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Abstract—Investigating the nature of system intrusions in
large distributed systems remains a notoriously difficult challenge.
While monitoring tools (e.g., Firewalls, IDS) provide preliminary
alerts through easy-to-use administrative interfaces, attack recon-
struction still requires that administrators sift through gigabytes
of system audit logs stored locally on hundreds of machines.
At present, two fundamental obstacles prevent synergy between
system-layer auditing and modern cluster monitoring tools: 1)
the sheer volume of audit data generated in a data center is
prohibitively costly to transmit to a central node, and 2) system-
layer auditing poses a “needle-in-a-haystack” problem, such that
hundreds of employee hours may be required to diagnose a single
intrusion.

This paper presents Winnower, a scalable system for audit-
based cluster monitoring that addresses these challenges. Our
key insight is that, for tasks that are replicated across nodes in
a distributed application, a model can be defined over audit logs
to succinctly summarize the behavior of many nodes, thus elimi-
nating the need to transmit redundant audit records to a central
monitoring node. Specifically, Winnower parses audit records into
provenance graphs that describe the actions of individual nodes,
then performs grammatical inference over individual graphs
using a novel adaptation of Deterministic Finite Automata (DFA)
Learning to produce a behavioral model of many nodes at once.
This provenance model can be efficiently transmitted to a central
node and used to identify anomalous events in the cluster. We have
implemented Winnower for Docker Swarm container clusters
and evaluate our system against real-world applications and
attacks. We show that Winnower dramatically reduces storage
and network overhead associated with aggregating system audit
logs, by as much as 98%, without sacrificing the important
information needed for attack investigation. Winnower thus
represents a significant step forward for security monitoring in
distributed systems.

I. INTRODUCTION

When investigating system intrusions, auditing large com-
pute clusters remains a costly and error-prone process. Security
monitoring tools such as firewalls and antivirus provide an
efficient preliminary alert system for administrators, quickly

notifying them if a suspicious activity such as a malware
signature or a blacklisted IP is spotted somewhere in the
cluster. However, determining the veracity and context of these
compromise indicators still ultimately requires the inspection
of system-layer audit logs. Unfortunately, auditing systems
are not scaling to meet the needs of modern computing
paradigms. System logs generate gigabytes of information per
node per day, making it impractical to proactively store and
process these records centrally. Moreover, the volume of audit
information transforms attack reconstruction into a “needle-
in-a-haystack” problem. In Advanced Persistent Threat (APT)
scenarios, this reality delays incident response for months [48]
as security teams spend hundreds to thousands of employee
hours stitching together log records from dozens of machines.

The audit problem is only further exacerbated by the grow-
ing popularity of container-based virtualization, which has en-
abled rapid deployment and extreme scalability in datacenters
and other multi-tenant environments [22]. Containers represent
the realization of the microservice architecture principle [59], a
popular pattern that encourages applications to run as discrete,
loosely-coupled, and replicated services to provide scalability
and fault-tolerance. However, the rapid adoption of containers
has outpaced system administrators’ ability to apply control
and governance to their production environments. Container
marketplaces such as Docker Store [4] now host over 0.5
million containers and boast over 8 billion downloads [1];
while these services simplify the sharing of applications, they
also create a new ecosystem in which poorly maintained
or malicious code is permitted to spread. These containers
have no security guarantees and can contain vulnerabilities
that could be used as attack vectors [65], [63]. Recently,
Red Hat surveyed enterprises to figure out technical factors
which prevent the use of containers in production and 75% of
enterprises claimed security to be a major concern [9].

Data provenance, metadata that describes the lineage of
data transformed by a system, is a promising new approach
to system auditing. In the context of operating systems,
provenance-based techniques parse kernel-layer audit records
into a causal graph that describes the history of system
execution [20], [58], [50], [47], [60]. The applications for
data provenance are numerous, ranging from database manage-
ment [30], [35], [45], networks diagnosis and debugging [26],
[27], and forensic reconstruction of a chain of events after an
attack [18], [72], [19], [67]. Unfortunately, even state-of-the-
art provenance-based techniques are not presently applicable to
the cluster auditing problem as they suffer from huge storage
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o v er h e a d a n d “ n e e dl e-i n- a- h a yst a c k ” pr o bl e m. W hil e w or k o n
r e d u ci n g pr o v e n a n c e st or a g e o v er h e a d e xists [ 5 4], [ 5 1], [ 6 9],
[ 2 5]; t h es e s yst e ms l a c k s c al a bilit y r e q uir e d f or a u diti n g l ar g e
cl ust ers.

I n t his p a p er, w e pr es e nt Wi n n o w er, a s yst e m t h at l e v er a g es
pr o v e n a n c e gr a p hs as t h e b asis f or o nli n e m o d eli n g t h e b e h a v-
i or of a p pli c ati o ns t h at h a v e b e e n r e pli c at e d a cr oss diff er e nt
n o d es i n a cl ust er. Wi n n o w er pr o vi d es a st or a g e- a n d n et w or k-
ef fi ci e nt m e a ns of tr a ns mitti n g a u dit d at a t o a c e ntr al n o d e
f or cl ust er- wi d e m o nit ori n g. T h e o ut p ut of Wi n n o w er is a
pr o v e n a n c e m o d el t h at c o n cis el y d es cri b es t h e b e h a vi or of
h u n dr e ds of n o d es, a n d c a n b e us e d b y s yst e m a d mi nistr at ors
t o i d e ntif y a b n or m al b e h a vi ors i n t h e cl ust er. O ur k e y i nsi g ht
is t h at, b e c a us e cl ust er a p pli c ati o ns ar e r e pli c at e d i n a c c or-
d a n c e wit h mi cr os er vi c e ar c hit e ct ur e pri n ci pl e, t h e pr o v e n a n c e
gr a p hs of t h es e i nst a n c es ar e o p er ati o n all y e q ui v al e nt (i. e.,
hi g hl y r e d u n d a nt) e x c e pt i n t h e pr es e n c e of a n o m al o us a cti vit y.
T h us, r e c o g niti o n a n d r e m o v al of e q ui v al e nt a cti vit y fr o m
pr o v e n a n c e gr a p hs will si m ult a n e o usl y s ol v e b ot h c h all e n g es
ass o ci at e d wit h cl ust er a u diti n g.

At t h e c or e of Wi n n o w er is a n o v el a d a pt ati o n of gr a p h
gr a m m ar t e c h ni q u es. I ns pir e d b y f or m al gr a m m ars f or stri n g
l a n g u a g es, gr a p h gr a m m ars pr o vi d e r ul e- b as e d m e c h a nis ms f or
g e n er ati n g, m a ni p ul ati n g a n d a n al y zi n g gr a p hs [ 7 1], [ 4 4]. We
d e m o nstr at e h o w gr a p h gr a m m ar m o d els c a n b e l e ar n e d o v er
s yst e m-l e v el pr o v e n a n c e gr a p hs t hr o u g h us e of D et er mi nisti c
Fi nit e A ut o m at a ( D F A) l e ar ni n g, a r estri cti v e cl ass of gr a p h
gr a m m ars w hi c h e n c o d es t h e c a us alit y i n g e n er at e d m o d els.
T h es e m o d els c a n b e us e d t o d et er mi n e w h et h er n e w a u dit
e v e nts ar e alr e a d y d es cri b e d b y t h e m o d el, or w h et h er t h e
m o d el n e e ds t o b e i n cr e m e nt all y u p d at e d. T his a p pr o a c h m a d e
p ossi bl e a s eri es of gr a p h a bstr a cti o n t e c h ni q u es t h at e n a bl e
D F A l e ar ni n g t o g e n er ali z e o v er t h e pr o v e n a n c e of m ulti pl e
n o d es d es pit e t h e pr es e n c e of i nst a n c e-s p e ci fi c i nf or m ati o n
s u c h as h ost n a m es a n d pr o c ess I Ds. C o m bi ni n g t h es e t w o
f e at ur es, Wi n n o w er c a n tr a ns mit a n d st or e c a us al i nf or m ati o n
t o t h e c e ntr al m o nit ori n g n o d e i n a c ost- eff e cti v e m a n n er a n d
g e n er at e c o n cis e pr o v e n a n c e gr a p hs wit h o ut s a cri fi ci n g t h e
i nf or m ati o n n e e d e d t o i d e ntif y att a c ks.

T his p a p er m a k es t h e f oll o wi n g c o ntri b uti o ns:

– T o m oti v at e o ur us e of t h e c o nt ai n er e c os yst e m as a n
e x e m pl ar, w e c o n d u ct a n a n al ysis of D o c k er St or e t h at
u n c o v ers hi g h s e v erit y v ul n er a biliti es, j ustif yi n g t h e n e e d
f or a u diti n g t o ols ( §II);

– We d esi g n a n o v el a d a pt ati o n of gr a p h gr a m m ars t h at
d e m o nstr at es t h eir a p pli c a bilit y f or s yst e m a u diti n g. W hil e
t o t h e b est of o ur k n o wl e d g e, t his is t h e first us e of
gr a m m ati c al i nf er e n c e o v er d at a pr o v e n a n c e, w e f or es e e
a d diti o n al s e c urit y a p pli c ati o ns i n t h e ar e as of i nf or m ati o n
fl o w m o nit ori n g a n d c o ntr ol ( §III);

– We pr es e nt t h e Wi n n o w er, a pr o of- of- c o n c e pt i m pl e m e n-
t ati o n t h at e n a bl es cl ust er a u diti n g f or D o c k er S w ar m,
D o c k er’s cl ust er m a n a g e m e nt t o ol ( §I V). Wi n n o w er a u g-
m e nts t h e Li n u x A u dit S yst e m ( a u d i t d ) t o m a k e it
c o nt ai n er- a w ar e, pr o vi di n g a m e a ns f or fi n e- gr ai n e d pr o v e-
n a n c e of c o nt ai n er- b as e d a p pli c ati o ns. I n t h e e v al u ati o n,
w e d e m o nstr at e t h at Wi n n o w er r e d u c es t h e o v er h e a ds of
cl ust er a u diti n g b y as m u c h as 9 8 % ( § V).

– T o d et er mi n e t h e ef fi c a c y of Wi n n o w er f or cl ust er a u-
diti n g, w e u n d ert a k e a n e x p a nsi v e s eri es of c as e st u di es.

A cr oss fi v e r e al- w orl d att a c k s c e n ari os, w e d e m o nstr at e
t h at Wi n n o w er dr a m ati c all y si m pli fi es att a c k r e c o nstr u cti o n
as c o m p ar e d t o tr a diti o n al m et h o ds b as e d o n a u d i t d ( § VI).

II.  BA C K G R O U N D & M O T I V A T I O N

A. D o c k er E c os yst e m

D o c k er is t h e m ost wi d el y us e d c o nt ai n er- b as e d t e c h n ol-
o g y [ 1] w hi c h all o ws us ers t o cr e at e s elf- c o nt ai n e d a p pli c ati o ns
wit h all d e p e n d e n ci es b uilt-i n t h e f or m of i m a g es. D o c k er St or e
is a n o nli n e r e gistr y t h at all o ws D o c k er us ers t o s h ar e a p pli-
c ati o n c o nt ai n er i m a g es o nli n e. D o c k er i m a g es ar e b uilt o n
t o p of ot h er i m a g es; f or e x a m pl e, w e c a n cr e at e L A M P st a c k
i m a g e b y s el e cti n g a n U b u nt u distri b uti o n as a b as e i m a g e ,
t h e n a d d A p a c h e, M y S Q L, a n d P H P i m a g es. C urr e ntl y, D o c k er
St or e c o nt ai ns t w o t y p es of p u bli c i m a g e s h ari n g r e p osit ori es:
of fi ci al r e p osit ori es t h at c o nt ai n c ur at e d a p pli c ati o n c o nt ai n ers
v eri fi e d b y t h e v e n d ors a n d c o m m u nit y
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Fig. 3: (a) Part of raw provenance graphs generated on master node using . (b) Concise Provenance Graph generated by Winnower for
monitoring cluster-wide behaviour with confidence levels. Diamonds, circles and rectangles shows socket (artifact), files (artifact), and process
(activity) respectively. We removed edge relationships for readability.

Security Analysis of Docker Store. To demonstrate the
potential security risks in the container ecosystem, we down-
loaded 140 official images and top 500 community images
from Docker Store. Then, using Anchore’s tool [7]
we statically analyzed the operating system packages built-
in or downloaded by these Docker images. catego-
rizes the vulnerabilities present in container images using the
Common Vulnerability Scoring System V3 (CVSS)1 provided
by CVE database, which specifies four severity levels for
vulnerabilities: Low, Medium, High, and Critical. As shown
in Figure 2a and 2b, uncovers thousands of CVE’s
in both official and community images.2 Moreover, we found
that over 70% of official images have at least one High severity
vulnerability (Figure 2b). These results indicate that security
threats abound in the container ecosystem, underscoring the
importance of developing runtime auditing solutions to con-
tainer clusters.

B. Motivating Attack Scenario

To characterize the limitations of existing cluster auditing
systems, we now consider a concrete scenario in which audit
records can be used to diagnose an attack – an online file
storage webservice which allows users to upload and download
files using FTP. The webservice consists of a cluster with
one master node and 4 worker nodes running 10 ProFTPD-
1.3.3c containers configured with multiple worker daemons
backed with 5 MySQL database containers for authentication.
ProFTPD-1.3.3c version is vulnerable to a remote code ex-
ecution attack3. We configured the worker nodes to stream
complete descriptions of their activities to the master node
using the Linux audit subsystem ( ) [5], a widely used
forensic tracking tool for Linux [70]. While the master node
aggregated audit records from the workers’ streams,
we generated a 3 minute workflow of heterogeneous requests

1See https://nvd.nist.gov/vuln-metrics/cvss
2 does not analyze vulnerabilities in package managers such

as NPM, PIP, and Maven. Nor does it detect insecure configuration settings,
making our assessment a conservative lower bound on the severity of Docker
insecurity.

3Available at https://www.exploit-db.com/exploits/15662/

during which an attack was launched on one of the nodes’
container. The attack used the ProFTPD-1.3.3c vulnerability
to obtain access and download a backdoor program to
gain persistent access to the container.

The master node’s view of the cluster is shown in Figure 3a,
where the worker nodes’ streams are represented as
provenance directed acyclic graph (DAG) [39] detailing the
causal relations of the system. The graph has been simplified
for readability; each node’s graph was roughly 2 MB in
size and contained around 2,000 vertices. The subgraph titled
Attack Provenance only appears in Node 1, whereas the
remainder of Node 1’s graph is operationally equivalent to the
activities of the other nodes. Based on this exercise, we observe
fundamental limitations to leveraging system-layer audits in
large clusters:

– Graph Complexity. Ideally, an administrator would have the
tools necessary to quickly pinpoint an attack and identify
the affected resources, but unfortunately the inspection of
system-layer audit logs in a large cluster poses a needle-
in-a-haystack problem. While we drew attention to the
attack subgraph in Figure 3a, in practice this exercise can
be extraordinarily tedious and error-prone [47], [38]. As
demonstrated here, provenance graph visualization can assist
in forensic exploration [23], [56], but such techniques are
designed for a single-host and thus lack the means to filter
the inherent redundancy across nodes.

– Storage Overhead. The amount of audit data generated
on even a single host can be enormous, around 3.18GB/-
day(server) and 1.2GB/day (client), as shown by previous
studies [51], [36], [47]. When considering that such records
may need to be stored in perpetuity for post-facto causal
analysis, it immediately becomes clear that audit logs rep-
resent a storage burden on the order of terabytes. While prior
work has made inroads at reducing storage burden for single
hosts [54], [51], [69], [25], even state-of-the-art systems lack
the scalability required for auditing large clusters.

– Network Overhead. Beyond the cost of local storage, cluster
auditing requires aggregation of system activity to a central
master node. However, it is immediately apparent that a
naı̈ve approach that transmits all system-layer audit records

3
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a
b c

d b c V := b c
S := T V

T := a | a d

S:=

V

Fig. 4: An example graph on the left and graph grammar production
rules on the right which accept that graph. S, T, and V represent
non-terminals while a,b,c, and d are terminals.

to a central node would impose unacceptable network cost.
This is especially true in the case of clusters that are already
deluged with internal network traffic [21].

Winnower’s High-level Idea. We observe that applications
replicated on multiple nodes will produce highly homogeneous
audit logs across executions. As applications will be deployed
with nearly-identical configurations (e.g., filesystems, launch
sequences), we can expect the resultant provenance graphs
to be similar both structurally (i.e., graph connectivity) and
semantically (i.e., graph labels). on a per-application (or, per-
container) basis. Broadly speaking, our goal is to generate
consensus across all nodes to produce a model of application
behavior like the one shown in Figure 3b. In contrast to
3a, redundancy between nodes has been eliminated, and each
activity is shown only once. However, a confidence level marks
the level of consensus that was reached between application
instances (in 3a MySQL has 5 instances). As the attack
occurred on a single node, its confidence level is low, and thus
represents anomalous activity that can easily be identified by
the administrator. Thus, the consensus model is both efficient
to transmit and further, retains the necessary information to
identify the attack.

C. Graph Grammars

To facilitate the creation of a cluster-wide provenance
model for worker execution, in this work we present a novel
adaptation of Discrete Finite Automata (DFA) learning tech-
niques [13]. As DFAs are equivalent to regular grammars [32],
this approach is sometimes referred to as graph grammar
learning. There have been different formulations of graph
grammars that broadly refer to classes of standard grammars
applied to graphs. In a standard grammar, a language of strings
defines a set of rules such that a given string is considered a
member of the grammar if it can be constructed from the rules.
It is intuitive to extend the notion of standard grammars from
strings to graphs, such that a graph belongs to a grammar if it
can be constructed from a set of grammatical rules represented
in the form of where is the pattern subgraph (or left-
hand side) which can be replaced by subgraph (or right-hand
side). An example of such grammar and a graph that belongs
to it is shown in Figure 4.

Graph grammar systems support two important operations:
induction and parsing. Induction algorithms provide a way to
learn a new grammar from a set of one or more example
graphs. Parsing is a membership test that verifies whether
an instance graph can be constructed from a given grammar.
Graph grammar learning is not a deterministic process, as
multiple grammars can parse the same instance of the graph.
As a result, we need heuristic techniques to select an accept-
able grammar. While there are strategies for choosing the best

grammar during induction, we make use of the Minimum
Description Length (MDL) heuristic [40], [17]. The MDL
heuristic formalizes the notion that the simplest explanation
of data is the best explanation of data. MDL is defined by the
following equation:

(1)

where is an input graph, is a model (grammar) of the input
graph, is compressed with , and returns the
description length of the input in bits, The MDL heuristic says
the best minimizes ; in other words, the optimal

minimizes the space required to represent the input graph.

III. SYSTEM DESIGN

A. Threat Model & Assumptions

Our approach is designed with consideration for a data
center running a distributed application that has been replicated
on hundreds or thousands of Worker nodes. Workers may run
as containers, virtual machines, or bare metal hosts; while our
prototype system is implemented for Docker containers (see
§IV), our methodology is agnostic to the workers’ platform.
We require only that each worker is associated with an auditing
mechanism that records the actions of the node. In addition
to worker nodes, the data center features one Monitor node
that is operated by a system administrator. The monitor will
communicate with worker nodes to obtain audit records of
their activities.

The attack surface that we consider in this work is that of
the worker nodes. An adversary may attempt to gain remote
control of a worker by exploiting a software vulnerability in the
distributed application (see §II-A), or may have used a market
such as Docker Store to distribute a malicious application
that contains a backdoor. Once the attacker gains control of
a worker, they may eavesdrop on legitimate user traffic or to
make use of the worker’s compute resources to perpetrate other
misdeeds. In the case of virtualized workers, the attacker’s goal
may be to break isolation and gain a persistent presence on the
underlying machine.

An important consideration for any auditing system is the
security of the recording mechanism. This is because it is
common practice for system intruders to tamper with audit
logs to cover their tracks. While log integrity is an important
goal, it is orthogonal to the aims of this system. Therefore,
we assume the integrity of the workers’ audit mechanisms.
In the case of kernel-based audit mechanisms (e.g., ),
kernel hardening techniques (e.g., enabling SELinux) can be
deployed to increase the complexity of a successful attack.

B. Design Goals

The limitations outlined in §II-B motivate the following
system design goals:

– Generality. Winnower design and techniques should be
independent of underlying platform (e.g. containers, VM,
etc) and applications used by the compute clusters.

– Minimal Log Transmission. Winnower should prevent
worker nodes from sending redundant audit records to
the central node i.e. only transmits the minimum amount
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of information required to adequately describe unique or
anomalous events within the cluster.

– Concise Graphs. Winnower generated provenance graphs
on central node should be concise i.e. capturing aggregated
cluster-wide activities with any anomalous behaviour visible
in graphs.

– Support Cluster Auditing. Winnower should support dis-
tributed querying worker nodes for complete attack tracing
and local policy monitoring in the cluster.

C. System Overview

Winnower acts as a distributed auditing layer that resides
on top of individual worker nodes’ auditing mechanisms. The
core contributions of Winnower are three functions that enable
efficient aggregation of audit data at a central monitoring node:

1) Provenance Graph Abstraction, in which workers abstract
provenance graphs to remove instance-specific and non-
deterministic information (§III-D).

2) Provenance Graph Induction, in which the worker gener-
ates behavioral models and then Monitor aggregates worker
models into a single unified model and send them back to
all workers (§III-E).

3) Provenance Model Incremental Updates, in which workers
check to see if newly generated provenance records are
described by the global model. If and only if they are
not already in the model, the workers transmit the model
updates back to the central node (§III-F).

Using aforementioned functions, our aggregation technique
works as follows: First, Winnower uses an application-aware
provenance tracker on each node to find and separate ho-
mogeneous audit logs from replicated applications. In the
attack scenario we discussed in §II-B, Winnower separates
ProFTPD and MySQL logs. Then, to remove instance-specific
information from homogeneous audit logs, Winnower applies
provenance graph abstraction function locally on each worker
node. In Figure 3a, different IP addresses are present in socket
vertices attached to “ftp listener” process vertex. However,
exact IP address in vertices is not important to extract be-
haviour of the application and therefore, we can abstract
it before model construction. After that, Winnower applies
provenance graph induction function to remove redundancy
and generate behavioral models. In Figure 3a, “ftp” process
vertex spawns several “ftp listener” process vertices. As they
represent semantically equivalent behaviour (causal path is
same), we can combine them into a single vertex as shown
in Figure 3b. Finally, Winnower prevents worker nodes from
transmitting redundant audit records using provenance graph
incremental update function and send only the graph grammar
model’s updates to the central node.

In addition to these core functions, Winnower provides a
fully-realized distributed provenance tracing framework that
supports forward and backward tracing of system events as
well as policy-based automated system monitoring. We de-
scribe these features in §IV with greater details.

D. Provenance Graph Abstraction

The core function of Winnower is to ingest the provenance
graphs of different worker nodes and output a generic model

that summarizes the activity of those nodes. However, even if
all nodes are clones of the same image, we can expect that a va-
riety of instance-specific fields and descriptors will be present
in each worker’s graph. For example, each web service worker
will receive web requests from different remote hosts, causing
different IP addresses to appear in their provenance graph.
We would also expect instance-specific identities assigned to
each worker such as a host name or dynamically-assigned IP
address. While these details are important when inspecting an
individual node, they not useful to an administrator attempting
to reason about a distributed system in aggregate. In fact,
these instance-specific fields will frustrate any attempts to
build a generic application behaviour model because equivalent
events have been assigned different labels on different nodes.
Therefore, before attempting model generation we must first
abstract away these instance-specific details.

To facilitate this abstraction, we group the different fields
found in provenance vertex labels into one of three classes,
handling each as follows: equivalence classes contain instance-
specific information and are abstracted using summarization
techniques prior to model building; immutable classes will
not contain instance-specific information and therefore are not
changed; finally, removal classes are simply removed from
the vertex label prior to graph comparison. Below, we explain
classification of each field associated with each provenance
principle (i.e., activity, artifact, agent).

Activities. Activity vertices consist of five different labels:
Process Name, PID, Timestamp, Current Directory (CWD),
and Command line Args. Because we expect all workers
to follow the same general workflow, process name, CWD,
and command line arguments are handled as immutable; in
other words, a deviation in either of these fields will be
visible in the final model. PIDs and Timestamps can both be
influenced by non-determinism and vary between executions,
and are therefore removed. In Figure 5, is removed from
Activity vertices after graph abstraction step. For brevity, we
omit description of other environment variables, which can be
handled similarly.

Artifacts. Artifact vertices are further categorized into sub-
types based on data types. We describe our general approach
with consideration for file and socket artifacts below, omitting
other artifacts such as IPC for brevity:

File Artifacts: File subtype vertex consists three labels: File
Path, Operation (i.e., read/write/create) and Version. The
version field is incremented each time data is written to
an argument, which is highly dependent on dynamic events
such as network activity and is therefore removed. The oper-
ation label is also removed for simplicity, as this information
is already encoded in the edge labels of the graph. The most
important field, file path, is handled differently depending
on the class of file: (a) Core-system Files: these files are
common across all workers and therefore do not need to
be abstracted, so we scan the node image to create the set

and treat these files as immutable. In Figure 5a file
path label vertex is not removed after
abstraction. (b) Temporary Files: temporary files are those
files who only interact with a single process throughout their
entire life cycle. As noted in [51], these files do not have
meaning when attack tracing, and can therefore be removed.
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/usr/lib/libpq.so
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version 0

Abstraction Induction
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F

D

E

B

HG

A := S
S := C

…. [other production rules]

A := /usr/lib/libpq.so (File)
B := /etc/login.defs (File)
C := ftp (Process)
E := ftp listener(Process)
F := ftp worker(Process)
G := *(File)
H := 192.168.0.0/24(Socket)

(c)

ftp

ftp worker

192.168.0.0/24

/etc/login.defs
ftp listener

192.168.0.0/24

/usr/lib/libpq.so

ftp 
listener

ftp 
worker

192.168.0.0/24192.168.0.0/24

*

*

(b)

Fig. 5: Applying graph abstraction and graph grammar induction on FTP application provenance graph.

In Figure 5a, artifact file path label attached
to “ftp worker” process vertex is removed after abstraction.
(c) Equivalent Files: all the other files are treated as the
equivalence class. For a given activity, when more than a
configurable threshold ( ) of equivalent files are present,
they collapsed into one vertex that is labeled as the most
specific common file path across all file paths.
Socket Artifacts: The socket subtype vertex is described
by an IP Address field. Web services exchange messages
over the network with a wide variety of remote clients. The
reported IP addresses of the remote clients will lead to many
subgraphs within the provenance graph that all describe the
same workflow. To provide an easy-to-understand generic
model, it is important that the model not grow with the
number of remote connections. Therefore, the IP address
field is treated as an equivalence class. For a given activity,
when more than a configurable threshold ( ) of remote
connections are present, they collapsed into one vertex that
is labeled as the most specific common subnet across all IP
addresses. An example of this is shown in Figure 5a; the
artifact that was generated by represents many
network transmissions in the subnet mask.

Agents. Agents are described by a UID field. Because we
expect all workers to follow the same general workflow, we
treat UIDs as immutable; in other words, the presence of a
new agent on a given node will be visible in the final model.

Graph Abstraction Algorithm. Graph abstraction is trig-
gered by a cluster-wide configurable epoch , after which each
node performs abstraction locally. In Figure 6, we outline
the pseudocode for efficient traversal of provenance graph
and apply abstraction on each vertex. Because all activities
are connected to their child activities, traversing the activity
nodes while inspecting their immediate artifact/agent children
is sufficient to perform a complete traversal of the prove-
nance DAG. In Figure 6, the functions ABSTRACTACTIVITIES,
ABSTRACTFILES, ABSTRACTSOCKETS, and ABSTRACTA-
GENTS apply the transformations discussed above to the input
DAG.

Discussion. Performing the abstractions discussed above will
invariably lead to a loss of context in the resulting global
model. Eventually, we may need this instance-specific infor-
mation to perform further attack investigation and incident
response. Therefore, an unmodified record of each worker’s
provenance (Dag) is maintained on the local node. An ad-
ditional concern is that our abstraction techniques can lead to
mimicry attacks [66] by launching attack process with the same

Function GRAPHABSTRACT( , , , )

Get Root from
.copy()

.push( )
while is not empty do

.pop()
.Children()

.getFileSubtype()
.getSocketSubtype()
.getProcessSubtype()
.getAgentType()

.push( )
ABSTRACTACTIVITIES( , )
ABSTRACTFILES( , , , )
ABSTRACTSOCKETS( , , )
ABSTRACTAGENTS( , )

end

return

Fig. 6: Pseudocode of Provenance Graph Abstraction Function. Func-
tions , , ,

extract file, socket, process and agent vertices respec-
tively from list.

name and commandline arguments. However, as we never
remove process vertices during abstraction and further, the
causal path of attack process vertex will be different, mimicry
attacks will always be visible in the final model. Finally, we
note that Section V considers the compression benefits of graph
abstraction in isolation to our other techniques; abstraction
reduces overall log size by roughly 27% in our experiments.

E. Provenance Graph Induction

To generate a global model of worker activity, Winnower
makes use of graph grammar learning techniques. However,
graph grammars as described in Section II-C are not im-
mediately applicable to provenance graphs. Operations like
parsing and induction in prior approaches are prohibitively
costly in terms of runtime complexity [41]; this is in part
because they consider the general class of directed graphs, in
which cycles are common. More importantly, graph grammar
techniques are prone to over generalization; in the case of
data provenance, this creates the risk of erasing important
causal relations between system objects. Consider for example
the provenance of the httpd process in Figure 7. Here the

edges encode an important series of causal
relations; However, in experimentation with past techniques
we discovered that the learning system would treat all
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UID:1000

 Process name:bash 
 PID:2389

 WasControlledBy 

 Process name:httpd main  

 WasTriggeredBy 

 Process name:httpd listener 

 WasTriggeredBy 

 Process name:httpd worker 
 WasTriggeredBy 

 Socket Address:128.0.0.0/24  

 Used 

 File Path:htdocs/index.html
 Version:0 

 operation:read 

 Used 

 Socket Address:128.0.0.0/24 

 WasGeneratedBy 

 File Path:/usr/lib/libc.so 

 Used  

Fig. 7: A simplified provenance graph of an Apache webserver
serving a single user request. Past approaches to graph grammar
learning would overgeneralize this graph.

activities as identical, regardless of their ancestry or
progeny. In other words, we discovered that the rich contextual
information of a provenance graph is difficult to encode as a
grammar.

To solve this problem, we adapt techniques from DFA
learning. In standard DFA learning [32], [68], the present
state of a vertex includes the path taken to reach the vertex.
We extend DFA learning to data provenance by defining the
state of a vertex not only by its label, but also its prefix
state tree ( ) and suffix state tree ( ). A vertex
’s prefix state tree is its provenance ancestry – a subgraph

describing all the system principles and events that directly or
transitively affected by . ’s suffix state tree is its provenance
progeny – a subgraph describing all of the system principles
and events that were in part derived or affected by . In other
words, each system object is defined by its label, the system
entities that informed its present state, the system entities
whose state it informed. In this way, we can be sure that
graph induction will retain all causal information needed to
describe provenance of system objects. In the example shown
in Figure 5b, ’s consist of ,

, , and . Similarly, its
consists of and a summarized * file

vertex.

Pseudocode for our graph grammar induction
(INDUCTION) function is given in Figure 8, which is
MDL-based DFA learning algorithm [13]. We use MDL
principle as a guiding metric to choose the best grammar from
candidate grammars which minimizes the description cost of
the given graph (see II-C). The algorithm is comprised of
the following two steps:

Bootstrapping. In this initial step, a given worker’s input
provenance graphs merged by adding a dummy
root vertex and joining all the ’s root vertices
to the dummy root.4 A single is returned after apply-
ing the function. Next, the prefix state tree
set and suffix state tree set are generated
for each vertex in , with the results stored in .
Note that every vertex is uniquely identified by the tuple

. Further, the set of these com-
binations for every vertex defines the initial (specific) graph

4This step is necessary for our implementation because we make use of a
user-space provenance recorder that cannot fully track the system’s process
tree. A dummy root would not be needed if a whole-system provenance
recorder (e.g., [20]) was used instead.

Function INDUCTION( )

COMBINEROOTS( )
TOPOLOGICALSORT( )

foreach do
GETPREFIXTREE( )
GETSUFFIXTREE( )

end

SEARCH( , )
return

Function SEARCH( , )
Map from grammar to mdl cost

MDL( , )
PriorityQueue()

.push( )
while is not empty do

.pop()
foreach , do

MERGE( , , , )
if was not seen then

MDL( , )
explore.push( )

if terminated early then

GETMIN( )
return

end
end

GETMIN( )
return

Function PARSE( , )
TOPOLOGICALSORT( )

.copy()

foreach do
GETPREFIXTREE( )
GETSUFFIXTREE( )

if not ACCEPT( , , , ) then

end

SEARCH( , )
return

Fig. 8: Pseudocode Graph Grammar Induction and Parsing Functions.
Functions and return prefix and
suffix tree of input vertex respectively while Function returns
minimum cost grammar from input map.

grammar for . After bootstrapping, if two vertices
are defined by the same tuple they are considered equivalent
and merged implicitly in the final grammar. For example, in
Figure 5b, the prefix/suffix state trees of the two
vertices are considered the same, and therefore share an entry
in .

Searching. In this step, the algorithm searches for graph
grammars that improve on the naı̈ve initial specific grammar
by attempting to minimize the MDL equation 1. The MERGE
function applies a “state merging” procedure from DFA learn-
ing systems [32], [68]. The main purpose of state merging is
to find repetitive structures in the graph and combine them in
the grammar. The MERGE function takes two states from the
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java (1)

java
mapper (2)

data(4)
java

reducer (3)

java (5)

java  
mapper (6)

data (8)
java

reducer (7)

java

java
mapper

datajava
reducer

State       Merging

Fig. 9: State merging applied on two chained Hadoop jobs’ prove-
nance graph. State merging combines the repetitive subgraphs.

grammar and attempts to make them indistinguishable
by merging both trees of two selected states, leading
to the creation of a new grammar that remains
consistent with the input . Our merge function uses an
evidence driven strategy [49], which attempts to merge every
pair of states from the graph grammar to produce a new
candidate graph grammar, To support data provenance, our
MERGE function restricts merging of vertices to only those
of same type, e.g., process vertices can only be merged with
other process vertices.

A thorough description of how state merging works is out
of the scope of this paper, we refer readers to [41] for a detailed
explanation. For clarity, we provide a simplified example of
state merging in Figure 9 that merges the provenance of two
chained Hadoop (map/reduce) jobs. The of vertex 1
is empty while for vertex 5 consists of vertices

. After vertices 1 and 5 are merged, the of
5 becomes empty , and the of downstream vertices
are also updated to remove , e.g., vertex 8’s
changes from to . This makes the
of vertices 5,6,7, and 8 equivalent to the of vertices
1,2,3,4, enabling the repetitive subgraphs to be combined into
the new grammar. While here we describe state merging for

only, the process is identical for .

The candidate graph grammars from merging step are
general as they can accept/parse more graphs than the initial
(specific) graph grammar. Then, the MDL cost of each candi-
date grammar is calculated using the MDL function according
to equation 1, and is added to the PriorityQueue.
Whenever a new grammar is popped from , the gram-
mar with the minimal MDL cost is returned. The process
of merging states and adding new grammars to
is repeated until either is empty (i.e., convergence
is achieved) or the algorithm is terminated by an external
decision such as killing the process or exceeding a time limit.
In our implementation, we set the termination point when
convergence is achieved.

F. Provenance Graph Membership Test and Update

The final component required Winnower is a membership
test that, given a grammar and an instance provenance graph,
determines whether or not the graph can be produced by the
grammar. The membership test algorithm follows naturally
from graph grammar parsing algorithms. At a high-level,
function PARSE shown in Figure 8 takes as input a graph
and a grammar . Then, it generates the prefix state tree

and suffix state tree for each vertex in .
This step is similar to the bootstrapping step of induction.

Finally, the algorithm determines for every vertex of given
DAG whether or not its prefix tree state and suffix state
tree are present in . If input tree state and output state
tree of any vertex are not present in then, function
ACCEPT returns , meaning that cannot be parsed
with . Note that parsing in DFA is linear time operation
due to its equivalence to regular grammars.

In Winnower, if and only if parsing fails, it is necessary
for the worker to transmit additional provenance records to the
Monitor. To do so, the worker updates to incorporate the
instance by adding the unparsable vertices to it. It then
generates a new grammar by locally invoking the SEARCH
step of the INDUCTION function. The resulting new grammar

, is then transmitted to the Monitor.

IV. SYSTEM IMPLEMENTATION

We have implemented a prototype version of Winnower
for Linux OS with Docker Swarm version 1.2.6 and Docker
version 1.13. An architectural overview of the Winnower
system is shown in Figure 10. A complete workflow for
how Winnower enables auditing and attack investigation is as
follows: 1 a provenance graph for each container is generated
by the host machine using ; 2 a Winnower client
agent running on each worker node applies graph grammar
induction locally to produce a local model that is pushed
to the central Monitor; 3 the central Winnower monitor
performs induction to unify the local models from all worker
nodes into a single global model, maintaining a confidence
value for each vertex representing how many workers reported
each behavior, then transmits the global model back to the
worker nodes; 4 administrators can quickly view anomalous
activities (i.e., vertices with low values) and decide whether
to investigate; 5 during an investigation, the administrator
can issue queries to the Winnower monitor, or 6 request
a complete (unabstracted) copy of the workers high-fidelity
provenance graph, which is maintained on the worker nodes.
This final step is necessary to ensure that no important forensic
context is lost during the model generation.

Worker Components. Winnower requires to be
enabled on all connected worker nodes, as well as SELinux5.

[57] runs each Docker container in its own SELinux
contexts if the docker daemon is started with option –selinux-
enabled. The Docker daemon generates unique SELinux la-
bels called Multi-Category Security (MCS) labels and assigns
them to each process, file, and network socket of a specific
container. Finally, Winnower workers run a modified version
of the SPADE system [37], which parses logs and
generates causal dependencies in the form of OPM-compliant
provenance graphs [39]. While our prototype makes use of
SPADE for ease-of-deployment, the provenance recorder used
by Winnower is largely modular and could be quickly replaced
by a kernel-level provenance recorder [20], [54], [61] to
achieve stronger security or completeness guarantees

When a system call occurs on the worker, the execution
and associated call arguments are captured by based on

5SELinux is a Linux kernel feature that allows fine-grained restrictions
on application permissions. In an SELinux enabled OS, each process has an
associated context, and a set of rules define the interactions permitted between
contexts. This allows strict limits to be placed on how processes can interact
and which resources they can access.
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the rules defined in . Winnower uses
all the to capture the syscalls events that can
be useful in attack tracing, such as process, file, and socket
manipulation. After the syscall is processed by the kernel,

sends data from the kernel to the user-space daemon
which writes the event to a persistent log file. writes
SELinux labels along with other event information such as
process id into the logs. To differentiate the provenance of dif-
ferent containers, Winnower extends SPADE to communicate
with the Docker Swarm and map each objects’ SELinux labels
to the associated and given by Docker
to find containers belonging to same applications. Winnower
then uses SPADE’s Graphviz6 backend to record container-
specific provenance graphs and performs DFA learning over
the resulting files.

The Winnower agent runs locally on each worker node in
the cluster and communicates with the Monitor’s Winnower
frontend. After performing graph abstraction and local induc-
tion as discussed in Sections III-D and III-E, it is responsible
for publishing local models to the Winnower frontend via a
publisher-subscriber model at a configurable interval (epoch).
We used Apache Kafka pub/sub system. The Winnower agent
also waits for instructions from the Winnower frontend related
to provenance queries, changes in epoch size, or deploy-
ing provenance policies. After each epoch , the Winnower
performs graph grammar induction on the worker’s current
provenance graph.

Monitor Components. The Monitor node is responsible
for running the Docker Swarm manager, and is extended by
Winnower to run a frontend consisting of five submodules: 1)
a Provenance Manager submodule gathers provenance graphs
from each worker node and sends back the current globally
aggregated model. 2) a Provenance Query submodule that
supports forward and backward tracing queries. The three
functions provided by Winnower to support tracing are shown
in the Table I. The user first identifies nodes of interest with the

by specifying a key-value pair (e.g., key=“name”,
value=“index.html”). These node IDs can then be passed to
the or functions to perform
backward and forward tracing, respectively. To track the
migration of workers in dynamic scheduling environments,
Winnower maintains a log of the scheduling decisions made
by Docker Swarm and transparently identifies which nodes to
query to reconstitute the full provenance graph. 3) a Policy
Engine submodule exposes a simple Cypher-like [12] graph
query language that permits administrators to define automated
responses when a specified property is detected within a
worker’s provenance graph. The format of policy is shown in
the Figure 11. In the clause the pattern to match is given
while will send matched vertex id to administrator to
run forward/backward queries. Figure 12 shows an example
policy. Here, if any process writes to the directory
on a worker node, the administrator will be notified. 4) finally,
a Docker API Calls submodule uses Docker Swarm API
to get information regarding containers in cluster such as
which containers belong to same information, and liveness of
containers. 5) a final component of the Winnower frontend
is the Provenance Learning submodule. After each epoch ,
the Provenance Manager fetches new provenance graph from

6Available at http://www.graphviz.org/
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Fig. 10: Winnower Architecture and Workflow (§IV).

TABLE I: Winnower API functions for attack tracing on provenance
graphs generated from graph grammars models.

MATCH vertex a: labels edge a
vertex b: labels edge b
...

RETURN vertex a.id

Fig. 11: Format of Provenance Policy Language to check certain
provenance DAG pattern on each worker node.

MATCH (a:Process name: ) used
(b: File file path : , operation: )

RETURN a.id

Fig. 12: Example of Provenance Policy which monitors any process
writing to /usr/bin directory.

workers and parses them into the scala graph format using
the scalax package [3]. The Provenance Learning submodule
first checks if it already has the graph grammar model for the
worker. If there is a model previously generated then it will
be updated through induction to incorporate the new graphs
Otherwise the provenance learning system merges the worker
graph model from the current epoch into a single global model,
then sends them back to each worker. We have implemented
provenance graph grammar learning framework in Scala with
3K LOC.

V. PERFORMANCE

In order to evaluate the performance of Winnower, we
profiled 3 popular server applications on a five node cluster
using Docker Swarm. Workloads were generated for these
applications using the standard benchmarking tools Apache
Benchmark 7, FTPbench8, and SysBench9 which were also
used in most relevant prior work [51], [50], [54]. The cluster
was deployed as KVM/QEMU virtual machines on a single
server running Ubuntu 16.04 LTS with 20 Intel Xeon (E5-
2630) CPUs with 64 GB RAM. One VM in the cluster acted
as the Monitor, running the Winnower Frontend and Docker
Swarm manager, while the remaining four VMs hosted worker
containers. Each VM had 2 VCPUs, 4GB RAM, and ran
CentOS 7. We deployed total 20 application containers for

7Available at https://httpd.apache.org/docs/2.4/programs/ab.html
8Available at https://pypi.python.org/pypi/ftpbench
9Available at https://dev.mysql.com/downloads/benchmarks.html

9
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Fi g. 1 4: A v er a g e ti m e s p e nt o n gr a p h gr a m m ar i n d u cti o n a n d p arsi n g at e a c h e p o c h, w hi c h o c c urr e d e v er y 5 0 s e c o n ds.

e a c h b e n c h m ar k a cr oss t h e cl ust er. F or e a c h w or kl o a d, t h e
M o nit or s e n ds r e q u ests wit h t h e c o n c urr e n c y-l e v el p ar a m et er
of 4 0 t h at w er e l o a d b al a n c e d a cr oss t h e w or k er n o d es. N ot e
t h at t h e t ot al n u m b er of r e q u ests d e p e n ds o n h o w l o n g t h e
b e n c h m ar k w as r u n. Wi n n o w er w as c o n fi g ur e d wit h a n e p o c h
si z e of 5 0 s e c o n ds, wit h s et τ F il e a n d τ S o c k t hr es h ol ds t o 4 0 0.
T o s er v e as a b as eli n e c o m p aris o n f or Wi n n o w er, w e s et- u p
d a e m o ns o n e a c h w or k er t h at str e a m a u d i t d a cti vit y t o t h e
M o nit or n o d e.

O ur p erf or m a n c e e v al u ati o n s ets o ut t o a ns w er t h e f oll o w-
i n g q u esti o ns a b o ut Wi n n o w er:

– § V- A: W h at is t h e o v er all st or a g e r e d u cti o n pr o vi d e d b y
Wi n n o w er’ a bstr a cti o n a n d i n d u cti o n t e c h ni q u es ? T o a ns w er
t his q u esti o n, f or e a c h w or kl o a d w e c o m p ar e t h e c o m pr ess e d
a n d u n c o m pr ess e d si z e of a u d i t d l o gs t o t h e si z e of o ur
Wi n n o w er m o d el u n d er t w o c o n fi g ur ati o ns: a bstr a cti o n o nl y
(WI N w/ o i n d. ) a n d a bstr a cti o n/i n d u cti o n (WI N wit h i n d. ).

– § V- B: W h at is t h e c o m p ut ati o n al c ost of g e n er ati n g a
Wi n n o w er m o d el ? T o a ns w er t his q u esti o n, w e m e as ur e t h e
i n d u cti o n s p e e d f or e a c h e p o c h i n e a c h w or kl o a d.

– § V- C: W h at is t h e n et w or k c ost of o p er ati n g Wi n n o w er ? T o
a ns w er t his q u esti o n, w e c o m p ar e t h e c ost of tr a ns mitti n g
Wi n n o w er m o d els o v er t h e n et w or k t o t h e c o n fi g ur ati o n i n
w hi c h all a u d i t d a cti vit y is str e a m e d t o t h e M o nit or.

A. St or a g e R e d u cti o n

F or e a c h w or kl o a d, w e m e as ur e d t h e st or a g e r e q uir e m e nts
at t h e M o nit or n o d e f or b ot h Wi n n o w er a n d a u d i t d . Fi g ur e 1 3
s h o ws t h e s p a c e o v er h e a d o v er ti m e f or Wi n n o w er as c o m p ar e d
t o a u d i t d ; n ot e t h at t h e y- a xis us es a l o g s c al e. Ta bl e II pr o-
vi d es a t ot al s u m m ar y of s p a c e o v er h e a d a n d gr a p h c o m pl e xit y

# of Ve rti c es # of E d g es
L o g Si z e

( M B)
A p p D u r ati o n A S D WI N A S D WI N A S D WI N
A p a c h e 3 3 m 1 2s 1. 0 4 m 3 2 1. 0 4 m 4 1 4 8 5 0. 1 1
Pr o F T P D 2 0 m 1 2s 3 4 0 k 5 6 3 4 0 k 5 8 6 3 0 0. 1 2
M y S Q L 2 1 m 0 0s 8 4 0 k 6 1 8 4 0 k 6 4 1 3 0 0. 1 7

T A B L E II: S u m m ar y of o bs er v e d s p a c e o v er h e a ds i n t est a p pli c ati o ns
c o m p ari n g a u d i t d / S P A D E ( A S D) t o Wi n n o w er ( WI N). Wi n n o w er
c o nsist e ntl y r e d u c es st or a g e c osts b y o v er t hr e e or d ers of m a g nit u d e.

f or all t hr e e a p pli c ati o ns. T h e gr a p h a bstr a cti o n st e p (WI N
w/ o i n d. ) a c c o u nts f or o nl y a s m all a m o u nt of c o m pr essi o n
c o m p ar e d t o gr a p h i n d u cti o n, b ut e n a bl es t h e eff e cti v e n ess of
i n d u cti o n as dis c uss e d i n § III- D. A p pr o xi m at el y 0. 6 G B of d at a
p er h o ur is g e n er at e d b y a u d i t d / S P A D E (a u dit d( u n c o m p.) ) o n
c e ntr al n o d e, i n c o ntr ast t o 1 5 0 K B p er h o ur b y Wi n n o w er. Wit h
gr a p h i n d u cti o n e n a bl e d ( WI N wit h i n d. ), Wi n n o w er o ut p er-
f or ms a u d i t d b y 3 or d ers of m a g nit u d e, r e d u ci n g t h e st or a g e
b ur d e n b y 9 9. 9 %. E v e n w h e n a u d i t d o ut p ut is c o m pr ess e d
wit h 7 z t o ol at t h e M o nit or, Wi n n o w er still r e d u c es t h e st or a g e
b ur d e n b y 9 9. 2 %. Wi n n o w er t h us dr a m ati c all y r e d u c es st or a g e
c ost at t h e a d mi nistr ati v e n o d e.

B. C o m p ut ati o n al C ost

F or e a c h w or kl o a d, Fi g ur e 1 4 s h o ws t h e ti m e s p e nt o n
gr a p h i n d u cti o n o n e a c h n o d e aft er e a c h 5 0 s e c o n d e p o c h;
t h at is, e a c h n o d e i n g est e d t h e 5 0 s e c o n ds of l o g d at a, t h e n
p erf or m e d t h e gr a p h gr a m m ar i nf er e n c e al g orit h m ( § III- E) t o
g e n er at e a pr o v e n a n c e m o d el. We o bs er v e t h at i n d u cti o n d uri n g
t h e first e p o c h is m or e c ostl y ( 1 2- 2 6 s e c o n ds) t h a n s u bs e-
q u e nt e p o c hs ( 0- 3 s e c o n ds). T his is b e c a us e a si g ni fi c a ntl y
l ar g er a m o u nt of gr a p h str u ct ur e is l e ar n e d d uri n g t h e i niti al
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Fi g. 1 5: N et w or k t hr o u g h p ut (l o g s c al e d) f or tr a ns mitti n g pr o v e n a n c e
l o gs t o c e ntr al n o d e o v er ti m e o n 3 n o d es d uri n g o ur e x p eri m e nts.

gr a m m ati c al i nf er e n c e, w h er e as i n s u bs e q u e nt i n d u cti o ns t h e
str u ct ur e of t h e m o d el is q uit e st a bl e a n d o nl y i n cr e m e nt al
u p d at es o c c ur. As w e n ot e d i n §III- F t h at p arsi n g is a li n e ar
ti m e o p er ati o n w e o mit p arsi n g c o m p ut ati o n c ost f or br e vit y.

S etti n g asi d e t h e i niti al i n d u cti o n, t h es e r es ults s h o w t h at
t h e s m all est s af e e p o c h si z e f or o ur c urr e nt i m pl e m e nt ati o n is
a b o ut 5 s e c o n ds. T his v al u e r e pr es e nts a n u p p er b o u n d o n t h e
fr e q u e n c y wit h w hi c h t h e pr o v e n a n c e m o d el c a n b e u p d at e d.
H o w e v er, w e ar e c o n fi d e nt t h at s m all er e p o c hs c o ul d b e
s u p p ort e d t hr o u g h o pti mi zi n g o ur pr ot ot y p e. S p e ci fi c all y, w e
ar e c urr e ntl y i n v esti g ati n g o n r e-i m pl e m e nti n g o ur i n d u cti o n
al g orit h m as a p ar all eli z a bl e C/ C + + pr o gr a m.

C. N et w or k A cti vit y

Fi n all y, w e pr o fil e d t h e n et w or k a cti vit y of Wi n n o w er
as c o m p ar e d t o a u d i t d f or e a c h w or k fl o w. O ur r es ults ar e
s h o w n i n Fi g ur e 1 5 f or M y S Q L b e n c h m ar k. Ot h er a p pli c ati o n
b e n c h m ar ks f oll o w t h e s a m e tr e n d. F oll o wi n g t h e first e p o c h,
Wi n n o w er tr a ns mits a m o d el t h at s u m m ari z es t h e a cti viti es of
t h e first 5 0 s e c o n ds, l e a di n g t o a bri ef s pi k e i n n et w or k tr a ns-
missi o n. It is i m p ort a nt t o a c k n o wl e d g e t h at t his b e h a vi or c o ul d
l e a d t o mi n or p erf or m a n c e iss u es d uri n g t h e i niti al d e pl o y m e nt
of Wi n n o w er. H o w e v er, f oll o wi n g t h e first e p o c h Wi n n o w er
visi bl y o ut p erf or ms a u d i t d / S P A D E. O v er t h e c o urs e of t h e
e ntir e t est ( 2 1 mi ns), Wi n n o w er tr a ns mits j ust 1 7 8 K B of d at a
c o m p ar e d t o 1 3 0 M B b y a u d i t d / S P A D E i n t h e w h ol e cl ust er.
Wi n n o w er t h us off ers a dr a m ati c i m pr o v e m e nt o v er a u d i t d ,
w hi c h c o nti n u all y tr a ns mits r e d u n d a nt a u dit d at a a n d m a y e v e n
s at ur at e n et w or k li n ks i n l ar g er cl ust ers.

VI.  C A S E S T U D I E S

I n t his s e cti o n, w e will d e m o nstr at e t h e ef fi c a c y of Wi n-
n o w er i n assisti n g att a c k i n v esti g ati o n b y c o nsi d eri n g fi v e
r e al- w orl d att a c ks a g ai nst a D o c k er S w ar m cl ust er. F or e a c h
s c e n ari o, w e s et u p t h e fi v e n o d e cl ust er as us e d i n § V, wit h
o n e n o d e a cti n g as t h e m o nit or a n d t h e ot h er f o ur a cti n g as
w or k er n o d es. We t h e n r a n a s eri es of diff er e nt m ulti- c o nt ai n er
a p pli c ati o ns f or a p eri o d of ti m e b ef or e l a u n c hi n g a n att a c k. We
first g e n er at e d t h e c o n cis e pr o v e n a n c e m o d el usi n g Wi n n o w er,
t h e n d et er mi n e d if it w as a d e q u at e f or att a c k i n v esti g ati o n b y
p erf or mi n g f or w ar d a n d b a c k w ar d tr a ci n g o v er t h e gr a p h. T o
e ns ur e t h e c o m pl et e n ess of Wi n n o w er, w e als o r e p e at e d e a c h
tri al usi n g a u d i t d / S P A D E a n d c o m p ar e d t h e t w o r es ults.

A s u m m ar y of o ur fi n di n gs is s h o w n i n Ta bl e III. I n
a d diti o n t o r e c or di n g a d e q u at e c o nt e xt t o e x pl ai n all att a c k

L o g Si z e
( M B)

Q u e r y R es p.
Ti m e ( ms)

S c e n a ri o D u r ati o n A S D WI N A S D WI N
I m a g e Tr a gi c k Att a c k 1 0 m 1 2s 2 3 1 0. 3 1 0 3 5
R a ns o m w ar e Att a c k 7 m 2 1s 1 6 1 0. 7 1 0 2 9
I n e x p eri e n c e d A d mi n 2 m 4 0s 2 2 8 0. 8 6 8 4
Dirt y C o w Att a c k 4 m 2 1s 3 0 1 1 9 1 0 7 1 2
B a c k d o or Att a c k 1 9 m 3 1s 1 3 3 0. 2 1 3 5 5

T A B L E III: S u m m ar y of Wi n n o w er p erf or m a n c e i n att a c k s c e n ari os.
Wi n n o w er ( WI N) a g ai n r e d u c es l o g si z e b y t hr e e or d ers of m a g nit u d e
c o m p ar e d t o a u d i t d / S P A D E ( A S D), a n d i m pr o v es q u er y p erf or-
m a n c e b y t w o or d ers of m a g nit u d e.

s c e n ari os, Wi n n o w er is als o a bl e t o r es p o n d t o q u eri es i n
j ust a h a n df ul of millis e c o n ds, c o m p ar e d t o h u n dr e ds of
millis e c o n ds f or a u d i t d . Fi g ur es 1 6- 1 8 vis u ali z e t h e m o d els
d e m o nstr at e d b y Wi n n o w er i n e a c h s c e n ari o. F or cl arit y, w e
h a v e a n n ot at e d e a c h m o d el t o dr a w t h e r e a d er’s att e nti o n
t o t h e att a c k; h o w e v er, pl e as e n ot e t h at t h e b o x e d s u b gr a p h
c orr es p o n ds p erf e ctl y t o t h e c o n fi d e n c e l e v el l e g e n d, s u c h t h at
a n a d mi nistr at or w o ul d b e a bl e t o a c c ur at el y i nt er pr et t h e gr a p h
e v e n wit h o ut t his a n n ot ati o n.

A. I m a g e Tr a gi c k Att a c k

S c e n a ri o. We first c o nsi d er a n i m a g e m a ni p ul ati o n w e bs er vi c e
t h at all o ws us ers t o p erf or m diff er e nt o p er ati o ns o n u pl o a d e d
i m a g es s u c h as cr o p a n d r esi z e. We cr e at e d t his w e bs er vi c e
wit h 1 0 N gi n x w e bs er v er d o c k er c o nt ai n ers f or s e n di n g/r e-
c ei vi n g w e b r e q u ests a n d 1 0 I m a g e M a gi c k c o nt ai n ers f or
i m a g e m a ni p ul ati o n. U nf ort u n at el y, t h e i m a g e m a ni p ul ati o n
w or k ers w er e s us c e pti bl e t o t h e I m a g e Tr a gi c k 1 0 att a c k. Aft er
s e n di n g h et er o g e n e o us r e q u ests f or s o m e p eri o d, w e i niti at e d
t h e att a c k b y u pl o a di n g a m ali ci o us i m a g e fil e m a l . j p g c a p a bl e
of o p e ni n g a r e m ot e s h ell b a c k t o t h e att a c k er’s h ost. T h e
u pl o a d e d fil e c o nt ai n e d t h e f oll o wi n g p a yl o a d:

i m a g e o v e r 0 , 0 0 , 0 ’ h t t p s : / / 1 2 7 . 0 . 0 . 1 / x . p h p ? x = ‘ b a s h - i > \ &
/ d e v / t c p / X . X . X . X / 9 9 9 9 0 > \ & 1 ‘ ’

T h e s er v er e x e c ut es t his c o d e w h e n t h e i m a g e is pr o c ess e d b y
t h e i d e n t i f y

N gi n x 
W or k er

*

/ et c/I m a g e M a gi c k/

p oli c y. x ml

/ u sr/li b 6 4/

li b u ui d. s o. 1. 3. 0

I m a g e m a gi c k

Ot h er 3 5 li br ar y v erti c e s

c url

b a s h -I / d e v/t c p

x. x. x. x
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e

N gi n x

*

b a s h

/ u sr/ bi n/i d e ntif y

/ u sr/ bi n/ c o n v ert

C o n fi d e n c e l e v el

L e g e n d 1 1 0

/ u pl o a d s/*

*

b a s h

t o ol of t h e I m a g e M a gi c k li br ar y, c a usi n g a b as h
s h ell t o b e li n k e d t o t h e att a c k er’s r e m ot e h ost.

Fi g. 1 6: T h e c o n cis e pr o v e n a n c e gr a p h g e n er at e d b y Wi n n o w er f or
i m a g etr a gi c k att a c k.

1 0 A v ail a bl e at htt ps://i m a g etr a gi c k. c o m/

1 1

https://imagetragick.com/


Detection. Figure 16 shows the monitor node’s view of the
attack as provided by the Winnower provenance model. The
provenance graph generated by Winnower is remarkably con-
cise, allowing the administrator to easily spot the anomalous
activities annotated by the dashed line (Attack Provenance).
On the other hand with the /SPADE, the administrator
would have had to navigate a provenance graph of 64,811
vertices in order to detect and investigate the attack.

B. Ransomware Attack

Scenario. In this scenario, we consider a Ransomware attack11

against a vulnerable version ( 3.2.0) of the Redis database.
The attack exploits a vulnerability that permits an attacker
to view and modify the database by executing a
command on an open TCP port. We created an online storage
service using Nginx webserver backed by Redis-3.0.0 with
sharded database. All Redis containers had public IP assigned,
but one of service was permitted to run on a default port,
which allowed an attacker to find the vulnerable instance
through internet-wide scanning. We generated a workload for
the webservice by uploading and downloading content from
the site, then executed a ransomware attack: the attacker first
connects directly to Redis container over the default port,
executes the command to erase the whole database,
uploads their SSH key to the database, then obtains root access
to the container by using to copy the database to
the root’s directory and renames it to .
After obtaining root access, the attacker connects and leaves
a note in the home directory asking for bitcoins to get the
encrypted database back.

Worker

*

/uploads/*

redis-server

x.x.x.x

Attack 
Provenance

Nginx

*

bash Confidence level
Legend 1 10

/root/.ssh/authorized_keys

*
172.17.0.0/24

/var/lib/redis/dump.rdb
/proc/12743/stat

/var/log/redis/redis.log

x.x.x.x

sshd

bash /root/ransomware.notevim

/dev/tty

Other library files

Fig. 17: The provenance graph generated by Winnower for ran-
somware attack.

Detection. Winnower’s utility in this scenario is two-fold.
First, as Winnower generates a concise provenance model
as shown in Figure 17, the administrator will be able to
quickly identify the malicious activity on the cluster, po-
tentially preventing the attack from spreading to the other
containers. In contrast, the raw provenance graph generated
by /SPADE have 78,149 vertices. Second, by using the
complete attack provenance, the administrator will be able
to see that the database was not actually sent to internet or
encrypted, meaning that this was a fake ransomware attack
and the data was irrevocably lost.

11See https://duo.com/blog/over-18000-redis-instances-targeted-by-fake-
ransomware

C. Inexperienced Administrator

Scenario. In this case study, we consider the inexperienced
administrator of a Hadoop container cluster that runs analysis
jobs on different datasets12. The admin of the cluster left the
Docker daemon REST API TCP port open to the Internet,
permitting any remote user to create and run a container in
the cluster13. An attacker can run a reverse TCP shell from the
container, then use the container for malicious purposes such
as DDoS attacks. In this scenario, we spawned 10 Hadoop
containers executing a built-in example of distributed grep on
different datasets, then launched a reverse shell attack.

/uploads/*

Complete Attack Provenance

java

164 other .jar file 
vertices

bash
Confidence level

Legend 1 10

172.17.0.3

/tmp/hadoop-root/nm-local-dir/*

x.x.x.x

dockerd sudo

/usr/lib64/libc-2.17.so
31 other library 

file vertices 

share/hadoop/mapreduce/hadoop-
mapreduce-examples-2.6.0.jar

java

/usr/lib64/libcap.so129 other library 
files vertices

java

java

bash
Other vertices

sudo

/usr/local/hadoop/share/*
16 other java 

processes

bash -I /dev/tcp
x.x.x.x

Inside attacker container

Fig. 18: The provenance graph generated by Winnower for inexperi-
enced administrator case study. We have simplified this diagram for
readability.

Investigation. The provenance model generated by Winnower
is shown in Figure 18. We have simplified this diagram
for readability by making dashed line vertices for different
library/System files; regardless, the graph is concise with 319
vertices as compared to /SPADE, which generated a
graph of 87,345 vertices. The administrator can easily see in
the Winnower model that one container is acting differently
than the other workers in the cluster. The admin can then run
a backward tracing query on the suspicious vertex to produce
a complete explanation of the attack, trail as annotated by blue
dashed line, to identify the open Docker port as the method of
entry.

D. Dirty Cow Attack

Scenario. In this case study, we consider an online Distributed
Continuous Integration (CI) service such as Travis CI14 or
AppVeyor15 which automatically build and test projects. Users
can provide custom scripts which install all dependencies (e.g.

, etc.) and build the project. These services provide
users with a terminal-like interface to view all the logging
output generated during the project’s build process. Consider
a CI service that uses Docker and spans a new container for

12Available at https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-
yarn-site/DockerContainerExecutor.html

13See https://threatpost.com/attack-uses-docker-containers-to-hide-persist-
plant-malware/126992/

14Available at https://travis-ci.org/
15Available at https://www.appveyor.com/
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each build, which is the case for Travis CI. Here, the CI
administrator needs to make sure that the user is never able
to break the isolation of the container, as this would allow
them to view source code from other (possibly proprietary)
builds. However, the base image (e.g., Ubuntu, CentOS) used
by this CI service is vulnerable to the Dirty Cow privilege
escalation bug (CVE-2016-5195) 16. Since any user can upload
custom bash scripts on the CI service this bug can be exploited
to escape isolation and read other users source code [6].
To setup the CI service, we created 10 Docker containers
with vulnerable base image kernels. We then ran the build
processes of different open source maven-based java projects
from Github. During one of the builds, we executed a Dirty
Cow attack script from [8].

MATCH (a:Agent UID= ) WasControlledBy
(a: Process name: )

Fig. 19: Provenance Policy which will be deployed on each worker
node in the cluster to monitor container breakout attacks.

Monitoring. As it is possible to express a breach of container
isolation in policy language, this scenario shows Winnower’s
utility as an active monitoring tool in addition to an adminis-
trative aid. As there is no condition under which a container
should interact with system objects outside of the container,
the administrator can define a provenance policy on each
worker node like the one shown in Figure 19. This policy
is matched when there is some process controlled
by UID 0. If the policy is triggered at runtime, a notification
is sent to the administrator. Once the administrator has been
notified they can run backward tracing query on the bash vertex
to reconstruct the attack, which will aid in identifying the
vulnerable base image. One might argue that the CI service
could block all ports by using SELinux to stop such behaviour;
however, CI services cannot do that because they provide
software testing services that may require access to these ports.
In this attack scenario, since each container in the cluster
was building a different project, Winnower does not provide
a significant decrease in log size, as shown in Table III. In
order for Winnower to work as a compression mechanism, it
would be necessary to maintain a separate provenance model
for each project, which would eliminate audit redundancy over
sequential builds.

E. Backdoor attack.

We describe this attack in §II-B and visualize the concise
provenance model in Figure 3b. Our results compared to the

/SPADE are shown in Table III.

VII. RELATED WORK

In Section II-B we described the limitations with existing
provenance collection tools that Winnower addresses, and
complement the discussion on related work here.

System-level Provenance. To the best of our knowledge, this
is the first work to study an efficient system-level provenance
collection mechanism for clusters and solve the challenges

16Dirty Cow Bug is a privilege escalation bug in the Linux Kernel
discovered on October 20th, 2016. It stems from a race condition in the way
that the Linux kernel’s memory subsystem handles read only private mappings
when a Copy On Write situation is triggered.

(a)

false
alarm

evidence
of attack

false alarm

false
alarm

(b)

Fig. 20: Provenance of two server executions. (a) shows
normal execution, but execution (b) shows evidence of an attack.
Comparing these provenance graphs with existing techniques leads
to false alarms, a limitation that we address with Winnower.

associated with it. However, in recent years, a significant
progress has been made to capture system-level provenance
and leverage them for forensics [47], [61], [46], [20], [60],
[37], [67]. Winnower complements all these OS-level logging
systems. However, using existing system logs accumulate very
quickly; which makes them impractical to collect and query
logs for the scale of clusters. Winnower applies novel graph
grammars approach which substantially reduces the cost of
storing and processing logs. LogGC [51] provides offline
techniques to garbage collect redundant events which have
no forensic value. These techniques can be applied alongside
our model construction to further decrease storage overheads.
Finally, our work also complements the execution partitioning
systems such as BEEP/MPI [50], [53] which improve post-
mortem analysis by solving the problem of dependency explo-
sion. Liu et al. [52] proposed PrioTracker which accelerates
the attack causality analysis by adding priority to rare events
in attack graph construction. Winnower can be used along with
PrioTracker to reduce the overhead of storing and transmitting
provenance graphs in a large distributed system before attack
causality analysis.

Distributed System Tracing. Existing academic tools [55],
[64], [33], [16] and commercial tools [11], [10] on distributed
system tracing are mainly targeted towards runtime profiling,
finding limping hardware and software misconfigurations. Pin-
point [29] collects execution traces as paths through the system
and diagnose anomalies by generating a probabilistic context-
free grammar from the paths. However, these systems do not
provide causal relationships between kernel-level events which
is necessary for security auditing and forensics. Moreover, they
also suffer from the challenges of log storage/transmission
overhead on central node which are outlined in §II-B.

Graph Comparison Techniques. Winnower leverages graph
comparison techniques to identify similarities and differences
between provenance graphs across different executions. Graph
comparison algorithms accept two graphs and ′ as in-
put and output a value quantifying the similarity/difference
between these two input graphs [62], [42], [24]. For our
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purposes, existing graph comparisons solutions are not imme-
diately applicable, in part because of various sources of non-
determinism lead to subtle structural and semantic variations
between provenance graphs across executions. To illustrate this
limitation, we note briefly a preliminary experiment that we
conducted using naı̈ve graph diff in place of DFA learning.
Figure 20 shows simplified provenance graphs for two Apache

webservers, one of which (20b) has fallen victim to a
a reverse shell invocation attack. The naive graph diff flagged
several subgraphs as anomalous, although they described the
same behavior in both executions. In contrast, Winnower
accurately identifies the attack subgraph without false alarms.

Previous studies have used graph grammar techniques to
infer program behavior and specifications using syscall and
function call graphs [43], [31]. Babic et al. [14] used induction
on tree grammar to learn malicious syscall patterns which they
hoped to recognize at runtime. One of the prominent works in
the graph grammar learning space is Jonyer et al. [44] SubDue
system that generates context free grammars to help solve
Frequent Subgraph Mining. In light of the high overheads asso-
ciated with DFA learning, Winnower considers a significantly
more challenging problem of how to leverage these techniques
in a real time distributed monitoring architecture. Moreover,
we also demonstrate methods of abstracting instance-specific
details out of audit records to further improve the compression
rate of graph induction.

Deduplication and Compression. Our work is orthogonal
to provenance graph compression and deduplication tech-
niques [69], [25], [15] due to distributed setting of system-level
provenance in our work. Winnower provides scalable compres-
sion using DFA learning that exploits the homogeneity present
in same applications’ provenance across different executions to
remove redundancy and generate DFA models. Moreover, DFA
models provide an efficient means of membership test which
is leveraged by Winnower to avoid redundant transmission of
provenance data to the central node. In contrast, deduplica-
tion and compression techniques do not provide these func-
tionalities. Recently, Chen et al. [28] proposed equivalence-
based provenance tree compression to reduce storage overhead.
However, their proposal requires distributed applications to be
written in a new domain-specific language to find equivalent
trees at compile time and works only for network provenance
trees.

VIII. DISCUSSION

Our techniques of graph abstraction and DFA learning for
system-level provenance are generic; they can be employed in
other domains in which there is redundancy across executions,
such as multiple VMs or independent process executions
as we do not make any assumptions regarding application
and their workloads. We focus on container clusters in this
paper because these techniques are ideal for environments
that adhere to the microservice architecture principle (software
as discrete, loosely-coupled, replicated services for scalability
and fault-tolerance) and there is a recent paradigm shift in
industry towards using Docker containers in the clusters due
it’s advantages over hypervisor-based VMs [34].

Our framework is extensible to Kubernetes [2], another
popular container cluster management tool. The only sub-
module from our architecture (§IV) that needs to be changed

is the Docker API call stack (consists of 150 LoC) which
polls Docker Swarm for different operations such as checking
container liveness and finding containers belong to same appli-
cation. Moreover, Kubernetes also allows creating containers
with SELinux labels by defining field in
container manifest file.

IX. CONCLUSION

In this work, we present Winnower, the first practical
system for end-to-end provenance-based auditing of clusters
at scale. Winnower includes a novel adaptation of graph ab-
straction techniques that removes instance-specific information
from the system-level provenance graphs and further apply
graph grammar principles that enables efficient behavioural
modeling and comparison in the provenance domain. We
evaluated Winnower performance on cluster applications and
five real-world attack scenarios and show that Winnower
reduces storage and network overheads by several orders of
magnitude compared with existing solutions, while preserving
the necessary context to identify and investigate system attacks.
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