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Abstract 
 
 
Unstructured construction sites including incomplete structures and unsecured resources (e.g., 
materials, equipment, and temporary facilities) are among the most vulnerable environments to 
windstorms such as hurricanes. Wind-induced cascading damages cause substantial losses, 
disruption, and considerable schedule delays in construction projects. Moreover, this would 
negatively affect neighboring buildings and interdependent infrastructures (e.g., electric power 
transmission or transportation systems), which triggers serious economic losses in our 
community. Nonetheless, prior works on disaster management mainly focused on post-disaster 
assessment and reconstruction process of built environments, and thus predicting potential risks 
associated with expected disasters for proactive preparedness remain largely unknown. This 
paper presents a new Imaging-to-Simulation framework that can uncover potential risks of wind-
induced cascading damages to construction projects and their negative impacts on neighboring 
communities. The outcomes are expected to benefit our society as it will enhance current 
windstorm preparedness and mitigation plans, which ultimately promote public safety, property 
loss reduction, insurance cost reduction, and raise awareness of ‘Culture of Preparedness’ for 
disasters. 
 
 
INTRODUCTION 
 
Dynamic and complex construction sites including incomplete structures and unsecured 
resources (e.g., materials, equipment, and temporary facilities) are among the most vulnerable 
environments to windstorms such as hurricanes. Wind-induced damages to construction sites 
cause substantial losses, disruption, and considerable schedule delays, and thus negatively impact 
the efficiency of the construction projects. For example, 2012 Hurricane Sandy caused over $185 
million worth of damages to the World Trade Center construction site in New York City 
(Fermino 2013). Moreover, wind-induced cascading damages originated from job sites would 
negatively affect neighboring interdependent infrastructure systems (e.g., electric power 
transmission or transportation systems in dense urban environments), triggering serious injuries 
and casualty as well as economic losses in our community. Failures occurred in construction sites 
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by wind loads can be addressed in the context of (1) primary failures such as structural damages 
to the as-built environments under construction, and (2) functional failures with limited or non-
structural damages (e.g., schedule delay). More importantly, (3) failures outside construction 
sites also can occur as unsecured materials or temporary facilities can become wind-borne debris 
and fly outside of the sites and may seriously injure people or directly damage neighboring 
interdependent infrastructures (e.g., buildings, roads, power pole) as it can trigger cascading 
damages with serious economic losses in our community. Hence, if construction sites are not 
well-prepared for extreme wind-related disasters, their cascading impact will influence beyond 
the construction projects, further affecting our community. 
 
 Current technologies for hurricanes forecasting allows time for preparation to reduce 
their cascading impact on work-in-progress job sites and surrounding communities, which can 
eventually reduce damages and casualties. However, according to extensive face-to-face and 
phone interviews recently conducted by the authors, the current practices of major construction 
companies in the U.S. for securing construction sites from the imminent threat of hurricanes, are 
mostly limited to: (1) performing general extreme weather action plans by contractors or sub-
contractors (e.g., removing materials or bracing equipment), and (2) manually examining the 
sites by code compliance officers to ensure if appropriate precautionary measures are 
implemented to secure the job sites. It is also found that construction companies already collect a 
massive amount of visual data through video recorders and hand-held cameras to document 
conditions of the sites and surrounding areas before wind hazards (e.g., at the hurricane warning 
phase). Nonetheless, code compliance officers rely upon human observation for ensuring all 
precautionary measures taken in large-scale job sites, which are still labor-intensive and 
challenging for construction documentation. The survey results confirm that the cost and 
complexity of inspecting and reporting the current state of construction sites are one of the major 
challenges in establishing adequate preparedness. More importantly, the current practices lack 
understanding hidden risks of wind-induced cascading damages, which prevents stakeholders 
from devising proactive risk mitigation strategies to reduce the vulnerability while increasing 
resilience. In recent decades, hurricane-induced failures could be better understood through 
advances in structural wind engineering, but it has been mostly limited to post-disaster structural 
building response, not in the context of vulnerable job sites and the cascading impacts on 
neighboring communities. 
 A systematic approach to understand and predict wind-induced cascading damages 
originated from unstructured construction environments remains to be developed. The gap in 
achieving such an approach poses a major impediment in reducing or preventing windstorm-
induced physical damages and financial losses to construction projects as well as surrounding 
communities. To this end, by leveraging visual data from both ground and aerial perspectives, a 
new ‘Imaging-to-Simulation’ framework is presented as a new reduced-order analysis that 
couples scalable wind loads to perform multi-physics simulation of multi-body components in 
construction sites. The primary contribution of this research is the advanced fundamental 
knowledge on wind responses of unstructured construction environments, which prevent wind 
hazard events from becoming catastrophic damages to construction projects and neighboring 
communities. This will enable practitioners to proactively plan precautionary measures to lessen 
damages. In the following, we first review related prior works, and look into their challenges. 
Then, each step of the underlying approach is presented with experimental results and findings 
through case studies. 
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RELATED WORKS 
 

The structural engineering practice ensures the assessment and design of buildings and other 
structures to meet the full range of requirements for urban communities to be resilient to extreme 
wind hazards. Hence, design standards such as ASCE 7 Standard have been developed to strictly 
enforce buildings and other systems to be structurally robust under extreme wind speeds and 
generally serviceable under wind loads. In this sense, no major structural damages that may lead 
to collapse have been reported for large engineered buildings during recent major hurricanes 
such as 1983 Alicia, 2005 Katrina and 2012 Sandy. Instead, a series of damage survey and 
analysis including (Cauffman et al. 2006; Xian et al. 2015) have reported that most of damages 
were found on building envelopes due to local wind effects and wind-borne debris. The wind-
borne debris risk assessment has been studied in wind engineering and aerodynamics community 
such as (Lin and Vanmarcke 2008; Wills et al. 2002) as a problem of describing damages that 
might be incurred to buildings by wind-borne debris in a certain speed of wind. However, the 
gap lies in those prior works as they focused mostly on wind-borne debris impacts on the built 
environments in operation, not their construction phase that is the most vulnerable stage over the 
life-cycle due to numerous potential wind-borne debris including incomplete structures and 
unsecured resources and their significant cascading risks to surrounding interconnected civil 
infrastructure systems.  
 Similarly, prior works on disaster management mainly focused on post-disaster 
assessment and reconstruction process of built environments, e.g., post-disaster reconstruction 
processes and stakeholder networks such as (Opdyke and Javernick-Will 2014; Opdyke et al. 
2015); post-hurricane damage assessment using aerial images or light detection and ranging 
(LIDAR) survey such as (Hatzikyriakou et al. 2016; Xian et al. 2015; Ye et al. 2014). Despite 
their benefits, these works lack understanding about potential risks of expected wind hazard 
events to construction projects and surrounding communities, preventing project stakeholders 
from devising proactive risk preparedness and mitigation strategies. Basically, disaster 
preparedness efforts require the potential risk assessment as a fundamental prerequisite to 
efficiently and effectively implement appropriate precautionary measures under given time 
constraints and organizational resources. Yet there is a dearth of research and practices in 
construction site windstorm preparedness and their potential impact.   

IMAGING-TO-SIMULATION FRAMEWORK 
 

A significant proportion of wind-induced damages to construction projects and surrounding 
communities is due to inadequate preparedness. This is largely due to the underestimation of 
potential risks when damages are initiated. To address this challenge, this paper proposes a new 

Figure 1. An overview of the data and the tasks for ‘Imaging-To-Simulation’ framework
for disaster preparedness. 
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simulation fidelity required for engineering applications that are lost in the impulse-based 
approach. Therefore, the iDEM significantly enhances the computational efficiency without 
trading off against the simulation fidelity. As shown, the iDEM simulation rapidly describe a 
chain reaction of large sale multi-body problems while maintaining reasonable physical realism. 
Given a time constraint for analysis (e.g., 3 to 5-days forecast for hurricane), this enables to 
perform more simulations that visualize various failure scenarios. By doing so, we can better 
characterize and understand the extent to how the as-is construction environments and 
surrounding areas are vulnerable to expected wind hazard events. 

The outcomes of visual sensing and analytics along with the experimental results from 
the wind-borne debris assessment are leveraged to model the initial conditions of unsecured 
construction sites for the iDEM simulation. The multi-physics simulation is employed to predict 
the interactive phenomena between multiple physical models, i.e., the interaction between wind 
loads and potential at-risk construction resources through the iDEM simulation coupled with a 
computational fluid dynamics. The wind load is modeled via a fluid velocity field, in which the 
direction and the magnitude at each grid point are updated every time step. The multi-body 
iDEM simulation is then followed to apply the computed wind loads to update individual motion 
of discrete objects and to resolve collisions between the objects in contact.  
 
Ongoing case studies. We have explored each component of the proposed framework. Testing 
the overall performance under real wind hazards is purely depending on weather conditions. To 
leverage the concepts introduced above, in collaboration with International Hurricane Research 
Center, the authors are currently conducting two pilot studies on building projects in Miami, FL 
under 2016 Hurricane Matthew.  
 
CONCLUSION 
 
To enable project stakeholders to devise proactive preparedness and mitigation strategies for 
extreme wind-related events, understanding potential risks of wind-induced cascading damages 
— revealing damage mechanisms to construction projects and surrounding areas — is sorely 
needed, which is the existing knowledge gap given the increasing number and impacts of 
disasters. To this end, by leveraging visual data from both ground and aerial perspectives, a new 
Imaging-to-Simulation framework is presented to uncover potential risks of wind-induced 
cascading damages to construction projects and neighboring communities. By being able to 
rapidly estimate and evaluate potential risks of wind-induced cascading damages originated from 
job sites, the proposed approach can be employed to devise significantly improved windstorm 
preparedness and mitigation plans based on the most likely scenarios that need to be identified 
for effective decision-makings. Future works involve exploring each component of the 
framework and validation on actual job sites under real windstorms situations, which are 
currently being explored as part of our ongoing research.  
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