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A Risk-based Optimization Model for Electric
Vehicle Infrastructure Response to Cyber Attacks

Seyedamirabbas Mousavian, Melike Erol-Kantarci, Lei Wu, Thomas Ortmeyer

Abstract—Security of the smart grid is at risk when the
vulnerabilities of the Electric Vehicle (EV) infrastructure is
not addressed properly. As vehicles are becoming smarter and
connected, their risk of being compromised is increasing. On
various occasions and venues, hacking into smart or autonomous
vehicles have been shown to be possible. For most of the time,
a compromised vehicle poses a threat to the driver and other
vehicles. On the other hand, when the vehicle is electric, the
attack may spread to the power grid infrastructure starting from
the electric vehicle supply equipment (EVSE) all the way up to
the utility systems. Traditional isolation-based protection schemes
do not work well in smart grid since electricity services have
availability constraints and few of the components have physical
backups. In this paper, we propose a Mixed Integer Linear
Programming (MILP) model that jointly optimizes security risk
and equipment availability in the interdependent power and
electric vehicle infrastructure. We adopt an epidemic attack
model to mimic malware propagation. We assume malware
spreads during EV charging when an EV is charged from an
infected EVSE and then travels and recharges at another EVSE.
In addition, it spreads through the communication network of
EVSEs. The proposed response model aims to isolate a subset
of compromised and likely compromised EVSEs. The response
model minimizes the risk of attack propagation while providing
a satisfactory level of equipment availability to supply demand.
Our analysis shows the theoretical and practical bounds for the
proposed response model in smart grid in the face of attacks to
the electric vehicle infrastructure.

Index Terms—Electric vehicle, cyber attack, malware propa-
gation, response model, smart grid.

NOMENCLATURE

Θ: Set of detected compromised EVSEs.

M : Number of detected compromised EVSEs.

xj : Binary decision variable which equals to 1 if EV SEj is

kept connected to the network, and 0 otherwise.

Uj(t): Random variable which equals to 1 if EV SEj is

compromised at time t, and 0 otherwise.

Uij(t): Random variable which equals to 1 if EV SEj is

compromised by EV SEi at time t, and 0 otherwise.

Vj : Random variable which equals to 1 if a cyberattack

propagates to and compromises EV SEj , and 0 otherwise.

Vijk: Random variable which equals to 1 if a cyberattack

propagated from EV SEi and targeting EV SEj compromises
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the kth communication relay between EV SEi and EV SEj ,

and 0 otherwise.

θj(t): The probability of an EVSE being compromised.

Li: Number of EVs charge at EV SEi.

Lij : Number of EVs charge at EV SEi and move to EV SEj

for recharging.

β: The probability that an attack propagates without being

detected.

η: The probability that an attack propagates through a

communication relay.

γ: The probability that an attack compromises the EVSE at

destination.

Dij : Hop distance between EV SEi and EV SEj in the

communication network.

Δt: Time duration that a propagation attempt takes.

Cj : Number of EVs that can be charged simultaneously at

EV SEj .

ρ: Unsatisfied demand threshold.

ψ: Maximum acceptable risk of demand exceeding the

threshold.

W : Maximum threat level of the connected EVSEs.

yj : Variable that is used to linearize the threat level, which

equals to −ln
(
1− θj(KΔt)

)
if EV SEj is kept connected to

the network, and 0 otherwise.

I. INTRODUCTION

Electric vehicles can pose significant threats to smart grid

if their security vulnerabilities are not addressed properly. The

integration of transportation and power systems may leave

many open doors for hackers, especially in the interconnected

environment, i.e. the electric vehicle infrastructure including

electric vehicles (EVs), electric vehicle supply equipments

(EVSEs), meters and other roadside infrastructure. In fact, a

cyber attack can be launched from any component of the power

or electric transportation systems. If the attack is programmed

to be spread such as the case with a malware or a worm,

then it can propagate further and infect other components,

utility computers and servers of the operator [1]. There are

more than 17,000 electric power substations in the U.S. and

Canada. Each contains a number of electric power devices

including electrical relays, power transformers, phase-shifting

transformers and capacitor banks. Numerous automation and

communication devices are used to measure, monitor, and con-

trol these power grid components [2]. Ensuring all are healthy

and non-compromised is highly challenging. Adding electric

vehicles to the interconnected environment of equipment calls

for robust cyber attack response and readiness strategies.
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The recent Risk Management Process (RMP) guideline

developed by the Department of Energy (DOE), the National

Institute of Standards and Technology (NIST) and the North

American Electric Reliability Corporation (NERC) states that

traditional boundary protection techniques are no longer ef-

fective in the energy sector [3]. With the integration of

Information and Communication Technologies (ICT), attacks

have become more permeable. Attackers can penetrate any part

of the cyber-physical energy infrastructure and recruit agents

which can steer the electrical grid to an unstable state. With the

adoption of electric vehicles, transportation is also relying on

the availability of the power grid. An outage in the power grid

will also incapacitate electric transportation. This becomes a

serious concern for electric public safety vehicles as they also

rely on the power grid. This interdependency makes the smart

grid more attractive for cyber attackers.

This paper proposes a Mixed Integer Linear Programming

(MILP) based approach to minimize security risk and maxi-

mize availability of power and electric vehicle infrastructure.

A preliminary version of this paper has appeared in [4].

However, it does not consider that malware can spread in the

EVSE network. Malware spread in the EVSE network makes

the power grid more vulnerable since they are connected to

protection equipment of the power grid. The previous solution

computes the minimal number of EVSEs to be isolated to

keep the desired level of service, while protecting the grid

from attack propagation. In this paper, we consider that

the cyber attacks propagate through two different ways, i.e.

through EV charging and the EVSE communication network.

During charging, when an EV charges at a compromised

EVSE and recharges at another EVSE, this may cause the

malware to spread. Accordingly threat levels are computed. A

cyber attack can also propagate in the EVSE network where

EVSEs communicate with the service providers. The system

architecture is illustrated in Fig. 1. We assume EVSEs have

wireless connectivity to either small cell or macro cell base

station. They access the charging service provider through

wireless front end which is connected with the routers at

the backhaul. Our objective in this paper is to model such

attacks and propose a response model. Our response model

jointly addresses the availability and risk. Risk is defined as the

product of the magnitude of the potential loss (Consequences)

and the probability that the loss will occur (Threat Levels). The

consequence of an EVSE being compromised depends on the

attacker’s objective and malicious plan. A naive attacker may

insert malicious software that runs at the background and slows

down operation of utility computers whereas an aggressive

attacker may aim for severe damages such as controlling

generators and randomly shutting them off or controlling the

EVSE network and interrupting the power supply to EVs.

Since the consequences of the attack may not be identified

at the time of detection, we consider the worst-case situation

where the attacker aimed for severe damages. Hence, we

minimize the threat levels to mitigate the risk of an attack.

Experimental results show that implementing our proposed

model versus taking no action against threats reduces the

probability of attack propagation significantly. In addition, our

findings directly translate to the management of the integrated

power and EV infrastructure where the trade off between

availability and risk is shown.

Fig. 1: Overview of system architecture.

There is a wide literature on smart grid security. For

instance, in [5], a game theoretic approach has been utilized to

protect the power grid from cyberattacks. Reliable strategies

have been defined in terms of a budget allocation problem

and solved for single and double attack scenarios. In [6],

the authors have proposed a bilevel mixed integer linear

formulation for optimal load shedding values under threats.

Meanwhile, [7] has considered power grid vulnerability in

cascaded attacks. However, the literature mostly focuses on

one-time attacks implemented on the power grid. In this paper,

we address infectious cyberattacks that initiate from EVs and

spread into EVSE network as well as the power grid.

The paper is organized as follows. In Section II, we present

the state-of-the-art risk mitigation approaches for infectious

cyber attacks. In Section III, the cyber attack propagation

model is described. Section IV presents the proposed opti-

mization response model. The performance of the model is

examined in Section V. Discussions and future research are

discussed in Section VI and the conclusions are reported in

Section VII.

II. RELATED WORK

There is a large literature on smart grid security and

EV infrastructure security. However, fewer works study the

security vulnerabilities that rise from their interdependency.

In [1], the authors have identified that malware infections

can impact upstream equipment in the smart grid, which

includes EVSEs, circuit breakers, transformers, PMUs, utility

computers and so on. The authors have proposed security

certificates as a possible solution. Security certificates are

practical but they can be stolen via a trojan software. In

turn, malicious users can sign malware as legitimate software

and compromise the system. In [8], [9], the authors show

how conventionally secure challenge-response schemes can be

defeated by attackers. Similarly, authentication and jamming

types of attacks have been explored in [10]. Besides Denial

of Service (DoS), switching and unauthorized access attacks,

load and supply alteration and false data alteration attacks have

also been considered in the literature [11]–[17].

Besides modeling the cyberattack propagation, it is also

important to develop a response model to mitigate or at least

slow down attacks. Probabilistic response models have been
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widely studied in the literature [4], [18]–[21]. Recently, multi-

level optimization has been employed as a protection model

where a tri-level defender-attacker-defender model has been

proposed and solved by decomposing the original problem to

bi-level problems [24]. The recent research in cyber security

of power systems deals with attack resilience. [29] considers a

proactive protection approach by linking contingency analysis

to attack analysis. In our previous work [4], which forms

the basis of this paper, we proposed an attack model that

considers propagation only through charging. Based on that,

the response model aims to minimize the number of EVSEs to

be isolated. In the current paper, we extend the attack model

to include malware spread due to communications within the

EVSE network. We also extend the response model to jointly

address risk and availability.

III. ATTACK MODEL

In this section, we estimate the threat levels of the EVSEs

when one or more EVSEs are detected as compromised.

We assume a cyber-attack propagates in the EVSE network

in two ways, i) through EVs charging at different EVSEs

and spreading the attack from one EVSE to another before

detection of the cyber-attack (Type-I), and ii) through the

EVSE’s shared communication network after detection of

the cyber-attack (Type-II). Type-I attacks initiate from an

EV and spread to other EVs. Some examples are: malware

downloaded as a software patch from an unreliable source,

or a compromised mobile application that interacts with the

EV and downloads a malware. Type-II attacks initiate either

from EVs or EVSEs, and they spread from one EVSE to the

other. An example scenario comes from a network of charging

stations that share usage data with each other to improve

operator’s service. In a sophisticated attack, a compromised

EVSEs can act like the operator side and send software updates

that are actually malware. This type of attack obviously

requires more sophistication but it is more effective in terms

of compromising the infrastructure.

There are several scenarios to deal with compromised

EVSEs. If an EVSE is detected as compromised, then it will

be taken out of service temporarily until further inspection

and recovery. Recovery is usually done by remotely uploading

patches from a trusted source. Even if the compromised

EVSEs are isolated, other EVSEs can still be compromised

due to interactions with already infected EVs. Another reason

for this post-discovery malware spread is that cyber-attacks

such as viruses and worms sometimes do not activate until they

become sufficiently widespread. Newly compromised, but not

detected, EVSEs continue to further infect the other EVSEs

through the communication network. If the attack propagates

to more EVSEs, it could jeopardize the supply of power to

EVs. The goal of our response model, described in the next

section, is to avoid such situations. We first start with formu-

lating the attack propagation model. The summary of notations

used throughout this paper is given in the nomenclature in the

beginning of the paper.

Let us assume that at time t = 0, M EVSEs are detected

to be compromised while the remaining EVSEs are likely to

be compromised but not detected. We represent the likelihood

of an EVSE being compromised (also called threat level) at

time t by the probability θj(t). We assume that the threat level

of EVSE j at time t = 0, θj(0), is proportional to the number

of EVs moved from detected compromised EVSEs to EVSE j.
Accordingly, the initial threat levels of EVSEs are estimated

as follows.

θj(0) = 1 ∀j ∈ Θ (1)

θj(0) = Pr(Uj(0) = 1)

= 1− Pr(Uj(0) = 0)

= 1−
∏

i∈Θ,i �=j

Pr(Uij(0) = 0)

= 1−
∏

i∈Θ,i �=j

(
1− Pr(Uij(0) = 1)

)

= 1−
∏

i∈Θ,i �=j

(
1− β

Lij

Li

) ∀j /∈ Θ (2)

At the end of the detection horizon, the detected compromised

EVSEs will be taken out of service temporarily. However, the

attack continues to spread through the communication network

as explained before. Let Δt denote the time that a propagation

attempt takes in the communication network and KΔt denote
the inspection period [21]. Equation (3) holds to estimate the

threat levels of EVSEs at time t = Δt.

θj(Δt) = Pr(Uj(Δt) = 1)

= Pr{Uj(Δt) = 1|Uj(0) = 0)}
× Pr(Uj(0) = 0)

+ Pr{Uj(Δt) = 1|Uj(0) = 1)}
× Pr(Uj(0) = 1) ∀j /∈ Θ (3)

On the right hand side, the second term, Pr(Uj(0) = 0), equals
to 1 − θj(0), the third term, Pr{Uj(Δt) = 1|Uj(0) = 1)},
equals to 1 and the last term, Pr(Uj(0) = 1),
equals to θj(0). The first term of the right hand side,

A = Pr{Uj(Δt) = 1|Uj(0) = 0)}, is calculated as follows.

A = 1− Pr{Uj(Δt) = 0|Uj(0) = 0)}
= 1−

∏
i/∈Θ
i �=j

(
Pr{Uj(Δt) = 0|Ui(0) = 1)}

)

= 1−
∏
i/∈Θ
i �=j

(
1− αijθi(0)

)
(4)

where αij is the probability that the attack propagates from

compromised EV SEi to an uncompromised EV SEj during

the time period of Δt as given by equation (5). Notice that

in equation (4), complementary probabilities are used. To

calculate A, we need to calculate Pr{Uj(Δt) = 1|Ui(0) = 1)}
which represents the probability that EVSE j becomes com-

promised given that EVSE i is compromised. Due to the

statistical dependency of these random variables (∀i �= j),
we use complementary probabilities instead and calculate

Pr{Uj(Δt) = 0|Ui(0) = 1)}. This term represents the

probability that EVSE j does not become compromised given
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that EVSE i is compromised. These terms are statistically

independent for all i �= j.

αij = Pr(Vj = 1)×
Dij∏
k=1

Pr{Vijk = 1}

= γ ×
Dij∏
k=1

η

= γηDij i, j /∈ Θ (5)

In equation (5), η is the probability that an attack propagates

through a communication relay in the communication network

and γ is the probability that a transmitted attack successfully

compromises the EVSE at the destination. Dij is called hop

distance and it is the minimum number of relays that connect

EV SEi and EV SEj . Here, a relay could be a small cell base

station or a macro cell base station in the radio access network,

or a router in the backhaul, as shown in Fig. 1. By replacing

equations (4)-(5) in equation (3), we obtain the threat level of

EV SEj at time t = Δt, θj(Δt), given in equation (6).

θj(Δt) = 1−
(
1− θj(0)

)∏
i/∈Θ
i �=j

(1− αijθi(0)) ∀j /∈ Θ (6)

The threat levels increase over time until full recovery of the

network. Hence, the general threat level formula is obtained in

a similar fashion as equation (6) and provided in equation (7).

θj(0) = 1 −
∏
i∈Θ
i �=j

(
1− β

Lij

Li

)

θj(nΔt) = 1 −
(
1− θj((n− 1)Δt)

)

×
(∏

i/∈Θ
i �=j

(
1− θi((n− 1)Δt

)× αij)

)

∀j /∈ Θ; 1 ≤ n ≤ K (7)

The formulated attack model and threat levels are used in the

response model as described in the next section.

IV. RISK-BASED RESPONSE OPTIMIZATION MODEL

When a cyber-attack takes place in the EVSEs network,

the usual practice would be to take the detected compromised

EVSEs out of service. In this paper, we propose that the

compromised EVSEs as well as those under high risk of being

compromised will be taken out of service as long as capacity

demand of the EVs can be met. The latter represents EVSEs

that are most likely to be compromised and help spread the

attack, but are not properly detected. Our approach aims to

slow down the propagation pace even further until the network

is fully inspected and recovered.

The proposed response approach is formulated as a mixed

integer linear programming (MILP) model that determines

which EVSEs should be taken out of service such that the

maximum threat level of the EVSEs connected to the network

by the time of inspection is minimized while the risk of lack

of supply is within a certain threshold.

After detection alarm goes off, the system operator needs

to spend some time to inspect the network and make sure

the alarm was not false, during which the attack is spreading

in the communication network. Therefore, the threat levels,

calculated by equation (7), need to be modified to consider

disconnection of the likely-compromised EVSEs at the end

of inspection. After inspection, these EVSEs are no longer

connected to the network and cannot propagate the cyber-

attack. The remaining connected and likely compromised

EVSEs will continue to spread the attack until trusted patches

are successfully installed and the network is fully recovered.

We use the binary decision variable, xj , to address the

disconnection of the EVSEs in the threat levels formulation.

Therefore, we can obtain equation (8).

θj(0) = 1 −
∏
i∈Θ
i �=j

(
1− β

Lij

Li

)

θj(nΔt) = 1 −
(
1− θj((n− 1)Δt)

)

×
(∏

i/∈Θ
i �=j

(
1− θi((n− 1)Δt

)× αij × xj)

)

∀j /∈ Θ; 1 ≤ n ≤ K (8)

Equation (8) is nonlinear for n ≥ 1. To represent this equation

linearly, the equivalent equation (10) is derived as follows

using the method described in [21] .

ln

(
1− θj(nΔt)

)
=

∑
i/∈Θ
i �=j

ln

(
1− θi((n− 1)Δt

)
αijxj

)

+ ln

(
1− θj((n− 1)Δt)

)
(9)

Notice that ln(1−Nxj) = xj ln(1−N) where N is a constant

[21]. Therefore, we can rewrite equation (9) in an equivalent

linear fashion given in equation (10).

ln

(
1− θj(nΔt)

)
=

∑
i/∈Θ
i �=j

xi ln

(
1− θi((n− 1)Δt

)
αij

)

+ ln

(
1− θj((n− 1)Δt)

)
(10)

The objective function is to minimize the maximum threat

level of all connected EVSEs by the time of inspection,

t = KΔt. The objective function is given in equation (11).

Z = min
x

max
j

(θj(KΔt)× xj) ∀j /∈ Θ (11)

Clearly, the objective function is nonlinear. To represent

the objective function linearly, its equivalent provided in

equation (12) can be utilized [21]. This objective function is

represented by the linear equations (13)-(18).

Z = min
x

max
j

(
− ln

(
1−θj(KΔt)

)×xj

)
∀j /∈ Θ (12)

We define yj = −ln

(
1 − θj(KΔt)

)
× xj and accordingly

W = maxj(yj). Therefore, the objective function can be
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written as equation (13). Moreover, we need constraints, as

given in equations (14)-(18), to represent these new definitions

in a linear fashion.

Z = min
x

W (13)

Subject to:

yj ≤ xj ∀j /∈ Θ (14)

yj ≤ −ln
(
1− θj(KΔt)

) ∀j /∈ Θ (15)

yj ≥ −ln
(
1− θj(KΔt)

)− (1− xj) ∀j /∈ Θ (16)

yj ≥ 0 ∀j /∈ Θ (17)

yj ≤ W ∀j /∈ Θ (18)

Notice that the linear equivalent of −ln
(
1 − θj(KΔt)

)
,

given in equation (10), replaces it in equations (15)-(16).

The objective function tends to disconnect EVSEs which

have positive threat levels. Hence, equation (19) is used to keep

the EVSEs with threat levels less than a threshold value of Tj

connected to the network. The threshold value depends on how

risk taker the power system operators are [21].

θj(KΔt) > Tj − xj ∀j /∈ Θ (19)

To represent equation (19) linearly, we follow the next

steps, discussed in [21], and utilize equation (10) and obtain

equation (23).

1− θj(KΔt) < 1− Tj + xj (20)

ln(1− θj(KΔt)) < ln(1− Tj + xj) (21)

ln(1− θj(KΔt)) < (1− xj) ln(1− Tj) + xj ln(2− Tj)
(22)

∑
i/∈Θ
i �=j

xi ln

(
1− θi((K − 1)Δt

)
αij

)

+ ln

(
1− θj((K − 1)Δt)

)

< (1− xj) ln(1− Tj) + xj ln(2− Tj) (23)

Disabling EVSEs from the network may affect the power

supply to EVs, so there should be constraints to ensure that

the risk of unsatisfied demand exceeding a certain threshold

value would be statistically controlled, e.g. the risk of unmet

demand exceeding 10 EVs should be less than 5%.

Pr

(
DEV −

∑
j∈Υ

Cjxj > ρ

)
≤ ψ (24)

where Cj is the number of electric vehicles that can be charged

simultaneously at EV SEj . DEV is the forecasted demand

for the EV charging stations during the recovery period.

As suggested in [22], [23], we assume that demand is uni-

formly distributed between zero and Dmax, i.e. U(0, Dmax).
Considering the cumulative uniform distribution function of

F (x) = x
Dmax

, equation (25) can be written as follows.

Pr

(
DEV −

∑
j∈Υ

Cjxj > ρ

)
=

Pr

(
DEV > ρ+

∑
j∈Υ

Cjxj

)
=

1− Pr

(
DEV ≤ ρ+

∑
j∈Υ

Cjxj

)
=

1− 1

Dmax

(
ρ+

∑
j∈Υ

Cjxj

)
≤ ψ (25)

Equivalently, we can write the supply risk constraint as

equation (26):∑
j /∈Θ

Cjxj ≥ Dmax(1− ψ)− ρ (26)

V. NUMERIC RESULTS

We test the performance of the proposed model on the 5-

EVSE and 20-EVSE test systems. We use the small test system

to describe the cyber attack propagation problem and our

methodology. We use the larger system to test the efficiency

of our approach.

In our experiments, we assume that a cyber attack to an

EVSE propagates through a relay with probability η = 0.05,
and it effectively compromises the EVSE at destination with

probability γ = 0.05 [21]. We set Δt = 0.5 (s), β = 0.1 and

the threshold values to 0.05, Tj = 0.05. The inspection time

is set to 2 minutes.

A. 5-EVSE Test System

The 5-EVSE test system is modeled using the EVSE layout

in Potsdam-Canton area of New York where five EVSEs are

located at SUNY at Potsdam (P1), Clarkson University (P2),

Best Western University Inn (C1), Saint Lawrence University

(C2), and SUNY at Canton (C3). Table I shows randomly-

generated proportion of EVs moving between EVSEs. This

impacts the threat level calculation since the likelihood of

being compromised increases for EVs charging at an EVSE,

after a compromised EV has charged at the same EVSE.

Hop distances in the communication network are also ran-

domly generated and provided in Table II. The greater the

hop distance between two EVSEs, the less likely a cyber-

attack propagates from one EVSE to another according to the

propagation probability.

TABLE I: Proportion of EV Movement between EVSEs

EVSE P1 P2 C1 C2 C3 Others
P1 0.3 0.2 0.2 0.1 0.15 0.05
P2 0.2 0.1 0.3 0.1 0.1 0.2
C1 0.2 0.3 0.2 0.1 0.1 0.1
C2 0.1 0.1 0.1 0.1 0.3 0.3
C3 0.15 0.1 0.1 0.3 0.2 0.15

Others 0.05 0.2 0.1 0.3 0.15 0.2

In this case study, we assume that EVSEs P1 and C1 are

detected as compromised at time t = 0. We use equation (2)

to calculate initial threat levels of EVSEs P2, C2 and C3 at
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TABLE II: Hop Distances in the EVSE network

EVSE P1 P2 C1 C2 C3
P1 — 1 2 1 3
P2 1 — 2 3 1
C1 2 2 — 1 1
C2 1 3 1 — 1
C3 3 1 1 1 —

time t = 0, given in equations (27)-(29). Notice that the initial

threat level of EVSE P2 is greater since a higher percentage

of EVs from compromised EVSEs P1 and C1 was recharged

at EVSE P2. Note that EVSEs in Potsdam are tagged by the

letter P and the ones in Canton are tagged by the letter C.

θP2(0) = 0.04940 (27)

θC2(0) = 0.01990 (28)

θC3(0) = 0.02485 (29)

At the time of detection, the detected compromised EVSEs

are disconnected from the network. However, the other EVSEs

are likely to be compromised, with probabilities given in

equations (27)-(29), and continue to further infect other EVSEs

through the communication network. Figure 2 shows the threat

level of EVSEs P2, C2 and C3 over time if no further action

is taken. Notice that the threat levels increase nonlinearly and

all EVSEs are compromised with probability 1 in less than 30

minutes. The threat level of EVSE C3 increases at a faster pace

although its initial threat level is not the greatest. The reason

is that its hop distance to the other two likely compromised

EVSEs is shorter in the communication network. Figure 3
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Fig. 2: Threat levels when no action is taken.

shows the impact of β which is the probability that an attack

propagates without being detected. We take the threat level

for EVSE P2 as an example for illustration. The same trend is

observed for all other EVSEs. As shown in Fig. 3, the initial

threat levels increase as β increases. Accordingly, the threat

levels increase at a faster pace since the initial threat levels

are higher.

Figure 4 shows the impact of parameter η which is the

probability that an attack propagates through a relay. We again

use EVSE P2 as an example. The threat levels increase at

a faster pace as η increases since the chance of successful

propagation from one relay to another increases. The proposed
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Fig. 3: Impact of parameter β on threat levels

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

T
hr

ea
t 

L
ev

el

Time (s)

η = 0.01

η = 0.03

η = 0.05

η = 0.1

Fig. 4: Impact of parameter η on threat levels

response model suggests that it is beneficial to disconnect a

subset of likely-compromised EVSEs at the time of inspection

as long as the risk constraint on supply insufficiency is

satisfied. Since there are three likely-compromised EVSEs

in this case, there are eight potential solutions, as shown in

Table III. In this case, we assume that demand is uniformly

distributed between 0 and 10, Dmax = 10. Also, the risk of

demand exceeding the available capacity by two units is set

to be less than 10%, i.e. ρ = 2, ψ = 10%. In other words, the

available charging capacity should be greater than or equal to

7 based on equation (26).

Table III shows potential solutions in which the last four

solutions are infeasible due to the constraint on available

capacity. The objective function is to minimize the maximum

threat level. Hence, solution 3, disconnecting EVSEs C2 and

C3, seems to be the best candidate among the remaining

solutions. However, the threat level of EVSE C2 equals to

0.04816 which is less than the threshold value of 0.05. Thus, it

should be kept connected to the network based on the threshold

value constraint, given in equation (19). The next candidate

is solution 4, disconnecting EVSE C3. Solution 4 satisfies

all constraints and is the optimal solution. Figure 5 compares

the threat levels after implementing our optimal solution and

the non-action approach. The threat levels still increase after

implementing the optimal solution but at much lower pace.
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TABLE III: Candidate solution for the 5-EVSEs system

EVSE Candidate Solution
Status 1 2 3 4 5 6 7 8
xP2 1 1 1 1 0 0 0 0
xC2 1 0 0 1 1 0 1 0
xC3 1 1 0 0 1 1 0 0

Threat Levels at t=120 seconds
θP2 0.07696 0.07694 0.07675 0.07677 0 0 0 0
θC2 0.04834 0 0 0.04816 0.04834 0 0.04815 0
θC3 0.07760 0.07749 0 0 0.07743 0.07732 0 0

Max(θj ) 0.07696 0.07694 0.07675 0.07677 0.07743 0.07732 0.04815 0
Remaining Capacity 11 10 7 8 4 3 1 0

P2 – Proposed Model

P2 – Proposed Model

C2 – Proposed Model

Fig. 5: Impact of implementing the response model on threat

levels

B. 20-EVSE Test System

The performance of the proposed response model is tested

using 20-EVSE test network. The input data, proportion of EV

movement between EVSEs, hop distances, and charging ca-

pacities are randomly generated and summarized in Table IV,

Table V, Table VI, respectively.

TABLE V: Hop Distances

EVSE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 — 5 1 4 2 3 3 1 5 3 1 2 5 3 5 1 5 4 4 4
2 5 — 3 4 1 2 4 5 1 5 4 3 2 4 3 3 4 4 5 4
3 1 3 — 5 4 1 5 2 5 3 2 4 5 2 4 5 5 2 3 3
4 4 4 5 — 4 2 4 1 5 2 2 2 1 1 2 3 1 3 5 1
5 2 1 4 4 — 2 4 3 2 4 5 1 1 4 2 5 4 1 4 4
6 3 2 1 2 2 — 5 4 5 4 1 1 3 1 3 5 2 3 2 2
7 3 4 5 4 4 5 — 4 2 2 2 3 1 3 5 3 1 1 5 5
8 1 5 2 1 3 4 4 — 5 4 3 4 5 3 1 3 3 5 1 3
9 5 1 5 5 2 5 2 5 — 4 1 4 3 1 1 5 1 3 1 1
10 3 5 3 2 4 4 2 4 4 — 5 2 2 3 4 4 4 3 4 5
11 1 4 2 2 5 1 2 3 1 5 — 4 1 4 3 1 5 5 5 5
12 2 3 4 2 1 1 3 4 4 2 4 — 1 4 1 5 2 3 1 5
13 5 2 5 1 1 3 1 5 3 2 1 1 — 4 5 2 1 1 2 4
14 3 4 2 1 4 1 3 3 1 3 4 4 4 — 3 1 1 4 5 3
15 5 3 4 2 2 3 5 1 1 4 3 1 5 3 — 3 3 5 5 3
16 1 3 5 3 5 5 3 3 5 4 1 5 2 1 3 — 1 5 4 2
17 5 4 5 1 4 2 1 3 1 4 5 2 1 1 3 1 — 5 4 3
18 4 4 2 3 1 3 1 5 3 3 5 3 1 4 5 5 5 — 4 3
19 4 5 3 5 4 2 5 1 1 4 5 1 2 5 5 4 4 4 — 2
20 4 4 3 1 4 2 5 3 1 5 5 5 4 3 3 2 3 3 2 —

TABLE VI: EVSEs Capacity

EVSE Capacity EVSE Capacity
1 2 11 3
2 4 12 1
3 3 13 4
4 2 14 1
5 3 15 3
6 1 16 3
7 3 17 2
8 2 18 4
9 4 19 2
10 1 20 2

We assume that at time t = 0 EVSEs 1 and 2, arbitrarily

chosen, are detected as compromised and parameter Dmax

is set to 40. Figure 6 shows the threat levels of EVSEs if

our proposed response model is not implemented. Notice that

the threat level of EVSE 10 is increasing at a slower pace

TABLE IV: Proportion of EV Movement between EVSEs

EVSE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.07 0.03 0.03 0.07 0.04 0.09 0.05 0.03 0.03 0.04 0.09 0.03 0.03 0.05 0.07 0.05 0.07 0.05 0.01 0.07
2 0.03 0.06 0.05 0.04 0.02 0.05 0.09 0.02 0.04 0.04 0.02 0.04 0.07 0.02 0.07 0.02 0.09 0.09 0.05 0.09
3 0.03 0.05 0.07 0.07 0.04 0.02 0.02 0.04 0.09 0.07 0.06 0.09 0.09 0.02 0.02 0.07 0.03 0.04 0.04 0.04
4 0.07 0.04 0.07 0.06 0.02 0.09 0.04 0.08 0.02 0.01 0.06 0.06 0.06 0.04 0.04 0.04 0.09 0.06 0.04 0.01
5 0.04 0.02 0.04 0.02 0.08 0.01 0.05 0.04 0.05 0.07 0.05 0.07 0.08 0.07 0.02 0.04 0.05 0.05 0.08 0.07
6 0.09 0.05 0.02 0.09 0.01 0.02 0.03 0.08 0.05 0.08 0.05 0.09 0.06 0.06 0.02 0.02 0.08 0.05 0.02 0.03
7 0.05 0.09 0.02 0.04 0.05 0.03 0.07 0.04 0.04 0.05 0.06 0.05 0.02 0.06 0.05 0.07 0.02 0.04 0.05 0.10
8 0.03 0.02 0.04 0.08 0.04 0.08 0.04 0.05 0.03 0.03 0.06 0.05 0.03 0.03 0.06 0.05 0.08 0.09 0.09 0.02
9 0.03 0.04 0.09 0.02 0.05 0.05 0.04 0.03 0.03 0.02 0.03 0.06 0.08 0.06 0.14 0.02 0.08 0.02 0.06 0.05
10 0.04 0.04 0.07 0.01 0.07 0.08 0.05 0.03 0.02 0.08 0.02 0.08 0.06 0.02 0.04 0.03 0.07 0.05 0.02 0.12
11 0.09 0.02 0.06 0.06 0.05 0.05 0.06 0.06 0.03 0.02 0.06 0.05 0.08 0.05 0.02 0.05 0.08 0.02 0.02 0.07
12 0.03 0.04 0.09 0.06 0.07 0.09 0.05 0.05 0.06 0.08 0.05 0.01 0.08 0.05 0.02 0.04 0.08 0.02 0.01 0.02
13 0.03 0.07 0.09 0.06 0.08 0.06 0.02 0.03 0.08 0.06 0.08 0.08 0.01 0.02 0.04 0.06 0.07 0.03 0.02 0.01
14 0.05 0.02 0.02 0.04 0.07 0.06 0.06 0.03 0.06 0.02 0.05 0.05 0.02 0.02 0.10 0.02 0.03 0.10 0.06 0.12
15 0.07 0.07 0.02 0.04 0.02 0.02 0.05 0.06 0.14 0.04 0.02 0.02 0.04 0.10 0.01 0.02 0.03 0.06 0.15 0.02
16 0.05 0.02 0.07 0.04 0.04 0.02 0.07 0.05 0.02 0.03 0.05 0.04 0.06 0.02 0.02 0.07 0.01 0.13 0.15 0.04
17 0.07 0.09 0.03 0.09 0.05 0.08 0.02 0.08 0.08 0.07 0.08 0.08 0.07 0.03 0.03 0.01 0.01 0.01 0.01 0.01
18 0.05 0.09 0.04 0.06 0.05 0.05 0.04 0.09 0.02 0.05 0.02 0.02 0.03 0.10 0.06 0.13 0.01 0.03 0.04 0.02
19 0.01 0.05 0.04 0.04 0.08 0.02 0.05 0.09 0.06 0.02 0.02 0.01 0.02 0.06 0.15 0.15 0.01 0.04 0.02 0.06
20 0.07 0.09 0.04 0.01 0.07 0.03 0.10 0.02 0.05 0.12 0.07 0.02 0.01 0.12 0.02 0.04 0.01 0.02 0.06 0.03
Sum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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comparing to other EVSEs. The reason is that EVSE 10 has

the largest average hop distance and is the only EVSE that

does not have a 1-hop distance with the other EVSEs.
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Fig. 6: Threat levels - No Action

We applied our proposed response model and the optimal

solution is provided in Table VII.

TABLE VII: Optimal Solution

Disabled EVSE Objective Function Available Capacity
1, 2, 9, 13, 17 0.1581 34

Table VIII shows the impact of the risk parameter ψ on

optimal solution. The higher the risk of unsatisfied demand,

the lower the maximum threat level of connected EVSEs.

TABLE VIII: Trade-off between supply risk and optimal

solution

ψ Disabled EVSEs
Objective
Function

Available
Capacity

0.10 1, 2, 9, 13, 17 0.1581 34
0.15 1, 2, 4, 9, 13, 17 0.1545 32
0.20 1, 2, 4, 9, 12, 13, 14, 17 0.1312 30
0.25 1, 2, 4, 6, 9, 12, 13, 14, 17 0.1305 29
0.30 1, 2, 4, 9, 11, 12, 13, 14, 17 0.1188 27
0.50 1, 2, 4, 6, 7, 9, 11, 12, 13, 14, 16, 17, 20 0.1008 18

We also examined the impact of inspection time on the

objective function value. The results, represented in Figure 7,

confirm that earlier response to attack will slow down the

propagation more effectively.
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Fig. 7: Impact of inspection time on optimal solution

Furthermore, it is necessary to study how the demand fore-

cast errors affect the trade-off between the objective function

value, the maximum threat level of the connected EVSEs,

TABLE IX: The impact of demand forecast errors on the

objective function value and EVSEs availability

Demand Forecast
Error (%)

Objective Function
Improvement (%)

Additional Risk of
Unsatisfied Demand

Exceeding Threshold (%)
25.0% 25.4% 18.0%
22.5% 25.4% 16.5%
20.0% 25.3% 15.0%
17.5% 25.1% 13.4%
15.0% 21.6% 11.7%
12.5% 21.3% 10.0%
10.0% 1.8% 8.2%
7.5% 1.6% 6.3%
5.0% 1.6% 4.3%
2.5% 1.5% 2.2%
0.0% 0.0% 0.0%
-2.5% 0.0% -2.3%
-5.0% -0.3% -4.7%
-7.5% -2.2% -7.3%
-10.0% -16.3% -10.0%
-12.5% -17.0% -10.0%
-15.0% -17.2% -10.0%
-17.5% -17.2% -10.0%
-20.0% -24.9% -10.0%
-22.5% -24.9% -10.0%
-25.0% -24.9% -10.0%

and the risk of unsatisfied demand exceeding the threshold

value. The results, summarized in Table IX, show that when

the chosen Dmax parameter is greater than the actual max-

imum demand, the objective function value could have been

improved since more EVSEs could have become disconnected

from the network. In contrary, the response model returns a

better objective function value at the cost of more unsatisfied

demand exceeding the threshold value when the chosen Dmax

parameter is less than the actual maximum demand.

C. Computational Time Analysis

All experiments were performed on a 64-bit laptop with

an Intel Core i5 2.4 GHz processor and 4GB RAM. The

computation time consists of two components, the threat level

calculation and the optimization solver. We used MATLAB

R2012a to calculate the threat levels and IBM ILOG CPLEX

Optimization Studio 12.6 as the optimization solver. For the

20-EVSE test system, the threat level calculations took 7.4

seconds and the optimization was done in 2.8 seconds.

The computational time is important when applying the

proposed model on larger networks. We have tested the

performance of our response model on a larger network with

100 EVSEs and randomly-generated data and studied the

computational time. The threat level calculations took 9.2

seconds and the optimization was done in 3.3 seconds. The

computational time analysis on the larger network shows that

the algorithm can indeed be used for cyber-securing EVSE

networks of practical sizes.

VI. DISCUSSION AND FUTURE RESEARCH

In this section, we clarify the difference between the bad

data and the attacks to EVSE networks studied in this paper.

Bad data attacks usually aim to steer the operations of the

power grid and the EVSE network towards the attackers’

objectives such as setting lower or higher prices and causing



1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2017.2705188, IEEE
Transactions on Smart Grid

9

frequency instability [41]. Our proposed response model will

be effective in dealing with bad data attacks when they are

purposefully designed to spread throughout the network. Bad

data could also happen unintentionally. The unintentional bad

data could be a result of the misconfiguration or malfunction

of devices. Indeed, the unintentional bad data stays local and

does not spread to other components. Hence, this type of bad

data generated by EVs or EVSEs is not identified as an attack

and does not trigger the proposed response method.

In this paper, we assumed that EVSE demand is uniformly

distributed. As stated in [42], the probability density functions

of loads in distribution centers show variations and a specific

distribution may not represent all cases. Our model is still

valid if EVSE demand follows other distribution functions.

In this case, equations (25)-(26) need to be revised as given in

equation (30). F and F−1 represent the cumulative distribution

and inverse cumulative distribution functions, respectively.

Pr

(
DEV ≤ ρ+

∑
j∈Υ

Cjxj

)
≥ 1− ψ

F

(
ρ+

∑
j∈Υ

Cjxj

)
≥ 1− ψ

ρ+
∑
j∈Υ

Cjxj ≥ F−1(1− ψ)

∑
j∈Υ

Cjxj ≥ F−1(1− ψ)− ρ (30)

Let’s assume that DEV follows a Poisson distribution function

with the rate parameter of λ. Considering the two facts that

Poisson is a discrete distribution function and λ is a known

parameter, there exist the smallest value Jψ such that the Pois-

son cumulative distribution function evaluated at Jψ equals or

exceeds 1−ψ. Notice that Jψ becomes a known parameter as

well. Therefore, we can rewrite equation (30) as follows. The

same method can be used to implement our proposed model

where demand follows other distribution functions. As the case

in our experiments, Jψ equals to Dmax(1−ψ) when demand

is uniformly distributed.∑
j∈Υ

Cjxj ≥ Jψ − ρ (31)

Furthermore, we have considered the risk parameter ψ as

a predetermined input parameter to the proposed response

model. In our future work, we will study the idea of integrating

the risk parameter as a tunable parameter to the model such

that the tradeoff decision between the risk and availability will

be considered. We are also planning to extend our attack model

to include EV-to-EV communications and use a more granular

mobility model.

VII. CONCLUSION

Electrical power systems have become more vulnerable to

cyber attacks due to the integration of information and com-

munication technologies. The interdependent electric trans-

portation system and the vulnerabilities in vehicles complicate

the cyber security of smart grid and open up new opportu-

nities for malicious actors. Attackers may compromise loads,

smart meters, transmission and distribution equipment, PMUs,

sensors, computers, Electric Vehicles (EVs), Electric Vehicle

Supply Equipment (EVSEs) and so on. EVs may pose high

risk of security due to a number of reasons. Their mobility,

heavy load, communication capability make them vulnerable

to attacker, they are as well as an ideal tool to implement

infectious attacks.

In this paper, we propose a response model that jointly

minimizes risk and maximizes availability of the smart grid

under infectious attacks initiated from the EV infrastructure.

EV initiated attacks can spread faster than other attacks

due to vehicle-to-infrastructure and intra infrastructure (EVSE

network) communications. The mobility of vehicles play a

critical role in attack propagation. In this paper, we consider an

attack model where malware can spread due to both vehicle-to-

infrastructure and EVSE communications. Using this model,

we propose a response strategy that prevents attacks to prop-

agate further into the power grid. Our proposed response

model is formulated as a Mixed Integer Linear Programming

problem that minimizes the risk of attack propagation while

considering the EV loads, EV threat levels and demand profile

in a certain distribution system. Our results show that, the

proposed response strategy addresses the interdependency of

electric vehicles and smart grid.
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