source
bucket resides in the eviction path, it is called destination bucket
and the other is called sibling bucket (see Figure 2 for clarification).
Eviction is performed according to the following rules:

o Source to destination: Let [u] be a 2Z-dimensional share vector
formed by concatenating all data in the source bucket and the
destination bucket. The client creates a permutation matrix I €
{0, 1}2%%Z such that the matrix product of [u] and I will result in
a Z-dimensional vector [v], in which data at position i in [u] is
moved to position j in [v]. That is, I is a matrix, where I[i, j] « 1if
the block at position i in [u] is expected to move to position j in [v].
As aresult, I[i + Z,i] « 1if the block currently at position i in [v]
stays at the same location. To hide the location information of real
blocks after permutation, the client “encrypts” every single element
of I with SSS resulting in a share matrix [I] € F;Z *Z Note that the
matrix product between these two shares results in a share vector
with each element being represented by a degree-2t polynomial.
To maintain the consistency of the S30ORAM structure, servers will
together execute the SMP Protocol presented in Section 2 to reduce
the degree of polynomial of each component in [v] from 2¢ to .

e Source to sibling: We can apply the same trick as in the source-

to-destination operation above to push real blocks down to sibling
buckets. However, since non-leaf sibling buckets are guaranteed
to be empty by previous evictions featuring a negligible bucket
overflow probability (see Lemma 4.1), this process can be further
optimized as discussed in [12] as follows. For evictions not involved
with leaf buckets, the client simply requests servers to copy all data
from the source buckets to sibling buckets and then, update the
path index of real blocks in the position map accordingly. For leaf
level, it is required to use the matrix permutation as described above
since leaf buckets are not empty. This optimization can halve the
bandwidth cost of client-server and server-server communication.

Generally, we can see that our eviction approach requires only
one client-server communication and guarantees that all data after
eviction are consistently “encrypted” by degree-t polynomials. Fig-
ure 2 illustrates this new SSS-based Triplet Eviction strategy. We
present the algorithmic description of this strategy in Subroutine 3.

3.3 Asymptotic Cost Analysis

In this section, we study the cost of SSORAM pertaining to block
size and number of blocks, where the security level and other system
parameters (e.g., prime field, bucket size) are fixed.

e Communication: The size of each select query being sent to
¢ servers in S*ORAM retrieval is (Z - (H + 1) - [log, p1) bits. The
client sends H + 1 permutation matrices in the SSORAM eviction
to £ servers, each being of size 222 - [log, p] bits. Each S*ORAM
access incurs one block of size B to be transferred between client
and server. Since H > log N/A + 1 and ¢, A, Z, p are constants, the
overall client-server communication complexity is O(B + log N). In
the eviction, each server distributes the shares of H buckets with

498

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

size of Z - B bits to each other in H communication rounds. Hence,
the inter-server communication overhead is O(B - log N).

Achieving O(1) client-server bandwidth blowup: The client band-
width blowup is defined as the ratio between the number of client-
server communication introduced by ORAM and the base case with-
out ORAM being used. The communication complexity of S*ORAM
shows that the size of select vector and permutation matrix is inde-
pendent of block size. Note that in Onion-ORAM, the select vector
size is also independent of the block size. Therefore, O(1) client
bandwidth blowup can be achieved in S*ORAM and Onion-ORAM
by selecting a suitable block size. That is, by selecting the block
size B to be Q(log N), SSORAM achieves O(1) client bandwidth
blowup. In Onion-ORAM, it requires selecting a (larger) block size
of O(log® N) to absorb the size of select queries.

e Computation: Each server computes the inner product between
the Z - (H + 1)-dimensional select vector and the block vector
containing Z - (H + 1) blocks of size B. For eviction, each server
computes H times the matrix product between a vector containing
2 - Z blocks of size B and a permutation matrix of size 2Z X Z. After
that, each server computes the share and performs degree reduction
in the SMP protocol on Z - H blocks of size B. In total, the server
computation complexity is O(B - log N).

The client invokes SSS.Create algorithm Z - (H + 1) times and
277 - H times to create a select query and H permutation matrices,
respectively. The client invokes SSS.Recover and SSS.Create algo-
rithms to reconstruct and re-share a block of size B, respectively.
Thus, the overall client computation complexity is O(B + log N).

o Storage: S’ORAM tree structure is of height H which has 27 - Z
slots and can store up to N < A - 2H1 real blocks. Since Z and A
are constants, the server storage cost is O(B - N). Notice that the
share of the value has the same size as the value (i.e., no ciphertext
expansion as in Onion-ORAM), the server storage of SSORAM is
constant and does not increase after a sequence of access operations.

Similar to Onion-ORAM, the block storage in S*ORAM is O(1)
since the client immediately writes retrieved block back to the root
bucket. The client locally stores the position map whose cost is
O(N(log N +loglog N)).

Achieving O(1) client storage via Recursion: For theoretical in-
terest, SORAM can achieve (in total) O(1) client storage by storing
the position map in smaller ORAMs using the recursion technique
described in [39] and bucket metadata structure in [12]. Specifically,
for each S’ORAM bucket, we create a metadata that stores the cur-
rent index (pldx) and the assigned path (pID) of blocks residing in
it. For each S’ ORAM access, the metadata of buckets along the re-
trieval/eviction path will be read first to get the precise location and
the assigned path of blocks of interest. This information will be used
to create the select query and permutation matrices. Next, we con-
struct a series of SSORAM structures S3ORAM0, R S3ORAMX,
where X = O(log N), S ORAMj stores data blocks and SORAM; 41
stores the position map of SSORAM;. Note that in this recursion,
the position map only stores the blocks’ assigned path since their
precise location is already maintained in bucket metadata. We refer
the reader to [12, 39] for the detailed descriptions.

In S’ORAM,, the bucket metadata is of size O(log N). Each
S3ORAMj retrieval/eviction accesses the metadata from O(log N)



Session C1: Oblivious RAM

buckets resulting in O(log? N) client-server bandwidth overhead.
Therefore, to achieve O(1) client bandwidth blowup, the block
size of SSORAM; needs to be Q%(log N). Since the block size of
S3ORAM; 1 is smaller than that of SSORAM;, applying recursion
technique to SSORAM does not increase the bandwidth, computa-
tion or server storage overhead in the asymptotic point of view.
However, it incurs O(log N) communication rounds and requires
O(log N) factor larger block size, which might significantly increase
the end-to-end delay in reality. Thus, it is recommended to maintain
the position map locally, given that its size is small enough, to gain
performance advantages in practice.

4 SECURITY

The S?ORAM eviction follows the Triplet Eviction proposed in
Onion-ORAM [12]. Therefore, they have the same failure probabil-
ity. We refer the reader to [12] for the details of the proof.

LEMMA 4.1 (BUCKET OVERFLOW PROBABILITY). If Z > A and

N < A-2H — 1, the probability that a bucket overflows after an
(22-A)?

eviction operation is bounded by e” 6A , where Z = A = ©(A).

Proor. We refer the reader to [12]. o
The correctness of SSORAM is shown in Theorem 4.2.

THEOREM 4.2 (SORAM CORRECTNESS). S’ORAM is correct ac-
cording to Definition 2.4.

PRroOF. See Appendix. O
The security of SSORAM is given in Theorem 4.3.

THEOREM 4.3 (SORAM SECURITY). S°ORAM is unconditionally
t-secure according to Definition 2.4.

PRrROOF. See Appendix. O

Malicious setting: We do not consider malicious servers in this
paper. However, since the SSORAM relies on SSS as its main build-
ing block, it is possible to extend the scheme to tolerate malicious
inputs. This requires more servers and additional rounds of inter-
action during the eviction phase due to the more involved secu-
rity requirements (e.g., verifiable secret sharing [16]) in order to
distribute correct shares and detect malicious behaviors. We will
investigate the cost for malicious setting in the full version.

5 EXPERIMENTAL EVALUATION

We first describe our implementation details and configuration. We
then give our evaluation metrics and methodology, followed by a
detailed comparison of SSORAM and its counterparts on an actual
cloud environment with various network and system settings. Note
that in this evaluation, we evaluate ORAM schemes under their
non-recursive form, where the position map is stored at the client
since its size is practically small to be stored locally.

5.1 Implementation Details and Configuration

Software setting. We implemented S*ORAM in C++ with two ex-
ternal libraries: (i) Shoup’s NTL library v9.10.0* for pseudo-random

4 Available at http://www.shoup.net/ntl/download.html

499

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

number generation and modular computations since it offers low-
level (e.g., assembly) optimizations for modular multiplication and
inner product; (i) ZeroMQ library” for socket programming. Our
implementation supports parallelization to take full advantage of
multi-core CPUs at the server. We used libtomcrypt® with AES-
CTR to implement IND-CPA encryption for SSORAM counterparts.

Hardware setting. We conducted our experiments on two types
of client devices: (i) A 2015 Macbook Pro laptop as the client, which
was equipped with Intel Core i5-5287U CPU @ 2.90GHz and 16 GB
RAM. (ii) A Google Nexus 6P smartphone, which ran Android 7.0
Nougat and was equipped with Qualcomm Snapdragon 810 CPU
@ 2 GHz and 3 GB RAM. At the server side, we used Amazon EC2
with c4. 4xlarge type to deploy three server instances. Each server
was running Ubuntu 16.04 and equipped with 16 vCPUs Intel Xeon
E5-2666 v3 @2.9 GHz, 30 GB RAM and 512 GB SSD.

Network setting. We located three servers to be geographically
close to the clients as well as to each other, which results in the net-
work latency between them to be approximately 15 ms. Servers were
connected to each other via dedicated networks whose throughput
for both download and upload is approximately 250 Mbps.

The laptop client was connected to a home Internet service via
Wi-Fi, which offers download and upload throughputs of 29 Mbps
and 5 Mbps to the servers, respectively. For mobile client, we used
LTE network to communicate with server(s), which has a network
latency of 25 ms, and the download and upload throughputs of
approximately 27 Mbps and 9 Mbps, respectively.

Database size. We evaluated the performance of all compared
schemes with a randomly generated database and block size ranging
from 0.5 GB to 40 GB, and from 64 KB to 768 KB, respectively.

5.2 Evaluation Metrics and Methodology

Evaluation Metrics. We compared S3ORAM with its counterparts
based on: (1) Building time for ORAM structure (executed once at
the beginning); (2) End-to-end delay for different database and block
sizes; The cost breakdown of end-to-end delay to assess the impacts
of (3) client computation overhead, (4) server computation overhead,
(5) client-server communication, (6) server-server communication,
(7) disk access time, (8) network bandwidth quality, (9) client and
server storage overhead.

We selected Path-ORAM [40] and Onion-ORAM [12] as the main
counterparts of SSORAM , since the former achieves the optimal
lower bound of Q(log N) communication blowup without server
computation, while the latter achieves O(1) communication blowup
with O(1) client storage with server computation. We also chose
Ring-ORAM [33] as it is an efficient ORAM scheme with server
computation. We did not consider alternatives that (i) failed to
achieve O(1) client communication blowup but incurred more delay
(e.g., [11, 26]), (ii) were shown to be insecure (e.g., [27, 29]), or
(iii) incur significantly more cost than ORAMs considered in our
experiments (e.g., [3]) (see Section 6 for related work). We also
did not explicitly compare the performance of SSORAM against
the distributed ORAM by Stefanov et al. [37] because of the major
difference in terms of client block storage between the two schemes

5 Available at http://zeromq.org
® Available at https://github.com/libtom/libtomerypt



Session C1: Oblivious RAM

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

10°F E 10°F E 10°F E
10%: E 1045 E 104§ x- Path-ORAM |4
= | 1 = | « PathORAM || | - © - Ring-ORAM ||
5109 * Path ORAM 1] 2 ol -5 -Ring-ORAM LI 5031 Onion-ORAM ||
g f -5 -Ring-ORAM 1 g " | Onion-ORAM || & | —6— S*0ORAM ]
= Onion-ORAM || =l SPORAM ] = | ]
5 107 —6— S’0RAM H =107 q S 0% xx x x 4
At 1 A ;an x Erees x| A BEG-B-- -8 oo e
o % X x G -8 - | " .
G -8 74 101 4 101W =
EW/\O/\_O | \ L] L \ L]

0 0 0

[
S
S
(=}

Database size (GB)
(a) Block size = 128 KB

oo
(=1

Database size (GB)
(b) Block size = 256 KB

N
(=1
no
S
NS
S

Database size (GB)
(c) Block size = 512 KB

Figure 3: End-to-end delay of SSORAM and its counterparts on a laptop with home network.

(O(1) vs. O(VN)). Given a very large outsourced database, the
storage requirement by [37] might not be suitable for resource-
limited devices such as mobile phone. Moreover, if O(VN) block
storage is acceptable, then the lower bound in [1] might imply
a better ORAM strategy than S?ORAM that leverages PIR-only
technique to achieve O(1) client bandwidth blowup.

Evaluation Methodology. Our methodology is as follows.

o S’ORAM: We fully implemented S’ORAM and measured the
delay of each operation (see cost breakdown part below). We
selected the bucket size and the eviction frequency as Z = A =
333 to achieve a negligible bucket overflow probability of 2780
The cost for each SSORAM access was measured as the retrieval
delay with the write-to-root delay (step 10, Protocol 2) plus the
amortized cost of eviction.

Path-ORAM: We measured the delay of Path-ORAM as the time
to (1) download/upload O(log N) blocks, and (2) IND-CPA en-
cryption/decryption at the client. We selected the bucket size as
5 to guarantee a negligible stash overflow probability of 278,

Ring-ORAM: We measured the delay of Ring-ORAM as the time
to (1) retrieve O(1) block, (2) perform XOR and IND-CPA en-
cryption/decryption at the client, (3) perform XOR operations at
the server side. The amortized cost of each Ring-ORAM access
is calculated by including the amortized cost of eviction and
early shuffles based on the equation (H + 1)(2Z + S)/A- (1 +
PoissCDF(S, A)) given in Section 5 of [33]. We selected Ring-
ORAM parameters Z = 16, S = 25 and A = 20 as stated in [33]
for a negligible stash overflow probability of 2780

Onion-ORAM: We measured the delay of Onion-ORAM as the
time to (1) perform homomorphic computations at the client and
server, (2) transfer O(1) blocks and select queries. We selected
the size of RSA modulus to be 1024 bits for AHE according to
[2]. Similar to S’ORAM, we selected the bucket size and the
eviction frequency of Onion-ORAM as Z = A = 333. The cost
for each Onion-ORAM access was also included with the amor-
tized cost of eviction operation. Since Onion-ORAM is extremely
computationally costly, measuring its delay even on a medium

500

database takes insurmountable amount of time. Therefore, we
had to measure its delay on a very small database (i.e., 1 MB)
first, and then estimate the delay for larger database sizes.

5.3 Experimental Results

o Building Time of ORAM Structure (executed only once during offline
phase): We first provide the total building time for constructing
the distributed SSORAM tree structures. Since SSORAM relies on
highly efficient SSS operations (e.g., basic arithmetics with modu-
lar addition/multiplication), it only took around 1 hour to create
shares of a large database (i.e., 40 GB) for three servers with the
laptop as the client device. This cost is comparable with IND-CPA
encryption being used in traditional ORAM schemes. For instance,
it took approximately 50-60 minutes to encrypt counterpart ORAM
schemes with AES-CTR encryption.

e End-to-end Delay: Figure 3 presents the end-to-end delay of
S30ORAM and its counterparts. SSORAM outperformed its counter-
parts for increasing database and block sizes. As shown in Figure
3b, SSORAM took around 4.5 seconds to access a 256-KB block,
which is approximately 8.3x and 5.4X faster than Path-ORAM and
Ring-ORAM, respectively, while being three orders of magnitude
faster than Onion-ORAM (40 GB DB).

Figure 3 shows that choosing larger block sizes had a minimal
impact on the delay of SSORAM compared to its counterpart. For
instance, SSORAM took around 2.4 and 7.3 seconds to access a 128-
KB block and a 512-KB block, respectively, which corresponds to a
linear growth but with a small slope (40 GB DB). Figure 4 further
illustrates the influence of block size on the delay of SSORAM and
its counterparts. Although the cost of each ORAM scheme grows
linearly with respect to the block size, the slope of SSORAM is sig-
nificantly smaller than that of its counterparts. Given any block size
in the range from 4 KB to 768 KB, SSORAM is always approximately
5% and 8X faster than Ring-ORAM and Path-ORAM, respectively.
This gives an advantage to SSORAM over its counterparts for ap-
plications with a large block size such as image or video storage
services.



Session C1: Oblivious RAM
120 ——= I T
x--- Path-ORAM x
100 |-| - 2 - Ring-ORAM .
—o— S30RAM
= 80 -
g x .0
S =
Z 60| - i
2 -
< _
A 40 x N 8
o
20 |- x - :
0 & | |
4 64 128 256 512 768

Block size (KB)

*We excluded Onion-ORAM since its plot is far beyond the limit of y-axis.

Figure 4: End-to-end for varying block sizes for a 40GB DB.

Detailed cost breakdown of S*ORAM. We now dissect the end-
to-end delay of SSORAM to investigate which factors contributed
the most to the total delay. Figure 5 shows the detailed delay analysis
of S*ORAM with three different block sizes on a laptop as a client
device with three servers.

o Server Computation: The server computation only occupied a
small amount (5-8%) of the total delay.

o Client-server Communication and Disk I/O Access: The client-
server communication and server disk I/O access contributed more
than 90% of the total delay. Notice that most of the client-server com-
munication time was spent for retrieving/writing blocks over three
servers. The transmission of select vector and permutation matrix
only cost approximately 6-7% of the total client-server communica-
tion overhead with 512 KB block size. Due to the cache miss issue
and the infrastructure of selected Amazon EC2 server instances
(i.e., c4.4xlarge type), disk I/O access caused a significant delay,
especially for large database sizes. Specifically, the maximum RAM
of each server was limited to 30GB while each S°ORAM retrieval
incurs a random disk I/O access of around 1-2 GB of data due to
the large bucket size (i.e., Z = 333). As a result, after some random
retrieval operations, the cache miss may appear more frequently.
Moreover, S ORAM data structure was stored in a networked stor-
age unit called “Elastic Block Storage” (EBS), which was connected
to Amazon EC2 computing unit with a maximum throughput of
160 MB per second. The disk I/O access was also limited by this
throughput, and therefore, it is much slower than a local storage
setting, in which the read/write throughput of 400-500 MB/s can be
achieved. Hence, we expect that the latency of SSORAM can be fur-
ther optimized (at least twice) by minimizing the disk I/O access via
special server instances offering either local storage (e.g., internal
dedicated SSD) or higher throughput (e.g., st1 volume type).

o Server-server Communication: The overhead of server-server
communication is minimal, since servers are connected with a high-
bandwidth network (i.e., 250 Mbps). Moreover, the eviction was
only performed after A = 333 successive retrievals and, therefore,
the overhead of server-server communication was amortized.

501

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

o Client Computation: The client computation (e.g., block re-
covery, the creation of shares for blocks, the select vectors and
permutation matrices) is negligible and, therefore, is difficult to
observe in Figure 5.

Detailed cost breakdown of counterpart schemes.

o Path-ORAM: Most of the delays in Path-ORAM was due to
O(log N) client-server communication blowup, which accounted
for 97% of overall delay. The client computation was negligible (cost
less than 2%) due to IND-CPA encryption/decryption. Since the
Path-ORAM bucket size is also much smaller than S*ORAM and
Onion-ORAM (i.e., 5 vs. 333) which incurs less data to be read and
to be written. Therefore, the disk I/O access time of Path-ORAM
only took 1% of the overall delay.

® Ring-ORAM: Similar to Path-ORAM, the most significant delay
of Ring-ORAM was due to the amortized communication cost of
early reshuffle and eviction operations, which accounted for 96% of
total delay presented in Figure 3. Client and server computations
were negligible due to IND-CPA encryption and XOR operations
accelerated by multi-threading, respectively. The disk I/O access
was also negligible since the server only read 1 block per bucket.
Thus, all operations except the communication only contributed
less than 4% to the total delay.

® Onion-ORAM: Due to AHE, the computation cost dominated all
other costs in Onion-ORAM scheme. Specifically, we estimated that
given a database of size 0.5 GB containing 256-KB blocks, the server
computation with multi-core processing might take approximately
3 hours, which accounted for 99% of the overall delay. Meanwhile,
the client took around 38 seconds to generate a select query. Al-
though the disk I/O access time of Onion-ORAM is similar to that
of SSORAM (due to the same bucket size setting), it contributed the
least. Transmission also took a small amount of time since Onion-
ORAM offers O(1) bandwidth blowup.

Experiments with a Mobile Client Device. Figure 6 presents
end-to-end delays of SSORAM and its counterparts on a mobile
client device with LTE network. The server computation of Onion-
ORAM still dominated all others as in previous settings. In addition,
Onion-ORAM also requires the client to perform costly computa-
tions to generate encrypted select queries, which took a few minutes
with a mobile client device. Note that the client computations just
took around 50 milliseconds in SSORAM as shown in Figure 7. The
performance of Path-ORAM and Ring-ORAM in the LTE network
was relatively better than that of the home network since the LTE
network offered a slightly higher upload throughput. S*ORAM was
also slightly better but not affected much by the limited client com-
putation. That is, although the client computation on the mobile
device contributed a slightly larger delay than that on the laptop,
this portion still occupied less than 5% of the total cost.

Comparison of SSORAM with Path-ORAM and Ring-ORAM
for varying network bandwidths. SSORAM outperformed its
counterparts in both home and mobile network settings. How-
ever, assume that the user has high bandwidth network connection.
In this case, SSORAM might not be the best choice in terms of
end-to-end delay. Hence, we ran another experiment to show that,
O(log N)-communication ORAMs are better than computational
ORAMs after a certain threshold of network bandwidth. Specifically,



Session C1: Oblivious RAM

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

40 | 40 I 40 I
@ 20 | @ 20 | @ 20 1
S 10 | Q10 | S 10m= I
g s | g s g s |
3 o5m l % 25 | % 95 |
8 1 ! 8 1 \ 81 |

0.5 \ 0.5 \ 0.5 |

| | J | | | | J | | | J
0 0 1 3 4 5 0 2

1 2
Delay (s)

I Client computation
I Server computation

(a) Block size = 128 KB

2

Delay (s)
[EZ77F Client-server communication (query & matrix)
[ Client-server communication (block)

(b) Block size = 256 KB

4
Delay (s)

[ Disk I/O access
I Server-server communication

(c) Block size = 512 KB

Figure 5: Detailed cost breakdown of SSORAM on a laptop with home network.

10°F 3 10°F E 10F 3
4l j 4| | al i H
0% - 10 « PathORAM || 10 * Path-ORAM |-
= | o PathORAM || | & RingORAM || = | -5 - Ring ORAM |-
§ 103 -8 - Rm'g—ORAM H g 10°F Onion-ORAM | § 10 Onion-ORAM |
g ; Oanlon—ORAM ; 2 ; —6— SORAM ; 2 ; —o— S30RAM ;
%102; —©— S°ORAM B %\1025 g %\102; N ]
F B = E| E 5 -X X E
A r : A Eosc o x- x x A éj}l}*@‘**ﬂ’* 777777 B
bocx - -+ X X x %ﬁg,g,g,ggf,,fffggi 1
e IR | e
0l ‘ | 0@9’6719?’#\9/\‘6 ] ol \ L

10 0 20 40 10 0 20 40 10 0 20 40

Database size (GB)
(a) Block size = 128 KB

Database size (GB)
(b) Block size = 256 KB

Database size (GB)
(c) Block size = 512 KB

Figure 6: End-to-end delay of SSORAM and its counterparts on a mobile client device with LTE network.

20 2 |
10 jme |

2.5 \

DB size (GB)
(8]

0.5 |

0.5 1.5

1
Delay (s)
I Client computation
I Server computation

(a) Block size = 128 KB

2
Delay (s)

| Client-server communication (query & matrix)
[ Client-server communication (block)

(b) Block size = 256 KB

4
Delay (s)

[ Disk I/O access
I Server-server communication

(c) Block size = 512 KB

Figure 7: Detailed cost breakdown of SSORAM on a mobile client device with LTE network.

we executed SSORAM and its counterparts several thousand times
for increasing network bandwidth values. Figure 8 presents the
performance of ORAM schemes with a database size of 40 GB and
a block size of 128 KB with varying network throughputs. Observe
that Path-ORAM and Ring-ORAM surpassed SSORAM for a net-
work throughput of approximately 240 Mbps and 110 Mbps, respec-
tively. This is because Path-ORAM and Ring-ORAM are O(log N)
bandwidth blowup ORAMs and they receive a high benefit from
increasing network speeds. However, SSORAM is O(1) bandwidth

502

blowup ORAM and receives a less benefit from a fast network.

Storage Overhead. Since SORAM and Onion-ORAM feature O(1)
block storage, their client storage cost is lower than that of their
counterparts. Given a database with 512 KB blocks, Path-ORAM and
Ring-ORAM require around 32-33 MB for the stash, while S30RAM
and Onion-ORAM do not require the stash. The storage cost for a
position map in non-recursive SSORAM is slightly higher than its
non-recursive counterparts. For instance, with a 16 TB database of



Session C1: Oblivious RAM

25 T T
% Path-ORAM
-2-- Ring-ORAM
20 % 5 L
—— S°ORAM
=
g 15| .
o .
é 0
\
& ool |
5] \
A |
X
\
57 \ .
E\ X
0 | [ et Bk
0 50 100 150 200 250

Network throughput (Mbps)

*We exclude the Onion-ORAM since its plot is far beyond the limit of the y-axis.

Figure 8: Delay for varying network throughput.

512-KB blocks (N = 33554432), SSORAM costs 119 MB while the
others (e.g., Onion-ORAM, Ring-ORAM, Path-ORAM) cost 100 MB.

In S3ORAM, for a database with N blocks of size B bits, the
server storage overhead is 4N - B bits for each server (recall that
S3ORAM needs at least three servers). The server storage for Path-
ORAM and Ring-ORAM is 10N - B bits and 6N - B bits, respectively.
The server storage for Onion-ORAM is similar to S*ORAM for one
server but will increase after a sequence of access operation due to
the ciphertext expansion of AHE.

6 RELATED WORK

Single-server ORAM without computation. The first ORAM
proposed by Goldreich et al. [20] was in the context of software pro-
tection and followed by refinements (e.g., [21]). The recent ORAM
schemes mainly have been considered in the client-server model
to hide data access pattern over a remote server (e.g., [32]). Pre-
liminary ORAMs were costly in terms of both communication and
storage overhead, but recent ORAMs (e.g., [35, 39, 40, 42]) showed
significant improvements. Path-ORAM [40], which follows the tree
structure of [35], achieves O(log N) communication blowup. Vari-
ous ORAMs relying on Path-ORAM have been proposed for specific
applications such as oblivious data structure (i.e., [44]), secure com-
putation (e.g., ([42], [43]), Parallel ORAM [8]) and secure processor
[25]. However, Path-ORAM based schemes inherit its logarithmic
communication blowup [6, 30].

Single-server ORAM with computation. Ring-ORAM [33] re-
duced the communication cost of Path-ORAM by 2.5x given that
the server performs XORs. Some other alternatives (e.g., [3, 12, 14,
26, 29]) leveraged single-server PIR or fully/partial HE to further
reduce the communication cost. For instance, Onion-ORAM [12]
achieves O(1) bandwidth blowup, where the client and server in-
teractively run partial HE operations. Path-PIR scheme in [26] used
PIR scheme in [41] with Additively HE (AHE) (i.e., [31]) on top of
tree ORAM structure [35]. Bucket-ORAM in [14] used AHE on top
of the underlying ORAM structure composed of tree ORAM and
hierarchical ORAM. The scheme in [11] used PIR scheme in [41] on

503

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

top of ObliviStore [38], which is based on Partition-ORAM in [39].
The TWORAM scheme in [15] constructed a garbled circuit [45]
over the tree ORAM structure, which allows the client and server
to perform secure computation to access the block.

Multi-server (Distributed) ORAM. Distributed ORAM schemes
were proposed to eliminate highly costly fully/partial HE operations.
CHf-ORAM [27] attempted to use four non-colluding servers to
achieve O(1) bandwidth blowup under O(1) blocks of client storage.
However, CHf-ORAM [27] (as well as its predecessor in [29]) was
broken by Abraham et al. in [1] which also showed an asymptoti-
cally tight sub-logarithmic communication bound for composing
ORAM with PIR. Abraham et al. in [1] also presented a scheme using
two non-colluding servers to perform XORs for block retrieval over
a k-ary ORAM tree structure. Stefanov et al. in [37] proposed an
ORAM that uses two non-colluding computational-capable servers
to reduce the client-server bandwidth of Partition ORAM [39]. In
a different line of research, distributed ORAM schemes were pro-
posed for secure multi-party computation (e.g., [13, 24]). In these
works, the access patterns are hidden from all parties so that such
ORAM schemes are integrated with some secure computation pro-
tocol (e.g., Yao’s garbled circuit [45]) and, therefore, their cost is
higher than classical client-server ORAM model.

7 CONCLUSION

We developed a new distributed ORAM scheme that we named
S30ORAM, which achieves O(1) client-server bandwidth blowup un-
der O(1) client block storage and a low end-to-end delay by avoiding
costly HE operations. SSORAM harnesses Shamir Secret Sharing,
tree-based ORAM structure, a new triplet eviction strategy, and a
secure multi-party multiplication protocol in an effective manner
to achieve these objectives. We performed detailed experiments in
an actual cloud environment with a resource-limited mobile client
to assess the effectiveness of SORAM for various networking set-
tings such as high bandwidth, home and wireless (i.e., Wi-Fi, LTE)
networks. Our experiments showed that SORAM is three orders of
magnitude faster than the existing single-server ORAM with O(1)
client communication/storage blowup complexity (Onion-ORAM).
S30ORAM is also one order of magnitude faster than Path-ORAM on
a moderate network bandwidth quality, which is typical for various
real-life settings (e.g., home, wireless networks and inter-state cloud
deployments).

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their insightful
comments and suggestions to improve the quality of this work. This
work is supported by the NSF CAREER Award CNS-1652389 and
an unrestricted gift from Robert Bosch LLC.

REFERENCES

[1] Ittai Abraham, Christopher W Fletcher, Kartik Nayak, Benny Pinkas, and Ling
Ren. 2017. Asymptotically Tight Bounds for Composing ORAM with PIR. In
IACR International Workshop on Public Key Cryptography. Springer, 91-120.
Anastasov Anton. 2016. Implementing Onion ORAM: A Constant Bandwidth
ORAM using AHE. https://github.com/aanastasov/onion-oram/blob/master/doc/
report.pdf. (2016).

Daniel Apon, Jonathan Katz, Elaine Shi, and Aishwarya Thiruvengadam. 2014.
Verifiable oblivious storage. In International Workshop on Public Key Cryptography.
Springer, 131-148.

[2

B3



Session C1: Oblivious RAM

—
o

[12]

(13

[14

[15]

[16

[17]

[18]

[19

[20]

[21]

[22

[23]

[24]

[25]

[26]

[28]

[29]

Amos Beimel and Yoav Stahl. 2002. Robust information-theoretic private in-
formation retrieval. In International Conference on Security in Communication
Networks. Springer, 326-341.

M. Ben-Or, S. Goldwasser, and A. Wigderson. 1988. Completeness Theorems for
Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract).
In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, Janos
Simon (Ed.). ACM, 1-10.

Vincent Bindschaedler, Muhammad Naveed, Xiaorui Pan, XiaoFeng Wang, and
Yan Huang. 2015. Practicing oblivious access on cloud storage: the gap, the fallacy,
and the new way forward. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security. ACM, 837-849.

Elette Boyle and Moni Naor. 2016. Is There an Oblivious RAM Lower Bound?. In
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer
Science. ACM, 357-368.

Binyi Chen, Huijia Lin, and Stefano Tessaro. 2016. Oblivious parallel ram: Im-
proved efficiency and generic constructions. In Theory of Cryptography Confer-
ence. Springer, 205-234.

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private
information retrieval. Journal of the ACM (JACM) 45, 6 (1998), 965-981.

Ivan Damgérd and Mads Jurik. 2001. A generalisation, a simpli. cation and
some applications of paillier’s probabilistic public-key system. In International
Workshop on Public Key Cryptography. Springer, 119-136.

Jonathan Dautrich and Chinya Ravishankar. 2015. Combining ORAM with PIR
to minimize bandwidth costs. In Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy. ACM, 289-296.

Srinivas Devadas, Marten van Dijk, Christopher W Fletcher, Ling Ren, Elaine Shi,
and Daniel Wichs. 2016. Onion oram: A constant bandwidth blowup oblivious
ram. In Theory of Cryptography Conference. Springer, 145-174.

Sky Faber, Stanislaw Jarecki, Sotirios Kentros, and Boyang Wei. 2015. Three-party
ORAM for secure computation. In International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 360-385.
Christopher Fletcher, Muhammad Naveed, Ling Ren, Elaine Shi, and Emil Ste-
fanov. 2015. Bucket ORAM.: single online roundtrip, constant bandwidth oblivious
RAM. Technical Report. IACR Cryptology ePrint Archive, Report 2015, 1065.
Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2015.
TWORAM: round-optimal oblivious RAM with applications to searchable encryption.
Technical Report. IACR Cryptology ePrint Archive, 2015: 1010.

Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. 2001. The round
complexity of verifiable secret sharing and secure multicast. In Proceedings of the
thirty-third annual ACM symposium on Theory of computing. ACM, 580-589.
Rosario Gennaro, Michael O Rabin, and Tal Rabin. 1998. Simplified VSS and fast-
track multiparty computations with applications to threshold cryptography. In
Proceedings of the seventeenth annual ACM symposium on Principles of distributed
computing. ACM, 101-111.

Craig Gentry, Kenny A Goldman, Shai Halevi, Charanjit Julta, Mariana Raykova,
and Daniel Wichs. 2013. Optimizing ORAM and using it efficiently for secure
computation. In International Symposium on Privacy Enhancing Technologies
Symposium. Springer, 1-18.

Tan Goldberg. 2007. Improving the robustness of private information retrieval. In
2007 IEEE Symposium on Security and Privacy (SP’07). IEEE, 131-148.

Oded Goldreich. 1987. Towards a theory of software protection and simulation
by oblivious RAMs. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing. ACM, 182-194.

Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431-473.

Thang Hoang, Attila Altay Yavuz, and Jorge Guajardo. 2016. Practical and secure
dynamic searchable encryption via oblivious access on distributed data structure.
In Proceedings of the 32nd Annual Conference on Computer Security Applications.
ACM, 302-313.

Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp:
comparing public cloud providers. In Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM, 1-14.

Steve Lu and Rafail Ostrovsky. 2013. Distributed oblivious RAM for secure
two-party computation. In Theory of Cryptography. Springer, 377-396.

Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic,
John Kubiatowicz, and Dawn Song. 2013. Phantom: Practical oblivious computa-
tion in a secure processor. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security. ACM, 311-324.

Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. 2014. Efficient Private
File Retrieval by Combining ORAM and PIR.. In NDSS. Citeseer.

Tarik Moataz, Erik-Oliver Blass, and Travis Mayberry. [n. d.]. CHf-ORAM: A
Constant Communication ORAM without Homomorphic Encryption. ([n. d.]).
Tarik Moataz, Erik-Oliver Blass, and Travis Mayberry. 2015. Constant commu-
nication ORAM without encryption. Technical Report. IACR Cryptology ePrint
Archive, Report 2015/1116.

Tarik Moataz, Travis Mayberry, and Erik-Oliver Blass. 2015. Constant commu-
nication ORAM with small blocksize. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 862-873.

504

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

[30] Muhammad Naveed. 2015. The Fallacy of Composition of Oblivious RAM and

Searchable Encryption. IACR Cryptology ePrint Archive 2015 (2015), 668.

Pascal Paillier. 1999. Public-key cryptosystems based on composite degree resid-

uosity classes. In International Conference on the Theory and Applications of

Cryptographic Techniques. Springer, 223-238.

Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM revisited. In Advances

in Cryptology—CRYPTO 2010. Springer, 502-519.

[33] Ling Ren, Christopher W Fletcher, Albert Kwon, Emil Stefanov, Elaine Shi, Marten
van Dijk, and Srinivas Devadas. 2014. Ring ORAM: Closing the Gap Between
Small and Large Client Storage Oblivious RAM. IACR Cryptology ePrint Archive
2014 (2014), 997.

[34] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612-613.

[35] Elaine Shi, T-H Hubert Chan, Emil Stefanov, and Mingfei Li. 2011. Oblivious
RAM with O ((logN) 3) worst-case cost. In Advances in Cryptology-ASIACRYPT
2011. Springer, 197-214.

[36] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. 2014. Practical Dy-

namic Searchable Encryption with Small Leakage.. In NDSS, Vol. 71. 72-75.

Emil Stefanov and Elaine Shi. 2013. Multi-cloud oblivious storage. In 2013 ACM

SIGSAC conference on Computer & communications security. ACM, 247-258.

Emil Stefanov and Elaine Shi. 2013. Oblivistore: High performance oblivious cloud

storage. In Security and Privacy (SP), 2013 IEEE Symposium on. IEEE, 253-267.

[39] Emil Stefanov, Elaine Shi, and Dawn Song. 2011. Towards practical oblivious

RAM. arXiv preprint arXiv:1106.3652 (2011).

Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,

Xiangyao Yu, and Srinivas Devadas. 2013. Path ORAM: an extremely simple

oblivious RAM protocol. In Proceedings of the 2013 ACM SIGSAC conference on

Computer and Communications security. ACM, 299-310.

Jonathan Trostle and Andy Parrish. 2010. Efficient computationally private infor-

mation retrieval from anonymity or trapdoor groups. In International Conference

on Information Security. Springer, 114-128.

[42] Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit oram: On tightness of
the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. ACM, 850-861.

[43] Xiao Wang, Yan Huang, TH Hubert Chan, Abhi Shelat, and Elaine Shi. 2014.
SCORAM: oblivious RAM for secure computation. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. ACM, 191-202.

[44] Xiao Shaun Wang, Kartik Nayak, Chang Liu, TH Chan, Elaine Shi, Emil Stefanov,

and Yan Huang. 2014. Oblivious data structures. In Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security. ACM, 215-226.

Andrew C Yao. 1982. Protocols for secure computations. In 23rd Annual Sympo-

sium on Foundations of Computer Science, 1982. IEEE, 160-164.

[31

(32

@
=

'w
&

~
=

[41

[45

APPENDIX

We present the proof of theorems presented in Section 4 as follows:

PROOF OF THEOREM 4.2. We see that SSORAM is correct iff (i)

the SSORAM.Retrieve subroutine returns the correct value of the
retrieved block, (ii) the write-to-root operation (step 10, Protocol 2)
is consistent, and (iii) the S ORAM.SSS-SMP-TripletEviction sub-
routine is consistent.
e Correctness of S’ ORAM.Retrieve. For each data request x, let b be
the block to be retrieved and j be the location of b in its path (i.e.,
Jj := pmlid].pldx where id is the identifier of b). So, the share of
select query for server S; is of form: [[el]g.t) = ([[e]](lt), e [[e]](nt)),
wheren =Z-(H+1)ande; = 0for1 < i # j < n,ef = 1. Let
[ew] = (Tcu1]s - - - [cun]) be the vector consisting of the share of
u-th chunks taken from Z slots in every bucket residing in the read
path. For 1 < u < m, the answer of each server S; is of form:

el Teudt” = 3 (et - Lew k1)
k=1
= > ek - cu ] by Eq. (3)
k=1
= feus 1) by Eq. (1)

By SSS scheme, at least 2t + 1 shares are required to recover the
secret encrypted by a random 2¢-degree polynomial. Our system



Session C1: Oblivious RAM

model presented in Section 2 follows this and, therefore, the client al-

CCS’17, October 30-November 3, 2017, Dallas, TX, USA

Once a block is accessed, its position is assigned to a new bucket leaf

ways computes the correct value of chunk c; by ¢; « SSS.Recover( [[ct]]( 2 seleci{pcm@ﬁ)dgg)ly and independently. Therefore, access patterns

Since all chunks of b are correctly computed, b is properly retrieved
with probability 1.

o Consistency of write-to-root (step 10, Protocol 2): Lemma 4.1 implies
that the root bucket is empty after eviction. The client writes the
retrieved block to an empty slot in the root bucket according to the
subsequent order. Since Z = A, this ensures that slots containing
retrieved blocks are not overwritten before the eviction happens.
e Consistency of S>ORAM.SSS-SMP-TripletEviction: Lemma 4.1 im-
plies that sibling buckets are empty due to previous evictions and,
therefore, they can hold all data moved from source buckets without
creating inconsistency. Moving data from source buckets to destina-
tion buckets is achieved via matrix products. These computations
are correct due to homomorphic properties of two-share addition
and multiplication offered by SSS and the SMP protocol which was
proven to be correct in [17], respectively. O

Proor or THEOREM 4.3. Given a request sequence x of length
q, where x;j = (opj, idj, dataj) as in Definition 2.4, let S30RAM; (%)
be the SSORAM client’s sequence of interactions with server S;
including a sequence of retrieval, write-to-root and eviction opera-
tions. We have that write-to-root operation is deterministic and is
performed after retrieval where the previously retrieved block is
written to a publicly known slot in the root bucket (step 10, Protocol
2). The eviction is also deterministic which is performed after every
A successive accesses regardless of any data being requested (step
12). Due to the independence between retrieval, write-to-bucket and
eviction operations, we consider SSORAM;(x) to contain separate
sequences of these operations observed by S; as:

R = (R R
S3ORAM,-(X)= V_\)/}(i) _ (W(m) ’Wi(xq))’ )
B = (BB

where 17\/1(5() and E()‘() denote the deterministic write-to-bucket and
eviction sequences, given data access sequence X, respectively.

Assume that there is a coalition of up ¢ servers {S;c 7} sharing
their own transcripts with each other. Let 7 C {1,...,¢} such that
| 7] < t. The view of {S;c 1} can be derived from Eq. (7) as

Rier} = (B2, {Rf’;q;})
{SPORAM; 7 (0} = { (Wie G} = (W), w2y,
{(Frer®} = (B ). {Efg/;>})

We show that, for any two access sequences x and x” of the same
length (Jx| = [x'|), the pairs ({Ricr (%)}, {Wie7 ()} {Eicr (0)})

and <{§i€1(x')}, {V_\;’iej(i’)}, {Eiej()_(,)}> are identically distributed.

e Retrieval transcripts: For each access request xj € x, {S;c7} ob-

serves a transcript {REZJ}} consisting of a retrieval path Px; (access
pattern) which is identical for all servers (step 4, Subroutine 1) and
data generated in SSS-based select scheme (steps 5-8).

The access pattern of SSORAM is identical for all other tree-based
ORAM schemes. Specifically, each block in SSORAM is assigned to
a leaf bucket selected randomly and independently from each other.

505

generated by any data request sequences of the same length are
statistically indistinguishable.

We next analyze the probability distribution of data observed
at the server side in each SSORAM retrieval as follows. For each
retrieval, the client sends to servers select queries generated by
PIR.CreateQuery algorithm. Such queries are SSS shares and, there-
fore, achieve t-privacy. The inner product is also t-private due to
Lemma 2.1 with addition and partial multiplication homomorphic
properties (1) and (3). So, any data generated in SORAM retrievals
are identically distributed in the presence of t colluding servers.

By these properties, for any data request sequence x, the corre-
sponding transcripts (including access patterns) generated in the
S3ORAM retrieval phase are information-theoretically (statistically)
indistinguishable from random access sequence in the presence of
up to ¢ colluding servers.

e Write-to-root transcripts: Data are written to slots in the root

bucket according to subsequent order and, therefore, the access
pattern is deterministic. Such written data are SSS-shared with
new random polynomials so that they are ¢-private. Therefore, any
data request sequence generates write-to-root transcripts which
are identically distributed.
o Eviction transcripts: Since eviction is deterministic which follows
publicly-known reverse lexicographical order like in Onion-ORAM
(e.g., [12]), the access patterns of {EEQI} and {EIUGI)I} are indepen-
dent to each other for any (j, j*) € {0, ..., 27}, We next show that
data generated in independent evictions are identically distributed.

For each eviction, the client sends H permutation matrices which
are SSS-share and, therefore, they are all t-private and uniformly
distributed. Data in sibling buckets are t-private and uniformly
distributed since they are merely copied from source buckets de-
terministically (step 19, Subroutine 3). The matrix product compu-
tations (step 23) are also t-private according to Lemma 2.1 with
properties (1) and (3). Finally, the SMP protocol ensures that data
in destination buckets are ¢-private and uniformly distributed (step
24) as shown in Lemma 2.2.

Given two request sequences x, y with |x| = |y, the correspond-
ing deterministic eviction sequences observed by {S;c 7} are:

{Bier®) = (BD)).. . (B9
Erer@} = (B2, .. g7y

.,H} for 1 < j < q/A. Since data yielded
} are identically distributed for all (j, ') €

where (x] 7j) € {0,.
in {E } and {E( s )
{xl,..., q/A}U{yls-~-

{E ier(¥)} are identically distributed.
e Final indistinguishability argument: Given any data request se-

,§q/A} as shown above, {ElEI(X)} and

quences of the same length, SSORAM generates (i) access patterns
statistically indistinguishable from random request sequence, and
(ii) identically (uniform) distributed data in the presence of up to
t colluding servers. This indicates that SSORAM scheme achieves
(information-theoretic) t-security according to Definition 2.4.

O



	Abstract
	1 Introduction
	1.1 Research Gap and Problem Statement
	1.2 Our Contribution

	2 Preliminaries and Building Blocks
	2.1 Model of Computation
	2.2 Shamir Secret Sharing
	2.3 Secure Multi-party Multiplication
	2.4 Multi-server Private Information Retrieval
	2.5 Multi-server ORAM Security

	3 The Proposed S3ORAM Scheme
	3.1  S3ORAM Data Structure
	3.2 S3ORAM Access Protocol
	3.3 Asymptotic Cost Analysis

	4 Security
	5 Experimental Evaluation
	5.1 Implementation Details and Configuration
	5.2 Evaluation Metrics and Methodology
	5.3 Experimental Results

	6 Related Work
	7 Conclusion
	References

