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Abstract—In emerging distribution systems with a proliferation
of distributed energy resources (DER) and flexible demand
assets, operation characters of the unbalance network and
voltage regulation devices need to be accurately addressed for
ensuring the secure and economic operation. This paper focuses
on the modeling and solution approach of AC optimal power flow
(ACOPF) for unbalanced distribution systems with DERs and
voltage regulation transformers (VRT). The ACOPF problem is
formulated as a chordal relaxation based semidefinite
programming (SDP) model, and a tighter convexification model
of VRTs is proposed for mitigating solution inexactness.
Analytical conditions are presented and proved to determine
whether global optimal solution to the original ACOPF problem
can be retrieved from solutions of the chordal relaxation based
SDP model. Numerical studies on modified IEEE 34-bus and
8500-node systems show that the proposed approach presents a
better computational performance as compared to rank
relaxation based SDP approaches and general nonlinear solvers.

Index Terms—Chordal relaxation, distribution ACOPF, SDP,
unbalanced three-phase distribution system, voltage regulation.

NOMENCLATURE
Indices:
d, g Index of loads/DERs
m,n Indices of buses
(n,m) Index of line or ideal transformer connected

with bus n and m
s Index of static var compensators (SVC) and
static synchronous compensators (STATCOM)

b, p, Y Indices of phases

Sets and Vectors:

B Set of buses

D,F Set of flexible loads/ constant power loads

e? Standard basis vector of R3V+KX1 ywith the

Gn+ D", Bn+2)" , and (Bn+3)™"
elements being “1” for phases a, b, and c,
respectively. R is the set of real numbers

¢ Standard basis vector of R3*1, ie., [100]7/
[0 10]7/[0 0 1]7 for phase a/b/c

Q

G R Set of conventional DERs/renewable DERs
L Set of lines

S Set of SVCs and STATCOMs

T Set of ideal transformers

p Set of phases, i.e., ¥ = {a, b, c}

Q, Set of buses that are connected to bus n
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0 Matrix/vector with all zeros

Variables:

Iz)l’m) Line current on phase ¢ of line (n,m) € £

P0¢, Qg) Real/reactive power injection at phase ¢ of the
distribution substation bus (indexed as 0)

Py, Q4 Real/reactive power withdraw of flexible load d

By, Qq Real/reactive power injection from DER g

P,;p , P,f: Active power transmitted through phase ¢ of
ideal transformer (n,m) € T

Q,‘f s Qf:l Reactive power transmitted through phase ¢ of

ideal transformer (n,m) € T
Qs Reactive power injection of SVC/STATCOM s

Tm Tap ratio of ideal transformer (n,m) € T

Vn¢ Complex voltage at phase ¢ of bus n

\% Vector of complex voltage variables, i.e.,
V= [V Vob Vo - Visr VI\II)+T V15+T]T

Constants:

Coefficients of benefit function for flexible load
d

Cg25 Cg1> Cgo  Coefficients of cost/tariff function for DER g
N, K Total number of buses/VRTs

PF Power factor

bd29 bdla de

Py, Q4 Real/reactive power of a fixed load d € F

v, Given voltage values of the distribution
substation bus, i.e., Vo = [V¢ V2 V&7

Sq* Maximum apparent power limit of the invertor
for renewable DER g € R

min max Lower/upper bound of a certain parameter

Symbols:

diag(*) Diagonal sub-matrix

tr(?) Trace

rank(-) Rank

Ol Transpose

o) Conjugate

O% Conjugate transpose

[T Magnitude/determinant

I. INTRODUCTION

merging distribution systems are envisioned to include a

deeper penetration of distributed energy resources (DER)
and flexible demand assets. DERs provide electricity locally in
distribution systems, which could reduce real power losses,
promote energy sustainability, enhance resiliency, and defer
generation and transmission upgrades. However, they also
present new challenges to distribution system operations.
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Specifically, unlike traditional distribution systems with
unidirectional power flows, a proliferation of DERs creates
bidirectional power flows in emerging distribution systems
and in turn their optimal dispatch is of crucial importance. In
addition, with high resistance to reactance ratio, voltage
magnitudes of distribution systems are also sensitive to real
power injections of DERs, and a deeper penetration of DERs
could cause voltage rise issues [1].

In order to address such challenges, AC optimal power flow
(ACOPF) models and solution approaches are of crucial
importance to the secure and economic operation of emerging
distribution systems. Indeed, it has been recommended by the
National Academies of Sciences that ACOPF models should
be developed and tested with optimization algorithms, for
reducing the risk of voltage collapse and enabling the effective
utilization of existing line capacities [2].

ACOPF problem of distribution systems is nonlinear and
nonconvex because of the quadratic relationship among
voltages and real/reactive power injections of three phases at
individual buses. Early works on ACOPF explored different
mathematical models including linear programming (LP),
quadratically constrained quadratic programming (QCQP),
and nonlinear programming (NLP), as well as various solution
algorithms such as Lagrange relaxation, interior point method,
and heuristic approaches. General purpose NLP solvers have
also been applied to solve ACOPF problems. Among them, LP
based models present the best computational performance in
terms that the global optimal solution can be effectively
obtained, even for large-scale systems; however, LP based
models by approximating AC power flows inevitably contain
considerable errors, especially for distribution systems with
high R/X ratios and untransposed line segments. On the other
hand, QCQP and NLP based models can accurately simulate
the nonlinear relationship among voltages and real/reactive
power injections of three phases at individual buses in the
distribution system; however, computational efficiency and
solution quality remain to be major concerns, especially when
applied to large-scale distribution systems [2].

Recently, convex relaxation techniques are explored for
obtaining global optimal solutions to the ACOPF problem of

the transmission network with a high computational efficiency.

Semidefinite relaxation was first introduced in power system
applications by X. Bai et al. in [3]. A well-cited pioneering
paper [4] built up the theoretical basis for applying
semidefinite relaxation to the ACOPF problem. In the ACOPF
problem, the semidefinite relaxation technique is referred to as
“rank relaxation” [4]-[5], which explicitly indicates that the
rank constraint has been removed in the convexified ACOPF
model. In addition, the chordal relaxation technique was
introduced by R.A. Jabr in [6]-[7], and applied to large-scale
transmission network ACOPF problems in [8] for improving
the computational performance. In [9]-[10], ACOPF problem
of the transmission network was formulated as a polynomial
optimization problem and solved by a hierarchy of moment
relaxation based semidefinite programming (SDP) models.
Although high-order moment relaxation is tighter than rank
relaxation, the computational burden easily becomes
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intractable which inspired a sparse moment relaxation
approach for improving the computational performance [10].
However, above mentioned works all targeted at transmission
systems, in which three phases are balanced.

Convex relaxation techniques have also been applied for
solving distribution ACOPF problems. ACOPF of balanced
radial distribution networks was modeled as a second-order
conic programming (SOCP) problem [11], which was solved
via interior point method in polynomial time. The SOCP
formulation in [11] was further extended to meshed networks
in [12]. Reference [13] proposed a branch flow model and a
conic relaxation technique for ACOPF of radial distribution
systems, which can guarantee solution exactness only if load
over-satisfaction is allowed. Reference [14] formulated
ACOPF of balanced distribution systems as a rank relaxation
based SDP problem, and presented similar load over-
satisfaction condition for guaranteeing solution exactness.
Pareto-front of the injection region of electricity networks was
studied in [15], in order to obtain global optimal solutions to
ACOPF for radial topology.

However, existing studies [11]-[15] exclusively neglect the
inherent unbalance in network topology, which is common in
low-voltage distribution networks with unbalanced three-
phase loads, untransposed line segments, and single-/two-
phase laterals. Different from balanced systems, coupling
between three-phase currents cannot be offset in unbalanced
distribution systems, and in turn solutions to balanced ACOPF
fail to provide insightful operation instructions. Thus,
unbalanced ACOPF models and solution approaches are in
urgent need. Recently, ACOPF of unbalanced distribution
systems was formulated as a rank-relaxed SDP model in [16],
which was solved via the alternating direction method of
multipliers (ADMM) algorithm. Reference [17] extended the
branch flow model to three-phase systems and solved the
problem by the ADMM algorithm. In addition, our previous
work [18] applied the moment relaxation approach to the
ACOPF problem of unbalanced distribution system, for
deriving distribution locational marginal prices.

Bus voltage profile is also a critical concern commonly
faced by distribution system operators. Several technologies,
such as voltage regulation transformers (VRT), static var
compensators (SVC), static synchronous compensators
(STATCOM), and shunt capacitor banks, could help maintain
voltage levels of load buses within an acceptable range.
References [19]-[20] formulated ACOPF of unbalanced
distribution systems as a rank-relaxed SDP model while
considering VRTs. However, it is observed that solutions in
[19]-[20] are usually of high rank and infeasible to the original
ACOPF. The main reason is that a VRT separates the
distribution system into two sub-networks, while voltage
phase angle difference between primary and secondary buses
of a VRT is not properly constrained in the rank-relaxed SDP
model [19]. An alternative VRT model to mitigate solution
inexactness was proposed in [20], by directly connecting
primary and secondary buses of a VRT via a pseudo branch.
However, admittance values of pseudo branches are system-
specific, which needs to be tuned carefully for deriving a
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proper rank one solution. That is, if the admittance value is too
small, the derived solution will be similar to the one without
pseudo branch and in turn still inexact. While a large
admittance would induce significant power flow on the pseudo
branch, and the solution quality will be significantly
compromised.

From existing literature we notice that: (i) prior convex
relaxation based models for ACOPF problems, such as the
rank relaxation, moment relaxation, and chordal relaxation
based SDP models as well as the SOCP models, mainly target
at three-phase balanced transmission and/or distribution
systems; and (ii) assets in distribution systems, such as VRTs,
are not accurately modelled and properly integrated. However,
distribution systems, especially the low voltage distribution
networks, are characterized with highly unbalanced network
configurations and a wide variety of assets, which invalid the
balanced models in practical applications.

This paper focuses on the ACOPF problem of unbalanced
radial distribution systems with voltage regulation devices,
including VRTs, SVCs, STATCOMs, and shunt capacitor
banks. Two types of DERs are studied, in which conventional
DERs are directly connected to the AC distribution network
while renewable DERs such as photovoltaics are connected
via inverters. The unbalanced ACOPF problem determines the
optimal operation of DERs, flexible demand assets, and
voltage regulation devices, in order to minimize the total
operation cost. Structure of the unbalanced ACOPF problem is
mapped into a chordal graph, and the unbalanced ACOPF
problem is formulated as a chordal relaxation based SDP
model [7], [21]. Additionally, a tighter convexification model
of VRTs is introduced for mitigating solution inexactness.
Case studies illustrate computational efficiency of the
proposed approach as compared to rank relaxation based SDP
approaches and general NLP solvers.

Major contributions of this paper include:

1) The proposed unbalanced ACOPF model accurately
simulates operational characters of various assets in
distribution systems, including conventional DERs,
inverter interfaced renewable DERs, flexible loads, fixed
loads, and various voltage regulation devices.

2) The unbalanced ACOPF problem is formulated as a
chordal relaxation based SDP model by exploring problem
structure, which improves the computational performance
as compared to rank relaxation based SDP approaches and
those directly solved by general NLP solvers.

3) A tighter convexification model for VRTs is explored to
mitigate solution inexactness. Analytical conditions are
presented and proved to determine whether global optimal
solution to the original ACOPF problem can be retrieved
from solutions of the chordal relaxation based SDP model.

The rest of the paper is organized as follows. Device models
and the unbalanced ACOPF problem are presented in Section
II. The chordal relaxation based SDP model of unbalanced
ACOPF and a tighter convexification formulation of VRTs are
discussed in Section III. Numerical case studies are presented
in Section IV, and the conclusions are drawn in Section V.
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II. ACOPF FOR UNBALANCED DISTRIBUTION NETWORK

Unbalanced radial wye-connected distribution systems with
three-conductor grounded or four-conductor multi-grounded
neutral are considered. In such systems, impedance matrices
of lines and three-phase wye-wye solidly grounded VRTs can
be written as 3x3 phase frame matrices. Admittance matrix of
line (n,m) € L can be simulated as a 3x3 phase frame
complex matrix ¥, .,y . For single- and two- phase lines,
elements corresponding to missing phases in Y ;, ,,) are zeroes.

A. Modeling of Loads and DERs

Both fixed loads, including constant power loads (CPL) and
constant impedance loads (CIL), and flexible loads are
studied. A CPL d € F is modeled via fixed real and reactive
power demands P; and Q;. A CIL is modeled by a 3x3
impedance matrix shunted at the connecting bus, which can be
combined into impedance matrix of the distribution system.

Equation (1) represents the benefit function of a flexible
load d € D, which measures the monetary benefit in terms of
satisfaction or happiness that a consumer achieves by
consuming electricity. Intuitively, benefit function denotes the
consumer’s willingness to pay for the electric energy
consumption [22]. Benefit functions can be modeled as
quadratic, logarithmic, or exponential functions [22]. In this
paper, the quadratic function (1) is considered, in which b,,
b41, and by, are quadratic, linear, and constant parameters. A
flexible load d can adjust its real and reactive power ouputs
within specified regions (2), which are also restricted by the
power factor limit (3). The power factor limit (3) represents
the requirement for reducing the non-productive reactive
power from the utility.

Bd(_Pd)=bd2'P§+bd1'Pd‘|fbdo (D
P"" < Py < P Q7" < Qq < Q'™ 2
Plen Plelx
Q<P < —"—0 (3)
1—(PF£'"") 1-(PFJ%)

Both conventional DERs (e.g., diesel and natural gas
generator) and renewable DERs (e.g., wind and photovoltaics)
are considered. Operation cost of a conventional DER g € G
is represented as in (4). Real/reactive power limits and power
factor limit are shown as in (5)-(6), respectively. The power
factor limit (6) represents active power and reactive power
boundaries within which the conventional DER can operate
safely.

C ( ) = Cgp + Cg1 Py +cgo 4)

Pgmm S Pg S Pgmax ; Q;nm S Qg S Q;nax (5)
PFan PFmax

= <P < g (6)

[1-(pFminy® % 1-(pFax)?

Renewable DERs are commonly connected to the AC
distribution network via inverters. The energy feed-in tariff
function of a renewable DER g € R is represented as in (7),
where parameter 7, represents inverter power loss factor. In
current distribution systems, instead of directly owning
renewable DERs, it is a common practice that utilities
purchase electricity from renewable DER owners (such as
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third parties or residential customers) through power purchase
agreements (PPA) [23]. PPAs usually provide long-term fixed
prices (i.e., feed-in tariff) to renewable DER owners for
selling their excessive electricity. Real and reactive power
outputs of a renewable DER g are constrained by real power
limit (8), power factor limt (9), and inveter capacity limit (10).

Cg(_Pg) =Cor- [(1 + ng) ' Rq] (7
Pgmm S Pg S Rgmax (8)
Plen PFma_x
=0y < < ——= ©)
1-(PFgM™) 1-(PF§H*¥)

(10)

B. Modeling of Static Capacitor Banks, SVCs, and STATCOMs

Two types of reactive power compensation devices are
studied. A static capacitor bank provides specific capacitance
shunted at a bus, which can be modeled via a 3x3 impedance
matrix and combined into admittance matrix of the
distribution network. SVCs and STATCOMs can inject or
withdraw reactive power at connecting buses while not
involving real power, which is modeled as in (11).

Q"™ < Qs < Q"

C. Modeling of VRTs

A VRT is modeled as an ideal transformer in series with an
impedance [20], as shown in Fig. 1. The primary side of the
ideal transformer is connected at bus n, and the secondary side
is connected at a virtual bus m. The equivalent circuit is based
on three assumptions: (i) exciting current is ignored; (ii) with a
nominal tap ratio, winding resistance and leakage reactance
referred to the secondary side are constants; and (iii) tap ratio
is considered as a continuous decision variable to keep
ACOPF as a differentiable NLP problem. In addition, three-
phase tap ratio variables for a VRT are considered to be
identical [24].

An ideal transformer (n, m) € T can be modeled as in (12)-
(13). Constraint (12) indicates that VRTs only change voltage
magnitudes but not voltage phase angles of secondary buses.
Furthermore, an ideal transformer separates the distribution

B+ QG = (55

(1)

system into two parts, while Pn¢', P,f and Qf: , Qfl represent the
real and reactive powers transmitted through the ideal

transformer. That is, Pn¢ and QZ’ is regarded as a pseudo load

at the primary bus, while P,f and Qf,’l is treated as a pseudo
generation source at the secondary bus. Constraint (13)
ensures that the active and reactive power inflows are equal to
the outflows through an ideal transformer.

4 m AMA—!
-rl —0f f Ideal transformer }P,,'f' Q,'z Y

Fig. 1 Equivalent circuit of a voltage regulation transformer

Tam” Vnd) = Vrf ; rrf%n < Tam < r‘rgl‘rgx (12)
P?=P%; Q2 =0qp (13)

D.ACOPF of Unblanced Three-phase Distribution Systems
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For an N-node distribution system (including the
distribution substation bus indexed as 0) with K VRTs, the
equivalent system by substituting VRTs via circuits in Fig. 1
includes (N+K) buses, i.e., N original buses and K virtual
buses. In turn, the system three-phase nodal admittance matrix
Y € C3WHD3WHK) can be constructed according to the
distribution network topology and 3x3 phase frame matrices
of individual assets. Ynd_),’,f is an element of Y corresponding to
phase ¢ of bus n and phase p of bus m.

The total complex power withdrawn from CILs, capacitor
banks, and adjacent lines at phase ¢ of bus n can be calculated

via l/;fp multiplying the conjugate of their total current
withdraw (Zpeq, Y,f,’lp VP + Yimeq, Dpew Ynd_),’,’f . V,,‘:) . It can
be further represented via a compact matrix form as in (14),
where <I>g” n and d>3 , are defined in (15)-(16). The derivation

of d)gn and d>3n

reactive power balances at phase ¢ of bus n are presented via
(17)-(18), where ?ﬁ, g;‘j, .‘Rg, Df;, and Sf are sets of CPLs,
conventional DERs, renewable DERs, flexible loads, and
SVCs/STATCOMSs connected at phase ¢ of bus n ,
respectively. A, is defined in (19) to represent the connecting
topology of VRTs and the substation bus.

V;':p ’ (Zpe‘}' Ynll;lﬂ ' Vnp + Zme.().n Zpe‘l’ err’rl‘t) ’ an) =

can be referred to [14]. Thus, real and

tr(®@g, - V-VH) +j-tr(®F, - V-V¥) (14)
H i H
of, =; (v + () ) @l =L(vi-(v))") a9
T
Y? =el-(ef) 1Y (16)

¢ — . p?
tr(®p, V- V") = deg,‘fuaa,‘f Fy - Zdebfuf,‘f Pa +4n - By

(17)
¢ _
tr(®g, V- V) = deggmg Qg — Zdﬂ,ﬁu,g Qa
st Qs+ An - QF (18)
-1 if (n,m) €T
An—[l if im,n) €T orn=0 (19)
0 otherwise

Given electricity price ¢, of all three phases at the
distribution substation bus, ACOPF for unbalanced three-
phase distribution systems can be formulated as a nonconvex
QCQP problem (20), where ***.
minV;deQd'PgJQgJ{Z(pew Co " P0¢ + Xgegur Cg (Pg)}

1 — 2aep Ba(Pa)

Qs'Tn,m'Py?‘Qn (203)
2
(|Vn¢>|m’") <tr (e;f (e?)' V-V < (|Vn¢|ma")2 (20b)

® ® max- 2 .
tr(@f, ., V-V ([t o] ) mmer oo
Vs, Vo, Vs1" =V, (20d)

Subject to (2)-(3), (5)-(6), (8)-(13), and (17)-(18) (20e)
T
@l =B -e?-(e?) B 21)
B=[03><3-n Y(n,m) 03><3-(m—n—1)
~Yom  Osxav-m-1)] (22)

Objective function (20a) minimizes the total system
operation cost, including the electricity purchase cost from the

0885-8950 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2017.2707564, IEEE

Transactions on Power Systems

main grid at the substation bus, the electricity production cost
from local conventional DERs and renewable DERs within the
distribution network, and the benefit from flexible loads.
Constraint (20b) is the bus voltage magnitude limit, where

2 *
|Vn¢| = Vn¢ : (Vn¢) is represented via a compact matrix form
T
tr (ei’ . (ei’) V- VA ) Constraint (20c) represents the line
current limit where <I>;p(n my and B are defined as in (21)-(22)
for n < m. Line current limit, rather than apparent power limit
or active power limit, is considered due to the fact that line
current measurements are deployed more widely in
distribution systems than line power flow measurements. That
is, distribution system operators usually monitor line currents

instead of line power flow quantities in practice. Constraint
(20d) sets voltages of the distribution substation bus.

III. CHORDAL RELAXATION BASED SDP MODEL FOR ACOPF

A. Graph Representation of the ACOPF Problem

In this paper, structure of the unbalanced ACOPF problem
is mapped into a graph [25]. That is, in the graph of the
ACOPF problem (20), each node represents a variable V;{p,
while two nodes I/;1¢' and V7 are connected via an edge if and
only if I/;1¢ : (Vn’: )* is involved in the ACOPF problem (20).

In the wunbalanced ACOPF problem, subgraphs
corresponding to phase voltages of two adjacent buses are
shown in Fig. 2. Fig. 2(a)-2(c) show subgraphs of two adjacent
three-, two-, and single- phase buses that are connected via a
distribution line, while Fig. 2(d) shows a subgraph of two
adjacent three-phase buses that are connected via an ideal
transformer. The graph of the entire ACOPF problem can be
constructed by connecting sub-structures in Fig. 2
successively according to the network topology. As Vna’b’c-

(V,,‘f’b'c)* for (n,m) € T do not exist in (20), nodes V% and

V&P are not directly connected as shown in Fig. 2(d). That is,

an ideal transformer will split the graph of the entire ACOPF
problem into two separated sub-graphs.

The following observations are derived according to the
graph of the unbalanced ACOPF problem (20). An illustrative
example is provided in Appendix A to describe how the
proposed ACOPF problem can be mapped into a chordal
graph.

i) Although network topology of an unbalanced three-phase
distribution system is radial, the graph of the ACOPF
problem (20) is strongly meshed, as shown in Fig. 2(a).
However, ACOPF approaches and conclusions for
balanced distribution systems in [26] require the graph of
ACOPF problems, instead of the system network topology,
to be acyclic (i.e., radial), and in turn are not applicable to
the unbalanced ACOPF problem (20).

ii) In graph theory, a cycle is a sequence of nodes starting and
ending at the same node, with each two consecutive nodes
in the sequence connected by an edge. A minimal cycle is
defined as the smallest cycle that does not contain other
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cycles. A graph is called chordal if all minimal cycles in
the graph include at most 3 nodes. Indeed, the graph of the
ACOPF problem (20) is chordal.

iii) In graph theory, a k-clique is defined as a k-node complete
subgraph in which each node is connected to all other (k-/)
nodes. A maximal k-clique refers to a k-clique that is not
contained in any other higher order cliques. Indeed, the
graph of the ACOPF problem (20) is constituted of
maximal 6-, 4-, and 2- cliques corresponding to three-,
two-, and single- phase lines. € represents the set of
maximal cliques in the graph.

v Vo Vi Ve Ve i W Vo

b b b .. ey b b
v, V,,bl Vy V,,[; vV, & O V,S V, Vin
e Ve oV Ve oV W v

(b) Two-phase (¢) Single-phase

Fig. 2 Subgraphs corresponding to phase voltages of two adjacent buses

(a) Three-phase (d) Ideal transformer

B. Chordal Relaxation Based SDP Model
In order to build the chordal relaxation based SDP model,
new variables W,?_ "0 are introduced to substitute nonlinear

terms Vn¢ . (V,,’lJ )* in the ACOPF problem (20). For the sake of
discussion, the variable substitution is denoted as “=”, which
substitutes V;fp . (V,ff )*with variable WT? "# when corresponding
V;{p ' (Vn‘; )* appears in (20) and zeros when Vn¢ : (an )* does
not appear in (20). In turn, Wis a3+ (N + K) by 3- (N + K)
square matrix, which is constructed by V- (V) => W .
Similarly, W, is defined for each maximal clique ¢ € € in the
graph, while the dimension of W, can be 6x6, 4x4, or 2x2
corresponding to maximal 6-, 4-, and 2- cliques in Fig 2 (a)-
(c). In addition, as maximal cliques are complete subgraphs,
W, does not contain zeros. An illustrative example is provided
in Appendix B to further demonstrate the chordal relaxation
approach and how to separate the W matrix into several sub-
matrices W..

As the graph of the ACOPF problem (20) is chordal and
each W, corresponds to a distribution line, the original
ACOPF problem (20) can be reformulated as a chordal
relaxation based SDP model (23). The objective function (23a)
is represented as an epigraph form, while Schur’s component
forms are defined in (23b)-(23d). Constraints (23e)-(23f)
correspond to real and reactive power balance constraints
(17)-(18) for each phase at each bus. Constraint (23g) is a
Schur’s component form of the inverter capacity limit (10).
Constraint (23h) is the voltage limit corresponding to (20b).
Constraint (231) is the line current limit corresponding to (20c)
The given distribution substation bus voltages (20d) are
expressed in the matrix form (23j). Constraint (23k) requires
variable matrices W, to be positive semidefinite. Constraints
(231)-(23m) are primary and secondary bus voltage constraints
of an ideal transformer corresponding to (12). W,,,, is defined

WS Wit Wi,
as WP Whh Wit |-

c,a c,b c,c
Wim Wom Wim
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As constraint (231) is still nonlinear, following the strategy
discussed in [19]-[20] to relax (231)-(23m) as (24), the first
chordal relaxation based unbalanced ACOPF model denoted
as CROPF-1 is derived, which includes the objective function
(23a) as well as constraints (23b)-(23k), (23n), and (24).
()" - WP < Wit < ()™ WP s um) € 7 24)

However, solutions to CROPF-1 are rarely exact as will be
illustrated in case studies. The main reason is that (24) is not
tight enough to describe the relationship between W,?_  and

W,‘flfn for (n,m) € T. Indeed, constraint (231) shows that the
coupling relationship exists not only in diagonal elements, but
also in off-diagonal elements. In fact, coupling for diagonal
elements only describes the relationship of voltage magnitudes
between primary and secondary buses (e.g., Wy, and W%,
are squared voltage magnitudes of phase a at primary and
secondary buses), while coupling for off-diagonal elements
will further ensure that voltage phase angle differences among
three phases in both primary and secondary buses are
consistent (e.g., 7o, - Wﬁ:‘,‘l = Wf’,;f‘m represents that voltage
phase angle differences between phases a and b at the primary
bus n is the same as that of the secondary bus m).
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Alternatively, a tighter convexification for (231)-(23m) is
proposed as in (25)-(26). This derives the second chordal
relaxation based unbalanced ACOPF model denoted as
CROPF-2, which includes the objective (23a) as well as
constraints (23b)-(23k), (23n), and (25)-(26).

() Wiy = Wiy 3 0 (25)
—(Fmm)? Wy + Wy 3 0 (26)

Comparing with the original nonlinear and nonconvex
ACOPF problem (20), both CROPF-1 and CROPF-2 are
convex SDP problems. In turn, they can be solved more
efficiently, which also present property that a local optimal
solution is also global optimal. Proposition 1 describes the
conditions under which the global optimal solution to the
original ACOPF model (20) can be retrieved from optimal
solutions of CROPF-1/CROPF-2. Proposition 2 further states
that the proposed model CROPF-2 is tighter than CROPF-1.
Proofs of Propositions 1 and 2 are provided in the Appendix C
and D, respectively.

It is worth emphasizing that in terms of the two conditions
in Proposition 1, the optimal solution to CROPF-1/CROPF-2
can be directly checked against constraints (231)-(23m) to see
if they are met. On the other hand, the rank one condition may
face with numerical issues, as the optimal solution to CROPF-
1/CROPF-2 may not be exactly rank-1, in the sense that the
second largest eigenvalue may not be strictly zero due to
numerical errors. In order to further evaluate the solution
accuracy, bus voltages recovered from the solution to W, will
be used in case studies to calculate system real and reactive
power mismatches, which provides another insight on whether
the optimal solution to CROPF-1/CROPF-2 is physically
feasible to, and in turn global optimal, the original ACOPF
problem.

Proposition 1: For an unbalanced radial distribution system,
if optimal solutions of W, to CROPF-1 or CROPF-2 are rank
one and (231)-(23m) are satisfied, the global optimal solution
to the original ACOPF problem (20) can be retrieved from
optimal solutions of W,..

Proposition 2: Any feasible solution to CROPF-2 is also a
feasible solution to CROPF-1, and at least one feasible
solution to CROPF-1 is infeasible to CROPF-2. That is, (25)-
(26) is a tighter relaxation of (231)-(23m) than (24).

IV. CASE STUDIES

Two systems are studied to illustrate the effectiveness of the
proposed chordal relaxation based SDP approach and the
tighter convexification formulation (25)-(26) for VRTs.

A. The modified IEEE 34-bus system

The IEEE 34-bus system shown in Fig. 3 includes 34
original buses and two virtual buses 7 and 20 for the two
VRTs. Lower and upper bounds on tap ratios of the two VRTs
are set as 0.95p.u. and 1.05p.u.. The maximum line current is
set as 0.160kA for all lines. A three-phase conventional DER
GA is connected at bus 17. Renewable DER GB, is connected
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at bus 30 with n4 of 0.02. The detailed data of GA and GB are
provided in Tables I-II, respectively. SVCA is a single phase
SVC connected at phase a of bus 12, with reactive power
limits of [-550kvar, 850kvar]. Three flexible loads are
connected at buses 16, 23, and 33, respectively. Data of
flexible loads is shown in Table III. Power factor limits of
both DERs are set as [0, 1], and those of the three flexible
loads are set as [0.85, 1]. A balanced three-phase resistive CIL
with 10kW per phase at 1 p.u. voltage level is connected at
bus 26. Electricity price ¢, at the distribution substation bus is
10¢/kWh. Distribution substation bus voltages are 120°p.u.,

12-120°p.u., and 12£120°p.u.. For all other buses, phase
voltage magnitude limits are [0.95p.u., 1.05p.u.]. Other
configuration data can be found in [27]. Numerical

simulations are conducted on a personal computer with Intel
Core i7 3.60 GHz processor and 16 GB RAM.

Substation

bus1 ) 3

Fig. 3 The modified IEEE 34-bus distribution system with two VRTs

TABLE I
DATA OF THE CONVENTIONAL DER GA
Phase CgZ Cgl CgO quax quin Qmax Qmm
(x10°¢/kWh?)  (¢/kWh)  (¢) (kW) (kW) (kvar) (kvar)
a 189 6.1 1000 1680 200 720 100
b 203 6.3 1000 1680 200 780 100
c 195 6.0 1000 1680 200 700 100
TABLE II
DATA OF THE RENEWABLE DER GB
Cgl Pmux Pgmln S;’Ltlx
Phase iwh)y kW) (W) (KVA)
a 5.1 1250 0 1400
b 5.2 1250 0 1350
c 5.6 1250 0 1350
TABLE IIT
DATA OF FLEXIBLE LOADS
Flexible Phase by, ba, bgo PP ppin Qmax Qmin
load (x10° ¢/kWh2) (¢/kWh) (¢) (kW) (kW) (kvar) (kvar)
a -288 10 -200 230 0 120 20
FA b -578 122 -200 230 0 120 20
c -592 11.6  -200 230 0 120 20
a -255 16.0 -200 1500 0O 750 350
FB b -298 16.7 -200 1500 0 750 350
c -243 157 -200 1500 O 750 350
a -452 129 -200 390 0 200 95
FC b -442 114  -200 460 0 220 120
c -436 12.3  -200 490 0 250 50

The following four cases are studied. All SDP models are
solved by SeDuMi [28].

Case 1: The rank relaxation based SDP model [16].

Case 2: The first chordal relaxation based model CROPF-1.
Case 3: The proposed model CROPF-2.

Case 4:The impact of CILs on the optimal operation of

7

distribution systems.

Case 5:The impact of line current limit on the optimal
operation of distribution systems.

Case 1: The rank relaxation based SDP model [16] is first
studied to solve the ACOPF problem (20). That is, a single
positive semidefinite matrix W for the entire system is built to
contain all WY/ variables, which substitute all ¥ - (V,2)" in

V- (V)" no matter whether l/;fp -(vh )* appears in (20) or not.
The dimension of W is 108x108 and in turn W contains 108>
W¢p variables. The ideal transformer constraints (231)-(23m)
are replaced by (24).

100 Eigenvalue

1
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Fig.4 Eigenvalues of matrix W

The rank relaxation based SDP model is solved in 2850s.
Fig. 4 shows eigenvalues of W on a logarithmic scale. As the
rank of a matrix is equal to the number of its nonzero
eigenvalues, the threshold of 1x10” is used to determine
whether a numerical eigenvalue solution is nonzero. Fig. 4
shows that 23 eigenvalues are larger than 1x107, and in turn
the rank of W is 23. Thus, the solution to the rank relaxation
based SDP model cannot be used to retrieve a feasible V
solution to the original ACOPF problem (20). The major
reason is that W contains high rank sub-matrices
corresponding to VRTs (n,m) € T. As W, ,,

[ nn nm

and Wm,n are not presented in any constraint of the rank
relaxation based SDP model, they can take any value as long

as W = 0 is met. For instance, if they take values of 0, the
rank of [Wn,n Wn‘m] [ ] is always no smaller
Wm,n Wm,m 0 Wmm

than 2, because W,,,, # 0 and W,, ,, # 0. That is, as high rank
Wn,n Wn,m
Wm,n wm,m
is always no smaller than 2. In turn, in addition to its
expensive computational burden, the rank relaxation based
SDP model cannot derive feasible V solutions to the original
ACOPF problem (20).

sub-matrices [ are contained in W, the rank of W

Case 2: In this case, the first chordal relaxation based model
CROPF-1 is studied, which includes 33 W, corresponding to
33 maximal cliques for all lines. Computational time is 1.2 s,
which is about 10’ times faster than that in Case 1. However,
solutions to 20 W, matrices corresponding to all 20 lines in
the downstream of VRT-1 are of high rank. In fact, VRT-1
partitions the original system into two sub-systems, which are

linked by P> =P? ., Q2 = @?, and (24). As (24) is not
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binding at the optimal solution to CROPF-1, when fixing P6¢,

Qg’ s P7¢, and Q;’b as the optimal solution to CROPF-1, the
upstream and downstream sub-systems are decoupled. In turn,
three-phase voltage angle differences at bus 7 are not
constrained, and the rank of Wy, is of high order. Similarly,
matrices W, corresponding to all downstream three-phase
lines are of high rank.

In turn, according to Proposition 1, the solution derived
from CROPF-1 is infeasible to the original ACOPF problem
(20). Indeed, when the rank of W, is larger than one, W,
cannot be directly decomposed as the product of a voltage
sub-vector and its conjugate transpose. Although some
feasible solution recovery methods [18] may be used to
recover a feasible solution around the obtained infeasible
solution from CROPF-1, they are based on the condition that
the second largest eigenvalue of W, should be small enough
which indicates that W, is close to rank one. However, it is
found that this condition is not met in this case. For instance,
for certain W, solutions in Case 2, the largest eigenvalue is
3.484 and the second largest eigenvalue is 2.598. Thus,
feasible solution recovery methods [18], may not work for this
case. In addition, solution recovery methods involve an
iterative procedure and may require a significant
computational time. Consequently, the advantage on
computational efficiency of CROPF-1 will be compromised.
In summary, this comes to the conclusion that CROPF-1 may
be invalid.

Case 3: The proposed chordal relaxation based model
CROPF-2 with the tighter convexification formulation (25)-
(26) for VRTs is solved. The computational time is 1.3 s. In
the optimal solution, all W, matrices are rank one and (231)-
(23m) are satisfied. Thus, the optimal solution to the original
ACOPF problem can be retrieved according to Proposition 1.

The retrieved three-phase voltage magnitude profiles are
shown in Fig. 5. Missing nodes in the profiles represent two-
phase and single-phase situations of certain buses. Fig. 5
shows that voltages of all three phases at buses 7 and 20 are
boosted by VRT-1 and VRT-2. Table IV shows voltages of
primary and secondary buses of the two VRTs, with optimal
tap ratios of 1.05p.u. and 1.0306p.u.. Voltage of phase a at bus
20 reaches its upper bound. The reason is that a higher voltage
will reduce power losses of distribution lines, and in turn the
total operation cost can be reduced. Table IV also shows that
primary and secondary voltage phase angles for all three
phases of VRT-1 and VRT-2 are identical. Thus, (231)-(23m)
are satisfied and the effectiveness of the proposed tighter
convexification model (25)-(26) is verified.

In this case, the optimal objective value is 1037.258, with
350.718, 338.47%, and 348.67$ for phases a, b, and c,
respectively. Real and reactive power outputs of SVC, DERs,
and the distribution substation bus are shown in Table V. It
shows that as GA’s generator in phase b and GB’s generator in
phase ¢ are more expensive, they provide less real power than
generators in the other phases. Reactive power output of
SVCA in phase a and three-phase reactive power outputs of
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GA all reach their upper bounds. Optimal apparent powers
through the inverters of GB are 1400kVA, 1350kVA, and
1350k VA in phases a, b, and c, respectively. That is, GB fully
utilizes its reactive power capacities. In summary, both SVCA
and DERs take full advantage of their reactive power
capacities, because more reactive power contributes to higher
voltage profiles, reduces system losses, and in turn cuts down
the system operation cost.

Optimal operation statuses of the three flexible loads are
shown in Table VI. Reactive power dispatches of flexible
loads are all at their lower bounds. That is, flexible loads
reduce their reactive power consumptions as much as possible,
which would help maintain higher voltage profiles and in turn
reduce system losses and the system operation cost.
Furthermore, phase a of FA and phase b of FC reach their
lower power factor bounds of 0.85. In addition, marginal
benefits of these two flexible loads are 9.81¢/kWh and
9.69¢/kWh, which are both smaller than 10¢/kWh of the
electricity price at the substation bus. Thus, it indicates that in
order to meet power factor limits and minimum reactive power
requirements, flexible loads might still consume a certain
amount of active power even though the electricity price is
higher than their marginal benefits.

Loa | Voltage Magnitude (p.u.) [\_/ '—'—'/'/\ﬂ—-—-
b2 T : '_'*'/'/.\_._._.
1
098 [
——Phase a -« Phase b —+Phase ¢ Bus
0'96 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Fig. 5 Three-phase voltage profiles in Case 3

TABLE IV
VOLTAGES OF PRIMARY AND SECONDARY BUSES OF VRTS (P.U.)
Phase Bus 6 Bus 7 Bus 19 Bus 20
a  0.9821£-0.49° 1.0312£-0.49°  1.018920.40° 1.0520.40°

b 0.9751£-120.16° 1.02382£-120.16° 1.00592£-120.14° 1.0366£-120.14°
¢ 0.97892119.95° 1.02782119.95° 1.00532120.06° 1.0360,120.06°

TABLE V
REAL AND REACTIVE POWER OUTPUTS OF DERS, SVC, AND THE
DISTRIBUTION SUBSTATION BUS

Substation Bus SVCA GA GB
Phase Py Qo Ky Q K Q By Qy

(kW) (kvar) (kW) (kvar) (kW) (kvar) (kW) (kvar)

a 3449.0 1077.4 - 850 11512 720 1250 630.5

b 3409.4 1918.7 - - 1043.1 780 1250 509.9

c 3249.1 1988.0 - - 11552 700 1250 509.9

TABLE VI
OPTIMAL OPERATION STATUSES OF FLEXIBLE LOADS
FA FB FC

Phase P, Qg Power P, Q; Power P, Qg  Power
(kW) (kvar) Factor (kW) (kvar) Factor (kW) (kvar) Factor

a 323 200 085 10402 350 095 2409 95 0.93

b 1451 200 099 9859 350 094 1936 120 0.85

¢ 937 200 098 1001.6 350 093 1398 50 0.94

Summary of Cases 1-3: Table VII summarizes and compares
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the performance of Casesl-3. Among the three models, rank
relaxation [16] and CROPF-1 cannot provide solutions that
satisfy the rank one condition. On the other hand, CROPF-1
and CROPF-2 present similar computational performance
while CPU time of the rank relaxation model is significantly
long. The reason is that the dimension of W in the rank

relaxation model is 108 x 108 which includes 108* W
variables. In comparison, both CROPF-1 and CROPF-2

include 33 6x6 W, matrices and 726 W?? variables. The

nm
large difference in the number of variables is the major reason
that the CPU time of the rank relaxation model is significant.

TABLE VII
SUMMARY OF CASES 1-3

Size of the largest

Model CPUtime Rankone  Number of positive
iti : bp
(Second)  condition  variable Wy, semidefinite matrix
Rank
relaxation [16] 2850 No 11664 108%x108
CROPF-1 1.2 No 726 6%6
CROPF-2 1.3 Yes 726 6X6

Case 4: This case investigates the impact of CILs on the
optimal operation of distribution systems. In order to better
illustrate the effect of different CIL values on optimal setting
of tap ratios, voltage lower and upper bounds of all buses are
set as 0.9p.u. and 1.1p.u.. Per phase value of the three-phase
balanced CIL at bus 26 is gradually increased from 10kW to
150kW. Optimal tap ratios with respect to different CIL values
at bus 26 are shown in Table VIIIL. It is worth mentioning that
all solutions in Table VIII satisfy Proposition 1, which can be
used to derive global optimal solution to the original ACOPF
problem (20).

TABLE VIII
OPTIMAL TAP RATIOS WITH DIFFERENT CIL VALUES
Load (kW per phase) 150 100 60 50 10
VRT-1 1.0362 1.05 1.05 1.05 1.05
VRT-2 0.95 0.95 1.0090 1.05 1.05

9

reducing power losses and decreasing system cost. While for
the CIL of 60kW per phase, VRT-2 optimizes its tap ratio to
leverage loss reduction of distribution lines and power
consumption increase of the CIL.

Case 5: This case further investigates the impact of line
current constraints on the performance of the proposed
CROPF-2 model and the optimal operation of distribution
systems. In this case, the current limit of line (29,30) is set as
0.020kA and the load connected at bus 30 is removed. Thus,
line (29,30) could be potentially congested by the DER GB
connecting at its downstream. Two scenarios with and without
line current limits are studied. In both scenarios, CROPF-2 is
solved in 1.4s and all W, are rank one. Thus, in this case
study, line congestion does not impact the rank of W, and the
optimal solution to the original ACOPF problem can be
retrieved according to Proposition 1. However, this may not be
a general conclusion.

Dispatch results of GB with and without line current
constraints are shown in Table IX. It can be seen that, when
congestion happens on line (29,30), power generated by GB
cannot be fully transmitted through line (29,30) for
economically supplying loads, and in turn GB reduces its
generation significantly, especially reactive power, even
though its marginal cost is lower than that of the main grid. In
fact, marginal costs of GB are 5.1¢/kWh, 5.2¢/kWh, and
5.6¢/kWh for phases a, b and ¢, while electricity price at the
substation bus is 10¢/kWh. Consequently, the total system
operation cost is increases from 925.21$ to 990.49$ when line
current limits are considered.

TABLE IX
DISPATCH OF GB WITH AND WITHOUT LINE CURRENT LIMITATION
With line current limitation Without line current limitation

Phase

Py (kW) Qg (kvar) By (kW) Qg (kvar)
a 937.0 103.1 1250 630.5
b 8322 67.3 1250 509.9
c 904.5 167.8 1250 509.9

Because a CIL’s power consumption is proportional to the
square of voltage magnitude, a higher voltage would induce a
larger real power consumption and in turn a higher system
operation cost. That is, the CIL connected at bus 26 will offset
economic benefit brought by reduced losses with a high
voltage profile. In turn, the system voltage profile needs to be
optimally regulated for leveraging reduced losses of
distribution lines and increased real power consumptions of
CILs. It is observed that with large CIL values in the first two
columns of Table VIII, economic benefit from reduced losses
by boosting voltage magnitudes of downstream system is
smaller than that from reduced power consumption of CIL by
decreasing voltage magnitude at bus 26. In turn, VRT-2 steps
down voltage magnitude at bus 26 for reducing CIL’s real
power consumption. Indeed, when the CIL is 150kW per
phase, VRT-1 also lowers its tap ratio to further reduce
voltage at bus-26 as compared to that with CIL of 100kW. On
the other extreme, the last two columns show that when the
CIL is small, the two VRTs prefer to step up voltages for

B. The IEEE 8500-node distribution system

The modified IEEE 8500-node distribution system [29],
which includes three VRTs, five conventional DERs, six
flexible loads, and three SVCs, is further studied to test the
proposed chordal relaxation based SDP model CROPF-2. Two
strategies are applied to preprocess system data for avoiding
numerical issues incurred by extreme-short distribution line
segments with very large impedance values: (i) line segments
shorter than 75 meters are combined with adjacent segments,
and (ii) proper voltage and power bases are selected to rescale
coefficients of ACOPF constraints. 1150 out of the original
2469 buses are kept after preprocess, which includes 1147
original buses and 3 virtual buses for the three VRTs, In turn,
the CROPF-2 model includes 1146 W, matrices. The detailed
configuration data can be found in [27].

The CROPF-2 model is solved in 23.7 s, which shows that
the proposed chordal relaxation based ACOPF model is an
efficient tool for designing optimal operation strategies of
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practical large-scale distributions systems. Furthermore, all
1146 W, matrices are rank one and (231)-(23m) are satisfied.
Thus, the optimal solution to the original ACOPF problem
(20) can be retrieved according to Proposition 1. Table X
shows optimal voltages at primary and secondary sides of the
three VRTs, in which tap ratios are all equal to their upper
bounds of 1.05. In addition, phase angles at primary and
secondary sides of all VRTs are identical, which again
indicates the tightness of (25)-(26). In addition, the highest
voltage value is 1.0493 p.u., occurring at phase ¢ of the bus
where the single-phase DER GA is connected at, while the
lowest voltage value of 0.95. p.u. occurs at phase ¢ of the
primary side of VRT-1.

TABLE X
VOLTAGES OF VRT CONNECTING BUSES (P.U.)
Phase VRT-1 VRT-2 VRT-3
u 0.9592 1.0072 0.9697 1.0182 0.9916 1.0412
2-321° 2-321° 2-1.42° 2-1.42° 2-4.50° £-4.50°
b 0.9535 1.0012 0.9745 1.0232 0.9777 1.0266
2-122.77° £-122.77° 2£-121.84° £-121.84° £-123.69° 2£-123.69°
B 0.9593 1.0073 0.9500 0.9975 0.9971 1.0470
2117.80° 2117.80° £118.05° ~£118.05° ~117.38° ~117.38°

C. Comparison with General NLP Solvers

This section compares computational performance of the
proposed approach with general NLP solvers which directly
solve the original nonlinear ACOPF problem (20). The results
are presented in Tables XI-XII.

When using SeDuMi to solve CROPF-2 of the two systems,
the primal-dual gaps are both smaller than 10”$, which shows
high solution accuracy achieved by the proposed approach. In
order to further evaluate the solution accuracy, bus voltages
recovered from the solution to W, [10] are further used to
calculate system real and reactive power mismatches. Real

power mismatch AP,? and reactive power mismatch AQf of
each phase at each bus respectively are calculated as in (27)-
(28), where “ indicates recovered voltage values, dispatch
solutions of DERs, SVCs/STAECOMs, loads, and substation
bus, as well power transmitted through VRTs. System average
real and reactive power mismatches per phase per bus are
1.63%x 10* kW and 9.19x 10 kvar for the IEEE 34-bus
system, and are 5.48x10” kW and 5.63x 10 kvar for the
IEEE 8500-node system. Thus, solution accuracy is
considered sufficient from the engineering point of view.

¢ _ b .g.gH) — p _ p
AP = |tr(¢P,n v-v ) (degi’uﬁi’ Pg Zdebi’u?ﬁ Pa

+4, - BY)| 27)
AQY = |er(@f, - V- V) - (deg;’;wz;’f Qg — Zyepdur? Qu

2050 Qs + 4, QF)] (28)

A local search NLP solver IPOPT [30] is also tested. Initial
phase voltage values of all buses are set as 1£0°p.u., 1£-120°
p-u., and 12£120°p.u., respectively. In order to study the impact
of initial settings of wvariables to IPOPT, two cases are
performed, in which IPOPT-1 uses 1 as initial tap ratios and
IPOPT-2 uses 1.05. Results in Tables XI-XII show that the
proposed approach solves ACOPF problems much faster than
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IPOPT. Specifically, both IPOPT-1 and I[POPT-2 terminate at
suboptimal solutions (i.e., 0.063% and 0.110% larger than the
solution from the proposed approach). Indeed, in recognizing
the facts that the system average real power mismatch is at the
level of 10™* kW, the total active power mismatch is less than 1
kW, and the system marginal cost is at the level of 10¢/kWh,
difference in the objective value between the proposed
approach (i.e., $989.44) and IPOPT (i.e., $990.07) can justify
that the proposed approach derives a better solution than
IPOPT (i.e., difference in the objective value is 63¢ or
equivalent about 6.3kW).

Furthermore, tap ratios of VRT-1, VRT-2, and VRT-3
obtained by IPOPT-1 respectively are 1.049, 1.046, and 1.025,
are 1.05, 1.05, and 1.0352 from IPOPT-2, while are all 1.05 in
the proposed approach. To further illustrate the
outperformance of the proposed approach, tap ratios of the
three VRTs are fixed as solutions provided by IPOPT-1 (i.e.,
1.05, 1.05, and 1.0352) and the CROPF-2 is resolved. The
objective is 989.918, which is closer to the objective from
IPOPT-2 (i.e., $990.07) and larger than the value obtained by
the proposed approach (i.e., $989.44). It shows that the
solutions to tap ratios from the IPOPT are not global optimal,
which indicates limitations of local-search NLP solvers in
exploring global optimal solutions as well as their dependence
on initial settings.

Finally, a global optimization solver LindoGlobal [31] is
tested. Since LindoGlobal is a global NLP solver, initial
values are not required. The relative gap between lower bound
(best possible solution) and upper bound (current best
solution) is used as the stopping criterion for LindoGlobal,
which is set as 0.1%. After running for more than 3000s,
optimality gaps of LindoGlobal are more than 157% for both
systems. That is, after 3000s, LindoGlobal cannot even
identify feasible solutions for both systems that satisfy the
stopping criterion.

In summary, although NLP solvers may be applicable for
directly solving (20) to local optimal, identifying global
optimal solution is still challenging and could be intractable
for even small-scale systems. Indeed, this comparison again
shows the motivation and advantage of the proposed chordal
relaxation based ACOPF approach. Specifically, the proposed
approach not only has strong ability in exploring optimal
solution but also presents advantages in computational
efficiency and initial guess free.

TABLE XI
COMPARISON IN OBJECTIVE VALUE
Objective ($)
Model Solver IEEE 34-bus __ IEEE 8500-node
IPOPT-1 1037.25 990.53
Problem (20) IPOPT-2 1037.25 990.07
LindoGlobal -
CROPEF-2 SeDuMi 1037.25 989.44
TABLE XII
COMPARISON IN COMPUTATIONAL TIME
CPU time (Second)
Model  Solver IEEE 34-bus [EEE 8500-node
Problem IPOPT-1 2.5 65.2
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(20) IPOPT-2 24 108.2
LindoGlobal >3000 >3000
CROPF-2  SeDuMi 1.3 23.7

In order to illustrate impacts of the number of DERs on the
computational performance and solution quality of the
proposed ACOPF approach, the IEEE 8500-node system [27]
is further tested with 6 more conventional DERs. The CROPF-
2 model is solved in 26.1s, which shows that the number of
DERs presents limited impact on the computational time
because the number of variables introduced by these
additional DERs is relatively small as compared to the total
number of variables in W,. In addition, all 1146 W, matrices
remain rank one and (231)-(23m) are also satisfied, which
indicates that the number of DERs does not impact the
solution quality. Tap ratios of VRT-1, VRT-2, and VRT-3 are
1.05, 1.05, and 1.0454, respectively. Furthermore, in this study
an additional single-phase DER connected at phase ¢ of bus
977 makes the phase ¢ voltage value of bus 700 reaching its
upper bound, which was 1.0493p.u. without this DER. Thus,
power injections of these 6 additional DERs contribute to the
raise of bus voltage levels and in turn reduce tap ratios of
certain VRTs for mitigating potential violations on voltage
upper bounds.

D.Further discussions on the continuous tap ratio modeling

Following the convention of many ACOPF studies, this
paper models tap ratios as continuous variables (12), which
provides a trade-off between model accuracy and
computational efficiency and makes it suitable for real-time
ACOPF applications in distribution systems. Continuous tap
ratio solutions derived from the proposed model can be
rounded up to the closest discrete tap ratio values, in order to
recover a practical feasible tap ratio solution. In recognizing
that voltage regulators usually have 8, 16, or more tap steps
upward and downward, which means 17, 33, or more status
with the tap ratio step of 0.00625, 0.003125, or even smaller
[20], although the recovered discrete tap ratio values may not
be the same as the solution of the discrete tap ratio based
model, higher granularity tap ratio steps in practice would
make the final roundup tap ratio solutions close to those of the
discrete tap ratio based model, and thus acceptable in engineer
practice.

In fact, the proposed distribution ACOPF model and
solution approach can be extended to consider discrete tap
ratios, at the cost of higher computational burden. That is,
constraints (231)-(23m) in the proposed model can be replaced
to consider tap ratios as discrete variables, which will derive a
mixed-integer SDP (MISDP) problem. The MISDP problem
can be solved by the branch-and-bound (BAB) method. The
idea is to integrate a branch-and-bound (BAB) framework
(such as BNB in Yalmip [32] and SCIP [33]) for handling
binary variables, and an SDP solver for solving SDP problems
at individual BAB nodes with relaxed integer variables.
However, in general, solving large-scale MISDP is still facing
with the dilemma of computational inefficiency and/or poor
solution quality. Indeed, two main factors would impact
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computational performance of the MISDP based ACOPF
model: 1) the number of ideal transformers and the number of
tap positions, i.e., the number of binary variables, which may
impact the efficiency of the BAB procedure, and 2) the scale
of distribution systems, which would impact computational
time of each SDP node in the BAB tree. This is the major
reason that the application of the MISDP based ACOPF model
for large-scale distribution systems is restricted in practice.

Nevertheless, the following case study is provided to show
the impact of the discrete tap ratio model on the computational
performance. The MISDP based ACOPF problem is solved by
integrating the BAB solver BNB in Yalmip for handling
binary variables and Mosek for solving SDP problems at
individual BAB nodes, because Yalmip has a well-designed
interface with Mosek and Mosek is in general faster than
SeDuMi. The modified IEEE 34-bus system and the IEEE
8500-node system are studied. For all voltage regulator
transformers, ¢, ,, is set as 0.0125 and K,, ,, is set as 4. That is,
each ideal transformer has 4 steps upward and downward,
with each step of 0.0125. In turn, each ideal transformer has 9
statuses. The computational performance is shown in Table
XIII. Tt can be seen that, when considering discrete tap ratios
the CPU time for solving the MISDP problem is about 2
orders of magnitude higher than that of the continuous tap
ratio model. For larger-scale systems with more VRTs, the
computational burden will increase significantly due to the
increase of both continuous and binary variables.

TABLE XIII
COMPUTATIONAL PERFORMANCE OF DISCRETE TAP RATIO MODEL

Model IEEE 34-bus | IEEE 8500-node
CPU time (Second) 22.17 385.8
Discrete # of SDP nodes searched 123 , 173 .
tap ratio # oftot.al SDP nodes 289 (99) 729 (97)
Objective ($) 1037.31 989.86
Tap ratios 1.05/1.025 1.05/1.05/1.05
Continuous CPU t%me.(Second) 0.21 2.89
tap ratio Objectlve.: $) 1037.00 989.86
Tap ratios 1.05/1.0306 1.05/1.05/1.05

Based on the above study, considering tap radios as
continuous  variables  actually  provide  significant
computational benefits at the cost of accurate tap ratio
solutions. Indeed, considering tap radios as continuous
variables is consistent with existing studies on transmission
and distribution ACOPF problems [R.34]-[R.35], [20], which
provides a trade-off between model accuracy and
computational efficiency and makes it suitable for real-time
ACOPF applications in distribution systems.

V. CONCLUSION

Although network topology of an unbalanced three-phase
distribution system is radial, the graph of the unbalanced
ACOPF problem is strongly meshed, and in turn ACOPF
approaches and conclusions for balanced distribution systems
in literature may not be applicable. This paper proposes a
chordal relaxation based SDP approach to derive global
optimal solutions to unbalanced ACOPF problems. The
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proposed unbalanced ACOPF model determines the optimal
operation of conventional DERs, inverter interfaced renewable
DERs, and voltage regulation devices for minimizing system
operation cost while satisfying prevailing constraints. In
addition, a tighter convexification model for VRTs is
introduced to mitigate solution inexactness. Analytical
conditions are presented and proved to determine whether the
global optimal solution to the original ACOPF problem can be
retrieved via solutions of the chordal relaxation based SDP
model. Numerical case studies show that the proposed chordal
relaxation based approach can solve unbalanced ACOPF
problems much faster than the rank relaxation based SDP
based model and general NLP solvers, and in turn presents a
suitable tool for designing optimal operation strategies of
practical large-scale distributions systems.

APPENDIX

A An lllustration Example for the Graph of ACOPF

A 4-bus system shown on top of Fig. 6 is used for
illustrating how to map the proposed ACOPF problem into a
graph. Specifically, the distribution line connecting buses 0-1
is a three-phase line segment, while those connecting buses 1-
2 and buses 2-3 respectively are two-phase and single-phase
line segments. When mapping the ACOPF problem into a
graph as shown on bottom of Fig. 6, voltage variables of
individual phases at each bus are represented as nodes, and

two nodes V,fb and V7 are connected via an edge if and only if
Vn¢ : (V,,‘; )* for n # m and/or ¢ # p is involved in problem
(20). It is worth mentioning that in problem (20), only
constraints (17)-(18) and (20c) contain bilinear terms I/,':¢> .
(Vn’;)* for n # m and/or ¢ # p.

0 1 2 3
a [ |
’ |
v ya iy
Voa 1 2 ® 3
b
"o
w vy
C
VO Vlc

Fig. 6 A 4-bus system and the graph of its ACOPF problem

The graph in Fig. 6 shows that, for instance, V§t — V* —
VP — VP — Vg and VE — V& — VP — V& are both cycles while
V& — Vi — VP — V@ is a minimal cycle. Indeed, it can be seen
from Fig. 6 that all minimal cycles exclusively contain three
nodes, which means that the graph is chordal. Furthermore,
the graph includes three maximal cliques according to the
definition of maximal clique in Section IIL.A, including
V&, v, vhve ve, ves, (v vE VP, VPY, and {VE, VE} which
respectively are maximal 6-clique, 4-clique, and 2-clique.
Obviously, they are all complete subgraphs and not contained
in any other cliques, which means they are all maximal
cliques.

Three observations can be made from the graph of the 4-bus
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example: (i) the graph of the ACOPF problem is constructed
by connecting a series of subgraphs in Fig. 2 according to
network topology of the distribution system; (ii) subgraphs in
Fig. 2 are all maximal cliques; and (iii) each distribution line
corresponds to a subgraph in Fig. 2. The graph of the ACOPF
problem for more complicated large-scale distribution systems
can be similarly constructed by connecting sub-structures in
Fig. 2 successively according to the distribution network

topology.

B An Illustration Example for Chordal Relaxation

A 4-bus illustrative example with 3 three-phase lines shown
in Fig. 7 is used to demonstrate the validity of the chordal
relaxation, which separates the W matrix into several sub-
matrices W,.

The voltage vector V is written as in (29). By introducing
new variables W,(f *# to substitute nonlinear terms Vn¢ -(vf )*, a
12x12 square matrix W can be obtained as in (30). It is noted
that as certain nonlinear terms (e.g., V§* - (V5)*) do not appear
in the ACOPF problem (20), corresponding variable
substitutions W_?
replaced with 0 in order to reduce the number of variables.
The corresponding graph is shown in Fig. 8. For the sake of
illustration, each of the three nodes in the graph corresponding
to V&, V2, and V€ is duplicated three times, which are
connected via dash lines to indicate that they are the same
node. Fig. 8 includes three maximal 6-cliques shown in the
three dashed boxes, which correspond to three 6 X 6

(e.g.,Wg3') are not needed and can be

submatrices as in (31). It can be seen that the three W, are
sub-matrices of W, which correspond to sub-vectors of V that
are contained in each maximal clique of the graph.

0 abc

2 3
Fig. 7 A 4-bus illustrative example

Fig. 8 Graph representation of the ACOPF problem for the 4-bus system

In comparison, the rank relaxation based SDP model [16] is
studied in Case 1, in which a 12x12 full square matrix W as
shown in (32) is used. That is, a single positive semidefinite

0885-8950 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2017.2707564, IEEE

Transactions on Power Systems

matrix W for the entire system is built to contain all W;f,’?’,
variables, which substitute all V¢ - (V2)* in V- (V)# no
matter whether V¢ - (V2,)* appears in (20) or not.

V=[vg V{ v; vi]" (29)
Vol [Vol” [Woo Wo, 0 0 1
V.VH = Vi| |V [Wio Wi W12W13|=w (30)
Vo[ V2| T 0 Wy W, 00|
Vo] LV3 l 0 W;; 0 W;;,
Vo] . [VO-H N Wo,o Wo,1]_ V1] . [V1]H [wl,l W1,2]
Vil 1V Wio Wi ]" V2] IV, W;1 W, 31)
Vl] ] Ak N Wi, 13]
Vsl Vs W;1 W33
Wo,0 Wo,1 Wy, Wo3
— [Wm W, Wi, W, 3] (32)

C Proof for Proposition 1

As CROPF-1 and CROPF-2 are convex SDP problems, a
local optimal solution W, is also global optimal. In addition,
as they are convex relaxations to the original ACOPF (20),
their feasible regions are larger than that of (20). In turn, if a
feasible V solution to the original ACOPF problem (20) can be
recovered from the optimal solution W, to CROPF-1/CROPF-
2, it must also be a global optimal solution to (20).

Next, we discuss how to recover a feasible V solution to
(20) from the optimal solution W, of CROPF-1/CROPF-2.
Without loss of generality, assuming that the distribution
substation bus (indexed as 0) is connected to bus 1.

1) A Woo

) Aslwy, W,
given [VO 144 Vo] at the distribution substation, voltages of
bus 1 can be calculated via [V VP V| - [V VP VEIH = Wy 35
2) Voltages of remaining buses can be successively retrieved
according to the network topology. With retrieved voltages
[ G2 U] for bus n,

a) If bus m is connected to bus n via a distribution line,

voltages of bus m can be retrieved via [F2 2 U]+

[Va Vb C]H

] is rank one, Wy ; is also rank one. With a

nm’ as [“:\\I,n,n “Ah;n,m
mn mm

b) If bus m is connected to bus n via a VRT, voltages of

bus m can be obtained via [;2 VL Vi<l = fium - [GE V2 TE],

as (231)-(23m) are met and a unique 7, ,, is determined.

is rank one;

In summary, a feasible V solution to the original problem,
thereby global optimal to (20), can be retrieved from the
optimal solution W, to CROPF-1/ CROPF-2 under the
conditions that all W, are rank one and (231)-(23m) are met.

D Proof for Proposition 2

We first prove that any feasible solution to CROPF-2 is also
feasible to CROPF-1. If a feasible solution to CROPF-2 does
not satisfy (24), without loss of generality, we consider the
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upper bound being violated, i.e., W¢ RAPS (r,{”n‘%x ) W,‘f ;? .
That is, diagonal elements of [(r,{'}f{x ) "W, —

negative. This is contrary to the assumption that it is a feasible
solution to CROPF-2 as the positive semidefinite constraint
(25) is violated. Thus, a feasible solution to CROPF-2 always
satisfies (24), and in turn is feasible to CROPF-1.

To prove the second part, a branch in Fig. 9 is considered as
an example. With a feasible solution VAVn,n to CROPF-1

together with B, ﬁ¢ 0%, and 02, if a fixed load at bus
(m+1) satisfies B, | = —tr(®p, ., -W) and QF . =
—tr(<I>Q mal W) while (231) and (24) are also met, Wm_m =
(r,{fl,,‘fx) -dlag(Wn_n) is a feasible solution for bus m. Thus,
0 WL WS
W
Wen Wi 0

m,m] are all

Because

= _Wn,n 'Wr?,'g = _(eri,ﬁ)H

a,b

nn
Wan 0 ]
Wi = —[Wie|* <o, [(rme)* - W, -
semidefinite and (25) is violated. That is, a feasible solution to
CROPF-1 could be infeasible to CROPF-2.

determinant | [

mm] is negative

n T VRT @_"m—l m+1
_P”¢’ _Q’? g rZ ’ Qﬁ Fix Load

Fig. 9 An illustrative example with a VRT and a fixed load
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