Refining Interprocedural Change-Impact Analysis using
Equivalence Relations

Alex Gyori
University of Illinois, USA
gyori@illinois.edu

ABSTRACT

Change-impact analysis (CIA) is the task of determining the set
of program elements impacted by a program change. Precise CIA
has great potential to avoid expensive testing and code reviews
for (parts of) changes that are refactorings (semantics-preserving).
However most statement-level CIA techniques suffer from impreci-
sion as they do not incorporate the semantics of the change.

We formalize change impact in terms of the trace semantics
of two program versions. We show how to leverage equivalence
relations to make dataflow-based CIA aware of the change seman-
tics, thereby improving precision in the presence of semantics-
preserving changes. We propose an anytime algorithm that applies
costly equivalence-relation inference incrementally to refine the
set of impacted statements. We implemented a prototype and eval-
uated it on 322 real-world changes from open-source projects and
benchmark programs used by prior research. The evaluation re-
sults show an average 35% improvement in the number of impacted
statements compared to prior dataflow-based techniques.

CCS CONCEPTS

«Software and its engineering —Automated static analysis;
Software verification;

KEYWORDS
Impact Analysis, Software Maintenance, Equivalence

ACM Reference format:

Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush. 2017. Refining In-
terprocedural Change-Impact Analysis using Equivalence Relations. In
Proceedings of 26th International Symposium on Software Testing and Analy-
sis, Santa Barbara, CA, USA, July 2017 (ISSTA’17), 11 pages.

DOI: 10.1145/3092703.3092719

1 INTRODUCTION

Software constantly evolves to add and improve features, eliminate
bugs, improve design, etc. As software evolves faster than ever, it
requires rigorous techniques to ensure that changes do not modify
existing behavior in unintended ways. Some of the emerging ap-
proaches to ensure the quality of a change are code reviews [35],
regression testing [19, 44], test-suite augmentation [34, 39, 40], code

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA’17, Santa Barbara, CA, USA

© 2017 ACM. 978-1-4503-5076-1/17/07...$15.00

DOI: 10.1145/3092703.3092719

Shuvendu K. Lahiri
Microsoft Research, USA
shuvendu@microsoft.com

Nimrod Partush
Technion, Israel
nimi@cs.technion.ac.il

contracts [5, 25], regression verification [20, 38] and verification
modulo versions [33]; all benefit from change-impact analysis (CIA).

Change-Impact Analysis determines the set of program elements
that may be impacted by a syntactic change. Traditional approaches
are coarse-grained and operate at the level of types and classes [1, 2],
or files [19] to retain soundness. Fine-grained techniques that aim
to work at the level of statements are typically based on performing
dataflow analysis [43] on one program to propagate the change
along data and control flow edges [3, 10, 32]. Such techniques fail
to take the semantics of the change into account; therefore, they
cannot distinguish between changes that a user expects to have
only local impact on existing code (e.g., a code refactoring) from
ones that have substantial impact on existing code (e.g., changing
the functionality or fixing a bug). The ability to distinguish changes
whose impact is local (limited to the changed procedure or a few
callers or callees within one or two levels) can help with code review
and regression-testing efforts. Changes with substantial impact can
be prioritized for more rigorous code reviews and more testing.

In this paper, we aim to improve the precision of CIA by lever-
aging equivalence relations between the variables of two programs
across a change. At a high level, these equivalences help prune the
flow of a change along the data or control flow edges of the changed
program. To integrate such equivalences, we first formalize the
notion of change impact precisely in terms of the trace semantics of
two programs. Next, we show how to make CIA change-semantics
aware by incorporating various equivalence relations into an in-
terprocedural dataflow analysis. Since computing equivalence re-
lations is expensive, we propose an anytime algorithm [46, 48] to
incrementally compute equivalence relations.

1.1 Overview

Figure 1 shows a running example in C. The example is inspired by
real commits to Coreutils, in files paste.c [13] and sort.c [14].
The program has three changes. Two are semantics-preserving;:
(i) extracting the literal *\n’ into the variable 1ine_delim in the
procedure print_product_info (lines 1, 4, 5) and (ii) replacing
the conditional operator with a double negation in locale_ok
(lines 22, 23)!. The third change is not semantics-preserving: it
sets the 1ine_delim variable to *\®"’ (a different value than in the
old version) in the procedure print_product_info (lines 12, 13,
14), which impacts statements in print_minor_vers. We claim
the only (syntactically unchanged) line that is impacted by the
changes is the highlighted line 41 (assume for this example that
all executions start from the procedure print_product_info); a
statement is impacted, intuitively, if the sequence of values it reads
can differ when executing the two versions of the program in the
same environment. For brevity, we omit the definitions of the

!Negation in C coerces the values to 0 or 1.

ISSTA’17, July 2017, Santa Barbara, CA, USA

i +static unsigned char line_delim='\n"';
2 int print_product_info(int name, int version) {
3 int locale, prin=0;
+ - print_header('\n');
5 + print_header(line_delim); // spurious impact
6 locale=locale_ok(); // spurious impact
if (name) {

8 prin=print_name(locale);
9 }
10 if (version && prin) {
1 prin=print_major_vers(locale));

- prin=print_minor_vers(locale,'\n');

+ line_delim="\0";
o+ prin=print_minor_vers(locale,line_delim));
15 }
16 return prin;
17 }

18 void print_header (char delim) {
19 printf("%s%c" ,HEADER,delim);
20 }
int locale_ok() {
» - return setlocale (LC_ALL,"") ?2 1 : 0;
23 + return !!setlocale (LC_ALL,"");
}
int print_name(int locale) {
26 if (locale) {
printf("%s",locale_format("Coreutils"));
8 return 1;
29 }
50 return 0;
vd
int print_major_vers(int locale) {
if (locale) {
printf("%s",locale_format("8"));
35 return 1;
36 }
37 return 0;
1
39 int print_minor_vers(int locale, char delim) {
40 if (locale) {
1 printf("%s%c",locale_format(".12"),delim);
42 return 1;
13 }
" return 0;
5 }

Figure 1: Example program change. The lines with — and +
represent deleted and added lines, respectively.

setlocale and locale_format procedures and the LC_ALL and
HEADER constants as they are not relevant. We will now analyze the
change through the lens of a standard dataflow analysis [43] and
traditional equivalence checking [20, 28] and sketch our technique.
Dataflow: A dataflow analysis technique starts at the sources
of change and propagates them through data and control edges
(typically in the changed program). Dataflow techniques are not
aware of the change semantics, and thus cannot exploit semantics-
preserving changes. Initially, the call to print_header on line 5

Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush

has a change to its argument that marks all the statements in the
procedure as impacted because they all depend on the changed ar-
gument. Next, the call to locale_ok on line 6 impacts the locale
variable because of the change to the body of 1locale_ok and the
data dependency of the return value on the change. This in turn will
mark the input of print_name as impacted at line 8, which in turn
flows to its output because the return value is control dependent
on the input variable marked as impacted (a context-insensitive
analysis will impact the return at all call sites to print_name).
This impact through the return value will propagate to the call to
print_major_vers and print_minor_vers because of the con-
trol dependency on prin and will impact all the statements in these
procedures as well as all the returns at both call sites. Finally, the
call to print_minor_vers will impact all of the callee statements.
A context-sensitive analysis does not help either because the body
of locale_ok changes, which implies that the return value may
change across the two versions. This is sound but imprecise since the
analysis is unable to determine that the statements in print_name
and print_major_vers are not impacted.

Equivalence: A traditional interprocedural equivalence check-
ing [20, 28] (checking if two procedures have identical input-output
behavior) will find that locale_ok, print_name, print_header,
print_major_vers, and print_minor_vers have identical sum-
maries. This is unsound for the question of impact analysis, as the
statement of print_minor_vers is impacted due to the change
of print delimiter. This illustrates the difference between CIA and
(traditional) equivalence checking: two procedures can be equiva-
lent, but still impacted, because they may get called under different
contexts and exhibit different behaviors.

Our approach: Our change-semantics aware CIA works as follows:
it infers equivalence relations over variables and determines that the
arguments at all call sites to print_name and print_major_vers
are equal in both versions and stops propagating impacts through
their arguments. Further, locale_ok has an equivalent summary
in the two versions (by using equivalence checking)—this ensures
that two call sites with equal arguments return equal results. From
these two facts, the technique infers (by simple dataflow analy-
sis) that arguments to print_name and print_major_vers are
not impacted and therefore the statements in both print_name
and print_major_vers are not impacted. Thus, our approach
precisely identifies the only unchanged impacted line as line 41.

1.2 Contributions

In this work, we make the following contributions:

(1) We precisely formalize the set of statements impacted by a
change, in terms of the trace semantics of two versions of
a program (§ 3.1).

(2) We make a dataflow-based CIA change-semantics aware
by incorporating various equivalence relations (§ 4).

(3) We describe an anytime algorithm that allows incremen-
tally computing more equivalences to refine the analysis
at the expense of time (§ 4.1).

(4) We have implemented a prototype using SYMDIFF [28, 29],
and evaluated our technique on 322 real-world changes
collected from GitHub open-source projects and several
standard benchmark programs used in prior research [24].

Refining Interprocedural Change-Impact Analysis using Equivalence Relations

2 BACKGROUND

For the ease of presentation, we will formalize the problem and our
technique over a simple language. We can compile most features of
general-purpose imperative programming languages to our simple
language [4, 12, 18, 41]; we discuss this in § 2.2.

2.1 A Simple Language

A program consists of procedures represented as control-flow graphs,
statements, and expressions.

Expressions: e € Exprsin the language are built up from constants,
variables and operator applications:

e€Exprs == c|x|y|...|op(e,...,ex)

Here c represents constant values of different types such as {true, false}
for Booleans, {...,—1,0,1,...} for integers, and x denotes vari-
ables in scope. An operator op is a function or predicate symbol
that can be uninterpreted or interpreted by some theories (e.g.,
{+,—,%,<,>,...} by the theory of arithmetic). We represent a vec-
tor of variables and expressions using x and e, respectively.
Statements: st € Stmts are comprised of assign, assume, skip and
procedure call statements.

st € Stmts := x:=e|assume e | skip |

call x1,x2,...,x; == fle1,e2,....em)

The argument to assume is a Boolean-valued expression, and a skip

is a no-op. A call statement can have multiple return values and

they are assigned to variables x; at the call site.

Procedures: A procedure f € Procs is represented as a control-flow
X

graph consisting of (Nf, Ef, Ing, Outy, Varsy, n;, ng), where:

o Nris a set of control-flow locations in f,

o Ep C NyxNyisaset of edges over Ny denoting control-flow,

e Ing (respectively, Outy) is the vector of input (respectively,
output) formals of f. The output formals model return
values and out parameters.

e Varsyis the set of variables in the scope of f'and includes

Inf, Outf, and local variables of f;

. n}‘i € Ny (respectively, n}‘ € Ny) is the unique entry (respec-
tively, exit) node of f.

Let N = Ufeprocs Ny and Vars = U feprocs Varsy. Nodes and vari-
ables in a procedure fare often denoted by nyand xy respectively.
For any node ny € Ny, we define the readset RVars(ny) and write-
set WVars(ny) as the set of variables that are read and written to
respectively in the statement at ng.

A program Prog € Programsis a tuple (Procs, main, StmtAt) where
(i) Procs is a set of procedures in the program, (ii) main € Procs is
the entry procedure from which the program execution starts, and
(iii) StmtAt : N — Stmts maps a node n € N in a procedure fto a
statement. For any f, we assume that both StmtAt(n}‘i) = skip and

StmtAK(n]’ﬁ) = skip.

2.2 Expressiveness

We can compile most constructs in general-purpose imperative
programming languages to our simple language. This follows the
same principle as translators from languages such as C and Java to
the Boogie language [4, 12, 18, 41].

ISSTA’17, July 2017, Santa Barbara, CA, USA

Control flow: Loops can be automatically transformed into tail-
recursive procedures [20, 28, 29]. We use n; : st;goto ny,n3; to
express that StmtAt(ny) = st and {(n1,n2)(n1,n3)} C Er. A condi-
tional statement if (e) st; else sty is modeled as:

ni : x:= e; goto ny, n3;
ng : assume Xx; stq; goto ng; n3 : assume —x; sty; goto ny;

where a fresh Boolean variable x captures the value of the condition
¢®. We assume that each node n € Nr has at most two successor
nodes in Ef corresponding to conditional statements branches. The
only use of an assume statement is to model a conditional statement.
We refer to n; as a branching node with two successors in E with
complementary expressions in assume statements.

Globals and heap: Richer data types such as arrays and maps can
be modeled, e.g., array read x[e] is modeled using sel(x,e) and a
write x[e1] := ez is modeled using x := update(x,e1,ez) [6]. Arrays
are in turn used to model the heap in imperative programs and are
standard in most software verification tools [12, 18, 41]. Additional
internal non-determinism (e.g. read from file, network) is lifted
as reads from immutable input arrays of main, making programs
deterministic in our language [28]. We desugar the program’s
global variables (including the heap) as additional input and output
formal arguments to a procedure. We transform each procedure
into its Static Single Assignment (SSA) form [17], where a variable
is assigned at exactly one program node.

2.3 Semantics

Let V denote the set of values that variables and expressions can
evaluate to. Let @ € © be a store mapping variables to values in
V. For x € Vars, we define x € @ if x is a variable in the domain
of 0. For x € 0, 6(x) denotes the value of variable x. The store
[x — v] represents a singleton store that maps x to v. The store
0|Vars, restricts the domain of the store to variables in Vars;. For
stores 01 and 65, the store 63 = 6 @ 0, is defined as follows for any
variable x € 61 or x € 0,:

e[

if x € 0y

otherwise

The value of an expression e € Exprs (6(e)) is defined inductively
on the structure of e (we omit it for brevity as it is fairly standard).
Calls: Let ¢s € (N x Vars® X ©)* be a call stack that is a sequence
of tuples ((ng,70,60),(n1,71,61),. . .), where n; is the i-th call site
on the call stack (ng is the most recent), 7; and 6;, respectively, are
the vector of return actuals and the valuation of the local variables
of the caller, at the corresponding call site. Let CS denote the set
of all such call stacks, € denotes an empty stack, and (n,7,0) :: cs
denotes the concatenation operator.
Transition Relation: A state 0 € X isatuple (n,0,cs) € NxOXCS
that denotes a point in program execution where n is the current
node being executed in a procedure f, 0 is the valuation of variables
in Varsy and cs is the current call stack.

A state transition denoted as (nf, 01,cs1) ~ (n2,02,cs2) is a rela-
tion over X X ¥ that holds only if:

2The introduction of x simplifies determining if control flow is impacted by only
inspecting the conditional node

ISSTA’17, July 2017, Santa Barbara, CA, USA

(1) StmtA(ns) = x = e, np € Np, 62 = 01 & [x > 01(e)],
(nf, ny) € Ef, and c¢s; = cs, or

(2) StmtAi(ns) = assume e, nz € Ny, 01(e) = true, (ng,np) €
Ef, 01 = 65 and cs; = csg, or

3) StmtAt(nf) = skip, ne# n¥, ny € Nf’ (nf, ny) € Ef’ 0, =06,
and cs; = csy, or

(4) StmtAt(ns) = call 7:= g(e). Let n be the unique successor
of ngin f; and x be the vector of input formals for g in
ny = ng, csp = (n,7,01) = csy and 0, = [x — 61(e)], or

(5) StmtAt(ns) = skip, ny = n}’ﬁ, csp = (ng,7,03) = cs3. Let

y be the vector of output formals for fin ny = ng, 02 =
(03 @ [F = 01(3)DIVars,» cs2 = cs3.

A transitive edge op ~* o, exists if 0, = 0y or there exists a
sequence of transitions gp ~» 01,...0p-1 ~> op, Where g; ~> 0j41,
foralli € [0,...,n). For a procedure f, we denote the input-output
transition relation Qr = {(61,02) | (n;,Gl,e) ~* (n}‘,@z,e)}.
Execution Traces: An execution trace t is a (possibly infinite) se-
quence of states {0y, 01,. . .), where o; ~» 0j4+1, for any adjacent
pair of states in the sequence. For a trace 7 and a node n € N, 7],
denotes the (maximal) subsequence of 7 containing states of the
form (n,_,_). For such a trace 7 of length at least i + 1, 7[i] denotes
the state at position i (namely o;). For any procedure f; let I+ be
the set of maximal traces of f. That is, Ty is the set of all traces ¢
such that (i) 7[0] = (nj‘i,_,e), and (ii) either (a) the final state o,
has no successors, or (b) the trace is non-terminating. Traces with
no successors can either terminate normally in a state (nj’ﬁ,_,e), or
could be blocked due to no successors in E or due to an unsatis-
fied assume statement. For a store 8 € ©, we denote rf(G) as the

maximal trace (due to determinism) of f that starts in a store 6.

3 PROBLEM STATEMENT

In this section, we formalize the problem of semantic change-impact
analysis and provide a simple solution based on dataflow-based
static analysis.

3.1 Representing Changes

We denote Prog!, Prog? € Programs as two versions of a program.
Similarly ol,0%, 11, Procst, main', N', StmtAf' denote entities for Progi,
without making Prog’ explicit.

To ease presentation we assume the two programs in a normal-
ized form, where (i) each procedure in Procs! has a corresponding
procedure in Procs® and vice versa, and (ii) for each f € Procs',
the vector of variables in Varsy, and the set of nodes Ny (but not
necessarily Ey) are identical with the ones in the corresponding
procedure. We preprocess the programs to obtain their normalized
form, by introducing additional procedures, variables (uninitialized)
and nodes (for any missing node n, we add an unreachable node in
Ny with a skip statement and empty successor list).
Differencing: Given the two versions, a differencing algorithm
produces a mapping between nodes in the two programs. We
assume we are given a sound diff algorithm to label the sources of
change. A diff algorithm is sound if it produces a partial function
7 : N! + N? such that:

Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush

(1) 7 is a partial bijection’ and StmtAi(ns) = StmtAt(r(ng)).

(2) 7 will map entry nodes nJi (and exit nodes n}‘) in one
procedure to entry nodes in the corresponding procedure
(and exit nodes respectively).

1.1 ; 1 2 .2

(3) Foranytwotracest =7, . (0)inProg' andz* =z . (0)
in Prog?, v! only executes statements in Dom(x) iff 72 only
executes statements in Im(r)

(4) Forany twotraces 7! = r}nam(e) in Prog' and 72 = rrznam(ﬁ)

in Progz, where 7! only executes statements in Dom(r) or

72 only executes statements in Im(x), then 7! = 72.

The mapped nodes MAPPED = Dom(xr) U Im(rr) underapproxi-
mate the set of nodes that are syntactically unchanged. Intuitively,
if a program executes only statements in MAPPED then the pro-
gram behaves the same in both versions; statements that are not in
MAPPED are the sources of change.

We describe for illustrative purposes a simple differencing algo-
rithm which is sound. The algorithm proceeds to produce a map-
ping 7 as follows: Let Procs® C Procs be the set of procedures that
have some syntactic change. Any node not in f € Procs? is trivially
mapped as the control-flow graphs are identical in the two versions.
Any node in f € Procs® is conservatively treated as not mapped.
Our formulation is parameterized by a diff algorithm which can
either be based on text [47] or more sophisticated notions such as
abstract syntax trees [16] or program-dependency-graphs [27] as
long as they satisfy the soundness criteria.

3.2 Semantic Change Impact

We can now state the meaning of a node being impacted by a pro-
gram change, in terms of the trace semantics of the two programs
and the set MAPPED.

For a sequence of states ¢ and a variable x € Vars, o]y € (V' U
{L})* denotes the sequence of values v with same length as 7, and

{e(x), oi= (.0,)andxe 0
Vi =
1

otherwise
Definition 3.1 (Impacted nodes). Given Prog', Prog? and MAPPED,
anode n € N'UN? is impacted if either Impacted(n, Prog", Prog?,)
or Impacted(yr(n),ProgZ,Prog1 R 71'_1) holds, where 7! is the inverse.
N is the corresponding N for Prog’.
We define Impacted(k,Prog“,Progb,cD):
(1) k ¢ Dom(®), or

(2) there exists a store 0, pair of traces 7% = 7 . (6) for Prog®
and 7% = rrl:mm(O) for Progb, and a variable x € RVars(n)

such that (7%|g) |x # (Tb|a>(k))Jx-

We conservatively treat any unmapped node as impacted. A
mapped node n is not impacted if the sequence of values of vari-
ables in RVars(n) is identical for any two execution traces 7¢ (in
Prog®) and 7% (in ProgP) starting from a common input store 6
to main. For our low-level language, the RVars(n) of a statement
includes the state of the heap and address being written to. For ex-
ample, the C# statement x.length = y is translated to n : Length :=
update(Length, x, y), (Length is an array representing the state of
length field/attribute in all objects) with RVars(n) = {Length, x, y}.

3 A partial bijection is a partial function that is injective when defined and (trivially)
surjective when restricted to its image [21].

Refining Interprocedural Change-Impact Analysis using Equivalence Relations

Table 1: Predicates used for dataflow analysis.

Predicate name

Definition]

BRANCHINGNODE(n)
CONTROLDEPENDENT(ny, 1)
CALLSITE(n, f, 8)

if n is a branching node

if ny is control-dependent on n; [17]
if StmtAt(n) is a call to f within

a caller g.

if x is the i-th input formal of f

if x is the i-th output formal of f
if the expression e is the i-th
actual argument to a call to f

at a callsite n

INFORMAL(x, i, f)
OuTFOoRMAL(, i, f)
INAcTUAL(e, i, f, n)

if the variable r receives the i-th
output formal to a call to f
at a callsite n

OuTtAcTUAL(r, i, f, n)

3.3 Dataflow-Based Change-Impact Analysis

In this section, we describe Dataflow-based Change-Impact Analysis
(DCIA), a change semantics unaware static analysis that provides
a conservative estimate of the set of impacted nodes. The static
analysis is an interprocedural dataflow analysis [43] that starts
with a program Prog’ (i € 1,2) and a conservative estimate of the
syntactically-changed nodes, nodes not in MAPPED, and returns an
upper bound on the set of (a) impacted nodes, (b) impacted variables,
and (c) output variables whose summary may have changed.
Predicates: Table 1 defines some straightforward predicates used
in the inference rules. The OUuTACTUAL(r, i, f, n) predicate holds
when the i* return value is assigned to variable r, at the call to f
from the node n (note that we allow multiple return values); we
call r the output actual to differentiate it from the i*# output formal
inside the callee. For CONTROLDEPENDENT(n2,n1), a node ny is
control-dependent on node ny iff (i) there exists a path from n; to
ny s.t. every node in the path other than n; and ny is post-dominated
by ny, and (ii) n; is not post-dominated by ny [17].
Dependency: Figure 2 describes a set of inference rules to com-
pute two relations DEPENDSONVAR and DEPENDSONNODE. For
a pair of variables x,y € Varsy such that y is either data- or
control-dependent on x, then DEPENDSONVAR(y, x, f) holds. Sim-
ilarly, a node n € Ny and a variable x that is updated at n,
DEPENDSONNODE(X, 1, f) holds. Subsequently, any variable y such
that y is data or control dependent on such a variable x, then
DEPENDSONNODE(Y, 1, f) holds. An inference rule (e.g. DEPENDS-
NODE) lists a set of antecedents (above the line) and the consequent
(below the line). Applying an inference rule results in adding a
tuple to the relation in the consequent (e.g. DEPENDSONNODE). The
inference rules are applied repeatedly until a fix-point is reached.
Most of the inference rules are straightforward encoding of pro-
gram data- and control flow. The rule CONTROL-DEPENDS ex-
presses that if n; is a branching node, whose condition depends on
x and y is written in a control-dependent node ny, then y depends
on x. The rule SUMMARY-DEPENDS captures the dependency of
an actual return r on a variable w passed as an argument to fin a
caller g, where w indirectly flows to r through a procedure call to f.
For this callsite, the i-th output formal y (which is assigned to the
output actual) is dependent on the j-th input formal x, which in
turn is assigned the actual e at the callsite.

ISSTA’17, July 2017, Santa Barbara, CA, USA

DEPENDS-ENTRY
x € Inp

DEPENDS-WRITE
x € RVars(n) y € WVars(n) n € Ny

DEPENDSONVAR(x, x, f) DEPENDSONVAR(Y, x, f)
DEPENDS-TRANSITIVE

DEPENDSONVAR(Y, X, f) DEPENDSONVAR(%, 2, f)

DEPENDSONVAR(Y, 2, f)

CONTROL-DEPENDS
BRANCHINGNODE(n;)
CONTROLDEPENDENT(ng, ny)

x € RVars(ny) y € WVars(ny)

DEPENDSONVAR(Y, X, f)

SUMMARY-DEPENDS
CALLSITE(n, f, g)
OuTtForMAL(Y, i, f)
INAcTUAL(e, j, f, n)

OUTACTUAL(r, i, f, n)
DEPENDSONVAR(Y, X, f)

INFORMAL(x, J, f)
w € RVars(e)

DEPENDSONVAR(7, W, g)

DEPENDS-NODE
x € WVars(n) n €Ny

DEePENDSONNODE(x, n, f)

DEPENDS-NODE-TRANSITIVE
DEPENDSONNODE(x, 1, f) DEPENDSONVAR(y, X, f)

DEePENDSONNODE(Y, n, f)

Figure 2: Inference rules for computing DEPENDSONVAR
and DEPENDSONNoODE. The input is a program Prog.

Impact Analysis: Figure 3 describes a set of inference rules to com-
pute the set of nodes that are impacted in either program. For now,
we ignore the highlighted antecedents (we use them in § 4 where
we describe how we incorporate change semantics). The rules
take as input a program (either Prog! or Prog?), the set of mapped
nodes MAPPED, and precomputed relations DEPENDSONNODE and
DEPENDSONVAR for the particular program. They produce the re-
lations IMPACTEDNODE, IMPACTEDVAR, and IMPACTEDSUMM that
are an upper bound on the set of impacted nodes, variables, and
variable summaries, respectively. Next we explain the rules using
our illustrative example.

The SYNT-CHANGED rule represents the source of any change
impact, stemming from syntactic changes to the program. The
next rules, prefixed by VAR-2 and NODE-2, propagate impact from
variables to expressions or program nodes, and vice versa.

The next two rules propagate change impact for an output y of a
procedure f, expressed by the IMpPACTEDSUMM(y, f) predicate. For an
output formal y € Outy, the summary (input-output dependency)
may change either when (i) y depends on a variable updated at
an unmapped node n € N (expressed by IMPACT-SUMMARY),
or (ii) y depends on the return of a procedure g with an impacted
summary (expressed by IMPACT-SUMMARY-PROP).

Next, the CALL-IMPACT rule says that an input formal x in f
can be impacted if the corresponding actual argument e at a callsite
is impacted, representing downward flowing impact where a caller
impacting a callee. Alternatively, the RETURN-IMPACT rule con-
siders the case when the variable summary for the corresponding
output formal y is impacted, representing upward flowing impact.

ISSTA’17, July 2017, Santa Barbara, CA, USA

Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush

SYNT-CHANGED NODE-2-VAR VAR-2-EXPR VAR-2-NODE
n ¢ MAPPED IMPACTEDNODE(1) x € WVars(n) IMPACTEDVAR(x) x € RVars(e) IMPACTEDVAR(X) x € RVars(n)
IMPACTEDNODE(n) IMPACTEDVAR(X) IMPACTEDEXPR(€) IMPACTEDNODE(n)
IMPACT-SUMMARY
OuTtForMAL(Y, i, f) DEePENDSONNODE(y, n, f) n ¢ MAPPED —SumMARYEQU1V(y, f)
IMPACTEDSUMM(Y, f)
IMPACT-SUMMARY-PROP

OuTtForMAL(Y, i, f)

CALLSITE(n, g, f) OuTtFoRrMAL(X, J, g) IMPACTEDSUMM(x, g)

OuTAcTUAL(W, j, g, 1)

DEPENDSONVAR(y, W, f) —SumMARYEQUIV(y, f)

ImpACTEDSUMM(Y, f)

CALL-IMPACT

CALLSITE(n, f, g) INAcTUAL(e, i, f, n)

ImPACTEDEXPR(€)

INFORMAL(x, i, f) —PreEquiv(x, f)

IMPACTEDVAR(X)

RETURN-IMPACT

CALLSITE(n, f, g) OuTAcTUAL(", 1, f, n)

OuTtForMAL(Y, i, f)

IMPACTEDSUMM(Y, f)

IMPACTEDVAR(r)

SUMMARY-IMPACT
CALLSITE(n, f, 8)

INFORMAL(X, J, f) DEPENDSONVAR(y, X, f)

OuTACTUAL(r, i, f, n)
INAcTUAL(e, j, f, n)

OuTtFoRMAL(Y, i, f)

IMPACTEDEXPR(e) —(PreEQu1v(x, f) A SUMMARYEQUIV(y, f))

IMPACTEDVAR(r)

Figure 3: Inference rules for dataflow based change-impact analysis. The highlighted antecedents are relevant for change-

semantics aware analysis.

Finally, SUMMARY-IMPACT considers impact which propagates
through a callee. Here, g calls f with an impacted actual e for the
formal input x of f. Since the formal output y of f depends on
aforementioned impacted x, the impact flows back outwards into
the output actual rin g.

Our analysis preserves context-sensitivity as it does not impact
a return value simply because the corresponding output formal is
impacted in some context.

The algorithm DCIA does the following:

(1) Takes as input Prog', Prog? and MAPPED.)

(2) Applies the inference rules in Figure 3 on Prog’ to generate
IMPACTEDNODE!, IMPACTEDVAR’, IMPACTEDSUMM! until a
fix-point is reached. A _

(3) Returns the tuple (| J; IMPACTEDNODE', | J; IMPACTEDVAR/,
U; IMPACTEDSUMM').

The following theorem states the soundness of the dataflow
analysis DCTA.

THEOREM 3.2 (SOUNDNESS). Given two programs Prog', Prog? €
Programs and mapPED C N, (a) DCIA terminates, and (b) for any
n ¢ IMPACTEDNODE, n is not an impacted node with respect to
MAPPED (according to Definition 3.1).

Consider for example the changes in Figure 1 at line 22; the pro-
cedure locale_ok has an impacted summary because its return vari-
able depends on a node that is syntactically changed, i.e., is not in
MAPPED. This causes the line 6 and the variable locale to be marked
as impacted because of the rule IMPACT-SUMMARY. Impacts are
propagated interprocedurally by the rule CALL-IMPACT to all calls
that take locale as an argument, i.e., print_name, print_major_vers,
and print_minor_vers. Similarly, using the same rule, the body of
print_header is impacted by the changed argument ‘\n’ changed

to the variable line_delim on line 4. The propagation through calls
further impacts their entire body because of the data and control
dependency on the impacted argument (by the rules NODE-2-VAR
and VAR-2-NODE which propagate impact through both control-
and data-dependency relying on the predicate DEPENDSONVAR).

4 INCORPORATING CHANGE SEMANTICS

In this section, we make the DCIA algorithm change-semantics aware.
In other words, the analysis takes into account also the exact seman-
tics of the change, in addition to the set of nodes MAPPED that may
have been syntactically changed. We inject the change-semantics
by leveraging equivalence relationships between variables and pro-
cedure summaries in the two programs Prog! and Prog?.

Let us define the following semantic equivalences for a variable
over Prog! and Prog®.

Definition 4.1 (PReEQuiv). PREEQUIV(x, f) holds for an input for-
mal x € Ing if for all stores 0, and for every pair of traces 7!

T;?nain(g) and 72 = T,Znain(g)’ (T1|n; Vx = (Tzlﬂ(n;))Jm

Intuitively, PREEQUIV(x, f) holds for an input formal x of fif any
two executions starting from main on the same input 6 call f with
the same sequence of values of x. For the example in Figure 1 the
equivalences that hold are PREEQuIV(delim, print_header),
PreEquiv(locale,print_name), PREEQuUIV (locale, print_major_vers),
and PReEqurv(locale, print_minor_vers). In contrast, the equiva-
lence PreEQuIvV(delim, print_minor_vers) does not hold, because
of different values for delim ‘\n* and ‘\0* respectively, at the call-
site in print_product_info.

We define Deps(y) as the set of variables x in either Prog! or
Prog? such that DEPENDSONVAR(y, x, f). For two stores 61 and 6,

Refining Interprocedural Change-Impact Analysis using Equivalence Relations

defined over same set of variables, we denote 01 =y, 02 to mean
01(x) = 62(x) for every x € Vars;.

Definition 4.2 (SUMMARYEQuUIV). SUMMARYEQUIV(y, f) holds for
an output formal y € Outyif (01,62) € Qfin Prog' and 0; = Deps(y)
03, then (03,04) € Qrisin Prog/ (j # i) and 62(y) = 04(y).

Intuitively, if the versions of f are executed from stores 6; and
03 where 01 =pgps(y) 03, then either both procedures do not ter-
minate, or the value of y after executing f is identical on exit. In
Figure 1, all procedures are equivalent except print_product_info,
i.e, in this case SUMMARYEQUIV(line_delim,print_product_info)
does not hold since in one version the value of line_delim at the
end of the execution is “\0” while in the other it is undefined.

Figure 3 with the highlighted parts provides a refinement to the
dataflow analysis to incorporate change semantics. In addition to
the MAPPED, the algorithm now takes as input pre-computed rela-
tions PREEQuIV and SuMMARYEQU1V. In this section, we assume an
oracle that provides these relations; we provide one implementa-
tion later (§ 5.1). The highlighted facts strengthen the antecedent
of a rule and prevent it from being applicable in some contexts.
For example, the strengthened CALL-IMPACT prevents an input
formal x from being impacted if PREEQUIV(x;, f) holds. Similarly, the
strengthened IMPACT-SUMMARY prevents a summary for y from
impact if we know that SuMMARYEQU1V(y,f) holds. The strength-
ened SUMMARY-IMPACT is now applicable only when either (i)
the formal x does not satisfy PREEQuIV or (ii) the summary for y
does not satisfy SUMMARYEQU1V.

We denote the new change-semantics aware algorithm as Se-
mantic Dataflow-based Changed Impact Analysis (SEM-DCIA).

THEOREM 4.3 (SOUNDNESS). Given two programs Prog!, Prog® €
Programs, MAPPED, PREEQUIV, and SUMMARYEQUIYV, (i) SEM-DCIA ter-
minates, and (ii) for any n ¢ IMPACTEDNODE, n is not an impacted
node with respect to MAPPED (from Definition 3.1).

4.1 Anytime Algorithm

The SEM-DCIA algorithm assumes an oracle to compute the PREEQuIv
and SUMMARYEQUTV relations. Computing such equalities typically
require constructing the product of the two programs Prog! and
Prog? and inferring equivalence relations over the product pro-
gram [29]. Such inference algorithms typically have high com-
plexity and therefore it is wise to apply them prudently. In this
section, we make a simple observation that allows us to interleave
SEM-DCIA and inference of PREEQuUIV and SUMMARYEQUIV in a sin-
gle framework.

void main(int x) { void f,(int x) {

- f(x); £(x+2);

+ f1(x+0); }

}

void fi(int x) { void f,(int x) {
f£,(x+1); }

}

Figure 4: Motivating example for anytime algorithm.

To exploit the change semantics, it is often useful to apply equiv-
alence relation inference only in the vicinity of actual syntactic

ISSTA’17, July 2017, Santa Barbara, CA, USA

changes. Consider the example in Figure 4 to make the intuition
clear. Applying DCIA will result in impacting all the nodes in the
program as follows. The modified call node for f; in main is not
in MAPPED, which impacts input formal x of f;. This in turn im-
pacts the call to f;, and so on. We can observe that PREEQuIv and
SuMMARYEQUIV hold for each of the procedures because the change
does not propagate outside the changed statement.

For Figure 4 it suffices to infer the equivalences on main while
abstracting the rest of the procedures from the expensive equiva-
lence analysis. Considering f; has all callsites inside main and that
it does not have an impacted summary by rule IMPACT-SUMMARY
after DCIA suffices to determine that PREEQUIV(x, f;) holds. This
information can be fed to SEM-DCIA which will prune the impact
for the input parameter of f; which will prune the remaining im-
pacts when performing a pure dataflow analysis. Thus, we obtain
a precise change-impact analysis by applying the equivalence in-
ference only on a small subset of the procedures in the program.
Similarly, in Figure 1 it suffices to analyze only the syntactically
changed procedures and abstract away the others to obtain the
most precise result; this is not the case in general because to infer
the PREEQuUIV we need all call sites to be in scope, not only the
syntactically changed procedures.

Algorithm 1: SEM-DCIA-ANYTIME

Input: Prog', Prog? € Programs
Input: Procs® C Procs

Input: mAPPED C N

Output: impNds C N

1 begin

2 k < 0;

3 EQ « (0,0);

4 (impNds, impVars, impSumms) «
SEM-DCIA(Prog!, Prog?, maPPED, EQ);

5 Procs’ « Procs®;

6 while Procs’ C Procs do

7 PrEQ « {(x.f) | x € Inpand x ¢ impVars};

8 smEQ « {(x.f) | x € Outrand (x.f) ¢ impSumms};

5 EQ « EQ+ (prEQ, smEQ);

10 Procs’ « ProcsWithin(ProcsA,Progl,ProgZ,k);

1 Prog}(« AbstractProcs(Prog', Procs \ Procs’);

12 Prog; «— AbstractProcs(Prog®, Procs \ Procs’);

13 EQ « InferEquivs(Progllc,Progi,EQ);

14 (impNds, impVars, impSumms) «

SEM-DCIA(Prog', Prog?, MAPPED, EQ);
15 k++
16 | return impNds;

Algorithm 1 (SEM-DCIA-ANYTIME) provides an anytime algo-
rithm that performs the integration. The algorithm takes as an
additional input Procs®, the set of syntactically changed procedures.
It outputs a set of nodes impNds that overapproximates the set of
impacted nodes. We term the algorithm anytime [15, 46, 48] be-
cause the algorithm can be stopped at any time after the first call to
SEM-DCIA to obtain a conservative bound for the impacted nodes.

ISSTA’17, July 2017, Santa Barbara, CA, USA

The algorithm starts with invoking SEM-DCIA on the two pro-
grams with an empty set of equivalences in EQ (line 4); this is
identical to calling DCIA. The return values provide a conservative
measure on impacted variables, nodes and summaries respectively
(Theorem 3.2). The algorithm implements a loop (line 6) where it
increases the frontier of procedures Procs’ around Procs® that are an-
alyzed for inferring equivalences in InferEquivs (line 13). Lines 7
and 8 construct equivalences from the provably non-impacted vari-
ables and summaries. These equivalences are added to EQ in line 9.
ProcsWithin returns all procedures that can reach or be reached
from Procs® within a call stack of depth k; k is incremented with
each iteration of the loop. AbstractProcs abstracts all proce-
dures outside Procs’; it only retains the knowledge of whether
any procedure f € Procs’ has additional call sites outside Procs’
- this determines whether PREEQUIV can be inferred for a proce-
dure. InferEquivs is invoked with a set of equivalences in EQ on
the smaller programs Prog;'c. The final call to SEM-DCIA is used to
compute the more refined set of impacted variables, nodes and sum-
maries based on the equivalences discovered from InferEquivs.
The loop terminates when Procs’ consists of the entire program; at
this point InferEquivs has already looked at the entire program
and no new equivalences will be discovered in line 13.

Let us denote SEM-DCIAy as an instantiation of the algorithm
SEM-DCIA-ANYTIME that terminated after the loop is executed ex-
actly k+ 1 times. We also denote SEM-DCIA if the loop terminates
normally after Procs’ equals Procs.

THEOREM 4.4 (SOUNDNESS). Given two programs Prog', Prog® €
Programs, MAPPED, and Procs”, if SEM-DCIA, terminates then for
any n ¢ impNds, n is not an impacted node with respect to MAPPED
(according to Definition 3.1).

5 IMPLEMENTATION AND EVALUATION

5.1 Implementation

We presented and evaluated our SEM-DCIA() analysis for C pro-
grams, but our analysis is implemented over the intermediate veri-
fication language Boogie [4]. We leverage SMACK [41] to convert
LLVM bytecode to Boogie programs.

Differencing: For our initial implementation, we leveraged diff
over C files to produce the source of changes, i.e., nodes not in
MAPPED. However, diff does not satisfy the soundness criteria for
diff (see Section 3.1) because of changes in macros, data structures,
control-flow changes, etc.; we therefore conservatively consider
all nodes in a changed procedure as sources of impacts. Note that
because we operate on Boogie, macros are already expanded so
changes in macros will be reflected in the resulting Boogie code.
Although this can overapproximate the initial source of impact, the
use of equivalences in SEM-DCIA allows us to prune the spurious
impacts from escaping the syntactically-changed procedures; All
our code and scripts are available in the SYMDIFF repository at:
https://symdiff.codeplex.com/.

Inference: We used SYMDIFF to construct a product program and
infer valid PREEQuIV and SummaRYEQUIV. Given Prog! and Prog?,
SYMDIFF generates a product program Prog'*? that defines a pro-
cedure f1%2 for every fand 7z(f) € Procs'. For the product program
Prog">?, one can leverage any of the (single program) invariant gen-
eration techniques to infer preconditions, postconditions (including

Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush

Table 2: Summary of projects used as evaluation subjects

Project # Version SLOC LOC Changed

Name Pairs min | max | min max
flingfd 2 142 146 2 14
histo 8 617 624 1 6
mdp 91 135 | 1616 1 402
theft 2 | 1672 | 1838 2 328
tinyvm 61 425 903 1 328
print_tokens 5 478 430 1 8
print_tokens2 10 397 402 1 6
replace 32 509 516 1 15
schedule 9 290 294 2 4
space 38 | 6180 | 6205 1 42
tcas 41 136 140 2 16
tot_info 23 346 347 2 3

two-state postconditions) on 2. Such invariants are relational
in that they are over the state of two programs Prog! and Prog?,
and include equivalences relations such as PREEQuIV (precondi-
tions of f1*?) and SumMARYEQUIV (summary of f1%?). To ensure
our inferred equivalences are valid we require the programs to
be equi-terminating [23]; this is an area of future work - for now
we assume that changes do not introduce non-termination. We
modified SYMDIFF to add candidates for inferring summaries and
take as input cheaply-inferred equalities from DCIA. More details
can be found in our extended report [22].

5.2 Evaluation

In this section we evaluate the effectiveness of our approach on
GitHub projects with real program changes and standard bench-
mark programs with artificial changes. We show that our semantic
based analysis, SEM-DCIA improves on DCIA by reducing the size of
the impacted set, a proxy metric for the effort necessary to perform
many software engineering tasks such as code review and testing.

We analyze 164 changes consisting of refactorings, feature ad-
ditions, buggy changes, and bug fixes from 5 GitHub projects. We
selected the projects based on popularity, size, active development,
and compatibility with SMACK. The projects, number of versions
used, their size in non-comment non-blank source lines of code
(SLOC), and corresponding change sizes (in number of C source
lines changed) are summarized in Table 2. Our subjects are C
implementations of a virtual machine program (tinyvm), a his-
togram creator (histo), a markdown presentation tool (mdp), a
file-descriptor management library (flingfd) and a test-generation
library (theft). We include 6 standard benchmarks widely used by
prior research [24]. These benchmarks consist of 158 manually
introduced changes representing non-trivial and hard to detect
bugs. Our projects are sized between 142 lines of source code and
6205 (SLOC). The changes in our projects vary in size between very
small changes, consisting of single line changes and larger ones,
consisting of over 400 lines (most of our changes are small).

For our experiments, we first compare SEM-DCIA against DCIA to
study the impact of adding change-semantics to the impact analysis
(§ 5.3). Next, we evaluate the cost-precision tradeoff of the anytime
algorithm SEM-DCIA-ANYTIME (§ 5.4). Finally, we present several
representative examples discovered while applying our tool (§ 5.5).

https://symdiff.codeplex.com/

Refining Interprocedural Change-Impact Analysis using Equivalence Relations

ISSTA’17, July 2017, Santa Barbara, CA, USA

Table 3: Analysis results for different levels of precision. Time in seconds. (timeout = 1 hour)

Project DCIA SEM-DCIA, SEM-DCIA,; SEM-DCIAn
Name min | max | Time || min | max Red Time min | max Red Time min | max Red Time
flingfd 64 84 0.94 39 83 20.1% 8.92 14 70 47.3% 9.85 14 70 47.3% 10.44
histo 0 86 2.14 0 75 11.5% 19.43 0 65 28.6% 20.59 0 65 28.6% 24.92
mdp 0 465 | 28.16 0 330 1.5% 77.71 0 324 3.4% | 100.68 0 283 6.5% 173.08
tinyvm 0 344 | 68.96 0 308 18.5% | 158.33 0 298 23.2% | 160.35 0 283 43.6% 169.05
theft 184 261 4.48 11 186 61% 38.45 11 185 62% 57.48 11 107 77% 289.75
print_tokens 151 153 2.22 69 137 | 19.37% 24.02 34 128 | 28.67% 58.23 34 128 | 28.67% 102.40
print_tokens2 155 158 1.46 80 129 | 30.36% 16.08 59 101 | 44.65% 24.42 55 100 | 45.66% 97.98
replace 75 195 4.96 74 194 2.08% 35.72 70 194 2.89% 92.72 65 174 9.41% 236.77
schedule 79 115 1.37 7 104 | 26.35% 13.73 7 87 | 40.58% 24.15 7 68 | 70.85% 30.83
space 20 | 2851 | 59.45 14 | 2816 | 31.87% | 798.96 14 | 2816 | 36.71% | 895.14 n.a. n.a. n.a. | timeout
tcas 1 49 0.66 0 49 9.24% 7.94 0 49 9.24% 8.63 0 49 9.24% 9.71
tot_info 103 104 6.39 31 102 | 18.65% 37.01 24 102 | 46.26% 74.99 12 77 | 56.50% 127.61
5.3 Change-Semantic Aware Analysis Table 4: Analysis results for space
Table 3 shows the results of running our SEM-DCIA analysis on
our subjects. For each change, we measure the number of lines Analysis Min | Max | Reduction | Time
impacted by dataflow analysis (columns DCIA Impact) and also by DCIA 20 | 2851 n.a. 59.45
SEM-DCIA (columns SEM-DCIAq,). The columns SEM-DCIA; denote SEM-DCIA, | 14 | 2816 31.87% | 798.96
various bounds for SEM-DCIA-ANYTIME and are discussed in § 5.4. SEM-DCIA, 14 2816 36.71% 895.14
. L. . SEM-DCIA, 14 | 2816 40.56% | 1300.43
We report for each project the minimum and maximum number SEM-DCTAs 14 | 2808 43.96% | 1900.03
of impacted lines (min, max), and for the SEM-DCIA() analysis we SEM-DCIA. | na | na. na | timeout

report also the average reduction of the size of the impacted set.
Note that SEM-DCIA analysis always reports a subset of the set
reported by the non-semantic analysis. We also report the average
analysis time in seconds for all analyses.

Our evaluation shows that on average, the semantic-aware anal-

ysis reduces the size of the impacted set by 35%. The overhead of
performing full semantic analysis on the entire program is on me-
dian 19x, ranging between 3x and 67x. While the semantic analysis
results at co level represent the most precise analysis our technique
achieves, it is quite expensive. For example in the theft project the
reduction achieved by SEM-DCIA« is 77% but with a 64x overhead.
This motivates the need for an incremental analysis, whose results
are obtained faster.
Imprecision: Our manual inspection of results reveals three broad
classes for nodes classified as impacted: (i) nodes in syntactically
changed procedures, (ii) SYMDIFF’s inability to match loops as it
relies on syntactic position in AST (this can be fixed by better
matching heuristics), (iii) SMACK represents all aliased addresses
accessing a field using a single map; writing to one location destroys
equivalences on the map variables (need more refined conditional
equivalences [26]).

5.4 Incremental Analysis

Table 3 shows the analysis results of varying the bound on k for the
SEM-DCIA-ANYTIME. The first iteration SEM-DCIA(corresponds to
semantically analyzing only the syntactically-changed procedures;
the second iteration SEM-DCIA; corresponds to analyzing the pro-
cedures at distance at most one from the syntactically changed pro-
cedures (callers and callees). The results show that even SEM-DCIA(
provides benefits, pruning the impacted set by 22% on average. The
overhead is reduced compared to the full analysis (9x). The results
show that the reduction in impact improves as the analysis scope

(k) increases. For example, in the case of theft the improvement is
from 61% (SEM-DCIAg) to 77% (SEM-DCIA), at the cost of overhead
increase from 8x to 64x.

We find that the anytime analysis is most beneficial for cases
where it is prohibitive to run the full algorithm because of time
constraints. This is best illustrated for the case of space (we used a
timeout of one hour). Table 4 shows the first four levels for space
(two more iteration beyond the ones in Table 3); performing the
analysis incrementally is still valuable even upto k = 3; the first
iteration already provides big benefits on top of the non-semantic
analysis, while the following iterations display a smooth improve-
ment with each iteration. We believe this highlights the benefits
of our anytime algorithm, giving the user control over the tradeoff
between precision and analysis-time.

5.5 Representative Examples

Our inspection of the analysis results indicates that the improve-
ment in precision in SEM-DCIA() comes from two fronts. First, it
compensates for the price we paid for soundness by considering
entire procedures as source of impact. The semantic analysis re-
duces the impacts for callers and callees transitively. Second, the
reduction in impact happens from refactorings that a pure dataflow
analysis cannot consider. We next show a few interesting patterns
we discovered while applying the tool (for brevity we only describe
the change briefly).

Variable Extraction: Figure 5 shows a refactoring to extract a
constant to a variable. A non-semantic technique will create impacts
in term_move_to through the first argument, since it will not be able
to find that the value flowing into the first argument is the same
in both versions and in all executions. Our SEM-DCIA technique
will successfully prove the mutual precondition necessary to show

ISSTA’17, July 2017, Santa Barbara, CA, USA

void draw_histogram(int data[], int len) {
+ int xbarw = 5;

while (y--) {
- term_move_to(x * 5 + xpad + 3,
+ term_move_to (X
y - 1 + h + ypad);

* xbarw + xpad + 3,

3

Figure 5: Change illustrating an extract constant to variable
in histo commit c723a4

-while (*c) {
+for (;*cj;c++) {

wprintw(window, "%c", *c);
- Ct++;

}

Figure 6: Change illustrating a loop conversion in mdp com-
mit 00c2ad

- if (!strend || !strbegin) goto pp_ret;
+ if (!strend || !strbegin) return 0;
if (!pFile) {

- goto pp_ret;
+ return 0;

}

- pp_ret: return O0;
+ return O0;

Figure 7: Change illustrating a goto-elimination refactoring
in tinyvim commit 378cc6

the equality in both versions, and hence cut impacts that would
propagate through the first argument.

Loop Refactoring: Figure 6 shows a change from a while loop
to a for loop. Remember that we extract loops as tail recursive
procedures. Input-output equivalence checking would not prevent
the impact of the argument c to the callee inside the loop-the body
of the loop—(nor would dataflow analysis).

Control-Flow Equivalence: Figure 7 shows a change to replace
a goto with return statements. This is a change in the project
tinyvm. The goto statements were all redirecting control-flow to
a return statement, so the developer replaced the goto with the
target return statement. Our semantic technique successfully finds
that the change does not produce impacts.

6 RELATED WORK

Our work is closely related to work aiming to support develop-
ers in evolution tasks through change-impact analysis, regression
verification, and symbolic analysis.

Alex Gyori, Shuvendu K. Lahiri, and Nimrod Partush

Change impact analysis: Change Impact Analysis has been widely
explored in static and dynamic program analysis context [10, 30, 32,
42, 45]. Most previous works perform the analysis at a coarse-grain
level (classes and types) to retain soundness of analysis [1, 2, 31, 36]
which can result in coarse results. JDiff [1] addresses some of the
challenges of performing both a diff and computing a mapping
between two programs in the context of Java object-oriented pro-
grams. Other techniques resort to dynamic information to recover
from the overly-conservative dataflow analysis [2, 36]. Our goal
is to improve the precision of CIA analysis by making it change-
semantics aware using statically computed equivalence relations
without sacrificing soundness.

Regression verification: Regression verification [20, 39] and its
implementations [28] aim at proving summary equivalence inter-
procedurally, but does not help with the CIA directly as shown in
§ 1.1. The work by Bakes et al. [3] improves traditional equivalence
checking by finding paths not impacted by changes through sym-
bolic execution. The approach is non-modular (does not summarize
callees), bounded (unrolls loops and recursion), and does not seek
to improve the underlying change-impact analysis. The technique
leverages CIA to avoid performing equivalence checking on non-
impacted procedures (computed by standard dataflow analysis).
These approaches are useful for equivalence-preserving changes;
when the changes are non-equivalent they do not provide meaning-
ful help for reducing code review or testing efforts. Our approach,
on the other hand, refines the CIA and can be used in code review
and regression testing. Besides, our approach retains modularity
and is sound in the presence of loops and recursion. We leverage
the product construction in SYMDIFF [29] that has been used for
differential assertion checking (checking if an assertion fails more
often after a change); however this work is limited as it requires
the presence of assertions in the program. Our approach can also
use other product construction techniques and relational invariant
inference techniques as an off-the-shelf solver [7, 8, 11].
Symbolic Analysis: Person et al. use change-directed symbolic
execution to generate regression tests [40]. Our technique can
be used to prune the space for which regression tests need to be
generated. In addition, there is research on relational verification
using a product construction [7-9, 37], but most approaches are
not automated and do not consider changes across procedure calls.

7 CONCLUSIONS

In this work, we formalize and demonstrate how to leverage equiv-
alence relations to improve the precision of dataflow-based change-
impact analysis and provide a time-precision knob, which is crucial
for applying such analyses to large projects. Our work brings to-
gether program verification techniques (namely relational-invariant
generation) to improve the precision of a core software engineering
task, and can go a long way in providing the benefits of semantic
reasoning to average developers.

ACKNOWLEDGMENTS

We thank Darko Marinov, Sasa Misailovic, August Shi, and the
anonymous reviewers for their comments. Alex performed parts
of this research while at Microsoft Research. He was also partially
supported by the NSF Grant Nos. CCF-1421503 and CNS-1646305.

Refining Interprocedural Change-Impact Analysis using Equivalence Relations

REFERENCES

(1]

(2]

(3]
(4]

(9]

[10]

[11]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[25]

T. Apiwattanapong, A. Orso, and M. J. Harrold. A differencing algorithm for
object-oriented programs. In Proceedings of the 19th IEEE international conference
on Automated software engineering, pages 2-13. IEEE Computer Society, 2004.
T. Apiwattanapong, A. Orso, and M. J. Harrold. Efficient and precise dynamic
impact analysis using execute-after sequences. In Proceedings of the 27th inter-
national conference on Software engineering, pages 432-441. ACM, 2005.

J. Backes, S. Person, N. Rungta, and O. Tkachuk. Regression verification using
impact summaries. In Model Checking Software, pages 99-116. Springer, 2013.
M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In International Sym-
posium on Formal Methods for Components and Objects (FMCO), pages 364-387,
2006.

M. Barnett, K. R. M. Leino, and W. Schulte. The spec# programming system: An
overview. In Construction and analysis of safe, secure, and interoperable smart
devices, pages 49-69. Springer, 2004.

C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard: Version 2.0. In
International Workshop on Satisfiability Modulo Theories (SMT), 2010.

G. Barthe, J. M. Crespo, and C. Kunz. Relational verification using product
programs. In FM 2011: Formal Methods, pages 200-214. Springer, 2011.

G. Barthe, J. M. Crespo, and C. Kunz. Beyond 2-safety: Asymmetric product
programs for relational program verification. In Logical Foundations of Computer
Science, pages 29-43. Springer, 2013.

N. Benton. Simple relational correctness proofs for static analyses and program
transformations. In ACM SIGPLAN Notices, volume 39, pages 14-25. ACM, 2004.
H. Cai and R. Santelices. A comprehensive study of the predictive accuracy of
dynamic change-impact analysis. Journal of Systems and Software, 103:248-265,
2015.

M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard. Proving acceptability prop-
erties of relaxed nondeterministic approximate programs. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), pages
169-180, 2012.

J. Condit, B. Hackett, S. K. Lahiri, and S. Qadeer. Unifying type checking and
property checking for low-level code. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL), pages 302-314, 2009.

Coreutils paste.c commit. https://github.com/coreutils/coreutils/commit/
8297568ec60103d95a56¢f142d534£215086fe2b.

Coreutils sort.c commit. https://github.com/coreutils/coreutils/commit/
611e7e02bff8898e622d6ad582a92f2de746b614.

T. L. Dean and M. S. Boddy. An analysis of time-dependent planning. In AAAIL
volume 88, pages 49-54, 1988.

J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Montperrus. Fine-grained
and accurate source code differencing. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering, pages 313-324. ACM,
2014.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319-349, 1987.
C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,]J. B. Saxe, and R. Stata.
Extended static checking for java. In Proceedings of the 2002 ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Berlin,
Germany, June 17-19, 2002, pages 234-245, 2002.

M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test selection with
dynamic file dependencies. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis, pages 211-222. ACM, 2015.

B. Godlin and O. Strichman. Regression verification. In DAC, pages 466-471,
2009.

P. A. Grillet. Semigroups: an introduction to the structure theory, volume 193.
CRC Press, 1995.

A. Gyori, S. K. Lahiri, and N. Partush. Interprocedural semantic change-impact
analysis using equivalence relations. In Technical Report. http://arxiv.org/abs/
1609.08734, 2016.

C. Hawblitzel, M. Kawaguchi, S. K. Lahiri, and H. Rebelo. Towards modularly
comparing programs using automated theorem provers. In International Confer-
ence on Automated Deduction (CADE), pages 282-299. Springer, 2013.

M. Hutchins, H. Foster, T. Goradia, and T. Ostrand. Experiments of the effective-
ness of dataflow-and controlflow-based test adequacy criteria. In Proceedings of
the 16th international conference on Software engineering, pages 191-200. IEEE
Computer Society Press, 1994.

J.-M. Jezequel and B. Meyer. Design by contract: The lessons of ariane. Computer,
30(1):129-130, 1997.

[26]

[27

(28]

[29]

(34]

[35

[36]

[38

(39]

[40]

[42

[43]

ISSTA’17, July 2017, Santa Barbara, CA, USA

M. Kawaguchi, S. Lahiri, and H. Rebelo. Conditional equivalence. Technical
report, Microsoft Research, October 2010.

J. Krinke. Identifying similar code with program dependence graphs. In Reverse
Engineering, 2001. Proceedings. Eighth Working Conference on, pages 301-309.
IEEE, 2001.

S. K. Lahiri, C. Hawblitzel, M. Kawaguchi, and H. Rebélo. SymDiff: A language-

agnostic semantic diff tool for imperative programs. In International Conference
on Computer Aided Verification (CAV), pages 712717, 2012.

S. K. Lahiri, K. L. McMillan, R. Sharma, and C. Hawblitzel. Differential assertion
checking. In Joint Meeting of the European Software Engineering Conference and
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE),
pages 345-355, 2013.

J. Law and G. Rothermel. Whole program path-based dynamic impact analysis.
In Software Engineering, 2003. Proceedings. 25th International Conference on, pages
308-318. IEEE, 2003.

W. Le and S. D. Pattison. Patch verification via multiversion interprocedural
control flow graphs. In Proceedings of the 36th International Conference on Software
Engineering, pages 1047-1058. ACM, 2014.

S. Lehnert. A review of software change impact analysis. Ilmenau University of
Technology, Tech. Rep, 2011.

F. Logozzo, S. Lahiri, M. Fahndrich, and S. Blackshear. Verification modulo
versions: Towards usable verification. In Proceedings of the 35th conference on
Programming Languages, Design, and Implementation (PLDI 2014). ACM SIGPLAN,
June 2014.

P. D. Marinescu and C. Cadar. make test-zesti: A symbolic execution solution for
improving regression testing. In Proceedings of the 34th International Conference
on Software Engineering, pages 716-726. IEEE Press, 2012.

S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan. The impact of code review
coverage and code review participation on software quality: A case study of the
qt, vtk, and itk projects. In Proceedings of the 11th Working Conference on Mining
Software Repositories, pages 192-201. ACM, 2014.

A. Orso, T. Apiwattanapong, and M. J. Harrold. Leveraging field data for impact
analysis and regression testing. In ACM SIGSOFT Software Engineering Notes,
volume 28, pages 128-137. ACM, 2003.

N. Partush and E. Yahav. Abstract semantic differencing for numerical programs.
In Static Analysis - 20th International Symposium, SAS 2013, Seattle, WA, USA,
Fune 20-22, 2013. Proceedings, pages 238-258, 2013.

F. Pastore, L. Mariani, A. E. Hyvirinen, G. Fedyukovich, N. Sharygina, S. Sehest-
edt, and A. Muhammad. Verification-aided regression testing. In Proceedings of
the 2014 International Symposium on Software Testing and Analysis, pages 37-48.
ACM, 2014.

S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pasareanu. Differential symbolic
execution. In Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, SIGSOFT "08/FSE-16, pages 226-237, New
York, NY, USA, 2008. ACM.

S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incremental symbolic
execution. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 504-515, New York, NY,
USA, 2011. ACM.

Z. Rakamaric and M. Emmi. SMACK: decoupling source language details from
verifier implementations. In Computer Aided Verification - 26th International
Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014,
Vienna, Austria, July 18-22, 2014. Proceedings, pages 106—113, 2014.

X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: a tool for change
impact analysis of java programs. In ACM Sigplan Notices, volume 39, pages
432-448. ACM, 2004.

T. W. Reps, S. Horwitz, and S. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In Conference Record of POPL’95: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Francisco, California,
USA, January 23-25, 1995, pages 49-61, 1995.

G. Rothermel and M. J. Harrold. A safe, efficient regression test selection tech-
nique. ACM Trans. Softw. Eng. Methodol., 6(2):173-210, Apr. 1997.

B. G. Ryder and F. Tip. Change impact analysis for object-oriented programs. In
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pages 46-53. ACM, 2001.

Wikipedia. ~Anytime algorithm. https://en.wikipedia.org/wiki/Anytime_
algorithm.

W. Yang. Identifying syntactic differences between two programs. Software:
Practice and Experience, 21(7):739-755, 1991.

S. Zilberstein and S. Russell. Approximate reasoning using anytime algorithms.
Kluwer International Series in Engineering and Computer Science, pages 43-43,
1995.

https://github.com/coreutils/coreutils/commit/8297568ec60103d95a56cf142d534f215086fe2b
https://github.com/coreutils/coreutils/commit/8297568ec60103d95a56cf142d534f215086fe2b
https://github.com/coreutils/coreutils/commit/611e7e02bff8898e622d6ad582a92f2de746b614
https://github.com/coreutils/coreutils/commit/611e7e02bff8898e622d6ad582a92f2de746b614
http://arxiv.org/abs/1609.08734
http://arxiv.org/abs/1609.08734
https://en.wikipedia.org/wiki/Anytime_algorithm
https://en.wikipedia.org/wiki/Anytime_algorithm

	Abstract
	1 Introduction
	1.1 Overview
	1.2 Contributions

	2 Background
	2.1 A Simple Language
	2.2 Expressiveness
	2.3 Semantics

	3 Problem Statement
	3.1 Representing Changes
	3.2 Semantic Change Impact
	3.3 Dataflow-Based Change-Impact Analysis

	4 Incorporating Change Semantics
	4.1 Anytime Algorithm

	5 Implementation and Evaluation
	5.1 Implementation
	5.2 Evaluation
	5.3 Change-Semantic Aware Analysis
	5.4 Incremental Analysis
	5.5 Representative Examples

	6 Related Work
	7 Conclusions
	References

