Dynamic Defense Provision
via Network Functions Virtualization

Younghee Park'", Pritesh Chandaliya™, Akshaya Muralidharan'™, Nikash Kumar™, Hongxin Hu®
" San Jose State University, ¥ Clemson University
'younghee.park @sjsu.edu, {*priteshchandaliya,’aksh3001, nikashedu} @ gmail.com, *hongxih @ clemson.edu

ABSTRACT

Network Function Virtualization (NFV) is a critical part of a new
defense paradigm providing high flexibility at a lower cost
through software-based virtual instances. Despite the promise of
the NFV, the original Intrusion Detection System (IDS) designed
for NFV still draws heavily on processing power and requires
significant CPU resources. In this paper, we provide a framework
for dynamic defense provision by building in light intrusion
detection network functions (NFs) over NFV. Without using the
existing IDSes, our system constructs a light intrusion detection
system by using a chain of network functions in NFV. The entire
IDS is broken down into separate light network functions
according to different protocols. The intrusion detection NFs
cover various protocol stacks from the link layer to the application
layer protocols. They also include different deep packet inspection
NFs for different application layer protocols. The experimental
results show the proposed system reduces resource consumption
while performing valid intrusion detection functions.

Keywords
Network Functions Virtualization; Software-Defined Networks;
Security; Network attacks

1. INTRODUCTION

Since middleboxes share expensive and proprietary intrusion
detection systems at fixed locations across the network, their
limitations include inscalabiltiy, inflexibility, and high cost.
Network Function Virtualization (NFV) has decoupled network
functions (NFs), such as the firewall, load balancer, NAT, and
web proxy, from dedicated hardware and has implemented them
as pure software instances on industrial standard high-volume
servers and storage [2, 8, 9, 18].

Some research has focused on NFV performance issues [2, 4,
5, 9], while other research has proposed various defense systems
using NFV and Software-Defined Networks (SDN) [1, 3, 6, 12,
13, 14, 15]. Anat Bremler-Barr, et. al. have proposed a framework
using NFV to provide a deep packet inspection service [17].
Bohatei [3] and VNGuard [1] have proposed a defense
mechanism utilizing traditional intrusion detection systems like
Bro and firewalls based on NFV and SDN for a highly scalable
and flexible defense. However, no effort has been made to
construct built-in light intrusion detection NFs to leverage the
virtualization benefits of NFV.

*Dr.Park, the first author, is a corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permissions@acm.org.
SDN-NFV Sec'l7, March 22-24, 2017, Scottsdale, AZ, USA

© 2017 ACM. ISBN 978-1-4503-4908-6/17/03...$15.00

DOI: http://dx.doi.org/10.1145/3040992.3041005

43

In this paper, we propose a dynamic defense provision
framework based on NFV and SDN. It largely consists of a
dynamic network function virtualization system to provide various
intrusion detection network functions with an SDN controller to
monitor and deploy NFV in the network. There are different
components to provide dynamic defense methods using NFV: a
traffic classifier, a pool of network functions, a service chaining
module, and a virtual machine manager. Instead of instantiating
the existing bulky IDS like Bro for NFV, our system implements
various small intrusion detection NFs and instantiates only a light
chain of necessary network functions to detect and investigate
traffic according to traffic types. These network functions cover
various actions for simple header information checking as well as
for deep packet inspection for each protocol. The SDN controller
orchestrates intrusion detection network services by managing
network functions while monitoring the entire network topology.

This paper contributes to building on fine-grained network
functions for intrusion detection on top of virtualization for the
dissemination of a practical lightweight IDS. To achieve our
ultimate goal, we first implement a number of small intrusion
detection NFs by breaking down an entire complicated IDS into a
small set of network functions. Second, the proposed system
enables us to dynamically invoke a chain of the light intrusion
detection NFs depending on the traffic characteristics. Lastly, we
implement our proposed system based on ClickOS [32]. In our
experiments, we demonstrate that our system can detect and
examine malicious packets by using a chain of light network
functions.

The rest of the paper is organized as follows. Section 2
describes our proposed system architecture. Section 3 explains
our system implementation and discusses experimental results.
Section 3 addresses future work, and we present our conclusion in
Section 4.

2. System Architecture

This section describes our proposed system architecture for a
dynamic defense provision method based on NFV and SDN. The
SDN monitors an entire network topology and determines the
routing path for each flow that can be used to deploy necessary
NFs from the source to the destination. Based on the routing path,
a set of network functions is placed on the switches in order to
defend against network attacks. We address the deployment model
and our key idea to introduce the dynamic defense provision
system.

Figure 1 shows our system architecture based on NFV and SDN
controller. The SDN controller plays a role in orchestrating
network intrusion detection services and determining the locations
of services across the network while monitoring the entire
topology. The NFV provides dynamic defense network services
according to traffic types by instantiating a set of network
functions in the switches.

Network Function Virtualization SDN Controller

Traffic -—l BTy | | Network Orchestration
Classifier 3 |)
b T
T A z | NFV Provision Manager
E 1
Virtual K .
Machine [& | Other Existing Modules
Manager | |A pool of network functions (NFs)
i hi
s Y
| Virtualizaton | Pﬁ

Figure 1. The proposed system architecture

2.1 Dynamic NFV Deployment and

Orchestration

The SDN controller in our system orchestrates network services
by using a routing algorithm to steer traffic. It determines where
to deploy NFV and manages it remotely. It is a challenge to
determine the optimal place and to deploy the NFV in order to
defend against network attacks [1, 3]; however, the rule of thumb
is that traffic must be examined in the routing path to detect
malicious traffic.

We use the Dijkstra algorithm to determine the placement of NFV
services in the network, since it is currently used in OpenDaylight,
an industry-sponsored SDN platform [7, 16, 19, 10]. Based on
this shortest path algorithm, the SDN controller decides the
routing path for each flow and monitors the entire network
topology in the proposed system. Based on the results from the
shortest path, the SDN controller pushes flow rules into switches
based on the results of the routing algorithm. Accordingly,
network functions are virtualized on the designated paths to
examine traffic that traverses the network. Our system flexibly
changes the placement of NFV according to another routing
algorithm that users can define themselves to send their traffic
efficiently. However, our NFV deployment principle is based on
one routing algorithm.

NFV services are determined by traffic characteristics in the
traffic classifier shown in Figure 1. The SDN controller can easily
identify traffic characteristics by using existing modules in the
SDN controller: all initial flows are diverted to the SDN
controller, which decides the best routing path by pushing flow
rules. The traffic classifier also determines a set of network
functions to examine flow on the designated routing path for
network orchestration services. We utilize protocols (P) and port
numbers (N) to determine a set of network functions in the
switches. The result of the traffic classification allows NFV to
dynamically instantiate network functions virtually, as explained
in the next section.

2.2 Dynamic Defense Provision in NFV

We present a dynamic defense provision method based on NFV,
as shown in Figure 1. Our method consists of a traffic classifier, a
virtual machine manager, and a service chaining module to
instantiate network functions. The basic components can be
defined as:

s P = {tcp, udp, icmp, arp, hitp, ... } where P is a finite
set of protocol types in the traffic.

o N ={n ny, ..., nml where N is a finite set of port
numbers that the traffic uses. Note that k= {1, 2, .., n}.

o V' ={v,v, .., n! where } is a finite set of network
functions (NF). Note that k= {1, 2, ..., n}.

e S=<V p > where S is a service chain with three
components. Note that ¥ is a subset of ¥ (¥ < V) with p
ePandt €T

The traffic classifier identifies traffic characteristics based on the
protocol and port number used to determine a set of network
functions for a service chain. Based on these two important
criteria, the traffic classifier determines applications to
characterize traffic. For example, traffic related to HTTP uses
TCP and port number 80.

The service pool has two different subsets of network functions:
packet header inspection and deep packet inspection. First, it
includes various network functions to inspect packet header
information depending on protocols for TCP, UDP, ICMP and
ARP from the link layer to the transport layer. Second, it selects
different types of deep packet inspection (DPI) NFs depending on
application layer protocols including MQTT [10, 24], ZMTP
[25], HTTP. These network functions have different DPI
functions in order to check packet payloads according to the
standard application protocol specification. This aims to
determine the maliciousness of traffic based on the application
protocol specification since malware is often hidden inside
payloads. Note that current network functions for different
protocols include basic and essential functions to defend against
simple network attacks, such as spoofing attacks and denial-of-
service attacks for each protocol level and simple deep packet
inspection against malware by checking packet formats. Our goal
is to present an NFV-based dynamic defense provision system
with a lot of small light network functions without the support of
any existing [DS.

Service chaining instantiates a set of network functions through a
virtual machine manager. The traffic classifier determines a used
protocol P and a used port number N and an application. Service
chaining instantiates a set of network functions where, for
example, § = <V p, t = where V =y va ve vs vgt. For
example, for P = Jtep } and N={80}, and V = {v;, vy, vy vs vg/,
vy can be the traffic classifier, v; can be the P header analyzer, vy
can be the TCP header analyzer, and v can be the HTTP-based
DPI function. vgis a network function for packet drops, called a
defender.

The virtual machine manager generates this service chain to
examine the traffic from the source to the destination while the
network functions for the traffic classifier and the defender must
be always run. This set of network functions is dynamically called
upon depending on traffic characteristics and types. This method
reduces cost to dynamically generate virtualized network
functions, since we customize the traditional IDS system by
breaking it down into specific small intrusion detection network
functions. In addition, when malicious packets are detected
through the set of the customized intrusion detection network
functions, the defender shown in Figure 1 simply drops the
uncovered malicious traffic. The network function for the packet
drop that should always be instantiated by the virtual machine
manager as a part of .

3. IMPLEMENTATION AND
EVALUATION

We designed and implemented our proposed system based on
ClickOS [18], an open source operating system for virtualizing

middleboxes and instantiating network functions, using
hypervisors with functions running on separate VMs. We used
Click version 2.0.1 and Open vSwitch version 2.3.90 based on
Xen hypervisor version 4.4.1.

We used three machines for our experiments: one Intel core i7 2.8
GHz with 16GB RAM and two Intel core i5 with 4 GB RAM. The
first machine includes our system framework to perform NFV
according to traffic characteristics. The second two machines were
used to generate source and destination traffic for our
experiments. The Open vSwitch ran on each host. All network
traffic passed through the testbed setup, where Click’s primary
domain was running along with the service-chaining instance. All
packets were diverted to Click's instance, which was one of the
DOMs in Xen hypervisor. The spawned instance was able to
include different network functions, such as a traffic classifier, a
DPI, and a defender. The service chaining module invoked a
Click instance using a common Xen configuration file.

We discuss the experimental results for the proposed system in
terms of start-up times to instantiate network functions and
memory usage to run them, comparing them to the required
resources for Snort, a signature-based open source IDS.

400
1 I I |
o |
uoP HTTP MQTT ZMTP

Traffic Classifier ~ TCP ICMP ARP
Each Network Functions
Figure 2. An average start-up time to spawn each network
function

w
&
=]

Start-up Time (ns)
5]
8

Start-up Time for Network Functions: Figure 2 shows the time
to instantiate each network function for the traffic classifier,
different protocol header analyzers, and different DPI functions
for different protocols. Click instances represent the specific set of
network functions, which were booted over Xen hypervisor. Time
to spawn an instance includes the creation of the Xen DOM and
the starting time of the set of network functions. As a result, we
show that the time to spawn one instance with the network
functions in ClickOS requires a very short time, less than 0.1
second, which is negligible value compared to the typical DOM-0
booting time in Xen, which is several seconds. VNGuard states
that a virtual network function instance created in ClickOS can be
booted within 30 milliseconds [1] on their system specification. In
our system, to make a chain of network functions for a service, we
expect that an instance can be invoked within less than a
millisecond even though it might be different from the number of
network functions instantiated.

45

-

Memory Usage (MB)
w

8]

6
5 I
| I

Wraffic Classifier TcP

uppP Icmp ARP HTTP MQTT ZMTP

Each Network Functions
Figure 3. A maximum memory allocated to a new instance

Memory Usage for Network Functions: Figure 3 shows the
maximum memory allocated to a new instance for each network
function service. Memory allocation depends on the initial
configuration (i.e. Xen configuration file) and the Click elements
used for implementing a network function. We instantiated a
Click instance using ClickOS where each instance was allocated
around 1GB-2GB of RAM and 1 CPU. We excluded memory
usage for both the privileged domain and the unprivileged
domain. As shown in Figure 3, memory consumption for each
network functions was generally less than 7 MB. This constitutes
very small memory usage compared to the typical guest OS on
Xen hypervisor. In our experiment, we consumed 128MB for
ClickOS on Xen.

= Snort -
Our System

-~ 200-

150 q

100- 9

Packet Processing Time (seconds’
o
(=3
I
I

o 4

1 1 i
TCP UDP ICMP

Network Traffic Types

Figure 4. An average start-up time between Snort and our
proposed system

Traffic Processing Time: Figure 4 compares processing time,
and we evaluated memory usage for our proposed system
architecture and Snort version 2.9.6.0 for different traffic types.
We generated invalid or malicious TCP, UDP, and ICMP packets
from a particular source and destination address pair using Scapy,
an interactive packet manipulation tool [26]. For our proposed
system, we included the traffic classifier, the defender, and
various NFs for different traffic types and application protocols.
For Snort, we used Snort itself without Xen in our testbed to
perform intrusion detection actions. If malicious packets were
detected in our system or Snort, we dropped the packets. We
showed the time in order to process 100 incoming packets. Both
our system and Snort detected 100%, and our system dropped
100% packets successfully. Our results showed that the
processing time to check 100 packets for our proposed system is
similar to Snort processing time but that our system used
significantly less memory than Snort. Snort used 112 MB

memory, but our light IDS in NFV used less than around 30 MB
that might be different from the number of network functions
used. Our system requires approximately 30% less memory than
Snort. The results demonstrated that our proposed system can
efficiently achieve the same IDS functions using fewer resources
in terms of processing time and required memory usage.

4. DISCUSSION AND FUTURE WORK

We developed a framework to dynamically provide network
functions appropriate to different traffic. One noteworthy
advantage of the proposed system architecture is that it includes
customized processing functionalities relying only on existing
elements of ClickOS virtualized middleboxes, without a resource
intensive IDS like Bro or Snort. Previous research has utilized
existing IDS systems like Bro in Bohatei [3]. However, our
proposed system makes full use of all available elements in Click
to develop a lightweight IDS system for each traffic type instead
of using the existing IDSes. This is beneficial in spawning only
the necessary NF services instead of continuously running Bro in
NFV. We thus realize resource savings while dynamically
providing each service.

The proposed system demonstrates the feasibility of building an
internal IDS with built-in elements in Click. The proposed system
covers a core set of protocols to investigate traffic from the link
layer to the application layer. The current system in this paper
includes only a few of the network functions for each protocol;
however, we can easily extend it to more complicated network
functions, especially DPI network functions for different
protocols. We can also build more new NFs for different
protocols, such as DNS, FTP, SMTP, and other IoT protocols in
order to cover diverse protocol stacks. Our goal in this paper is to
provide a framework for a dynamic NFV-based defense with
multiple independent light network functions for intrusion
detection. In future work, we will develop a complete system by
including the full array of network functions for intrusion
detection in order to cover well-known attacks and as yet
unknown attacks without the support of the existing IDSes.

5. CONCLUSION

This paper has proposed a dynamic defense provision framework
utilizing NFV with SDN. Without relying on existing intrusion
detection systems, this paper has proposed a lightweight intrusion
detection system based on separately available or new network
functions based on Click. Depending on traffic characteristics, the
proposed system dynamically creates a chain of network functions
to investigate traffic that passes through the routing path in the
network. Thus, our method does not require conventional
approaches to redirect traffic to designated NFV placement. Our
method includes different deep packet inspection NFs for different
protocols in order to achieve lightweight DPI NFs by breaking
down the entire DPI system into a small set of DPI functions
according to different protocols. This separation of network
functions for intrusion detection achieves significant resource
savings while also avoiding a single point of failure.

6. REFERENCES

[1] Juan Deng et al., "VNGuard: An NFV/SDN combination framework
for provisioning and managing virtual firewalls," Network Function
Virtualization and Software Defined Network (NFV-SDN), 2015
IEEE Conference on, San Francisco, CA, 2015, pp. 107-114.

46

[2] Battula, L.R., "Network Security Function Virtualization(NSFV)
towards Cloud computing with NFV Over Openflow infrastructure:
Challenges and novel approaches," in Advances in Computing,
Communications and Informatics (ICACCI, 2014 International

Conference on , vol., no., pp.1622-1628, 24-27 Sept. 2014.

Seyed K. Fayaz and Yoshiaki Tobioka and Vyas Sekar and Michael
Bailey, “Bohatei: Flexible and Elastic DDoS Defense”, 2015 24th
USENIX Security Symposium (USENIX Security 15).

Taekhee Kim, Tachwan Koo, and Eunkyoung Paik, “SDN and NFV
Benchmarking for Performance and Reliability”, 2015 Asia-Pacific
Network Operations and Management Symposium (APNOMS).

T. Wood, K. K. Ramakrishnan, Jinho Hwang, G. Liu and Wei
Zhang, "Toward a software-based network: integrating software
defined networking and network function virtualization," in IEEE
Network, vol. 29, no. 3, pp. 36-41, May-June 2015.

H. Hu, W. Han, G. Ahn, and Z. Zhao, “FlowGuard: building robust
firewalls for software-defined network,” in HotSDN’14, Chicago,
IL,USA, 2014.

R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck and R.
Boutaba, "Network Function Virtualization: State-of-the-Art and
Research Challenges," in IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 236-262, Firstquarter 2016.

Attila Csoma, Balazs Sonkoly, Levente Csikor, Felician Németh,
Andras Gulyas, Wouter Tavernier, and Sahel Sahhaf. 2014.
ESCAPE: extensible service chain prototyping environment using
mininet, click, NETCONF and POX. In Proceedings of the 2014
ACM conference on SIGCOMM (SIGCOMM '14). ACM, New
York, NY, USA.

Yong Li and Min Chen, "Software-Defined Network Function
Virtualization: A Survey," in IEEE Access, vol. 3, no. , pp. 2542-
2553, 2015.

Konglong Tang, Yong Wang, Hao Liu, Yanxiu Sheng, Xi Wang,
Zhigiang Wei, “Design and Implementation of Push Notification
System Based on the MQTT Protocol,” International Conference on
Information Science and Computer Applications, 2013.

Taekhee Kim, Tachwan Koo, and Eunkyoung Paik, “SDN and NFV
Benchmarking for Performance and Reliability”, 2015 Asia-Pacific
Network Operations and Management Symposium (APNOMS).

Y. Ben-Itzhak, K. Barabash, R. Cohen, A. Levin and E. Raichstein,
"EnforSDN: Network policies enforcement with SDN," 2015
IFIP/IEEE International Symposium on Integrated Network
Management (IM), Ottawa, ON, 2015, pp. 80-88.

M. Vijayalakshmi, S. Mercy Shalinie and A. Arun Pragash, "IP
traceback system for network and application layer attacks," Recent
Trends In Information Technology (ICRTIT), 2012 International
Conference on, Chennai, Tamil Nadu, 2012, pp. 439-444.

W. Kinney, "Protecting against application DDoS attacks with BIG-
IP ASM: A Three-Step solution," 2012.

[15] . Ranjan, R. Swaminathan, M. Uysal, A. Nucci and E. Knightly,
"DDoS-Shield: DDoS-Resilient Scheduling to Counter Application
Layer Attacks," in IEEE/ACM Transactions on Networking, vol. 17,
no. 1, pp. 26-39, Feb. 2009.

A. Gember, R. Grandl, A. Anand, T. Benson, and A. Akella.
Stratos: Virtual Middleboxes as First-Class Entities. Technical
Report TR1771, University of Wisconsin-Madison, June 2012.

Anat Bremler-Barr, Yotam Harchol, David Hay, and Yaron Koral,
“Deep Packet Inspection as a Service,” In Proceedings of the 10th
ACM International on Conference on emerging Networking
Experiments and Technologies (CoNEXT), NY, USA, 271-282,
2014.

Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu,
Michio Honda, Roberto Bifulco, and Felipe Huici, “ClickOS and the
art of network function virtualization.” In Proceedings of the 11th
USENIX Conference on Networked Systems Design and
Implementation (NSDI). USENIX Association, Berkeley, CA, USA,
459-473,2014.

[19] OpenDaylight project. http://www.opendaylight.org

[3]

(4]

[3]

[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

