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Abstract—Security of the smart grid is at risk when the
vulnerabilities of the Electric Vehicle (EV) infrastructure is
not addressed properly. As vehicles are becoming smarter and
connected, their risk of being compromised is increasing. On
various occasions and venues, hacking into smart or autonomous
vehicles have been shown to be possible. For most of the time,
a compromised vehicle poses a threat to the driver and other
vehicles. On the other hand, when the vehicle is electric, the
attack may spread to the power grid infrastructure starting from
the electric vehicle supply equipment (EVSE) all the way up to
the utility systems. Traditional isolation-based protection schemes
do not work well in smart grid since electricity services have
availability constraints and few of the components have physical
backups. In this paper, we propose a Mixed Integer Linear
Programming (MILP) model that jointly optimizes security risk
and equipment availability in the interdependent power and
electric vehicle infrastructure. We adopt an epidemic attack
model to mimic malware propagation. We assume malware
spreads during EV charging when an EV is charged from an
infected EVSE and then travels and recharges at another EVSE.
In addition, it spreads through the communication network of
EVSEs. The proposed response model aims to isolate a subset
of compromised and likely compromised EVSEs. The response
model minimizes the risk of attack propagation while providing
a satisfactory level of equipment availability to supply demand.
Our analysis shows the theoretical and practical bounds for the
proposed response model in smart grid in the face of attacks to
the electric vehicle infrastructure.

Index Terms—Electric vehicle, cyber attack, malware propa-
gation, response model, smart grid.

NOMENCLATURE

O: Set of detected compromised EVSEs.

M : Number of detected compromised EVSEs.

x;: Binary decision variable which equals to 1 if EV.SE; is
kept connected to the network, and O otherwise.

U;(t): Random variable which equals to 1 if EVSE; is
compromised at time ¢, and O otherwise.

Ui;(t): Random variable which equals to 1 if EVSE; is
compromised by FV SE; at time ¢, and 0 otherwise.

V;: Random variable which equals to 1 if a cyberattack
propagates to and compromises £V SE};, and 0 otherwise.
Vijk: Random variable which equals to 1 if a cyberattack
propagated from 'V .SE; and targeting £V SE; compromises
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the kth communication relay between EV SE; and FVSFE;,
and O otherwise.

0;(t): The probability of an EVSE being compromised.

L;: Number of EVs charge at EV SE;.

L;;: Number of EVs charge at FV SE; and move to BV SE;
for recharging.

(: The probability that an attack propagates without being
detected.

n: The probability that an attack propagates through a
communication relay.

~: The probability that an attack compromises the EVSE at
destination.

D;;: Hop distance between EVSE; and EVSE; in the
communication network.

At: Time duration that a propagation attempt takes.

Cj: Number of EVs that can be charged simultaneously at
EVSE;.

p: Unsatisfied demand threshold.

1): Maximum acceptable risk of demand exceeding the
threshold.

W: Maximum threat level of the connected EVSEs.

y;: Variable that is used to linearize the threat level, which
equals to —In(1—0;(KAt)) if EVSE; is kept connected to
the network, and O otherwise.

I. INTRODUCTION

Electric vehicles can pose significant threats to smart grid
if their security vulnerabilities are not addressed properly. The
integration of transportation and power systems may leave
many open doors for hackers, especially in the interconnected
environment, i.e. the electric vehicle infrastructure including
electric vehicles (EVs), electric vehicle supply equipments
(EVSESs), meters and other roadside infrastructure. In fact, a
cyber attack can be launched from any component of the power
or electric transportation systems. If the attack is programmed
to be spread such as the case with a malware or a worm,
then it can propagate further and infect other components,
utility computers and servers of the operator [1]. There are
more than 17,000 electric power substations in the U.S. and
Canada. Each contains a number of electric power devices
including electrical relays, power transformers, phase-shifting
transformers and capacitor banks. Numerous automation and
communication devices are used to measure, monitor, and con-
trol these power grid components [2]. Ensuring all are healthy
and non-compromised is highly challenging. Adding electric
vehicles to the interconnected environment of equipment calls
for robust cyber attack response and readiness strategies.
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The recent Risk Management Process (RMP) guideline
developed by the Department of Energy (DOE), the National
Institute of Standards and Technology (NIST) and the North
American Electric Reliability Corporation (NERC) states that
traditional boundary protection techniques are no longer ef-
fective in the energy sector [3]. With the integration of
Information and Communication Technologies (ICT), attacks
have become more permeable. Attackers can penetrate any part
of the cyber-physical energy infrastructure and recruit agents
which can steer the electrical grid to an unstable state. With the
adoption of electric vehicles, transportation is also relying on
the availability of the power grid. An outage in the power grid
will also incapacitate electric transportation. This becomes a
serious concern for electric public safety vehicles as they also
rely on the power grid. This interdependency makes the smart
grid more attractive for cyber attackers.

This paper proposes a Mixed Integer Linear Programming
(MILP) based approach to minimize security risk and maxi-
mize availability of power and electric vehicle infrastructure.
A preliminary version of this paper has appeared in [4].
However, it does not consider that malware can spread in the
EVSE network. Malware spread in the EVSE network makes
the power grid more vulnerable since they are connected to
protection equipment of the power grid. The previous solution
computes the minimal number of EVSEs to be isolated to
keep the desired level of service, while protecting the grid
from attack propagation. In this paper, we consider that
the cyber attacks propagate through two different ways, i.e.
through EV charging and the EVSE communication network.
During charging, when an EV charges at a compromised
EVSE and recharges at another EVSE, this may cause the
malware to spread. Accordingly threat levels are computed. A
cyber attack can also propagate in the EVSE network where
EVSEs communicate with the service providers. The system
architecture is illustrated in Fig. 1. We assume EVSEs have
wireless connectivity to either small cell or macro cell base
station. They access the charging service provider through
wireless front end which is connected with the routers at
the backhaul. Our objective in this paper is to model such
attacks and propose a response model. Our response model
jointly addresses the availability and risk. Risk is defined as the
product of the magnitude of the potential loss (Consequences)
and the probability that the loss will occur (Threat Levels). The
consequence of an EVSE being compromised depends on the
attacker’s objective and malicious plan. A naive attacker may
insert malicious software that runs at the background and slows
down operation of utility computers whereas an aggressive
attacker may aim for severe damages such as controlling
generators and randomly shutting them off or controlling the
EVSE network and interrupting the power supply to EVs.
Since the consequences of the attack may not be identified
at the time of detection, we consider the worst-case situation
where the attacker aimed for severe damages. Hence, we
minimize the threat levels to mitigate the risk of an attack.
Experimental results show that implementing our proposed
model versus taking no action against threats reduces the
probability of attack propagation significantly. In addition, our
findings directly translate to the management of the integrated

power and EV infrastructure where the trade off between
availability and risk is shown.

EV Charging
Service Provider

g0 9
< oE3

Backhaul

Fig. 1: Overview of system architecture.

There is a wide literature on smart grid security. For
instance, in [5], a game theoretic approach has been utilized to
protect the power grid from cyberattacks. Reliable strategies
have been defined in terms of a budget allocation problem
and solved for single and double attack scenarios. In [6],
the authors have proposed a bilevel mixed integer linear
formulation for optimal load shedding values under threats.
Meanwhile, [7] has considered power grid vulnerability in
cascaded attacks. However, the literature mostly focuses on
one-time attacks implemented on the power grid. In this paper,
we address infectious cyberattacks that initiate from EVs and
spread into EVSE network as well as the power grid.

The paper is organized as follows. In Section II, we present
the state-of-the-art risk mitigation approaches for infectious
cyber attacks. In Section III, the cyber attack propagation
model is described. Section IV presents the proposed opti-
mization response model. The performance of the model is
examined in Section V. Discussions and future research are
discussed in Section VI and the conclusions are reported in
Section VII.

II. RELATED WORK

There is a large literature on smart grid security and
EV infrastructure security. However, fewer works study the
security vulnerabilities that rise from their interdependency.
In [1], the authors have identified that malware infections
can impact upstream equipment in the smart grid, which
includes EVSEs, circuit breakers, transformers, PMUs, utility
computers and so on. The authors have proposed security
certificates as a possible solution. Security certificates are
practical but they can be stolen via a trojan software. In
turn, malicious users can sign malware as legitimate software
and compromise the system. In [8], [9], the authors show
how conventionally secure challenge-response schemes can be
defeated by attackers. Similarly, authentication and jamming
types of attacks have been explored in [10]. Besides Denial
of Service (DoS), switching and unauthorized access attacks,
load and supply alteration and false data alteration attacks have
also been considered in the literature [11]-[17].

Besides modeling the cyberattack propagation, it is also
important to develop a response model to mitigate or at least
slow down attacks. Probabilistic response models have been
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widely studied in the literature [4], [18]-[21]. Recently, multi-
level optimization has been employed as a protection model
where a tri-level defender-attacker-defender model has been
proposed and solved by decomposing the original problem to
bi-level problems [24]. The recent research in cyber security
of power systems deals with attack resilience. [29] considers a
proactive protection approach by linking contingency analysis
to attack analysis. In our previous work [4], which forms
the basis of this paper, we proposed an attack model that
considers propagation only through charging. Based on that,
the response model aims to minimize the number of EVSEs to
be isolated. In the current paper, we extend the attack model
to include malware spread due to communications within the
EVSE network. We also extend the response model to jointly
address risk and availability.

III. ATTACK MODEL

In this section, we estimate the threat levels of the EVSEs
when one or more EVSEs are detected as compromised.
We assume a cyber-attack propagates in the EVSE network
in two ways, i) through EVs charging at different EVSEs
and spreading the attack from one EVSE to another before
detection of the cyber-attack (Type-I), and i) through the
EVSE’s shared communication network after detection of
the cyber-attack (Type-II). Type-I attacks initiate from an
EV and spread to other EVs. Some examples are: malware
downloaded as a software patch from an unreliable source,
or a compromised mobile application that interacts with the
EV and downloads a malware. Type-II attacks initiate either
from EVs or EVSEs, and they spread from one EVSE to the
other. An example scenario comes from a network of charging
stations that share usage data with each other to improve
operator’s service. In a sophisticated attack, a compromised
EVSEs can act like the operator side and send software updates
that are actually malware. This type of attack obviously
requires more sophistication but it is more effective in terms
of compromising the infrastructure.

There are several scenarios to deal with compromised
EVSEs. If an EVSE is detected as compromised, then it will
be taken out of service temporarily until further inspection
and recovery. Recovery is usually done by remotely uploading
patches from a trusted source. Even if the compromised
EVSEs are isolated, other EVSEs can still be compromised
due to interactions with already infected EVs. Another reason
for this post-discovery malware spread is that cyber-attacks
such as viruses and worms sometimes do not activate until they
become sufficiently widespread. Newly compromised, but not
detected, EVSEs continue to further infect the other EVSEs
through the communication network. If the attack propagates
to more EVSEs, it could jeopardize the supply of power to
EVs. The goal of our response model, described in the next
section, is to avoid such situations. We first start with formu-
lating the attack propagation model. The summary of notations
used throughout this paper is given in the nomenclature in the
beginning of the paper.

Let us assume that at time ¢ = 0, M EVSEs are detected
to be compromised while the remaining EVSEs are likely to

3

be compromised but not detected. We represent the likelihood
of an EVSE being compromised (also called threat level) at
time ¢ by the probability 6,(¢). We assume that the threat level
of EVSE j at time t = 0, 6,;(0), is proportional to the number
of EVs moved from detected compromised EVSEs to EVSE j.
Accordingly, the initial threat levels of EVSEs are estimated
as follows.

0;(0) = 1 ¥jieo ()
0;(0) = Pr(U;(0) =1)
= 1—Pr(U;(0) = 0)
= 1- J[ Pr(@i;(0)=0)
€O, it]
= 1- JI @-Pruy©) =1)
i€0,i#]
= 1- [ (1—5%7’) Vi¢ O (2
i€0,i#] v

At the end of the detection horizon, the detected compromised
EVSEs will be taken out of service temporarily. However, the
attack continues to spread through the communication network
as explained before. Let At denote the time that a propagation
attempt takes in the communication network and K At denote
the inspection period [21]. Equation (3) holds to estimate the
threat levels of EVSEs at time ¢ = At.

0;(At) = Pr(U;(At)=1)
= Pr{U;(At) =1|U;(0) = 0)}
x  Pr(U;(0) = 0)
+ Pr{U;(At) = 1|U;(0) = 1)}
x  Pr(U;(0) =1) Vigo (3)

On the right hand side, the second term, Pr(U;(0) = 0), equals
to 1 — 6;(0), the third term, Pr{U;(At) = 1|U;(0) = 1)},
equals to 1 and the last term, Pr(U;(0) = 1),
equals to ¢;(0). The first term of the right hand side,
A =Pr{U;(At) = 1|U;(0) = 0)}, is calculated as follows.

A

1 - Pr{U;(At) = 0[;(0) = 0)}
1-1] (Pr{Uj(At) = 0|U;(0) = 1)})

i
1-— H <1 - 04”91(0)> (4)

e
%

where o; is the probability that the attack propagates from
compromised EV SE; to an uncompromised £V SE; during
the time period of At as given by equation (5). Notice that
in equation (4), complementary probabilities are used. To
calculate A, we need to calculate Pr{U;(At) = 1|U;(0) = 1)}
which represents the probability that EVSE j becomes com-
promised given that EVSE ¢ is compromised. Due to the
statistical dependency of these random variables (Vi # j),
we use complementary probabilities instead and calculate
Pr{U,;(At) = 0|U;(0) = 1)}. This term represents the
probability that EVSE j does not become compromised given
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that EVSE ¢ is compromised. These terms are statistically
independent for all ¢ # j.

Dy
=1) x [[ Pr{Vijr =1}

k=1

ai; = Pr(V;

D;;
vxI]n
k=1

= P i,j¢© (5)

In equation (5), 7 is the probability that an attack propagates
through a communication relay in the communication network
and +y is the probability that a transmitted attack successfully
compromises the EVSE at the destination. D;; is called hop
distance and it is the minimum number of relays that connect
EVSE; and EV SE;. Here, a relay could be a small cell base
station or a macro cell base station in the radio access network,
or a router in the backhaul, as shown in Fig. 1. By replacing
equations (4)-(5) in equation (3), we obtain the threat level of
EVSE; at time t = At, 6;(At), given in equation (6).

0;(At) =1 — (1 - 9j(0)> [[( = ai0:0) vi¢e ()
i¢e
i#£]
The threat levels increase over time until full recovery of the
network. Hence, the general threat level formula is obtained in
a similar fashion as equation (6) and provided in equation (7).

0;(000=1 — H(l—ﬁ%)
A
(nA) =1 — (19 ((nl)At)>

X

( [T (1= 0i(n - 1)) aij))

i2©
Zzséj

Vi¢0;1<n<K()

The formulated attack model and threat levels are used in the
response model as described in the next section.

IV. RISK-BASED RESPONSE OPTIMIZATION MODEL

When a cyber-attack takes place in the EVSEs network,
the usual practice would be to take the detected compromised
EVSEs out of service. In this paper, we propose that the
compromised EVSEs as well as those under high risk of being
compromised will be taken out of service as long as capacity
demand of the EVs can be met. The latter represents EVSEs
that are most likely to be compromised and help spread the
attack, but are not properly detected. Our approach aims to
slow down the propagation pace even further until the network
is fully inspected and recovered.

The proposed response approach is formulated as a mixed
integer linear programming (MILP) model that determines
which EVSEs should be taken out of service such that the
maximum threat level of the EVSEs connected to the network
by the time of inspection is minimized while the risk of lack
of supply is within a certain threshold.

4

After detection alarm goes off, the system operator needs
to spend some time to inspect the network and make sure
the alarm was not false, during which the attack is spreading
in the communication network. Therefore, the threat levels,
calculated by equation (7), need to be modified to consider
disconnection of the likely-compromised EVSEs at the end
of inspection. After inspection, these EVSEs are no longer
connected to the network and cannot propagate the cyber-
attack. The remaining connected and likely compromised
EVSEs will continue to spread the attack until trusted patches
are successfully installed and the network is fully recovered.
We use the binary decision variable, x;, to address the
disconnection of the EVSEs in the threat levels formulation.
Therefore, we can obtain equation (8).

=1 — JL0-5%2)
% 1
0;(nAt) - (1 —0;((n— 1)At)>

X

(H (1—6;((n — 1)At) x oy x xj)>

¢o
ZZ#J

Vi¢0;1<n<K (8)

Equation (8) is nonlinear for n > 1. To represent this equation
linearly, the equivalent equation (10) is derived as follows
using the method described in [21] .

In ( — 0 (nAt > Zln (1 —0;((n— 1)At)aljxj>
i¢O
i#]
+ In (1 —0;((n— 1)At)> )
Notice that In(1—Nz;) = «; In(1—N) where N is a constant

[21]. Therefore, we can rewrite equation (9) in an equivalent
linear fashion given in equation (10).

In ( — 0;(nAt) ) le In (1 —0;((n— 1)At)a”>
i¢O
i#j
+ In (1 —0;((n— 1)At))
The objective function is to minimize the maximum threat

level of all connected EVSEs by the time of inspection,
t = K At. The objective function is given in equation (11).

Z = minmax(0;(KAt) x z;) Vi¢oe (11)
x

(10)

Clearly, the objective function is nonlinear. To represent
the objective function linearly, its equivalent provided in
equation (12) can be utilized [21]. This objective function is
represented by the linear equations (13)-(18).

7 = minmax (—ln(l—Gj(KAt)) X :Cj)

X J

Vi ¢ O (12)

We define y; = —in( 1 — 0;(KAt) | x z; and accordingly

W = max;(y;). Therefore, the objective function can be
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written as equation (13). Moreover, we need constraints, as
given in equations (14)-(18), to represent these new definitions
in a linear fashion.

Z =min W (13)
Subject to:

y; < xj Vi ¢ O (14)
y; < —In(1—0;(KAt)) Vi ¢ O (15)
y; >0 vi¢ e (7
y; < W Vj¢© (18)

Notice that the linear equivalent of —In(1 — 6;(KAt)),
given in equation (10), replaces it in equations (15)-(16).

The objective function tends to disconnect EVSEs which
have positive threat levels. Hence, equation (19) is used to keep
the EVSEs with threat levels less than a threshold value of T}
connected to the network. The threshold value depends on how
risk taker the power system operators are [21].

H.j(KAt) > Tj —Z; Vj ¢ © (19)

To represent equation(19) linearly, we follow the next
steps, discussed in [21], and utilize equation (10) and obtain
equation (23).

1—9j(KAt)<1—Tj + x; (20)

In(1 — 0;(KAt)) < In(1 — Tj + ;) @1)
In(1—6;(KAt)) < (1 —x;)In(l —Tj) + z; In(2 — T})

(22)
€O
i#]
+1n (1 —0;((K — 1)At)>
<(l—z;)In(1 —=Tj) +z;In(2-T;) (23)

Disabling EVSEs from the network may affect the power
supply to EVs, so there should be constraints to ensure that
the risk of unsatisfied demand exceeding a certain threshold
value would be statistically controlled, e.g. the risk of unmet
demand exceeding 10 EVs should be less than 5%.

Pr (DEV - Cjz; > p) <4 (24)

JET

where C} is the number of electric vehicles that can be charged
simultaneously at BV SE;. Dgy is the forecasted demand
for the EV charging stations during the recovery period.
As suggested in [22], [23], we assume that demand is uni-
formly distributed between zero and D, a4, i.e. U(0, Dpax)-
Considering the cumulative uniform distribution function of
F(z) = 57—, equation (25) can be written as follows.

)
ax

5

PT’(DEV — ZC]'SC]' > p> =

JEY
PT’(DEV > p+ ZCjIj) =
JEY
lPr(DEV <p+ chzj) =
JEY
1
1= 5 — <p+ chxj) < (25)
JEY

Equivalently, we can write the supply risk constraint as
equation (26):

Z ng] > Dmaw(l - ¢) - P
i¢e

(26)

V. NUMERIC RESULTS

We test the performance of the proposed model on the 5-
EVSE and 20-EVSE test systems. We use the small test system
to describe the cyber attack propagation problem and our
methodology. We use the larger system to test the efficiency
of our approach.

In our experiments, we assume that a cyber attack to an
EVSE propagates through a relay with probability n = 0.05,
and it effectively compromises the EVSE at destination with
probability v = 0.05 [21]. We set At = 0.5 (s), 8 = 0.1 and
the threshold values to 0.05, T} = 0.05. The inspection time
is set to 2 minutes.

A. 5-EVSE Test System

The 5-EVSE test system is modeled using the EVSE layout
in Potsdam-Canton area of New York where five EVSEs are
located at SUNY at Potsdam (P1), Clarkson University (P2),
Best Western University Inn (C1), Saint Lawrence University
(C2), and SUNY at Canton (C3). Table I shows randomly-
generated proportion of EVs moving between EVSEs. This
impacts the threat level calculation since the likelihood of
being compromised increases for EVs charging at an EVSE,
after a compromised EV has charged at the same EVSE.
Hop distances in the communication network are also ran-
domly generated and provided in Table II. The greater the
hop distance between two EVSEs, the less likely a cyber-
attack propagates from one EVSE to another according to the
propagation probability.

TABLE I: Proportion of EV Movement between EVSEs

EVSE P1 P2 ClI C2 C3 Others
Pl 03 02 02 01 0.15 0.05
P2 02 01 03 0.1 0.1 0.2
Cl1 02 03 02 0.1 0.1 0.1
Cc2 0.1 0.1 0.1 0.1 0.3 0.3
C3 015 01 01 03 02 0.15

Others 0.05 02 0.1 03 0.15 0.2

In this case study, we assume that EVSEs P1 and C1 are
detected as compromised at time ¢ = 0. We use equation (2)
to calculate initial threat levels of EVSEs P2, C2 and C3 at
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TABLE II: Hop Distances in the EVSE network

EVSE PI P2 CI C2 (3
P1 — 1 2 1 3
P2 1 — 2 3 1
Cl 2 2 — 1 1
c2 1 3 1 — 1
C3 3 1 1 1 —

time ¢ = 0, given in equations (27)-(29). Notice that the initial
threat level of EVSE P2 is greater since a higher percentage
of EVs from compromised EVSEs P1 and C1 was recharged
at EVSE P2. Note that EVSEs in Potsdam are tagged by the
letter P and the ones in Canton are tagged by the letter C'.

0p2(0) = 0.04940 27
6c2(0) = 0.01990 (28)
0c3(0) = 0.02485 (29)

At the time of detection, the detected compromised EVSEs
are disconnected from the network. However, the other EVSEs
are likely to be compromised, with probabilities given in
equations (27)-(29), and continue to further infect other EVSEs
through the communication network. Figure 2 shows the threat
level of EVSEs P2, C2 and C3 over time if no further action
is taken. Notice that the threat levels increase nonlinearly and
all EVSEs are compromised with probability 1 in less than 30
minutes. The threat level of EVSE C3 increases at a faster pace
although its initial threat level is not the greatest. The reason
is that its hop distance to the other two likely compromised
EVSEs is shorter in the communication network. Figure 3
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Fig. 2: Threat levels when no action is taken.

shows the impact of 5 which is the probability that an attack
propagates without being detected. We take the threat level
for EVSE P2 as an example for illustration. The same trend is
observed for all other EVSEs. As shown in Fig. 3, the initial
threat levels increase as [ increases. Accordingly, the threat
levels increase at a faster pace since the initial threat levels
are higher.

Figure 4 shows the impact of parameter 1 which is the
probability that an attack propagates through a relay. We again
use EVSE P2 as an example. The threat levels increase at
a faster pace as 7 increases since the chance of successful
propagation from one relay to another increases. The proposed
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Fig. 3: Impact of parameter /3 on threat levels
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Fig. 4: Impact of parameter 1 on threat levels

response model suggests that it is beneficial to disconnect a
subset of likely-compromised EVSEs at the time of inspection
as long as the risk constraint on supply insufficiency is
satisfied. Since there are three likely-compromised EVSEs
in this case, there are eight potential solutions, as shown in
Table III. In this case, we assume that demand is uniformly
distributed between 0 and 10, D,,,. = 10. Also, the risk of
demand exceeding the available capacity by two units is set
to be less than 10%, i.e. p = 2, 1» = 10%. In other words, the
available charging capacity should be greater than or equal to
7 based on equation (26).

Table III shows potential solutions in which the last four
solutions are infeasible due to the constraint on available
capacity. The objective function is to minimize the maximum
threat level. Hence, solution 3, disconnecting EVSEs C2 and
C3, seems to be the best candidate among the remaining
solutions. However, the threat level of EVSE C2 equals to
0.04816 which is less than the threshold value of 0.05. Thus, it
should be kept connected to the network based on the threshold
value constraint, given in equation (19). The next candidate
is solution 4, disconnecting EVSE C3. Solution 4 satisfies
all constraints and is the optimal solution. Figure 5 compares
the threat levels after implementing our optimal solution and
the non-action approach. The threat levels still increase after
implementing the optimal solution but at much lower pace.
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TABLE III: Candidate solution for the 5-EVSEs system
EVSE Candidate Solution
Status 1 2 3 4 5 6 7 8
Tpo 1 1 1 1 0 0 0 0
o9 1 0 0 1 1 0 1 0
o3 1 1 0 0 1 1 0 0
Threat Levels at t=120 seconds
Opo 0.07696  0.07694  0.07675 0.07677 0 0 0 0
Oco 0.04834 0 0 0.04816 0.04834 0 0.04815 0
Ocs 0.07760  0.07749 0 0 0.07743  0.07732 0 0
Max(0;) 0.07696  0.07694  0.07675 0.07677 0.07743  0.07732 0.04815 0
Remaining Capacity 11 10 7 8 4 3 1 0
TABLE V: Hop Distances
1 EVSE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
T — 5 1 4 2 3 3 1 5 3 1 2 5 3 5 1 5 4 4 1
0.9 P2 - Proposed Model O IR S T T S S S
08 F A S S S A S T A
6 |3 2 1 2 2 = s 4 5 4 1 1 3 1 3 5 2 3 2 2
0.7 7 3 4 5 4 4 5 — 4 2 2 2 3 1 3 5 3 1 1 5 5
o 8 1 5 2 1 3 4 4 — 5 4 3 4 5 3 1 3 3 5 1 3
> 0.6 9 5.1 5 5 2 5 2 5 — 4 1 4 3 1 s 1 3 1 1
3 10 3 5 3 2 4 4 2 4 4 —_ 5 2 2 3 4 4 4 3 4 5
508 ooss 3 T T S A U S S S St RS S R
C2 -No Action - b b - o T
£0.41 P2-NoAction DUTS S = ¥ A S TS R R S S S R S
288 9@ ¢ R 8 15 5.3 4 2 2 3 5 1 1 4 3 1 5 3 — 3 3 5 5 3
0.3 16 13 5 3 5 5 3 3 5 4 1 5 2 1 3 — 1 5 4 2
02 €2 — Pronosed Model |33 o2 3 1 3103 o3 o303 o3 o4 ososos 14
- — Fropose odel < - > " y " -
> P2~ Proposed Model L 0 P T U T T AR N N U T O O T S W
0 }
= (=3 [ 2 = = = < = =3
S s ] ] S 2 g g H
s TABLE VI: EVSEs Capacity
EVSE  Capacity | EVSE  Capacity
. . . 1 2 11 3
Fig. 5: Impact of implementing the response model on threat 2 4 12 1
levels 3 3 13 4
4 2 14 1
5 3 15 3
6 1 16 3
7 3 17 2
8 2 18 4
B. 20-EVSE Test System 9 4 19 2
10 1 20 2

The performance of the proposed response model is tested
using 20-EVSE test network. The input data, proportion of EV
movement between EVSEs, hop distances, and charging ca-
pacities are randomly generated and summarized in Table IV,
Table V, Table VI, respectively.

We assume that at time ¢t = 0 EVSEs 1 and 2, arbitrarily
chosen, are detected as compromised and parameter D,,q,
is set to 40. Figure 6 shows the threat levels of EVSEs if
our proposed response model is not implemented. Notice that
the threat level of EVSE 10 is increasing at a slower pace

TABLE IV: Proportion of EV Movement between EVSEs

EVSE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.07 0.03 003 0.07 004 009 005 003 0.03 004 009 003 003 0.05 007 005 007 005 0.01 007
2 003 0.06 005 0.04 002 005 009 002 004 004 002 004 007 0.02 007 002 009 009 0.05 0.09
3 003 0.05 007 0.07 004 002 002 004 0.09 007 006 009 009 0.02 002 007 003 004 0.04 004
4 0.07 0.04 007 0.06 002 009 004 008 0.02 001 006 006 006 0.04 004 004 009 006 0.04 001
5 0.04 0.02 004 0.02 008 0.01 005 004 005 007 005 007 008 007 002 004 005 005 0.08 007
6 0.09 0.05 002 0.09 001 002 003 008 005 008 005 009 006 006 002 002 008 005 0.02 003
7 005 0.09 002 004 005 003 007 004 004 005 006 005 002 0.06 005 007 002 004 0.05 010
8 0.03 0.02 004 0.08 004 008 0.04 005 0.03 003 006 005 003 003 006 005 008 009 0.09 002
9 003 0.04 009 0.02 005 005 004 003 003 002 003 006 008 006 014 002 0.08 002 0.06 0.05
10 0.04 0.04 007 001 007 008 005 003 002 008 002 008 006 002 004 003 007 005 0.02 012
11 0.09 0.02 006 006 005 005 006 006 003 002 006 005 008 005 002 005 008 002 0.02 007
12 0.03 0.04 009 0.06 007 0.09 005 005 006 008 005 001 008 005 002 004 008 002 0.01 002
13 0.03 0.07 009 0.06 008 006 002 003 008 006 008 008 001 002 004 006 007 003 0.02 001
14 005 0.02 002 004 007 006 006 003 006 002 005 005 002 0.02 010 0.02 003 010 0.06 0.12
15 0.07 0.07 002 0.04 002 002 005 006 014 004 002 002 004 010 001 002 003 006 015 0.02
16 005 0.02 007 0.04 004 0.02 007 005 002 003 005 004 006 002 002 007 001 013 015 0.04
17 0.07 0.09 003 0.09 005 008 002 008 0.08 007 008 008 007 0.03 003 001 001 001 001 001
18 005 0.09 004 006 005 005 004 009 0.02 005 002 002 003 010 006 013 001 003 0.04 0.02
19 001 0.05 004 0.04 008 0.02 005 009 006 002 002 001 002 006 015 015 001 004 0.02 0.06
20 007 0.09 004 001 007 003 0.0 002 005 012 007 002 001 0.2 002 004 001 002 0.06 0.03
Sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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comparing to other EVSEs. The reason is that EVSE 10 has
the largest average hop distance and is the only EVSE that
does not have a 1-hop distance with the other EVSEs.

EVSE 10

Threat Level

(= === ! ! ! ! ! !
0 100 200 300 400 500 600 700 800 900
Time (5)

Fig. 6: Threat levels - No Action

We applied our proposed response model and the optimal
solution is provided in Table VII.

TABLE VII: Optimal Solution

Disabled EVSE
1,2,9, 13,17

Objective Function | Available Capacity
0.1581 34

Table VIII shows the impact of the risk parameter ¢ on
optimal solution. The higher the risk of unsatisfied demand,
the lower the maximum threat level of connected EVSEs.

TABLE VIII: Trade-off between supply risk and optimal

solution

. Objective | Available
¥ Disabled EVSEs Function Capacity
0.10 1,2,9,13, 17 0.1581 34
0.15 1,2,4,9, 13,17 0.1545 32
0.20 1,2,4,9, 12,13, 14, 17 0.1312 30
0.25 1,2,4,6,9, 12,13, 14, 17 0.1305 29
0.30 1,2,4,9,11, 12, 13, 14, 17 0.1188 27
050 | 1,2,4,6,7,9,11, 12, 13, 14, 16, 17, 20 0.1008 18
We also examined the impact of inspection time on the

objective function value. The results, represented in Figure 7,
confirm that earlier response to attack will slow down the
propagation more effectively.

Maximum Threat Level

! ! ! !
150 200 250 300 350 400 450 500

Inspection Time (s)

! ! ! ! !
0 50 100

Fig. 7: Impact of inspection time on optimal solution

Furthermore, it is necessary to study how the demand fore-
cast errors affect the trade-off between the objective function
value, the maximum threat level of the connected EVSEs,
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TABLE IX: The impact of demand forecast errors on the
objective function value and EVSEs availability

. . Additional Risk of
Demand Forecast | Objective Function .
Error (%) Infprovement (%) Unsqtlsﬁed Demand
Exceeding Threshold (%)
25.0% 25.4% 18.0%
22.5% 25.4% 16.5%
20.0% 253% 15.0%
17.5% 25.1% 13.4%
15.0% 21.6% 11.7%
12.5% 21.3% 10.0%
10.0% 1.8% 8.2%
7.5% 1.6% 6.3%
5.0% 1.6% 4.3%
2.5% 1.5% 2.2%
0.0% 0.0% 0.0%
-2.5% 0.0% -2.3%
-5.0% -0.3% -4.7%
-7.5% -2.2% -7.3%
-10.0% -16.3% -10.0%
-12.5% -17.0% -10.0%
-15.0% -17.2% -10.0%
-17.5% -17.2% -10.0%
-20.0% -24.9% -10.0%
-22.5% -24.9% -10.0%
-25.0% -24.9% -10.0%

and the risk of unsatisfied demand exceeding the threshold
value. The results, summarized in Table IX, show that when
the chosen D,,,, parameter is greater than the actual max-
imum demand, the objective function value could have been
improved since more EVSEs could have become disconnected
from the network. In contrary, the response model returns a
better objective function value at the cost of more unsatisfied
demand exceeding the threshold value when the chosen D,
parameter is less than the actual maximum demand.

C. Computational Time Analysis

All experiments were performed on a 64-bit laptop with
an Intel Core i5 2.4 GHz processor and 4GB RAM. The
computation time consists of two components, the threat level
calculation and the optimization solver. We used MATLAB
R2012a to calculate the threat levels and IBM ILOG CPLEX
Optimization Studio 12.6 as the optimization solver. For the
20-EVSE test system, the threat level calculations took 7.4
seconds and the optimization was done in 2.8 seconds.

The computational time is important when applying the
proposed model on larger networks. We have tested the
performance of our response model on a larger network with
100 EVSEs and randomly-generated data and studied the
computational time. The threat level calculations took 9.2
seconds and the optimization was done in 3.3 seconds. The
computational time analysis on the larger network shows that
the algorithm can indeed be used for cyber-securing EVSE
networks of practical sizes.

VI. DISCUSSION AND FUTURE RESEARCH

In this section, we clarify the difference between the bad
data and the attacks to EVSE networks studied in this paper.
Bad data attacks usually aim to steer the operations of the
power grid and the EVSE network towards the attackers’
objectives such as setting lower or higher prices and causing
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frequency instability [41]. Our proposed response model will
be effective in dealing with bad data attacks when they are
purposefully designed to spread throughout the network. Bad
data could also happen unintentionally. The unintentional bad
data could be a result of the misconfiguration or malfunction
of devices. Indeed, the unintentional bad data stays local and
does not spread to other components. Hence, this type of bad
data generated by EVs or EVSEs is not identified as an attack
and does not trigger the proposed response method.

In this paper, we assumed that EVSE demand is uniformly
distributed. As stated in [42], the probability density functions
of loads in distribution centers show variations and a specific
distribution may not represent all cases. Our model is still
valid if EVSE demand follows other distribution functions.
In this case, equations (25)-(26) need to be revised as given in
equation (30). F and '~ represent the cumulative distribution
and inverse cumulative distribution functions, respectively.

PT“(DEV SP-i—ZCjwj) >1—-9
JET
F(p—l—Zijj) >1—
JET
p+ZOjIj ZF71(1—¢)
JEY

Y Ciay = F'1—¢) —p

JjEY

(30)

Let’s assume that D gy follows a Poisson distribution function
with the rate parameter of . Considering the two facts that
Poisson is a discrete distribution function and A is a known
parameter, there exist the smallest value J,, such that the Pois-
son cumulative distribution function evaluated at .J,, equals or
exceeds 1 —1). Notice that Jy, becomes a known parameter as
well. Therefore, we can rewrite equation (30) as follows. The
same method can be used to implement our proposed model
where demand follows other distribution functions. As the case
in our experiments, Jy;, equals to D,,q,(1 — 1) when demand
is uniformly distributed.

> Cixy=Jdy—p
JEY

€2y

Furthermore, we have considered the risk parameter v as
a predetermined input parameter to the proposed response
model. In our future work, we will study the idea of integrating
the risk parameter as a tunable parameter to the model such
that the tradeoff decision between the risk and availability will
be considered. We are also planning to extend our attack model
to include EV-to-EV communications and use a more granular
mobility model.

VII. CONCLUSION

Electrical power systems have become more vulnerable to
cyber attacks due to the integration of information and com-
munication technologies. The interdependent electric trans-
portation system and the vulnerabilities in vehicles complicate
the cyber security of smart grid and open up new opportu-
nities for malicious actors. Attackers may compromise loads,

smart meters, transmission and distribution equipment, PMUs,
sensors, computers, Electric Vehicles (EVs), Electric Vehicle
Supply Equipment (EVSEs) and so on. EVs may pose high
risk of security due to a number of reasons. Their mobility,
heavy load, communication capability make them vulnerable
to attacker, they are as well as an ideal tool to implement
infectious attacks.

In this paper, we propose a response model that jointly
minimizes risk and maximizes availability of the smart grid
under infectious attacks initiated from the EV infrastructure.
EV initiated attacks can spread faster than other attacks
due to vehicle-to-infrastructure and intra infrastructure (EVSE
network) communications. The mobility of vehicles play a
critical role in attack propagation. In this paper, we consider an
attack model where malware can spread due to both vehicle-to-
infrastructure and EVSE communications. Using this model,
we propose a response strategy that prevents attacks to prop-
agate further into the power grid. Our proposed response
model is formulated as a Mixed Integer Linear Programming
problem that minimizes the risk of attack propagation while
considering the EV loads, EV threat levels and demand profile
in a certain distribution system. Our results show that, the
proposed response strategy addresses the interdependency of
electric vehicles and smart grid.
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