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Abstract—The past decade has witnessed an explosion of
interest in smart cities in which a set of applications, such
as smart healthcare, smart lighting, and smart transporta-
tion promise to drastically improve the quality and effi-
ciency of these services. The skeleton of these applications is
formed by a network of distributed sensors that captures data,
pre-processes, and transmits it to a center for further processing.
While these sensors are generally perceived to be a wireless
network of sensing devices that are deployed permanently as
part of an application, the emerging mobile crowd-sensing (MCS)
concept prescribes a drastically different platform for sensing;
a network of smartphones, owned by a volunteer crowd, can
capture, pre-process, and transmit the data to the same center.
We call these two forms of sensors dedicated and non-dedicated
sensors in this paper. While dedicated sensors imply higher
deployment and maintenance costs, the MCS concept also has
known implementation challenges, such as incentivizing the
crowd and ensuring the trustworthiness of the captured data,
and covering a wide sensing area. Due to the pros/cons of
each option, the decision as to which one is better becomes a
non-trivial answer. In this paper, we conduct a thorough study
of both types of sensors and draw conclusions about which
one becomes a favourable option based on a given application
platform.

Index Terms—Smart city, smart sensors, dedicated sensors,
non-dedicated sensors, crowd sensing, networked sensors.

I. INTRODUCTION

ECENT smart city application deployments around the

globe include smart transportation [1], smart lighting [2],
smart health [3], smart environment [4], and disaster manage-
ment [5]. Internet of Things (IoT)-driven sensing is a fun-
damental requirement in these applications, which prescribes
a virtual platform of globally uniquely identifiable objects
that have sensing and communication capability [6]. The IoT
framework differs significantly from a traditional Wireless
Sensor Network (WSN), because an IoT sensor lends itself
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Fig. 1. Smart City applications utilize a distributed sensor network composed
of 1) dedicated sensors and ii) non-dedicated sensors.
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well to an IoT-cloud environment where the data can be
acquired and transmitted virtually anywhere and processed in
the cloud, which can be at any virtual location. IoT treats each
sensor as a “virtual object” with an abstracted hardware layer.

While sensors can be deployed throughout the city and
dedicated to a specific sensing task, some of the sensing tasks
can be outsourced to city residents by utilizing their mobile
devices. Although both of these cases are treated as similar
virtual objects in IoT, we define a sensor as dedicated if
it is being used for a pre-specified task (e.g., environmental
sensors deployed within a smart city infrastructure to mea-
sure O and CO; levels [5]). Alternatively, Google’s Science
Journal application [7] and Tresight [8] use embedded
smartphone sensors (e.g., accelerometer, gyroscope, GPS,
microphone, camera) for sensing; we define these built-in
sensors as non-dedicated, because their users do not use them
solely for one application.

Dedicated and non-dedicated sensors differ in terms of cost,
performance, and security. A representative list of each cate-
gory is shown in Fig.1. Dedicated sensors require high deploy-
ment and maintenance costs, while non-dedicated sensors do
not incur these costs, because they are owned and maintained
by the participants of a smart city application that recruit them
on demand [9]. However, volunteer participation is challeng-
ing [10] and the incoherent ad-hoc nature of the non-dedicated
sensor networks necessitates more sophisticated data trans-
mission/allocation solutions, which can degrade application
performance. Understanding their operational characteristics
is crucial in assessing their performance when they become a
part of the IoT virtual sensor network. In this paper, we study
the fundamental characteristics of dedicated and non-dedicated
sensors and investigate their usage in smart city applications.
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Fig. 2.

Smart City applications use dedicated sensors (e.g., environmental measurement and air quality sensors, light sensors, and traffic sensors) and

non-dedicated sensors (e.g., light sensors and accelerometers, which reside in the smartphones of the volunteering residents).

IT. SENSING IN SMART CITY APPLICATIONS
Partially based on IBM’s vision in [11], we classify smart
city applications in seven groups, which are depicted in Fig. 2
and described briefly in this section.

A. Smart Utilities

Smart metering is the basis of smart utilities and has been
globally adopted. While wireless communication networks
and information management systems are reported as crucial
infrastructures to provide information for consumer and utility,
it is reported that networked sensors are emergent to acquire,
aggregate and report the water monitoring and usage data, as
well as leakage detection [12]. Monitoring water resources
requires a multi-sensory data acquisition from underwater
and terrestrial sensors. Sensing and instrumentation aspects
of smart water experience more challenges in comparison to
communications/networking, computing, and control aspects.
For instance, a Radio Frequency (RF)-based mesh system,
which uses Frequency Hopping Spread Spectrum (FHSS) has
been shown to reliably handle communication traffic [13].

B. Smart Lighting

Since the spectral power distribution, spatial distribution,
color temperature, temporal modulation and polarization prop-
erties can be manipulated, the LED-based light sources can
possess communication features and are broadly used in smart
city applications; for example, smart road signs could flash
to warn drivers about the dangers ahead. In another exam-
ple, Visible Light Communication (VLC) [2] makes use of
LED-based smart lighting technology to achieve high-speed
and low-cost wireless communication. It proposes integrating
free-space-optical (FSO) communication using smart lights.

C. Smart Transportation

Smart transportation systems aim at improving a driver’s
comfort and road safety by utilizing the vehicular communi-
cation infrastructure. Since fixed sensors provide only point-
based information on traffic conditions, a large number of

sensors is required for smart transportation systems. The
study in [1] introduces a real-time urban monitoring plat-
form, which is based on movements of anonymous Mobile
Equipment (ME) and uses data in Global System for mobile
communication messages, such as received signal strength.
In typical traffic flow control systems, multiple inductive loop
detectors (ILD) are placed near/under the road to monitor
congestion status and potentially suggest alternate routes to
drivers.

D. Smart Health

Smart health applications can be divided into two cat-
egories [14]: (i) smart assisted-living, to assist residents
with their daily healthcare activities, and (ii) remote
health monitoring (e.g., StressCheck, StressDoctor, Instant
Heart Rate and Smart Runner), which utilizes a set IoT-
enabled sensors to monitor the health status of individuals
continuously [15], [16]. Smart health applications utilize
sensors such as electromyography (EMG), motion and light
sensors, ECG, blood pressure sensors, force sensitive resis-
tor (FSR), accelerometer, passive infrared, and ultrasonic
sensors. These devices can be deployed by users themselves
if they are non-dedicated, or by professional healthcare facil-
ities or hospitals if they are dedicated.

E. Smart Environment

Existing research in smart environment mostly focuses
on smart homes, smart buildings, and smart spaces.
Rashidi et al. [4] propose a system that utilizes motion,
temperature, and hot/cold water usage sensors to moni-
tor the health and life style pattern changes of people.
Fernndez-Caballero er al. [17] utilize cameras and physio-
logical (e.g., electro-dermal and heart rate) sensors to detect
patient’s emotions. The ambient condition is then regulated to
induce a positive mood by adjusting light and sound levels.

F. Smart Parking
Smart parking systems target reducing the economic and
environmental impacts of vehicle parking [18]. They typically
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employ either on-road (such as RFID and Magnetometers)
or off-road sensors (such as light sensors and cameras) [18]
to detect the availability of free parking spaces. Typically,
a cloud-based reservation system is also required to assign
the parking spots to drivers.

G. Smart Grid

Smart grid monitoring using WSNs has been studied exten-
sively; [19] presents a comprehensive survey of Quality-of-
Service approaches in WSNs to ensure minimum delay and
highest reliability in smart grids. A mobile charger-based
framework in [20] addresses RF-based energy transfer and
harvesting solutions to improve the lifetime of WSNs in a
smart grid.

H. Smart Driving

Smart driving includes headway, lane departure warning,
gear change, and acceleration/braking advice [21], to support
driving decisions by collecting raw data from the road envi-
ronment. It uses sensors such cameras, accelerometers, GPS,
as well as systems such as smart transportation and smart
parking systems.

1. Smart Buildings and Communities

Different levels of a smart building are: (i) physical level,
where the community of smart buildings are connected via
power grid, transportation system, wired and wireless net-
working, and (ii) virtual level, at which people and utilities
involved in the community can share, collaborate, and inter-
operate their information. Current smart city projects aim to
create a next generation system for communities, which can
provide social and information services such as shopping,
business, transportation, education, and social events; they
respond intelligently to inhabitants’ demands and needs [22].

III. DEDICATED SENSING

In many smart city applications, a set of sensors that
are deployed throughout the city perform a pre-defined
task continuously. Although some of these sensors can be
shared among multiple applications, generally each application
requires its own dedicated sensors. By dedicating them to a
specific application, the measurement accuracy can be assured,
while the deployment and maintenance costs can be very
high. In this section, we study the characteristics of commonly
deployed dedicated sensors types.

A. Dedicated Sensor Types

A list of sensors —which are used in Smart City
applications— are tabulated in Table I, along with their
applicability to dedicated and non-dedicated sensing platforms.
Every sensor is available in dedicated form and a significant
portion is available in non-dedicated form, as we will detail
in Section IV.
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TABLE I

APPLICABILITY OF SENSORS TO DEDICATED VS.
NON-DEDICATED PLATFORMS

Sensor Dedicated Non-Dedicated
Camera YES YES
RFID YES ACTIVE-ONLY
Air Quality (NOy, O3, CO, etc.) YES YES
Microphone YES YES
Light YES YES
Electromagnetic YES NO

GPS YES YES
Temperature YES LIMITED
Accelerometer YES YES
Humidity YES YES
Barometer YES YES
ECG/Blood pressure YES YES/See Sec. IV-A
Smart Utility YES NO
Smart Grid YES NO

1) Cameras: Fixed or adjustable cameras are considered
to be dedicated sensor as they are owned and controlled by
city administration; they provide real-time videos of traffic
conditions and are the building blocks of smart transportation
by employing image processing algorithms to identify hot
spots in intersections, roads, and bridges as well as vehicle
types, traffic accidents and violations [23]. Cameras are rarely
used in other smart city application.

2) RFID Sensors: These sensors are commonly used in
smart city applications, such as smart parking, due to their
low cost, low power consumption, and ease of deployment.
Especially due to the elimination of the battery, passive RFID
tags [24] reduce maintenance costs substantially and can
be designed to measure temperature, humidity, gas levels,
among many other environmental conditions. Cook et al. [25]
utilize a distributed network of RFID sensors to implement an
individual tracking and tracing system. Each RFID sensor in
this system includes an RFID reader, which reads the RFID
tags assigned to each individual. Each tag is implemented as
a battery-less simple RFID label.

3) Air Quality Sensors: Air quality is typically evaluated
by measuring major pollutants (e.g., O3, SOz, NO,, CO) and
PM2.5 [26]. Smart city air quality sensing can be catego-
rized as outdoor and indoor. City-wide outdoor air quality
sensing is traditionally conducted through satellite sensors
and centralized sensing stations, which are equipped with
accurately calibrated electrochemical gas sensors and particle
counters. However, due to their high deployment cost, few
such stations are deployed in each city (e.g., only ~ 50 stations
in NY State [26]). Postolache et al. [27] employ an array of
inexpensive WSN-connected air quality smart sensors (each
of which includes humidity, temperature, and gas sensors) to
provide localized indoor and outdoor monitoring. To com-
pensate for sensor inaccuracies, they apply machine learning
techniques to collected data.

4) Microphones: Due to their low power requirements and
low cost, microphones are the primary sensors used for
measuring sound in one of its three forms: music, speech,
and day-to-day noises such as sounds of objects falling. In a
smart parking application [28], microphones are used to detect
vehicle presence by comparing ambient noise levels to engine
sounds.
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5) Light Sensors: Due to their solid-state nature, light
sensors provide an inexpensive, small, simple, and ultra low-
power solution for measuring light intensity. Smart lighting is
the niche application for these sensors, where a distributed set
of light sensors are used to intelligently control lighting system
based on ambient light intensity. The smart parking systems
also use light sensors to detect the presence of a vehicle in
a parking spot. However, as the operation of light sensors is
impacted by light sources, directed beams are often utilized to
improve sensor accuracy.

6) Magnetometers: These sensors can measure changes in
their surrounding electromagnetic field, which is typically
caused by presence of metal objects; this makes them suitable
for vehicle detection in smart transportation and smart parking
applications. Inductive Loop Detectors (ILD) are among the
most common magnetic sensors, which consist of a control
unit powering a conductor loop to create an electromagnetic
field around it. The controller senses any changes in the
field. Alternatively, one-axis magneto-resistive sensors can be
deployed to reduce costs since these sensors do not need to
be implanted inside the road. However, due to their sensitivity
to their orientation, they require precise calibration.

7) GPS: Satellite-based Global Positioning System (GPS)
is an effective way for tracking moving objects and stamp-
ing data with location-related information. In the Traffic-
Scan system, detailed in [29], the real-time citywide traffic
status is estimated by processing GPS data collected from
GPS-equipped vehicles. GPS sensors have also been used in
structural condition monitoring applications as complements
to vibration sensors and accelerometers, as they can measure
slow structural movements. The drawbacks of GPS sensors are
their high power consumption and aggravated accuracy caused
by urban canyons and other obstacles [1].

8) Temperature Sensors: As a main parameter in many
smart city applications, temperature can be measured
using thermistors, thermoelectric, semiconductor, and infrared
devices. Alternatively, highly localized temperature measure-
ment can be conducted through low-cost low-power distributed
wireless sensor networks, where the temperature is measured
by semiconductor solid-state sensors.

9) Vibration/Accelerometer Sensors: Vibration sensors are
typically made out of piezoelectric material, have a small
footprint, and are easy to deploy; they are widely used in
various smart city applications such as smart health, smart
transportation [30], and smart infrastructural monitoring.

Bajwa et al. [30] detect the type of the vehicles by process-
ing the collected data from a wireless network of vibration
sensors implanted inside the road. A WSN of vibration sensors
and accelerometers in [31] monitors Golden Gate Bridge
vibrations caused by wind, traffic, and possibly earthquakes.
Vibration of a structure can be measured through distributed
Fiber Optic Sensing (FOS) [32], although the fiber optic net-
work should be built into the structure during the construction
time.

10) Humidity Sensors: Capacitive humidity sensors operate
based on the principal of varied dielectric permittivity due to
humidity and are the most common type of humidity sensors.
Typically used along with other sensors such as thermometers
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and accelerometers, capacitive humidity sensors are deployed
in WSN architectures in smart transportation [33] and smart
home applications [34]. Recently, FOS-based humidity sens-
ing approaches are proposed for structural health monitoring
systems [35]; however, despite their improved accuracy, they
are much more expensive.

11) Barometers: Typically manufactured from piezoelectric
materials, barometers can be used as air pressure or altitude
sensors. Example applications are wildfire detection by sensing
the air pressure using barometers and fall detection using a
Body Area Network of barometers.

12) Electrocardiogram (ECG): Unlike the standard twelve-
lead ECG sensors used in hospitals, majority of smart health
applications utilize either dry or non-contact electrodes [36] to
capture ECG. The wearable ECG sensing system developed
in [37] uses two dry electrodes to measure and transmit
user’'s ECG over a ZigBee communication channel to the
cloud. Regardless of their inferior accuracy, dry electrodes are
preferred in wearable applications because they do not require
any gel; furthermore, non-contact ECGs do not have to make
direct contact with skin, therefore, they are perfect as wearable
devices in health monitoring.

13) Blood Pressure (BP) Sensors: Auscultatory Sphygmo-
manometry (SPM) is the standard clinical procedure, because
it provides the most accurate BP measurement, although it only
provides a one-time measurement. Various low-cost wearable
BP sensors have been proposed in smart health applications.
Walker et al. [38] utilize an automatic SPM to measure
users’ BP. The data are transferred over an 802.15-based
WSN to a central base station, where it can be accessed
by medical staff. The operation of automatic SPM is similar
to Auscultatory SPM, except that a microphone is used to
detect the Korotkoff sounds, thereby eliminating the need for
trained personnel. However, the accuracy of the measurement
is dependent on ambient noise level. Cuff-less approaches
have also been used in the literature using Photoplethys-
mogram (PPG) sensors [39]. Typically used at fingertips,
PPG uses optical signals to estimate BP.

14) Smart Utility Sensors: Smart utility sensors are used in
smart water, gas, and electricity metering and are bidirectional
cloud-connected devices; ad hoc wireless networks of smart
meters are used to collect real-time data about electrical
power consumption of various electric appliances and possible
fracture and leakage incidents in water pipelines. They must
typically meet strict safety and privacy [40] criteria, as they
work directly with critical utilities.

15) Smart Grid Sensors: Smart grids use a wide variety of
sensors that are used for efficient electric power generation and
distribution [41]. These sensors are also used in customer facil-
ities for metering and power saving services [41]. Although
many smart grid sensor applications are grid-connected and do
not have strict power constraints, other challenges including
safety concerns and noisy environment of the grid do exist.

B. Network Connectivity

Network connectivity concerns physical, MAC and network
layers. Small packet size along with limited data rate can lead
to network congestion in nodes near a gateway [42], especially
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in IoT-based WSNs where data tends to arrive in bursts.
Furthermore, due to the heterogeneity and data traffic diver-
sity of IoT-based networks, IEEE 802.15.4 fails to meet
QoS requirements. To make IEEE 802.15.4 more compatible
with IoT, IPv6 over Low power Personal Area Network
(6LoWPAN) is developed as a network layer protocol to
facilitate IEEE 802.15.4 integration with the Internet. Other
IEEE 802.15.4-based WSN protocols also exhibit similar lim-
itations in IoT applications. While ZigBee and WirelessHART
can provide low-power, simple, and short-range communica-
tion, they are susceptible to interference in their highly-utilized
operational frequency of 2.4 GHz.

Bluetooth Low Energy (BLE) V5 is an IoT-centric
WPAN protocol with an emphasis on low-power consumption
(—20 dBm) and low-latency pairing. It can reach a data rate
of 2Mbps using the 2.4 GHz ISM frequency band and GFSK
modulation. Its configurable address field allows BLE to the-
oretically incorporate unlimited number of devices; however,
increased contention imposes a practical limit to its network
size [43]. Its drawbacks include lack of support for mesh
topology and its inability to multicast packets, both of which
are crucial in smart city applications.

IEEE 802.11ah (HaLLow) addresses the limitations of IEEE
802.11ac in IoT applications with the following improvements:
(i) data transfer range is increased to up to 1 km by modifying
the PHY layer (vs. 60 m and 100 kbps in 802.11ac [44]), which
makes it suitable for outdoor smart city applications. These
changes allow operation in 902-928 MHz (vs. 5 GHz for IEEE
802.11ac) ISM band (in the US) and utilize relatively narrower
channel bandwidth (1 MHz). (ii) Operating in less crowded fre-
quency band also reduces interference, facilitating large-scale
delay-critical smart city applications. (iii) The aforementioned
modifications in PHY design along with improvements in the
MAC layer (e.g., implementing Target Wake Time (TWT),
Restricted Access Window (RAW), increased sleep time, and
Bidirectional Transmission Opportunity (TXOP-BDT) [44])
decrease the transmit power to 0dBm (instead of 15dBm
for typical 802.11 devices). (iv) Since 13-bit wide association
identifiers are used in this protocol, up to 8091 stations can
be connected to a single Access Point (AP) [44], provid-
ing support for large-scale smart city applications, (V) to
address the heterogeneity challenge of IoT-based applications,
IEEE 802.11ah is designed to support coexistence with com-
monly used protocols such as 802.15.4. However, its legacy
IEEE 802.11 compatibility remains limited.

LTE-A can outperform many ad-hoc standards as it directly
provides global Internet access and can adjust to any changes
in nodes status and locations. LTE-A, however, is originally
designed for efficient Human to Human (H2H) communica-
tion, and is therefore not the best solution for Machine to
Machine (M2M)-based traffic; however solutions are proposed
in the literature to address this problem [45].

C. Power Supply

Power consumption is the limiting factor for a wide
range of Smart City sensing applications, which directly
affects the capability of the sensors to generate and trans-
mit information. Typically, sensor network designers must
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substantially decrease the sensing frequency, transmission
speed, and range to overcome these limitations. Considering
the power availability, sensing systems can be categorized into
(i) grid-connected or (ii) off-grid applications.

1) Grid-Connected Sensors: These sensors, such as cameras
in traffic monitoring systems, can be powered from the nearby
electric infrastructure, which provides support for high-speed
data transfer through fiber optic cables as well as continu-
ous power. Many smart grid sensors fall into this category,
as they are deployed within the grid itself. Despite their
direct connection to the grid, operational specifications of the
application can still impose a power limit for the system. For
example, the power requirement of the WSN for measuring
the electric power consumption of various appliances cannot
exceed a fraction of the appliance power usage as it affects
the measurement.

2) Off-Grid Sensors: Since the power grid accessibility is
limited in many field deployments, majority of Smart City sen-
sors are deployed as off-grid systems. Furthermore, designers
may prefer off-grid sensors due to their lower costs, simpler
and faster deployment, and wireless operation. Off-grid sens-
ing systems either operate from batteries or harvest their own
energy [46]-[48]. Battery-operated systems are suitable for
ultra-low power sensing node and offer predictable but limited
lifetime. Ambient energy harvesting [24], [49] including solar,
wind, and RF can be used to prolong the lifetime of sensor
networks by replenishing the energy storage buffer of the
sensor nodes. Ambient energy harvesting, however, adds to
system’s complexity and cost. Various power management
techniques, such as sleep management and duty cycling [50]
are applied to different components of the systems to increase
power efficiency.

D. Scalability

The IoT concept envisions the connectivity of massive
amount of objects (i.e. sensors, RFID tags, etc.). To prevent
heavy data traffic from interrupting the normal operation of the
entire system and causing the networking component to be the
point of failure, hierarchical routing schemes can be adopted.
In hierarchical routing, some of the nodes are chosen to act
as supervisors and/or gateways of the network whereas flat
routing treats all nodes as identical entities that serve the same
networking services. To ensure scalability, the network can be
divided into several clusters; within each cluster, a Cluster
Head (CH) is selected as the data aggregator, which provides
inter- and intra-cluster communication. Dividing the network
into clusters substantially decreases the data traffic within the
network, thereby improving its scalability at the expense of
limited actual network size [51].

E. Network Control

Network control is a function of network manage-
ment and configuration, scalability, energy, routing, mobility
localization, interoperability and security [52]. Similar to
communication networks, decoupling control and data-related
functionalities can help to address these issues. Software
defined sensor nodes enable reconfiguration of the dedicated
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sensors’ functionalities in case of a change in the sensing
demand profile; the intelligence of network control is split
from data plane devices and implemented in a centralized
controller, which can be an operating system or formed
by distributed clusters and is primarily responsible for the
optimization of the usage of network resources. Decoupling
the sensing and network control planes provides simpler
network management, easy introduction of newer services,
and paves the path towards Sensing as a Service (S*aaS),
which is a cloud-inspired management model of networked
non-dedicated [53], as we further detail in Section IV.

F. External Dedicated Sensors

Dedicated sensing can be implemented through external
sensors, which are owned by the city and distributed among
volunteers for a specific application; volunteers decide when,
where, and how to use the sensing nodes. The sensors transmit
the aggregated data through user’s smartphones, thereby incur-
ring no cost on Smart City administrators. External dedicated
sensing reduces the system controllability; however, it can lead
to significant drop in deployment and maintenance costs in
certain applications. In the Citisense [54] application, small
wearable air quality sensors are distributed among volunteer
to collect local air quality information for personal health care
applications.

IV. NON-DEDICATED SENSING

Table I indicates that a significant percentage of the smart
city sensors are available in non-dedicated form, as briefly
introduced below.

A. Non-Dedicated Sensor Types

1) Cameras: Pictures and videos collected from cameras
are utilized in many applications such as real-time traffic
surveillance, motion capturing, and monitoring in living assis-
tance [55]. Location-tagged photos/videos can also be used
in geo-imaging and landmark-based route finding, as well as
virtual reality applications [56]-[58].

2) RFID: The battery-constrained devices like mobile
phones possess the function of NFC and other sensing abil-
ities [59], which belongs to non-dedicated sensing, so we
marked the RFID sensors in Table I as ACTIVE-ONLY under
non-dedicated sensing.

3) Air Quality: Certain air components such as O3z, SO,
NO,, CO and PM2.5 can be detected by air quality sen-
sors [26]. Air quality sensors in devices such as handheld
monitors [60] and mobile phones [61] can provide substantial
and real-time information in terms of air quality and other
environmental related information.

4) Microphone: The existence of microphone within all
phones makes it suitable to determine daily activities, loca-
tions, and social events.

5) Light Sensors: Smart phones measure the ambient bright-
ness using embedded light sensors. Another type of light
sensor is the proximity sensor, which consists of an infrared
LED and an IR light detector.

IEEE SENSORS JOURNAL, VOL. 17, NO. 23, DECEMBER 1, 2017

6) GPS: Smart phones integrate information from the GPS
chip with wireless networking to ensure fast and accurate
positioning and navigation, which can be used in social
networks, local search, and other location based services [62].
In [63], the SmartRoad utilizes mobile phone GPS sensors
data for assisted-driving and navigation system.

7) Temperature Sensors: Ambient temperature can be mea-
sured by the thermometer sensor inside a phone. However, not
all the phones are equipped with this type of sensors, hence
it is marked as "LIMITED" in Table I.

8) Accelerometers: Accelerometer data (orientation, posi-
tion) is critical in motion capture and movement monitoring;
examples of which include recognizing people’s activities such
as running, walking, and standing still. Furthermore, vehicular
motion such as braking and bumps can be detected, which can
be of assistant in smart transportation [64].

9) Humidity: Sensing humidity is important, because
humidity can have a negative performance effect on smart-
phone electronics. Besides ambient humidity, sensing data
can be acquired by high-resolution distributed sensors via
Bluetooth, as introduced in [65].

10) Barometer: Barometer data can be utilized to identify
the altitude of the object, which can always be used to assist
GPS to improve the accuracy of positioning, especially indoor
positioning. In [66], barometer sensors are employed to detect
vertical activities with high detection accuracy.

11) ECG/Blood pressure: Smart watches and other wear-
able devices can be equipped with ECG and blood pressure
sensors to continuously measure people’s body condition,
especially the elderly, which facilitates the smart environmen-
tal sensing of smart city applications.

B. Network Connectivity

Deployment of mobile sinks equipped with short-range
communication capabilities could enable delay-tolerant sens-
ing applications [67]. However, as delay-tolerant and delay-
sensitive services co-exist in smart city applications, mobile
sink-based connectivity may not be the ideal strategy.
Although deploying sensor nodes that are equipped with
cellular radio interfaces can enable real time data collection,
they may lead to high operational costs, short lifetime, and
high transmission power. Indeed, that type of implementation
would be dedicated, and the applications can be re-engineered
in a non-dedicated manner by having built-in sensors of smart
devices provide their sensed data to a cloud service through the
communication interface of the hosting device. An example is
crowd-sensing in vehicular networks, in which sensed data is
delivered to any nearby roadside unit [68]. Similarly, when
built-in sensors of smart handheld devices are utilized as non-
dedicated sensors, the sensed data is provided as a service to a
remote cloud platform via cellular edge connectivity or WiFi.

C. Power Consumption

Geo-mapping of non-dedicated sensors is a crucial issue;
cloud services can access and cooperate with the non-
dedicated GPS sensors. Despite the high accuracy of GPS in
reporting location as compared to WiFi or other types of cel-
lular signaling, it is one of the most power hungry ones among
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non-dedicated sensors. Deactivating the GPS as much as
possible has been introduced as a viable solution. Furthermore,
probabilistic coverage models, as well as enhanced mobility
prediction techniques would assist improving GPS-less mobile
phone sensing. According to [69], non-dedicated GPS-less
sensing can address covering maximum number of sensing
phenomena while providing fairness among hosting devices
of non-dedicated sensors in terms of energy consumption.

D. Scalability

Scalability problem arises due to the existence of a large
set of non-dedicated sensors and their selection criteria, such
as reliability, sensing accuracy, residual battery, battery usage
efficiency, and location. In [70], Context-Aware Sensor Search
and Selection and Ranking Model (CASSARAM) selects non-
dedicated sensors in a model as follows: (i) Select the require-
ments, (ii) search eligible sensors, (iii) index the devices based
on proximity-based user requirements, and (iv) rank sensors
based on the likelihood scores obtained through weighted
user priorities and proximity-based user requirements.
CASSARAM receives the number of sensors requested and the
requester’s requirements as the inputs, and forms a query based
on the user requirements, based on a previously built ontology,
which has all sensor descriptions and context definitions. Upon
obtaining the list of sensors that could meet the point-based
requirements, requester’s priorities are assigned appropriate
weights, and for each sensor, a likelihood index is obtained in
the multi-dimensional space. Finally, the sensors are sorted
based on their ranking values, and the first n sensors are
assigned the sensing tasks, where n is the number of sensors
requested. Scalability is also a concern for the data analytics
platforms where acquired data is submitted [71].

E. Feasibility Study

We conducted a comparative study between dedicated vs.
non-dedicated sensors. We obtained the dedicated sensor value
as a S5-minute average of a Google Nexus 9 tablet sound
sensor. We simulated the non-dedicated value of N =1---50
non-dedicated sensors in smartphones by assuming a terrain
where the sensors are distributed as shown in Fig 3 (left)
and introduced an additive Gaussian noise to the sensors
based on their distance. On the right hand side, we present
the average sound level under different non-dedicated sensors
with 95% confidence intervals. Each point in the on-dedicated
plot represents the average of 100 runs. Beyond 30 sensors,

the aggregated non-dedicated sensor data becomes identical to
that of the dedicated sensor data.

F. Network Control

Non-dedicated sensing may refer to opportunistic sensing,
participatory sensing (i.e., crowdsensing) or social sensing
where citizens serve as sensors. Benefits of opportunistic/
participatory or social sensing can be listed under three main
categories, namely public, business, and government benefits.
The value of the collaboratively sensed data, as well as the
rewards to be made to the users for providing their sensors
as a service form the public benefits. Business benefits are
mostly related to the capital expenditures [72]. Thus, non-
recurring expenses are eliminated at the expenses of recurring
costs due to recruitment of the non-dedicated sensors. From
the governments’ standpoint, variety and coverage of smart
services (i.e. smart utilities, lighting, transportation, health,
environment, parking and power) can be improved without
increasing non-recurring expenses. Yet no regulations or stan-
dards has been set for networked non-dedicated sensors.
Therefore, the smart services provided by the governments are
experiencing a slower pace of progress in comparison to the
enterprise-level adoption. Despite its benefits, non-dedicated
sensing calls for effective solutions to ensure data usefulness
and trustworthiness without violating the security/privacy of
the users of devices that incorporate non-dedicated sensors.

G. Built-in Non-Dedicated Sensors

Non-dedicated sensing-based storage, management, and
integration of predictive big data analytics into sensed-data
using built-in sensors is expected to be a major research field
in the coming decade. Participants act as service providers in
crowdsensing campaigns by only offering their smart devices
that are equipped with built-in sensors, e.g., GPS, cam-
era, accelerometer, gyroscope and microphone. These devices
will potentially become an integral part of the Internet of
Thing (IoT) sensing in smart cities. Heterogeneity of sensors
and sensing platforms introduce the problem of usefulness and
trustworthiness of sensor data. Data correlation-based sensor
fusion algorithms are used to enhance the reliability/validity of
crowdsensed data, remove outliers, and assess the trustworthi-
ness of the collected data [73]. Furthermore, the non-dedicated
sensing in smart cities calls for holistic approaches that build
on estimation theory, reputation systems, deep learning, and
information fusion. As security and privacy raise as crucial
concerns from the users’ standpoint, continuous identification
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and authentication via behaviometrics is a recently emerging
concept, based on behavioral traits obtained through built-in
sensors (e.g., mobility and keystrokes). To avoid identification
through behaviometrics, anonymization, obfuscation, and path
cloaking algorithms have been proposed.

V. OPEN ISSUES AND CHALLENGES
A. Smart Metering

As mentioned in the related work [74], getting consumers’
portraits in the building by deploying indoor power metering
nodes and providing context-aware building automation are
two key directions. Besides, voltage control is vital for power
systems, but the impact of high penetration of DG (distributed
generation) on voltage control makes it harder to control
steady voltages. Future research needs to address possible
usage of data communication system in the OLTC (on-load
tap-changer) voltage control strategy to cope with the problems
brought by DG.

B. Smart Grid

In [75], challenges of smart grid are investigated and
we can make the following conclusions for sensing-related
issues: (i) forecasting and scheduling issues for availability of
energy sources, (ii) development of standards in interfacing
smart grid monitoring data, and (iii) leveraging software to
minimize expense and time in monitoring the smart grid
through networked sensors. Furthermore, smart meters are
vulnerable to hackers, which makes energy cost manipulative
to hackers. Possible leakage of energy use data might also
expose information about consumers’ behaviors [76].

C. Smart Lighting

Challenges that are listed by the related work can be
summarized as follows [77]: (i) illumination versus communi-
cation, small spacing between LEDs and more LEDs required
by lighting against complication of communication system,
(i) mobility and Line-Of-Sight (LoS) alignment managing,
because of scarce LSO alignment availability, (iii) higher
layer integration, which requires more research into FSO
modules, can be utilized to attain a network capable of angle-
of-arrival detection, and (iv) design of solid state device, which
needs exploration of new modulation schemes and illumination
approaches.

D. Smart Transportation

As mentioned in [1], to gain a comprehensive view of the
traffic status in smart transportation, a large number of sensors
is required, which in turn introduces the scalability challenge.
Furthermore, GPS may increase the capital expenditures as it
should be installed on many cars. Moreover, it does not work
well in urban areas due to the presence of urban canyons.
Although mobile cellular networks are not as accurate as GPS,
taking advantage of their ubiquity in both urban and rural
locations is a viable future direction. Furthermore, identifying
useful patterns that are received from sensory data remains an
important challenge for the researchers in this field.
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E. Smart Parking

Deployment of dedicated sensors in every parking spot is
expensive; hence, non-dedicated sensing is a viable solution.
GPS, Bluetooth, and user status detection lack accuracy, and
the network of built-in sensors is mostly sparse due to the
smartphone apps not being used by all drivers. Therefore,
future work needs to address these challenges. Combining
real-time and historical is a possible direction that can be
immediately taken. Future research should also address the
trade-off between efficient-real time sensor data aggregation
and capital-operational expenses. Coping with the performance
dependence on the number of participants [78] also remains a
crucial challenge.

F. Smart Environment

Combining WSN and RFID in the smart home has
been an assumption in smart environment studies. Future
work should address co-existence of RFID and WSNs and
processing/qualification assessment of data received from both
environments.

G. Smart Utilities

The battery lifetime of the smart meters may introduce
limitations to data usage in terms of quantity and frequency.
Future work should implement energy optimization method-
ologies. Van Gerwen et al. [79] report that smart meters
may also provide additional power related services, controlling
energy usage of appliances and assist consumers to change
their energy behavior. It may be possible to build a virtual
power plant considering local generation of electricity. On the
other hand, the cost of extra parties may increase; secondly,
it is uncertain to quantify the benefits which might cause
the investment to be risky. Considering all these problems,
it is suggested that it is crucial to participate in international
standards and coordinate related rules and laws to fix the
energy policy problem.

VI. SUMMARY AND CONCLUDING REMARKS

In this paper, we summarize well-established smart city
applications and investigate their usage of distributed sensor
network. We classify these sensors into two main categories,
dedicated and non-dedicated: the former designates sensors
that are purposed for a specific application, while the latter
is formed by volunteering participants using their smart con-
nected devices. We start with a feasibility study —using real
sensing data collected by smart tablets— for one example
sensor type, namely microphones to measure sound levels,
which is available in both forms. We show that although for
a single non-dedicated sensor the measurements deviate up to
10%, they get closer as the number of non-dedicated sensors
increase and the deviation drops down to < 1%. We show that
while all sensors are available in dedicated form, nearly two
thirds are available in non-dedicated form. Based on our com-
prehensive survey, which followed a feasibility study of non-
dedicated sensor usage, we argue that non-dedicated sensors
provide a viable alternative to future smart city applications.
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