
Towards Effective Virtualization of

Intrusion Detection Systems

Nuyun Zhang†, Hongda Li†, Hongxin Hu† and Younghee Park‡

†Clemson University ‡San Jose State University
{nuyun, hongdal, hongxih}@clemson.edu, younghee.park@sjsu.edu

ABSTRACT
Traditional Intrusion Detection Systems (IDSes) are gener-
ally implemented on vendor proprietary appliances or mid-
dleboxes, which usually lack a general programming inter-
face, and their versatility and flexibility are also very poor.
Emerging Network Function Virtualization (NFV) technol-
ogy can virtualize IDSes and elastically scale them to deal
with attack tra�c variations. However, existing NFV solu-
tions treat a virtualized IDS as a monolithic piece of soft-
ware, which could lead to inflexibility and significant waste
of resources. In this paper, we propose a novel approach to
virtualize IDSes as microservices where the virtualized ID-
Ses can be customized on demand, and the underlying mi-
croservices could be shared and scaled independently. We
also conduct experiments, which demonstrate that virtual-
izing IDSes as microservices can gain greater flexibility and
resource e�ciency.

Keywords
Network Function Virtualization; Intrusion Detection Sys-
tems; Microservices

1. INTRODUCTION
Intrusion Detection System (IDS) is a critical network se-

curity function that is designed to monitor a network or
system to detect malicious activities or security policy vio-
lations [16]. Recently, the network throughput has been dra-
matically increased to 100 Gbps for a number of networks
[15]. Therefore, multi-thread approach has been adopted in
IDSes to meet the high throughput requirement for detect-
ing attacks [3]. Besides that, some IDSes, such as Bro [2],
enable built-in capability to spread workload across IDS
clusters [14]. However, despite their usefulness, both multi-
thread and cluster solutions have some shortcomings. Es-
pecially, they are still inflexible to deal with attacks when a
significant workload spike happens. For example, a massive
attack like DDoS could bring the network tra�c volume up
to 0.5 TBps [6].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SDN-NFV Sec’17, March 22-24, 2017, Scottsdale, AZ, USA

c� 2017 ACM. ISBN 978-1-4503-4908-6/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3040992.3041004

As an emerging networking paradigm, Network Function
Virtualization (NFV) can be used to address those chal-
lenges. NFV turns network functions (NFs) into software-
based and virtualized entities, which are deployed and run
on industry standard servers. The virtualized NF (VNF)
could be located in data centers, distributed network nodes,
and cloud [11]. As a result, VNFs are low cost, flexible in
deployment and management, and elastically scalable. Un-
fortunately, existing NFV solutions [8, 13] often treat a vir-
tualized IDS as a monolithic piece of software running as a
whole to detect attacks, where components within one vir-
tualized IDS cannot be run independently. The nature of
monoliths makes the distribution of a virtualized IDS into
cloud-based systems with significant limitations such as in-
e�cent use of resource and di�culty for sharing.

In this paper, we propose an approach to virtualize an
IDS by decomposing its components into multiple di↵er-
ent microservices [4], such as low-level connection parsing
microservice and high-level attack detecting micorservice.
Each micorservice can be instantiated and run independently,
and provisioned with di↵erent numbers of virtual instances.
Our approach provides a number of unique features for IDS
virtualization: (1) resources can be fully utilized as instances
of microservices are smaller; (2) customization of IDSes can
be accomplished easily as components of IDSes are exposed
and defined as micorservices; (3) di↵erent IDS components
can scale individually according to their resource require-
ments; and (4) one micorservice could be shared by multiple
other microservices at the run time. In general, microser-
vices can achieve more flexibility and cost-e↵ectiveness in
term of IDS virtualization. To demonstrate the e↵ective-
ness of our approach, we conduct our experiments using Bro.
Our experiments show that virtualizing IDSes as microser-
vices can gain greater flexibility and resource e�ciency.

The rest of this paper is organized as follows. Section 2
describes our method of IDS virtualization as microservices.
Section 3 presents our experiments based on the Bro system.
Conclusion is drawn in Section 4.

2. OUR APPROACH
As the increasing concurrency and DevOps requirements

of software rise, the microservices architecture has sprung
up. Microservices are small services running in their own
processes independently while communicating with each other
through lightweight mechanisms [7]. The microservices ar-
chitecture focuses on breaking an application into smaller
and completely independent components, enabling each com-
ponent to scale individually and be available all the time [10].

(a) IDS virtualization as monoliths

(b) IDS virtualization as microservices

Figure 1: IDS virtualization as monoliths and microser-

vices

We utilize the microservices architecture to e↵ectively vir-
tulize IDS to meet high concurrency and on-demand provi-
sion requirements.

First of all, we argue that IDSes could be decomposed
into small pieces. For example, as pointed out by [3], Bro-
like IDSes can be abstracted into two parts: 1) low-level
per-connection parsing, which enforces check-sum verifica-
tion, stream reconstruction, protocol parsing, etc; and 2)
high-level analysis—i.e, performing the detection tasks. The
low-level parser captures the tra�c data from the network
and parses the tra�c data in per-connection manner. Then,
it generates a stream of events, which are delivered to the
high-level analyzers for analysis. The two parts can run in-
dependently and in parallel, providing well-balanced work-
loads.

Second, we argue that virtulized IDSes can be run as mi-
croservices. In general, the low-level parser uses Libpcap to
capture the packets and/or AF-Packet PF-Ring to achieve
load balancing [9]. The high-level analyzer is normally IDS-
specific. For example, Bro has its own interpreter to in-
terpret security policies written in a specific scripting lan-
guage. These software modules can execute independently
and communicate via predefined messages. The execution
of the two layers does not need to share resources, such as
libraries, which makes it feasible to run virtulized IDSes as
independent microservices.

2.1 Virtulizing IDSes as microservices
Based on our previous discussion, we can identify two

microservices for building virtulized IDSes. The low-level
per-connection parsing part can be defined as a parsing
microservice; and the high-level analysis part can be de-
fined as a detecting microservice. Figure 1(a) shows an

IDS are traditionally virtulized as monoliths. Figure 1(b)
illustrates how an IDS can be virtualized as two microser-
vices, where both microservices can be further instantiated
into a number of virtual instances according to the workload
of microservices. The tra�c data is split and delivered to
each virtual instance of the parsing microservice, respec-
tively. The parsing microservice is responsible for receiving
tra�c data from the network and process packets in per-
connection granularity. The tra�c data is discarded after
being processed and only events generated by the parsing
microservice are delivered to the detecting microservice.
A scheduler is required to coordinate the communication
between virtual instances of the parsing microservice and
the detecting microservice, since the two microservices can
be provisioned with di↵erent numbers of virtual instances.
The detecting microservice then receives the events and
performs analysis based on the predefined security policies.

2.2 Benefits of IDS virtulization as microser-
vices

As we can see from Figure 1, once an IDS is virtualized
as microservices, its deployment becomes more flexible. In-
stead of finding a powerful instance to fit the whole IDS, the
system could easily find a smaller instance to fit a microser-
vice, which saves resources. Besides, we can identify three
more benefits of our approach as follows:

1) Individually Scalability. If an IDS is virtualized
monolithically, all components in an IDS must be scaled
out at the same time. For example, in the top part of
Figure 2 (a), when two IDS instances scale out to three,
the number of parsing components increases to three and
the number of detecting components also increases to three.
However, as we have discussed in Section 1, di↵erent parts
of an IDS needs di↵erent amounts of resources. We assume
the parsing service needs relatively less resources than the
resources needed by the detecting service. When tra�c in-
creases, only the detecting service needs to scale out. The
lower part of Figure 2 (a) illustrates an example where the
number of parsing service instances remains two after scal-
ing out but one more detecting service instance starts. We
can see that the microservices are individually scalable. In
this way, cost-e�ciency and flexibility can be achieved.

2) Customization. As shown in Figure 2 (a), virtualiz-
ing an IDS monolithically makes all IDS instances the same.
But using microservices, the IDS instances could be di↵er-
ent. Figure 2 (b) illustrates the detecting service can be
customized by setting di↵erent policies. The top instance
has the detection service enabled to detect a certain set of
attacks by Policies1, the middle instance enforces Policies2,
and the bottom instance enforces Policies3. In addition, vir-
tualized IDS can choose di↵erent underlying microservices
to perform a tailored intrusion detection function, which in-
creases its flexibility.

3) Shareability/reusability. Figure 2 (b) illustrates the
parsing service instances can be shared by di↵erent detect-
ing service instances. The outputs of parsing services are
a set of events, which can be used by di↵erent detection
services for further analysis. In addition, if there are more
than one network functions in the environment, a microser-
vice can be also reused by di↵erent network functions. The
shareable and reusable features of virtualizing IDSes as mi-
croservices can not only save resources but also make the
system management and maintenance much easier.

(a) Individually scalable

(b) Customizable

Figure 2: Benefits of IDS virtualization as microservices

3. EXPERIMENTS
We have conducted experiments using Bro, an open source

IDS platform to compare the resource usage of the two ap-
proaches (microservice versus monoliths) of IDS virtualiza-
tion. The testbed of our experiments was constructed in
CloudLab [1], which provisions a number of virtual ma-
chines. Each virtual machine ran a Bro IDS. The virtual
machines were all allocated with 4 virtual CPU cores and
4GB memory.

The datasets for the experiments were real network tra�c
collected from Mid-Atlantic Collegiate Cyber Defense Com-
petition (MACCDC) [12]. We did not use synthetic tra�c
because the resource usage and performance of IDS signif-
icantly depend on the volume and relevance (how relevant
the tra�c data is to the loaded policies) of the network traf-
fic. In the experiments, we replayed the tra�c traces from
one virtual machine and distributed the tra�c data to other
virtual machines via Open vSwitch.

In the experiments, first we adopted emulation to assess
the CPU usage of the IDS virtualized as microservices, since
there are no existing IDS platforms that support microser-
vice approach; then we assessed the CPU usage of Bro, a
representative of monolithic IDS.

1) Microservices. In the microservices approach, we
identified two microservices, the detectingmicroservice and
the parsing microservice. Our goal was to assess the over-
all CPU usage of the two microservices. We emulated the
detecting microservice and parsing microservice by using
Bro IDS based on the model proposed by Dreger etal. [5].
The model pointed out that the CPU usage of a typical se-

curity policy is independent to other security policies, which
provide a chance to decompose the CPU usage of Bro into
orthogonal portions being assessed in isolation. The de-
tecting microservice was instantiated as detector and the
parsing microservice was instantiated as parser. Each de-
tector was customized to only load a part of the policies.
Multiple detectors shared one parser. Based on this model,
we designed our emulation as follows:

• Starting a Bro instance without loading any security
policies. This setup emulates the parser, since the Bro
instance only performs low-level per-connection pars-
ing in this situation 1. We delivered all tra�c data to
the Bro instance and assessed the CPU usage (notated
as c0).

• Starting a Bro instance loading only a part of secu-
rity policies (notated as D1). This setup emulates the
parser and detector1. We delivered all tra�c data to
the Bro instance and assessed the CPU usage (notated
as c1).

• Starting a Bro instance loading a part of security poli-
cies (notated as D2), such that D1+D2 is equivalent to
the entire security policies of Bro. This setup emulates
the parser and detector2. Then we delivered all tra�c
data to the Bro instance and assessed the CPU usage
(notated as c2).

We explored three di↵erent methods to divide all the se-
curity policies in Bro into two complementary parts, D1

and D2, and assessed the resource usage for each partition
method. The three partition methods are as follows:

1. Classifying by http and non-http, where http includes
all security policies for the detections of attacks rele-
vant to HTTP tra�c, while non-http includes the re-
maining security policies.

2. Classifying by protocols and non-protocols, where pro-
tocols includes all security policies for all protocol-
based detections supported by Bro, while non-protocols
includes the remaining.

3. Classifying by others and non-others, where others in-
cludes all security policies for the detections of attacks
across multiple tra�c flows, such as port scan, file ex-
amination, Trojan detection, etc., while non-others in-
cludes the remaining.

Based on the IDS resource usage model proposed in [5],
we derived: (i) the CPU usage of parser was estimated as
c0; (ii) the CPU usage of detector1 was estimated as c1�c0;
and (iii) the CPU usage of detector2 was estimated as c2 �
c0. Finally, we summed up the usage of each microservice
instance and estimated the overall CPU usage as c1+c2�c0.
The CPU usage of the three di↵erent partition methods is

shown in Figure 3. The HTTP/non-HTTP, Protocols/non-
Protocols andOthers/non-Others columns represent the CPU
usage of the three partition methods, respectively. The over-
all CPU usage of each method consists of three components,
the CPU usages of parser, detector1 and detector2. The
three partition methods achieved similar overall CPU us-
age (24.9%, 26.1% and 26.2%) and reasonable load balance
between two detectors in each method.

1This emulation consumes more resources than the parsing
service in practice, since some fundamental policies have to
be loaded. But this overhead does not invalidate our esti-
mation.

Figure 3: CPU usage of di↵erent microservice

instances compared with that of monolithic in-

stances. The HTTP/non-HTTP, Protocols/non-Protocols
and Others/non-Others are the emulation results of three

di↵erent methods to partition the detection policies. The

Monoliths are the experimental results of the two mono-

lithic Bro instances.

2) Monoliths. In this experiment, we split the tra�c
data into two portions based on IP addresses and delivered
the two portions of tra�c data to two monoliths (notated as
monolith1 and monolith2), respectively. Then, we assessed
the CPU usages of monolith1 and monolith2. Let c4 and c5

be the CPU usages of the two monoliths. Then we can derive
that the overall CPU usage of monolithic1 and monolithic2

is c4 + c5.
The overall CPU usage of monolithic1 and monolithic2,

is shown as the Monoliths column in Figure 3. We observed
approximately 25% extra overall CPU usage with monoliths
approach than that with microservices approach in average.
The extra CPU usage was induced by the parser replicas in
the two monolithic instances, since the parsing service can
be shared by all detectors and should be consolidated into
one instance. Therefore, we conclude that the microservice
approach achieves more resource e�ciency due to scaling
individually and microservice sharing.

4. CONCLUSION
We have proposed a new approach to virtualize IDSes,

leveraging emerging microservices architecture. We have ad-
dressed three benefits using microservices for IDS virtualiza-
tion: individual scalability, customization and shareability.
Through experiments on Bro, we have demonstrated that
IDS virtualization could gain more e�ciency of resource us-
age by leveraging microservices.

Acknowledgment
This work was partially supported by grants from National
Science Foundation (NSF-ACI-1642143, NSF-IIS-1527421,
and NSF-CNS-1537924).

5. REFERENCES
[1] CloudLab. http://www.cloudlab.us/.
[2] Bro IDS. https://www.bro.org/, December 2016.

[Online; accessed 16-Dec-2016].
[3] L. De Carli, R. Sommer, and S. Jha. Beyond pattern

matching: A concurrency model for stateful deep
packet inspection. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and
Communications Security, pages 1378–1390. ACM,
2014.

[4] N. Dragoni, S. Giallorenzo, A. L. Lafuente,
M. Mazzara, F. Montesi, R. Mustafin, and L. Safina.
Microservices: yesterday, today, and tomorrow. arXiv
preprint arXiv:1606.04036, 2016.

[5] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer.
Predicting the resource consumption of network
intrusion detection systems. In International
Workshop on Recent Advances in Intrusion Detection,
pages 135–154. Springer, 2008.

[6] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey.
Bohatei: Flexible and elastic ddos defense. In 24th
USENIX Security Symposium (USENIX Security 15),
pages 817–832, 2015.

[7] M. Fowler”. Microservices a definition of this new
architectural term. http:
//www.martinfowler.com/articles/microservices.html,
2014. [Online; Published on 25 March, 2014].

[8] A. Gember-Jacobson, R. Viswanathan, C. Prakash,
R. Grandl, J. Khalid, S. Das, and A. Akella. Opennf:
Enabling innovation in network function control. ACM
SIGCOMM Computer Communication Review,
44(4):163–174, 2015.

[9] George Khalil. Open Source IDS High Performance
Shootout. https://www.sans.org/reading-room/
whitepapers/intrusion/
open-source-ids-high-performance-shootout-35772,
2015. [Online; accepted 2-Feb-2015].

[10] Kim Clark. Microservices, SOA, and APIs: Friends or
enemies?
http://www.ibm.com/developerworks/websphere/
library/techarticles/1601 clark-trs/1601 clark.html,
2016. [Online; Published on 21 Jan, 2016].

[11] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten,
F. De Turck, and R. Boutaba. Network function
virtualization: State-of-the-art and research
challenges. IEEE Communications Surveys &
Tutorials, 18(1):236–262, 2015.

[12] Netresec. MACCDC Dataset.
http://www.netresec.com/?page=MACCDC,
December 2016. [Online; accessed 16-Dec-2016].

[13] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield. Split/merge: System support for elastic
execution in virtual middleboxes. In Presented as part
of the 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 13), pages
227–240, 2013.

[14] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson,
and B. Tierney. The NIDS cluster: Scalable, stateful
network intrusion detection on commodity hardware.
In Recent Advances in Intrusion Detection, 10th
International Symposium, RAID 2007, Gold Goast,
Australia, September 5-7, 2007, Proceedings, pages
107–126, 2007.

[15] G. Wellbrock and T. J. Xia. How will optical
transport deal with future network tra�c growth? In
Optical Communication (ECOC), 2014 European
Conference on, pages 1–3. IEEE, 2014.

[16] Wikipedia. Intrusion detection system — Wikipedia,
The Free Encyclopedia. https:
//en.wikipedia.org/wiki/Intrusion detection system,
2016. [Online; accessed 16-Dec-2016].

