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Abstract—This article presents a hybrid architecture to identify intrusive behavior among networked sensors that monitor
critical systems such as environment, medical, and smart grid. Monitoring through sensors is desired for critical applications
such as epilepsy seizures, pollution, power quality assessment, and transformer monitoring. Wireless sensors are being
widely used in critical applications due to their advantages including low-cost, flexibility, and communication efficiency.
However, when sensors are networked to monitor a critical infrastructure such as the smart grid, they become the target
of different types of attackers such as intruders via the communication medium. In order to maintain sensing in a secure
manner, robust architectures are needed to identify intrusive behavior of sensors in a network. In this article, we present
a hybrid architecture to detect intrusive behavior of sensors for both unknown and known intruders. The former requires
anomaly detection, whereas the latter requires signature detection. The proposed architecture consists of two subsystems
that co-operate to detect unknown and known attacks through duty-cycling of enhanced density-based spatial clustering
of applications with noise and random forest methods. Through various tests on real intrusion data, we show that the
proposed architecture has a strong potential to detect both known and unknown intrusive behavior of sensor nodes as the

results show 99.73% detection rate with 98.95% overall accuracy.

Index Terms—Sensor networks, networked sensors, critical infrastructure sensing, security, intrusion detection, wireless sensors.

[. INTRODUCTION

Various types of sensors, such as magnetic, thermal, humidity, and
pressure sensors, can be used in monitoring the healthiness of critical
systems such as public safety, medical and smart grids [1], [2]. Lately,
sensor networks have been used in smart grids as a critical infrastruc-
ture because of their flexibility, self-deployment features and low-cost
[3]-[6]. Reliability and efficiency of the monitored critical infrastruc-
tures like smart power grid can be achieved by secure and reliable data
aggregation and transmission of sensed data. Under such settings, sen-
sors, as well as communication lines that interconnect sensors are vul-
nerable to various cyberattacks and particularly to intrusion that can
interrupt the communication and manipulate the transmitted sensed
data between the end points and distribution links. In addition to the
protection techniques such as authentication and encryption on sensor
data, intrusion detection is also essential for all-inclusive security of
sensor networks to automatically detect different types of intrusions.

In this article, we propose a Hybrid-Intrusion Detection System (H-
IDS) architecture that consists of two subsystems, namely the signature
detection and anomaly detection subsystems. The former uses the
supervised Random Forest (RF) algorithm [7] for known intrusive
behavior whereas the latter uses E-DBSCAN to identify unknown
intrusive behavior [8]. In order to avoid drawbacks and consolidate
the advantages of these two methods, the Hybrid Intrusion Detection
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System (H-IDS) architecture enables both subsystems to duty cycle
in order to identify an anomaly or possible misbehavior at any sensor
in the networks. The proposed architecture implements a hierarchical
trust-based aggregation of sensed data which undergoes one of the two
subsystems. We evaluate the performance of the proposed method
by using real intrusion data which prepared by ACM KDD’99 [9]
on simulations. ACM KDD’99 presents a dataset that was generated
from the Defense Advanced Research Projects Agency (DARPA) was
prepared by ACM KDD’99 (special interest group on Knowledge
Discovery and Data mining 1999 contest). Our results show that by
letting anomaly detection and signature detection subsystems work in
parallel, the detection rate can be enhanced up to 99.73%, while the
accuracy reaches to 98.95%.

II. BACKGROUND AND MOTIVATION

Significant number of studies have adapted data mining techniques
in their intrusion detection solutions for sensor networks [10], [11].
Some of these works addressed known attacks while the others
addressed the unknown attacks. There are several challenges in
both anomaly and signature detection, one of the challenges is the
imbalance intrusion. Some intrusions such as Denial of Service (DoS)
have more connections than other intrusion types such as the User to
Root (U2R) intrusion [7]. Any data mining approach can potentially
decrease the error rate regardless of intrusion types [7]. The authors
in [12] used the specification-based intrusion detection technique
for a secure medical sensing system where the patient’s safety is
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Fig. 1. Proposed hybrid-intrusion detection system (H-IDS)
architecture.
Table 1. Notations Used in the System Model

Simulation parameter Value

Tage Aggregator trust value

Togg. 11 Trust evaluation between node n and aggregator

T, Node n trust value

Var Number of variables for each node

rec Number of records for each variable

Tr number of trees

the vital object. In [13], the authors proposed a hybrid intrusion
detection framework based on random forest and k-means methods.
The proposed system checks anomalies and analyzes signatures
individually. In [14], the authors combined anomaly and misuse
detection and proposed an integrated detection model in which
they adopted Adaboost algorithm with hierarchical structures for
anomaly detection of nodes. To the best of our knowledge, there is no
definite detection method of intruders in sensor networks combining
RF-based signature and E-DBSCAN-based anomaly detection.

Ill. PROPOSED SYSTEM MODEL

We consider a clustered sensor network that consists of a central
server and N clusters each consisting of M sensors. In each cluster,
the Cluster Head (CH) assumes the responsibility of data aggregation
and transmitting the aggregated data to a central server. Each sensor
node forwards its detected data to its CH. Our proposed framework
consists of three modules: 1) CH selection module [15], 2) trust-based
data aggregation module [16], and 3) detection of intrusive sensors via
anomaly and signature detection subsystems, as illustrated in Fig. 1.
As seen in the figure, the aggregated traffic passes through the intru-
sion detection module which consists of two subsystems that operate
in duty-cycled fashion. Among these, anomaly detection subsystem
aims to detect the unknown attacks on sensors whereas the signature
detection subsystem aims to detect the known attacks. In Table 1,
we present the notation that is used in the presentation of the system
model, and the proposed scheme.

Once the sensed data is completely aggregated, it is distributed
over the two detection subsystems following a time-slotted method
such that the first X frames undergo anomaly detection, whereas the
following Y frames undergo signature detection.

The signature detection subsystem in the proposal employs the
random forest algorithm as a supervised classification method to detect

known attacks on the sensors [17]. The random forest algorithm is a
classification technique that consists of a collection of tree-organized
classifiers, in which each tree casts a unit vote for the most popular
class at each input [9].

On the other hand, the anomaly detection subsystem employs the
Enhanced-DBSCAN (E-DBSCAN) algorithm as a clustering tech-
nique. DBSCAN is a density clustering algorithm that regards clusters
as dense regions of objects in the data space which are separated by
regions of low density objects [8]. DBSCAN is a clustering algo-
rithm responsible for finding clusters starting from the nodes density
distribution.

It is worth mentioning that CH selection in Fig. 1 is followed
by trust-based data aggregation prior to distribution between the
anomaly and signature detection subsystems. The trust-based aggre-
gation method used in our tests is based on (1) where T,,, stands for
aggregator trust value, 7, denotes node n trust value, in a cluster of k
sensors. This method is based on the trust evaluation between each CH
and its corresponding nodes inside each cluster. It starts with finding
out the trust values of each node, each CH and the evaluation between
both [16]

k k
Tope = (Z (T, + 1) 5 Tugy, n) / (Z (T, + 1)) W
n=1 n=1

As the proposed system to detect intrusive sensor behavior consists
of two subsystems, its runtime complexity is a function of the complex-
ities of the other two algorithms. The time complexity of Random For-
est can be extracted from decision tree complexity while random forest
considered as a special model of decision trees. The complexity, C for
building decision tree with r records and v variables is formulated in

C (Var, rec)= O (Var +reclog(v)). 2)

In building our random forest, the number of trees at the first step
is Tr whereas the number of variables for each node is Var. C1’ is the
complexity to build a single tree as defined in (3), shown below. By
introducing multiple trees, the total complexity C1 translates into (4),
shown below. When O(log(v)) is assumed as the tree depth, the C1
can be formulated as in (5):

C1' (single tree) = O (Var * rec log (Var)) 3)
C1’ (multitree) = O (Tr * Var * rec * log(Var)) 4)
C1’ (multitree) = O (Tr * Var * rec * depth). 5)

In the second subsystem where E-DBSCAN is run, the complexity
-denoted by C?2 is directed by the number of region query requests.

One query is performed for each point which gives a total runtime
complexity of O(n) < (n.log(n)) [18].

In our analysis and simulation of E-DBSCAN, we found the fol-
lowing executions steps: 1) The initialization step executed one time,
2) the comparison step takes place (m + 1) times, and 3) the incre-
mental step is executed (m) times. Thus, following [8] and [19], the
C2 can be formulated as in

C2 =0 Q2+02m) = 0@m). (©6)

The overall runtime complexity of the system to detect intrusive sen-
sors can be calculated by O((Tr * Var * rec * depth) + (2 + (2 m))).
This leads to the complexity of O(Tr * Var *rec * depth) if
c.(Tr * Var x rec * depth) > (2 + 2 m) for constant c.
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Table 2. Simulation Settings
Simulation parameter Value a'_e" *___*___*____‘h 4
;: "‘”ih_ﬁﬁ g
Number of nodes 20 w I v bl PO
e - -
Number of clusters 4 2 e
Routing protocol H-DSR © 97 1
Packet size 250 bytes = —4-Signature detection subsystem
o £ 96 |-% Anomaly detection subsystem s
Communication range 100 m —I— HJDS
Simulation time 300s 95 ;
Operational area 100 m x 100 m 10 F\?:tio ofiny truzgrs (%) 40 50
Sensor types Temperature sensors ’
Trust range [0.1] Fig. 2. Accuracy rate under the signature and anomaly detection sub-
Attack Types Defined in KDD CUP’99 Dataset systems, and H-IDS.

IV. PERFORMANCE EVALUATION

We evaluate the performance of the proposed system via simulations
under ns-3. We have considered a network of 20 sensors that sense
thermal data and adopt the Hierarchical-Dynamic Source Routing (H-
DSR) protocol [19]. The sensors are spread out in a 100 m x 100
m area and make four clusters. We run each simulation scenario 10
times, and present the average of these runs with 95% confidence level.
These can also be observed in Table 2.

A. Accuracy Rate (AR)

The accuracy rate is the first performance metric we have used to
evaluate the proposed Hybrid Intrusion Detection System (H-IDS) on
critical infrastructure sensors. Accuracy rate refers to the percentage
of the correctly classified instances, which are also denoted by True
Positives (TP) and True Negatives (TN) [20] as shown in (7). FN and
FP are the False Negative and False Positive cases, respectively.

Accuracy = (TP + TN) /(TP + TN + FP 4+ FN).. (@)

Fig. 2 illustrates the accuracy rates for the anomaly detection sub-
system, signature detection subsystem, and the overall Hybrid Intru-
sion Detection System (H-IDS) on the sensors. As shown, the hybrid
model achieves the highest accuracy rate of 98.95%. Anomaly de-
tection achieves better overall accuracy rate since signature detection
achieves less accuracy rates. On the other hand, signature detection
subsystem helps in increasing the overall detection rate, as shown in
the next subsection.

B. Detection Rate (DR)

The detection rate denotes the ratio of sensor behavior that is truly
classified as intrusive. In other words, detection rate denotes the true
positive ratio as formulated in (8), shown below, where FP and TP are
the False Positive and True Positive cases, respectively.

DR = TP/ (TP + FP). 8)

Fig. 3 illustrates the detection rates for the anomaly detection sub-
system, signature detection subsystem, and the overall Hybrid Intru-
sion Detection System (H-IDS) on the sensors. The proposed hybrid
model leads to the highest detection rate in detecting the sensors
that are in intrusive behavior when compared to each of the individual
anomaly detection and signature detection subsystems. Since anomaly
detection results lead to the lowest detection rate, incorporation of the
signature detection subsystem via random forest helps in improving
the detection rate.
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Fig. 3. Detection rate under the signature and anomaly detection sub-
systems and H-IDS.
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Fig. 4. Detection rate under hierarchical and non-hierarchical
topologies.

C. Impact of Clustering Sensors

We also seek the benefit of using hierarchical network topology
through clustering sensors. To implement a non-hierarchical topology,
the system in Fig. 1 is slightly modified by appointing every sensor as
the cluster head of a one-node cluster.

As seen in Fig. 4, by clustering in a hierarchical topology, the
detection rate under a non-hierarchical solution can be reduced by 6%
(under 5% intruder ratio) and by >45% (under 50% intruder ratio).
The reason for this behavior is that the hierarchical topology enables
trust evaluation for the cluster heads which results in trust score-based
data aggregation. Thus, the sensed data that undergoes the H-IDS has
already been fused with a certain trust score.

D. False Negative Rate (FNR)

False Negative (FN) refers to the percentage of intrusive sensor
behavior, which has inaccurately been classified as non-intrusive, as
formulated in (9), shown below, where FN, FP, TN, and TP are the
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Fig. 6. Receiver operating characteristic (ROC) curve for H-IDS.

False Negative, False Positive, True Negative and True Positive cases
respectively.

FNR = FN/ (TP + FN 4 FP + TN).. )

FN is used to define a network’s failure to detect intrusive sensor
behavior under certain situations. In other words, malicious activity
originated by the sensors are not detected or alarmed although and
an alert should have been raised. In our tests, we set 0.5 of data to
be directed to the anomaly detection subsystem while the other 0.5
is directed to the signature detection module. The FN based on this
setting is shown in Fig. 5. By integrating anomaly detection with
signature detection, the overall false negative rate has been reduced
when compared to the case under the signature detection subsystem as
anomaly detection via E-DBSCAN algorithm is capable of detecting
unknown attacks which in turn can reduce FN intruder decisions on
sensed data.

Fig. 6 presents the Receiver Operating Characteristic (ROC) curve
which represents the relationship between the TP rate (Sensitivity)
and the FP rate (1-Specificity) for different cut-off points. The larger
the area under the curve, the better the sensitivity versus specificity
trade-off performance is. Hence, it also confirms that the proposed
H-IDS is capable of providing accurate detection.

V. CONCLUSION

In this article, we have proposed a new hybrid method to detect
sensors that are in intrusive behavior while monitoring a critical in-
frastructure. The proposed methodology consolidates the advantages
of anomaly-based and signature-based intrusion detection, and uses a
trust-based hierarchical framework to aggregated sensor data. In the

arandom forest model whereas the signature detection subsystem em-
ploys E-DBSCAN clustering. Through simulations, we have shown
the effectiveness of the proposed approach by injecting real attack
patterns into wirelessly networked sensors. The overall accuracy of
our model can achieve a success ratio of 98.95% with up to 99.73%
detection rate. False Negatives (FNs) may lead to severe consequences
in such settings; however, our proposed solution can also reduce FNs
that occur under the solely employed anomaly detection mechanism.
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