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Abstract—In emerging distribution systems with a proliferation 
of distributed energy resources (DER) and flexible demand 
assets, operation characters of the unbalance network and 
voltage regulation devices need to be accurately addressed for 
ensuring the secure and economic operation. This paper focuses 
on the modeling and solution approach of AC optimal power flow 
(ACOPF) for unbalanced distribution systems with DERs and 
voltage regulation transformers (VRT). The ACOPF problem is 
formulated as a chordal relaxation based semidefinite 
programming (SDP) model, and a tighter convexification model 
of VRTs is proposed for mitigating solution inexactness. 
Analytical conditions are presented and proved to determine 
whether global optimal solution to the original ACOPF problem 
can be retrieved from solutions of the chordal relaxation based 
SDP model. Numerical studies on modified IEEE 34-bus and 
8500-node systems show that the proposed approach presents a 
better computational performance as compared to rank 
relaxation based SDP approaches and general nonlinear solvers. 

Index Terms—Chordal relaxation, distribution ACOPF, SDP, 
unbalanced three-phase distribution system, voltage regulation. 

NOMENCLATURE 
Indices: 

,  Index of loads/DERs 
,  Indices of buses  

 Index of line or ideal transformer connected 
with bus  and  

 Index of static var compensators (SVC) and 
static synchronous compensators (STATCOM) 

, ,  Indices of phases 

Sets and Vectors: 
 Set of buses 
,  Set of flexible loads/ constant power loads 
 Standard basis vector of  with the 

, , and  
elements being “1” for phases a, b, and c, 
respectively.  is the set of real numbers 

 Standard basis vector of , i.e., / 
/  for phase a/b/c 

,  Set of conventional DERs/renewable DERs 
 Set of lines 
 Set of SVCs and STATCOMs 
 Set of ideal transformers 
 Set of phases, i.e.,  
 Set of buses that are connected to bus  
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0 Matrix/vector with all zeros 

Variables: 

 Line current on phase  of line  

,  Real/reactive power injection at phase  of the 
distribution substation bus (indexed as 0) 

,  Real/reactive power withdraw of flexible load  
,  Real/reactive power injection from DER  
,  Active power transmitted through phase  of 

ideal transformer  
,  Reactive power transmitted through phase  of 

ideal transformer  
 Reactive power injection of SVC/STATCOM  

 Tap ratio of ideal transformer  
 Complex voltage at phase  of bus  

 Vector of complex voltage variables, i.e., 
  

Constants: 
, ,  Coefficients of benefit function for flexible load 

 
, ,  Coefficients of cost/tariff function for DER  

,  Total number of buses/VRTs 
 Power factor 

,  Real/reactive power of a fixed load d  
 Given voltage values of the distribution 

substation bus, i.e.,  
 Maximum apparent power limit of the invertor 

for renewable DER  
,  Lower/upper bound of a certain parameter 

Symbols: 
 Diagonal sub-matrix 

 Trace 
 Rank 

 Transpose  
 Conjugate 
 Conjugate transpose 

,  Magnitude/determinant 

I. INTRODUCTION 
merging distribution systems are envisioned to include a 
deeper penetration of distributed energy resources (DER) 

and flexible demand assets. DERs provide electricity locally in 
distribution systems, which could reduce real power losses, 
promote energy sustainability, enhance resiliency, and defer 
generation and transmission upgrades. However, they also 
present new challenges to distribution system operations. 
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Specifically, unlike traditional distribution systems with 
unidirectional power flows, a proliferation of DERs creates 
bidirectional power flows in emerging distribution systems 
and in turn their optimal dispatch is of crucial importance. In 
addition, with high resistance to reactance ratio, voltage 
magnitudes of distribution systems are also sensitive to real 
power injections of DERs, and a deeper penetration of DERs 
could cause voltage rise issues [1]. 

In order to address such challenges, AC optimal power flow 
(ACOPF) models and solution approaches are of crucial 
importance to the secure and economic operation of emerging 
distribution systems. Indeed, it has been recommended by the 
National Academies of Sciences that ACOPF models should 
be developed and tested with optimization algorithms, for 
reducing the risk of voltage collapse and enabling the effective 
utilization of existing line capacities [2]. 

ACOPF problem of distribution systems is nonlinear and 
nonconvex because of the quadratic relationship among 
voltages and real/reactive power injections of three phases at 
individual buses. Early works on ACOPF explored different 
mathematical models including linear programming (LP), 
quadratically constrained quadratic programming (QCQP), 
and nonlinear programming (NLP), as well as various solution 
algorithms such as Lagrange relaxation, interior point method, 
and heuristic approaches. General purpose NLP solvers have 
also been applied to solve ACOPF problems. Among them, LP 
based models present the best computational performance in 
terms that the global optimal solution can be effectively 
obtained, even for large-scale systems; however, LP based 
models by approximating AC power flows inevitably contain 
considerable errors, especially for distribution systems with 
high R/X ratios and untransposed line segments. On the other 
hand, QCQP and NLP based models can accurately simulate 
the nonlinear relationship among voltages and real/reactive 
power injections of three phases at individual buses in the 
distribution system; however, computational efficiency and 
solution quality remain to be major concerns, especially when 
applied to large-scale distribution systems [2]. 

Recently, convex relaxation techniques are explored for 
obtaining global optimal solutions to the ACOPF problem of 
the transmission network with a high computational efficiency. 
Semidefinite relaxation was first introduced in power system 
applications by X. Bai et al. in [3]. A well-cited pioneering 
paper [4] built up the theoretical basis for applying 
semidefinite relaxation to the ACOPF problem. In the ACOPF 
problem, the semidefinite relaxation technique is referred to as 
“rank relaxation” [4]-[5], which explicitly indicates that the 
rank constraint has been removed in the convexified ACOPF 
model. In addition, the chordal relaxation technique was 
introduced by R.A. Jabr in [6]-[7], and applied to large-scale 
transmission network ACOPF problems in [8] for improving 
the computational performance. In [9]-[10], ACOPF problem 
of the transmission network was formulated as a polynomial 
optimization problem and solved by a hierarchy of moment 
relaxation based semidefinite programming (SDP) models. 
Although high-order moment relaxation is tighter than rank 
relaxation, the computational burden easily becomes 

intractable which inspired a sparse moment relaxation 
approach for improving the computational performance [10]. 
However, above mentioned works all targeted at transmission 
systems, in which three phases are balanced. 

Convex relaxation techniques have also been applied for 
solving distribution ACOPF problems. ACOPF of balanced 
radial distribution networks was modeled as a second-order 
conic programming (SOCP) problem [11], which was solved 
via interior point method in polynomial time. The SOCP 
formulation in [11] was further extended to meshed networks 
in [12]. Reference [13] proposed a branch flow model and a 
conic relaxation technique for ACOPF of radial distribution 
systems, which can guarantee solution exactness only if load 
over-satisfaction is allowed. Reference [14] formulated 
ACOPF of balanced distribution systems as a rank relaxation 
based SDP problem, and presented similar load over-
satisfaction condition for guaranteeing solution exactness. 
Pareto-front of the injection region of electricity networks was 
studied in [15], in order to obtain global optimal solutions to 
ACOPF for radial topology. 

However, existing studies [11]-[15] exclusively neglect the 
inherent unbalance in network topology, which is common in 
low-voltage distribution networks with unbalanced three-
phase loads, untransposed line segments, and single-/two-
phase laterals. Different from balanced systems, coupling 
between three-phase currents cannot be offset in unbalanced 
distribution systems, and in turn solutions to balanced ACOPF 
fail to provide insightful operation instructions. Thus, 
unbalanced ACOPF models and solution approaches are in 
urgent need. Recently, ACOPF of unbalanced distribution 
systems was formulated as a rank-relaxed SDP model in [16], 
which was solved via the alternating direction method of 
multipliers (ADMM) algorithm. Reference [17] extended the 
branch flow model to three-phase systems and solved the 
problem by the ADMM algorithm. In addition, our previous 
work [18] applied the moment relaxation approach to the 
ACOPF problem of unbalanced distribution system, for 
deriving distribution locational marginal prices. 

Bus voltage profile is also a critical concern commonly 
faced by distribution system operators. Several technologies, 
such as voltage regulation transformers (VRT), static var 
compensators (SVC), static synchronous compensators 
(STATCOM), and shunt capacitor banks, could help maintain 
voltage levels of load buses within an acceptable range. 
References [19]-[20] formulated ACOPF of unbalanced 
distribution systems as a rank-relaxed SDP model while 
considering VRTs. However, it is observed that solutions in 
[19]-[20] are usually of high rank and infeasible to the original 
ACOPF. The main reason is that a VRT separates the 
distribution system into two sub-networks, while voltage 
phase angle difference between primary and secondary buses 
of a VRT is not properly constrained in the rank-relaxed SDP 
model [19]. An alternative VRT model to mitigate solution 
inexactness was proposed in [20], by directly connecting 
primary and secondary buses of a VRT via a pseudo branch. 
However, admittance values of pseudo branches are system-
specific, which needs to be tuned carefully for deriving a 
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proper rank one solution. That is, if the admittance value is too 
small, the derived solution will be similar to the one without 
pseudo branch and in turn still inexact. While a large 
admittance would induce significant power flow on the pseudo 
branch, and the solution quality will be significantly 
compromised. 

From existing literature we notice that: (i) prior convex 
relaxation based models for ACOPF problems, such as the 
rank relaxation, moment relaxation, and chordal relaxation 
based SDP models as well as the SOCP models, mainly target 
at three-phase balanced transmission and/or distribution 
systems; and (ii) assets in distribution systems, such as VRTs, 
are not accurately modelled and properly integrated. However, 
distribution systems, especially the low voltage distribution 
networks, are characterized with highly unbalanced network 
configurations and a wide variety of assets, which invalid the 
balanced models in practical applications. 

This paper focuses on the ACOPF problem of unbalanced 
radial distribution systems with voltage regulation devices, 
including VRTs, SVCs, STATCOMs, and shunt capacitor 
banks. Two types of DERs are studied, in which conventional 
DERs are directly connected to the AC distribution network 
while renewable DERs such as photovoltaics are connected 
via inverters. The unbalanced ACOPF problem determines the 
optimal operation of DERs, flexible demand assets, and 
voltage regulation devices, in order to minimize the total 
operation cost. Structure of the unbalanced ACOPF problem is 
mapped into a chordal graph, and the unbalanced ACOPF 
problem is formulated as a chordal relaxation based SDP 
model [7], [21]. Additionally, a tighter convexification model 
of VRTs is introduced for mitigating solution inexactness. 
Case studies illustrate computational efficiency of the 
proposed approach as compared to rank relaxation based SDP 
approaches and general NLP solvers. 

Major contributions of this paper include:  
1) The proposed unbalanced ACOPF model accurately 

simulates operational characters of various assets in 
distribution systems, including conventional DERs, 
inverter interfaced renewable DERs, flexible loads, fixed 
loads, and various voltage regulation devices. 

2) The unbalanced ACOPF problem is formulated as a 
chordal relaxation based SDP model by exploring problem 
structure, which improves the computational performance 
as compared to rank relaxation based SDP approaches and 
those directly solved by general NLP solvers. 

3) A tighter convexification model for VRTs is explored to 
mitigate solution inexactness. Analytical conditions are 
presented and proved to determine whether global optimal 
solution to the original ACOPF problem can be retrieved 
from solutions of the chordal relaxation based SDP model. 

The rest of the paper is organized as follows. Device models 
and the unbalanced ACOPF problem are presented in Section 
II. The chordal relaxation based SDP model of unbalanced 
ACOPF and a tighter convexification formulation of VRTs are 
discussed in Section III. Numerical case studies are presented 
in Section IV, and the conclusions are drawn in Section V. 

II. ACOPF FOR UNBALANCED DISTRIBUTION NETWORK 

Unbalanced radial wye-connected distribution systems with 
three-conductor grounded or four-conductor multi-grounded 
neutral are considered. In such systems, impedance matrices 
of lines and three-phase wye-wye solidly grounded VRTs can 
be written as 3×3 phase frame matrices. Admittance matrix of 
line  can be simulated as a 3×3 phase frame 
complex matrix . For single- and two- phase lines, 
elements corresponding to missing phases in  are zeroes. 

A. Modeling of Loads and DERs 
Both fixed loads, including constant power loads (CPL) and 

constant impedance loads (CIL), and flexible loads are 
studied. A CPL  is modeled via fixed real and reactive 
power demands  and . A CIL is modeled by a 3×3 
impedance matrix shunted at the connecting bus, which can be 
combined into impedance matrix of the distribution system.  

Equation (1) represents the benefit function of a flexible 
load , which measures the monetary benefit in terms of 
satisfaction or happiness that a consumer achieves by 
consuming electricity. Intuitively, benefit function denotes the 
consumer’s willingness to pay for the electric energy 
consumption [22]. Benefit functions can be modeled as 
quadratic, logarithmic, or exponential functions [22]. In this 
paper, the quadratic function (1) is considered, in which , 

, and  are quadratic, linear, and constant parameters. A 
flexible load  can adjust its real and reactive power ouputs 
within specified regions (2), which are also restricted by the 
power factor limit (3). The power factor limit (3) represents 
the requirement for reducing the non-productive reactive 
power from the utility.  

 (1) 
 (2) 

 (3) 

Both conventional DERs (e.g., diesel and natural gas 
generator) and renewable DERs (e.g., wind and photovoltaics) 
are considered. Operation cost of a conventional DER  
is represented as in (4). Real/reactive power limits and power 
factor limit are shown as in (5)-(6), respectively. The power 
factor limit (6) represents active power and reactive power 
boundaries within which the conventional DER can operate 
safely. 

 (4) 
 (5) 

 (6) 

Renewable DERs are commonly connected to the AC 
distribution network via inverters. The energy feed-in tariff 
function of a renewable DER  is represented as in (7), 
where parameter  represents inverter power loss factor. In 
current distribution systems, instead of directly owning 
renewable DERs, it is a common practice that utilities 
purchase electricity from renewable DER owners (such as 
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third parties or residential customers) through power purchase 
agreements (PPA) [23]. PPAs usually provide long-term fixed 
prices (i.e., feed-in tariff) to renewable DER owners for 
selling their excessive electricity. Real and reactive power 
outputs of a renewable DER  are constrained by real power 
limit (8), power factor limt (9), and inveter capacity limit (10). 

 (7) 
 (8) 

 (9) 

 (10) 

B. Modeling of Static Capacitor Banks, SVCs, and STATCOMs 
Two types of reactive power compensation devices are 

studied. A static capacitor bank provides specific capacitance 
shunted at a bus, which can be modeled via a 3×3 impedance 
matrix and combined into admittance matrix of the 
distribution network. SVCs and STATCOMs can inject or 
withdraw reactive power at connecting buses while not 
involving real power, which is modeled as in (11).  

 (11) 

C. Modeling of VRTs 
A VRT is modeled as an ideal transformer in series with an 

impedance [20], as shown in Fig. 1. The primary side of the 
ideal transformer is connected at bus , and the secondary side 
is connected at a virtual bus . The equivalent circuit is based 
on three assumptions: (i) exciting current is ignored; (ii) with a 
nominal tap ratio, winding resistance and leakage reactance 
referred to the secondary side are constants; and (iii) tap ratio 
is considered as a continuous decision variable to keep 
ACOPF as a differentiable NLP problem. In addition, three-
phase tap ratio variables for a VRT are considered to be 
identical [24]. 

An ideal transformer  can be modeled as in (12)-
(13). Constraint (12) indicates that VRTs only change voltage 
magnitudes but not voltage phase angles of secondary buses. 
Furthermore, an ideal transformer separates the distribution 
system into two parts, while  and  represent the 
real and reactive powers transmitted through the ideal 
transformer. That is,  and  is regarded as a pseudo load 
at the primary bus, while  and  is treated as a pseudo 
generation source at the secondary bus. Constraint (13) 
ensures that the active and reactive power inflows are equal to 
the outflows through an ideal transformer. 

 
Fig. 1 Equivalent circuit of a voltage regulation transformer 

 (12) 
 (13) 

D. ACOPF of Unblanced Three-phase Distribution Systems 

For an N-node distribution system (including the 
distribution substation bus indexed as 0) with K VRTs, the 
equivalent system by substituting VRTs via circuits in Fig. 1 
includes (N+K) buses, i.e., N original buses and K virtual 
buses. In turn, the system three-phase nodal admittance matrix 

 can be constructed according to the 
distribution network topology and 3×3 phase frame matrices 
of individual assets.  is an element of  corresponding to 
phase  of bus  and phase  of bus . 

The total complex power withdrawn from CILs, capacitor 
banks, and adjacent lines at phase  of bus  can be calculated 
via  multiplying the conjugate of their total current 
withdraw . It can 
be further represented via a compact matrix form as in (14), 
where  and  are defined in (15)-(16). The derivation 
of  and  can be referred to [14]. Thus, real and 
reactive power balances at phase  of bus n are presented via 
(17)-(18), where , , , , and  are sets of CPLs, 
conventional DERs, renewable DERs, flexible loads, and 
SVCs/STATCOMs connected at phase  of bus , 
respectively.  is defined in (19) to represent the connecting 
topology of VRTs and the substation bus. 

  (14) 

 (15) 

 (16) 
  

 (17) 
  

                                 +  (18) 

 (19) 

Given electricity price  of all three phases at the 
distribution substation bus, ACOPF for unbalanced three-
phase distribution systems can be formulated as a nonconvex 
QCQP problem (20), where ***. 

  (20a) 

 (20b) 

 (20c) 
 (20d) 

Subject to (2)-(3), (5)-(6), (8)-(13), and (17)-(18) (20e) 
 (21) 

 
 (22) 

Objective function (20a) minimizes the total system 
operation cost, including the electricity purchase cost from the 

n m
Y,n nP Q ,m mP QIdeal transformer

n+1
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main grid at the substation bus, the electricity production cost 
from local conventional DERs and renewable DERs within the 
distribution network, and the benefit from flexible loads. 
Constraint (20b) is the bus voltage magnitude limit, where 

 is represented via a compact matrix form 

. Constraint (20c) represents the line 

current limit where  and  are defined as in (21)-(22) 
for . Line current limit, rather than apparent power limit 
or active power limit, is considered due to the fact that line 
current measurements are deployed more widely in 
distribution systems than line power flow measurements. That 
is, distribution system operators usually monitor line currents 
instead of line power flow quantities in practice. Constraint 
(20d) sets voltages of the distribution substation bus. 

III. CHORDAL RELAXATION BASED SDP MODEL FOR ACOPF 

A. Graph Representation of the ACOPF Problem 
In this paper, structure of the unbalanced ACOPF problem 

is mapped into a graph [25]. That is, in the graph of the 
ACOPF problem (20), each node represents a variable , 
while two nodes  and  are connected via an edge if and 
only if  is involved in the ACOPF problem (20).  

In the unbalanced ACOPF problem, subgraphs 
corresponding to phase voltages of two adjacent buses are 
shown in Fig. 2. Fig. 2(a)-2(c) show subgraphs of two adjacent 
three-, two-, and single- phase buses that are connected via a 
distribution line, while Fig. 2(d) shows a subgraph of two 
adjacent three-phase buses that are connected via an ideal 
transformer. The graph of the entire ACOPF problem can be 
constructed by connecting sub-structures in Fig. 2 
successively according to the network topology. As 

 for  do not exist in (20), nodes  and 
 are not directly connected as shown in Fig. 2(d). That is, 

an ideal transformer will split the graph of the entire ACOPF 
problem into two separated sub-graphs. 

The following observations are derived according to the 
graph of the unbalanced ACOPF problem (20). An illustrative 
example is provided in Appendix A to describe how the 
proposed ACOPF problem can be mapped into a chordal 
graph.  
i) Although network topology of an unbalanced three-phase 

distribution system is radial, the graph of the ACOPF 
problem (20) is strongly meshed, as shown in Fig. 2(a). 
However, ACOPF approaches and conclusions for 
balanced distribution systems in [26] require the graph of 
ACOPF problems, instead of the system network topology, 
to be acyclic (i.e., radial), and in turn are not applicable to 
the unbalanced ACOPF problem (20). 

ii) In graph theory, a cycle is a sequence of nodes starting and 
ending at the same node, with each two consecutive nodes 
in the sequence connected by an edge. A minimal cycle is 
defined as the smallest cycle that does not contain other 

cycles. A graph is called chordal if all minimal cycles in 
the graph include at most 3 nodes. Indeed, the graph of the 
ACOPF problem (20) is chordal. 

iii) In graph theory, a k-clique is defined as a k-node complete 
subgraph in which each node is connected to all other (k-1) 
nodes. A maximal k-clique refers to a k-clique that is not 
contained in any other higher order cliques. Indeed, the 
graph of the ACOPF problem (20) is constituted of 
maximal 6-, 4-, and 2- cliques corresponding to three-, 
two-, and single- phase lines.  represents the set of 
maximal cliques in the graph. 

 
Fig. 2 Subgraphs corresponding to phase voltages of two adjacent buses 

B. Chordal Relaxation Based SDP Model  
In order to build the chordal relaxation based SDP model, 

new variables  are introduced to substitute nonlinear 
terms  in the ACOPF problem (20). For the sake of 
discussion, the variable substitution is denoted as “ ”, which 
substitutes with variable  when corresponding 

 appears in (20) and zeros when  does 
not appear in (20). In turn,  is a  by  
square matrix, which is constructed by . 
Similarly,  is defined for each maximal clique  in the 
graph, while the dimension of  can be 6×6, 4×4, or 2×2 
corresponding to maximal 6-, 4-, and 2- cliques in Fig 2 (a)-
(c). In addition, as maximal cliques are complete subgraphs, 

 does not contain zeros. An illustrative example is provided 
in Appendix B to further demonstrate the chordal relaxation 
approach and how to separate the  matrix into several sub-
matrices . 

As the graph of the ACOPF problem (20) is chordal and 
each  corresponds to a distribution line, the original 
ACOPF problem (20) can be reformulated as a chordal 
relaxation based SDP model (23). The objective function (23a) 
is represented as an epigraph form, while Schur’s component 
forms are defined in (23b)-(23d). Constraints (23e)-(23f) 
correspond to real and reactive power balance constraints 
(17)-(18) for each phase at each bus. Constraint (23g) is a 
Schur’s component form of the inverter capacity limit (10). 
Constraint (23h) is the voltage limit corresponding to (20b). 
Constraint (23i) is the line current limit corresponding to (20c) 
The given distribution substation bus voltages (20d) are 
expressed in the matrix form (23j). Constraint (23k) requires 
variable matrices  to be positive semidefinite. Constraints 
(23l)-(23m) are primary and secondary bus voltage constraints 
of an ideal transformer corresponding to (12).  is defined 

as . 

a
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b
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c
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a
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b
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c
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 (23a) 

 (23b) 

 (23c) 

 (23d) 

 (23e) 

  

                            (23f) 

 (23g) 

 (23h) 

  (23i) 

 (23j) 

 (23k) 

 

 (23l) 
  (23m) 

Subject to (2)-(3), (5)-(6), (8)-(9), (11), and (13) (23n) 

As constraint (23l) is still nonlinear, following the strategy 
discussed in [19]-[20] to relax (23l)-(23m) as (24), the first 
chordal relaxation based unbalanced ACOPF model denoted 
as CROPF-1 is derived, which includes the objective function 
(23a) as well as constraints (23b)-(23k), (23n), and (24). 

 (24) 
However, solutions to CROPF-1 are rarely exact as will be 

illustrated in case studies. The main reason is that (24) is not 
tight enough to describe the relationship between  and 

 for . Indeed, constraint (23l) shows that the 
coupling relationship exists not only in diagonal elements, but 
also in off-diagonal elements. In fact, coupling for diagonal 
elements only describes the relationship of voltage magnitudes 
between primary and secondary buses (e.g.,  and  
are squared voltage magnitudes of phase  at primary and 
secondary buses), while coupling for off-diagonal elements 
will further ensure that voltage phase angle differences among 
three phases in both primary and secondary buses are 
consistent (e.g.,  represents that voltage 
phase angle differences between phases  and  at the primary 
bus  is the same as that of the secondary bus ). 

Alternatively, a tighter convexification for (23l)-(23m) is 
proposed as in (25)-(26). This derives the second chordal 
relaxation based unbalanced ACOPF model denoted as 
CROPF-2, which includes the objective (23a) as well as 
constraints (23b)-(23k), (23n), and (25)-(26). 

 (25) 
 (26) 

Comparing with the original nonlinear and nonconvex 
ACOPF problem (20), both CROPF-1 and CROPF-2 are 
convex SDP problems. In turn, they can be solved more 
efficiently, which also present property that a local optimal 
solution is also global optimal. Proposition 1 describes the 
conditions under which the global optimal solution to the 
original ACOPF model (20) can be retrieved from optimal 
solutions of CROPF-1/CROPF-2. Proposition 2 further states 
that the proposed model CROPF-2 is tighter than CROPF-1. 
Proofs of Propositions 1 and 2 are provided in the Appendix C 
and D, respectively. 

It is worth emphasizing that in terms of the two conditions 
in Proposition 1, the optimal solution to CROPF-1/CROPF-2 
can be directly checked against constraints (23l)-(23m) to see 
if they are met. On the other hand, the rank one condition may 
face with numerical issues, as the optimal solution to CROPF-
1/CROPF-2 may not be exactly rank-1, in the sense that the 
second largest eigenvalue may not be strictly zero due to 
numerical errors. In order to further evaluate the solution 
accuracy, bus voltages recovered from the solution to  will 
be used in case studies to calculate system real and reactive 
power mismatches, which provides another insight on whether 
the optimal solution to CROPF-1/CROPF-2 is physically 
feasible to, and in turn global optimal, the original ACOPF 
problem. 

Proposition 1: For an unbalanced radial distribution system, 
if optimal solutions of  to CROPF-1 or CROPF-2 are rank 
one and (23l)-(23m) are satisfied, the global optimal solution 
to the original ACOPF problem (20) can be retrieved from 
optimal solutions of . 

Proposition 2: Any feasible solution to CROPF-2 is also a 
feasible solution to CROPF-1, and at least one feasible 
solution to CROPF-1 is infeasible to CROPF-2. That is, (25)-
(26) is a tighter relaxation of (23l)-(23m) than (24). 

IV. CASE STUDIES 

Two systems are studied to illustrate the effectiveness of the 
proposed chordal relaxation based SDP approach and the 
tighter convexification formulation (25)-(26) for VRTs. 

A. The modified IEEE 34-bus system 

The IEEE 34-bus system shown in Fig. 3 includes 34 
original buses and two virtual buses 7 and 20 for the two 
VRTs. Lower and upper bounds on tap ratios of the two VRTs 
are set as 0.95p.u. and 1.05p.u.. The maximum line current is 
set as 0.160kA for all lines. A three-phase conventional DER 
GA is connected at bus 17. Renewable DER GB, is connected 
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at bus 30 with  of 0.02. The detailed data of GA and GB are 
provided in Tables I-II, respectively. SVCA is a single phase 
SVC connected at phase a of bus 12, with reactive power 
limits of [-550kvar, 850kvar]. Three flexible loads are 
connected at buses 16, 23, and 33, respectively. Data of 
flexible loads is shown in Table III. Power factor limits of 
both DERs are set as [0, 1], and those of the three flexible 
loads are set as [0.85, 1]. A balanced three-phase resistive CIL 
with 10kW per phase at 1 p.u. voltage level is connected at 
bus 26. Electricity price  at the distribution substation bus is 
10¢/kWh. Distribution substation bus voltages are 1 0˚p.u., 
1 -120˚p.u., and 1 120˚p.u.. For all other buses, phase 
voltage magnitude limits are [0.95p.u., 1.05p.u.]. Other 
configuration data can be found in [27]. Numerical 
simulations are conducted on a personal computer with Intel 
Core i7 3.60 GHz processor and 16 GB RAM. 
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Fig. 3 The modified IEEE 34-bus distribution system with two VRTs 

TABLE I  
DATA OF THE CONVENTIONAL DER GA 

Phase   
(×10-5¢/kWh2) 

 
(¢/kWh) 

 
(¢) 

 
(kW) 

 
(kW) 

 
(kvar) 

 
(kvar) 

a 189 6.1 1000 1680 200 720 100 
b 203 6.3 1000 1680 200 780 100 
c 195 6.0 1000 1680 200 700 100 

TABLE II 
DATA OF THE RENEWABLE DER GB 

Phase  
(¢/kWh) 

 
(kW) 

 
(kW) 

 
(kVA) 

a 5.1 1250 0 1400 
b 5.2 1250 0 1350 
c 5.6 1250 0 1350 

TABLE III 
DATA OF FLEXIBLE LOADS 

Flexible 
 load  Phase   

(×10-5¢/kWh2) 
 

(¢/kWh) 
 

(¢) 
 

(kW) 
 

(kW) 
 

(kvar) 
 

(kvar) 

FA 
a -288 10 -200 230 0 120 20 
b -578 12.2 -200 230 0 120 20 
c -592 11.6 -200 230 0 120 20 

FB 
a -255 16.0 -200 1500 0 750 350 
b -298 16.7 -200 1500 0 750 350 
c -243 15.7 -200 1500 0 750 350 

FC 
a -452 12.9 -200 390 0 200 95 
b -442 11.4 -200 460 0 220 120 
c -436 12.3 -200 490 0 250 50 

The following four cases are studied. All SDP models are 
solved by SeDuMi [28]. 
Case 1: The rank relaxation based SDP model [16]. 
Case 2: The first chordal relaxation based model CROPF-1. 
Case 3: The proposed model CROPF-2. 
Case 4: The impact of CILs on the optimal operation of 

distribution systems. 
Case 5: The impact of line current limit on the optimal 

operation of distribution systems. 

Case 1: The rank relaxation based SDP model [16] is first 
studied to solve the ACOPF problem (20). That is, a single 
positive semidefinite matrix  for the entire system is built to 
contain all  variables, which substitute all  in 

 no matter whether  appears in (20) or not. 
The dimension of  is 108×108 and in turn  contains 1082 

 variables. The ideal transformer constraints (23l)-(23m) 
are replaced by (24).  

 
Fig.4 Eigenvalues of matrix  

The rank relaxation based SDP model is solved in 2850s. 
Fig. 4 shows eigenvalues of  on a logarithmic scale. As the 
rank of a matrix is equal to the number of its nonzero 
eigenvalues, the threshold of 1×10-5 is used to determine 
whether a numerical eigenvalue solution is nonzero. Fig. 4 
shows that 23 eigenvalues are larger than 1×10-5, and in turn 
the rank of  is 23. Thus, the solution to the rank relaxation 
based SDP model cannot be used to retrieve a feasible  
solution to the original ACOPF problem (20). The major 
reason is that  contains high rank sub-matrices 

 corresponding to VRTs . As  

and  are not presented in any constraint of the rank 
relaxation based SDP model, they can take any value as long 
as  is met. For instance, if they take values of , the 

rank of  is always no smaller 

than 2, because  and . That is, as high rank 

sub-matrices  are contained in , the rank of  

is always no smaller than 2. In turn, in addition to its 
expensive computational burden, the rank relaxation based 
SDP model cannot derive feasible  solutions to the original 
ACOPF problem (20). 

Case 2: In this case, the first chordal relaxation based model 
CROPF-1 is studied, which includes 33  corresponding to 
33 maximal cliques for all lines. Computational time is 1.2 s, 
which is about 103 times faster than that in Case 1. However, 
solutions to 20  matrices corresponding to all 20 lines in 
the downstream of VRT-1 are of high rank. In fact, VRT-1 
partitions the original system into two sub-systems, which are 
linked by , , and (24). As (24) is not 
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binding at the optimal solution to CROPF-1, when fixing , 
, , and  as the optimal solution to CROPF-1, the 

upstream and downstream sub-systems are decoupled. In turn, 
three-phase voltage angle differences at bus 7 are not 
constrained, and the rank of  is of high order. Similarly, 
matrices  corresponding to all downstream three-phase 
lines are of high rank. 

In turn, according to Proposition 1, the solution derived 
from CROPF-1 is infeasible to the original ACOPF problem 
(20). Indeed, when the rank of  is larger than one,  
cannot be directly decomposed as the product of a voltage 
sub-vector and its conjugate transpose. Although some 
feasible solution recovery methods [18] may be used to 
recover a feasible solution around the obtained infeasible 
solution from CROPF-1, they are based on the condition that 
the second largest eigenvalue of  should be small enough 
which indicates that  is close to rank one. However, it is 
found that this condition is not met in this case. For instance, 
for certain  solutions in Case 2, the largest eigenvalue is 
3.484 and the second largest eigenvalue is 2.598. Thus, 
feasible solution recovery methods [18], may not work for this 
case. In addition, solution recovery methods involve an 
iterative procedure and may require a significant 
computational time. Consequently, the advantage on 
computational efficiency of CROPF-1 will be compromised. 
In summary, this comes to the conclusion that CROPF-1 may 
be invalid. 

Case 3: The proposed chordal relaxation based model 
CROPF-2 with the tighter convexification formulation (25)-
(26) for VRTs is solved. The computational time is 1.3 s. In 
the optimal solution, all  matrices are rank one and (23l)-
(23m) are satisfied. Thus, the optimal solution to the original 
ACOPF problem can be retrieved according to Proposition 1.  

The retrieved three-phase voltage magnitude profiles are 
shown in Fig. 5. Missing nodes in the profiles represent two-
phase and single-phase situations of certain buses. Fig. 5 
shows that voltages of all three phases at buses 7 and 20 are 
boosted by VRT-1 and VRT-2. Table IV shows voltages of 
primary and secondary buses of the two VRTs, with optimal 
tap ratios of 1.05p.u. and 1.0306p.u.. Voltage of phase a at bus 
20 reaches its upper bound. The reason is that a higher voltage 
will reduce power losses of distribution lines, and in turn the 
total operation cost can be reduced. Table IV also shows that 
primary and secondary voltage phase angles for all three 
phases of VRT-1 and VRT-2 are identical. Thus, (23l)-(23m) 
are satisfied and the effectiveness of the proposed tighter 
convexification model (25)-(26) is verified. 

In this case, the optimal objective value is 1037.25$, with 
350.71$, 338.47$, and 348.67$ for phases a, b, and c, 
respectively. Real and reactive power outputs of SVC, DERs, 
and the distribution substation bus are shown in Table V. It 
shows that as GA’s generator in phase b and GB’s generator in 
phase c are more expensive, they provide less real power than 
generators in the other phases. Reactive power output of 
SVCA in phase a and three-phase reactive power outputs of 

GA all reach their upper bounds. Optimal apparent powers 
through the inverters of GB are 1400kVA, 1350kVA, and 
1350kVA in phases a, b, and c, respectively. That is, GB fully 
utilizes its reactive power capacities. In summary, both SVCA 
and DERs take full advantage of their reactive power 
capacities, because more reactive power contributes to higher 
voltage profiles, reduces system losses, and in turn cuts down 
the system operation cost. 

Optimal operation statuses of the three flexible loads are 
shown in Table VI. Reactive power dispatches of flexible 
loads are all at their lower bounds. That is, flexible loads 
reduce their reactive power consumptions as much as possible, 
which would help maintain higher voltage profiles and in turn 
reduce system losses and the system operation cost. 
Furthermore, phase a of FA and phase b of FC reach their 
lower power factor bounds of 0.85. In addition, marginal 
benefits of these two flexible loads are 9.81¢/kWh and 
9.69¢/kWh, which are both smaller than 10¢/kWh of the 
electricity price at the substation bus. Thus, it indicates that in 
order to meet power factor limits and minimum reactive power 
requirements, flexible loads might still consume a certain 
amount of active power even though the electricity price is 
higher than their marginal benefits. 

 

 
Fig. 5 Three-phase voltage profiles in Case 3 

TABLE IV 
VOLTAGES OF PRIMARY AND SECONDARY BUSES OF VRTS (P.U.) 

Phase Bus 6 Bus 7 Bus 19 Bus 20 
a 0.9821 -0.49˚ 1.0312 -0.49˚ 1.0189 0.40˚ 1.05 0.40˚ 
b 0.9751 -120.16˚ 1.0238 -120.16˚ 1.0059 -120.14˚ 1.0366 -120.14˚ 
c 0.9789 119.95˚ 1.0278 119.95˚  1.0053 120.06˚ 1.0360 120.06˚ 

TABLE V 
REAL AND REACTIVE POWER OUTPUTS OF DERS, SVC, AND THE 

DISTRIBUTION SUBSTATION BUS 

Phase 
Substation Bus SVCA GA GB 

 
(kW) 

 
(kvar) 

 
(kW) 

 
(kvar) 

 
(kW) 

 
(kvar) 

 
(kW) 

 
(kvar) 

a 3449.0 1077.4 - 850 1151.2 720 1250 630.5 
b 3409.4 1918.7 - - 1043.1 780 1250 509.9 
c 3249.1 1988.0 - - 1155.2 700 1250 509.9 

TABLE VI 
OPTIMAL OPERATION STATUSES OF FLEXIBLE LOADS 

Phase 
FA FB FC 

 
(kW) 

 
(kvar) 

Power 
Factor 

 
(kW) 

 
(kvar) 

Power 
Factor 

 
(kW) 

 
(kvar) 

Power 
Factor 

a 32.3 20.0 0.85 1040.2 350 0.95 240.9 95 0.93 
b 145.1 20.0 0.99 985.9 350 0.94 193.6 120 0.85 
c 93.7 20.0 0.98 1001.6 350 0.93 139.8 50 0.94 

Summary of Cases 1-3: Table VII summarizes and compares 

0.96

0.98

1
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the performance of Cases1-3. Among the three models, rank 
relaxation [16] and CROPF-1 cannot provide solutions that 
satisfy the rank one condition. On the other hand, CROPF-1 
and CROPF-2 present similar computational performance 
while CPU time of the rank relaxation model is significantly 
long. The reason is that the dimension of  in the rank 
relaxation model is 108 108 which includes 1082  
variables. In comparison, both CROPF-1 and CROPF-2 
include 33 6 6  matrices and 726  variables. The 
large difference in the number of variables is the major reason 
that the CPU time of the rank relaxation model is significant. 

TABLE VII 
SUMMARY OF CASES 1-3 

Model CPU time 
(Second) 

Rank one 
condition 

Number of 
variable  

Size of the largest 
positive 

semidefinite matrix 
Rank 

relaxation [16] 2850 No 11664 108 108 

CROPF-1 1.2 No 726 6 6 
CROPF-2 1.3 Yes 726 6 6 

Case 4: This case investigates the impact of CILs on the 
optimal operation of distribution systems. In order to better 
illustrate the effect of different CIL values on optimal setting 
of tap ratios, voltage lower and upper bounds of all buses are 
set as 0.9p.u. and 1.1p.u.. Per phase value of the three-phase 
balanced CIL at bus 26 is gradually increased from 10kW to 
150kW. Optimal tap ratios with respect to different CIL values 
at bus 26 are shown in Table VIII. It is worth mentioning that 
all solutions in Table VIII satisfy Proposition 1, which can be 
used to derive global optimal solution to the original ACOPF 
problem (20). 

TABLE VIII 
OPTIMAL TAP RATIOS WITH DIFFERENT CIL VALUES 

Load (kW per phase) 150 100 60 50 10 
VRT-1 1.0362 1.05 1.05 1.05 1.05 
VRT-2 0.95 0.95 1.0090 1.05 1.05 

Because a CIL’s power consumption is proportional to the 
square of voltage magnitude, a higher voltage would induce a 
larger real power consumption and in turn a higher system 
operation cost. That is, the CIL connected at bus 26 will offset 
economic benefit brought by reduced losses with a high 
voltage profile. In turn, the system voltage profile needs to be 
optimally regulated for leveraging reduced losses of 
distribution lines and increased real power consumptions of 
CILs. It is observed that with large CIL values in the first two 
columns of Table VIII, economic benefit from reduced losses 
by boosting voltage magnitudes of downstream system is 
smaller than that from reduced power consumption of CIL by 
decreasing voltage magnitude at bus 26. In turn, VRT-2 steps 
down voltage magnitude at bus 26 for reducing CIL’s real 
power consumption. Indeed, when the CIL is 150kW per 
phase, VRT-1 also lowers its tap ratio to further reduce 
voltage at bus-26 as compared to that with CIL of 100kW. On 
the other extreme, the last two columns show that when the 
CIL is small, the two VRTs prefer to step up voltages for 

reducing power losses and decreasing system cost. While for 
the CIL of 60kW per phase, VRT-2 optimizes its tap ratio to 
leverage loss reduction of distribution lines and power 
consumption increase of the CIL. 

Case 5: This case further investigates the impact of line 
current constraints on the performance of the proposed 
CROPF-2 model and the optimal operation of distribution 
systems. In this case, the current limit of line  is set as 
0.020kA and the load connected at bus 30 is removed. Thus, 
line  could be potentially congested by the DER GB 
connecting at its downstream. Two scenarios with and without 
line current limits are studied. In both scenarios, CROPF-2 is 
solved in 1.4s and all  are rank one. Thus, in this case 
study, line congestion does not impact the rank of , and the 
optimal solution to the original ACOPF problem can be 
retrieved according to Proposition 1. However, this may not be 
a general conclusion.  

Dispatch results of GB with and without line current 
constraints are shown in Table IX. It can be seen that, when 
congestion happens on line , power generated by GB 
cannot be fully transmitted through line  for 
economically supplying loads, and in turn GB reduces its 
generation significantly, especially reactive power, even 
though its marginal cost is lower than that of the main grid. In 
fact, marginal costs of GB are 5.1¢/kWh, 5.2¢/kWh, and 
5.6¢/kWh for phases a, b and c, while electricity price at the 
substation bus is 10¢/kWh. Consequently, the total system 
operation cost is increases from 925.21$ to 990.49$ when line 
current limits are considered.  

TABLE IX 
DISPATCH OF GB WITH AND WITHOUT LINE CURRENT LIMITATION 

Phase 
With line current limitation  Without line current limitation  
 (kW)  (kvar)  (kW)  (kvar) 

a 937.0 103.1 1250 630.5 
b 832.2 67.3 1250 509.9 
c 904.5 167.8 1250 509.9 

B. The IEEE 8500-node distribution system 
The modified IEEE 8500-node distribution system [29], 

which includes three VRTs, five conventional DERs, six 
flexible loads, and three SVCs, is further studied to test the 
proposed chordal relaxation based SDP model CROPF-2. Two 
strategies are applied to preprocess system data for avoiding 
numerical issues incurred by extreme-short distribution line 
segments with very large impedance values: (i) line segments 
shorter than 75 meters are combined with adjacent segments, 
and (ii) proper voltage and power bases are selected to rescale 
coefficients of ACOPF constraints. 1150 out of the original 
2469 buses are kept after preprocess, which includes 1147 
original buses and 3 virtual buses for the three VRTs, In turn, 
the CROPF-2 model includes 1146  matrices. The detailed 
configuration data can be found in [27]. 

The CROPF-2 model is solved in 23.7 s, which shows that 
the proposed chordal relaxation based ACOPF model is an 
efficient tool for designing optimal operation strategies of 
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practical large-scale distributions systems. Furthermore, all 
1146  matrices are rank one and (23l)-(23m) are satisfied. 
Thus, the optimal solution to the original ACOPF problem 
(20) can be retrieved according to Proposition 1. Table X 
shows optimal voltages at primary and secondary sides of the 
three VRTs, in which tap ratios are all equal to their upper 
bounds of 1.05. In addition, phase angles at primary and 
secondary sides of all VRTs are identical, which again 
indicates the tightness of (25)-(26). In addition, the highest 
voltage value is 1.0493 p.u., occurring at phase c of the bus 
where the single-phase DER GA is connected at, while the 
lowest voltage value of 0.95. p.u. occurs at phase c of the 
primary side of VRT-1. 

TABLE X 
VOLTAGES OF VRT CONNECTING BUSES (P.U.) 

Phase VRT-1 VRT-2 VRT-3 

a 0.9592 
-3.21˚ 

1.0072 
-3.21˚ 

0.9697 
-1.42˚ 

1.0182 
-1.42˚ 

0.9916 
-4.50˚ 

1.0412 
-4.50˚ 

b 0.9535 
-122.77˚ 

1.0012 
-122.77˚ 

0.9745 
-121.84˚ 

1.0232 
-121.84˚ 

0.9777 
-123.69˚ 

1.0266 
-123.69˚ 

c 0.9593 
117.80˚ 

1.0073 
117.80˚ 

0.9500 
118.05˚ 

0.9975 
118.05˚ 

0.9971 
117.38˚ 

1.0470 
117.38˚ 

C. Comparison with General NLP Solvers  
This section compares computational performance of the 

proposed approach with general NLP solvers which directly 
solve the original nonlinear ACOPF problem (20). The results 
are presented in Tables XI-XII. 

When using SeDuMi to solve CROPF-2 of the two systems, 
the primal-dual gaps are both smaller than 10-7$, which shows 
high solution accuracy achieved by the proposed approach. In 
order to further evaluate the solution accuracy, bus voltages 
recovered from the solution to  [10] are further used to 
calculate system real and reactive power mismatches. Real 
power mismatch  and reactive power mismatch  of 
each phase at each bus respectively are calculated as in (27)-
(28), where “ ” indicates recovered voltage values, dispatch 
solutions of DERs, SVCs/STAECOMs, loads, and substation 
bus, as well power transmitted through VRTs. System average 
real and reactive power mismatches per phase per bus are 
1.63  10-4 kW and 9.19 10-5 kvar for the IEEE 34-bus 
system, and are 5.48 10-4 kW and 5.63 10-4 kvar for the 
IEEE 8500-node system. Thus, solution accuracy is 
considered sufficient from the engineering point of view.  

  

        (27) 

  

              (28) 

A local search NLP solver IPOPT [30] is also tested. Initial 
phase voltage values of all buses are set as 1 0˚p.u., 1 -120˚ 
p.u., and 1 120˚p.u., respectively. In order to study the impact 
of initial settings of variables to IPOPT, two cases are 
performed, in which IPOPT-1 uses 1 as initial tap ratios and 
IPOPT-2 uses 1.05. Results in Tables XI-XII show that the 
proposed approach solves ACOPF problems much faster than 

IPOPT. Specifically, both IPOPT-1 and IPOPT-2 terminate at 
suboptimal solutions (i.e., 0.063% and 0.110% larger than the 
solution from the proposed approach). Indeed, in recognizing 
the facts that the system average real power mismatch is at the 
level of 10-4 kW, the total active power mismatch is less than 1 
kW, and the system marginal cost is at the level of 10¢/kWh, 
difference in the objective value between the proposed 
approach (i.e., $989.44) and IPOPT (i.e., $990.07) can justify 
that the proposed approach derives a better solution than 
IPOPT (i.e., difference in the objective value is 63¢ or 
equivalent about 6.3kW). 

Furthermore, tap ratios of VRT-1, VRT-2, and VRT-3 
obtained by IPOPT-1 respectively are 1.049, 1.046, and 1.025, 
are 1.05, 1.05, and 1.0352 from IPOPT-2, while are all 1.05 in 
the proposed approach. To further illustrate the 
outperformance of the proposed approach, tap ratios of the 
three VRTs are fixed as solutions provided by IPOPT-1 (i.e., 
1.05, 1.05, and 1.0352) and the CROPF-2 is resolved. The 
objective is 989.91$, which is closer to the objective from 
IPOPT-2 (i.e., $990.07) and larger than the value obtained by 
the proposed approach (i.e., $989.44). It shows that the 
solutions to tap ratios from the IPOPT are not global optimal, 
which indicates limitations of local-search NLP solvers in 
exploring global optimal solutions as well as their dependence 
on initial settings.  

Finally, a global optimization solver LindoGlobal [31] is 
tested. Since LindoGlobal is a global NLP solver, initial 
values are not required. The relative gap between lower bound 
(best possible solution) and upper bound (current best 
solution) is used as the stopping criterion for LindoGlobal, 
which is set as 0.1%. After running for more than 3000s, 
optimality gaps of LindoGlobal are more than 157% for both 
systems. That is, after 3000s, LindoGlobal cannot even 
identify feasible solutions for both systems that satisfy the 
stopping criterion.  

In summary, although NLP solvers may be applicable for 
directly solving (20) to local optimal, identifying global 
optimal solution is still challenging and could be intractable 
for even small-scale systems. Indeed, this comparison again 
shows the motivation and advantage of the proposed chordal 
relaxation based ACOPF approach. Specifically, the proposed 
approach not only has strong ability in exploring optimal 
solution but also presents advantages in computational 
efficiency and initial guess free. 

TABLE XI 
COMPARISON IN OBJECTIVE VALUE 

Model Solver Objective ($) 
IEEE 34-bus IEEE 8500-node  

Problem (20) 
IPOPT-1 1037.25 990.53 
IPOPT-2 1037.25 990.07 

LindoGlobal - - 
CROPF-2 SeDuMi 1037.25 989.44 

TABLE XII 
COMPARISON IN COMPUTATIONAL TIME  

Model Solver CPU time (Second) 
IEEE 34-bus  IEEE 8500-node  

Problem IPOPT-1 2.5 65.2 
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(20) IPOPT-2 2.4 108.2 
LindoGlobal >3000 >3000 

CROPF-2 SeDuMi 1.3 23.7 

In order to illustrate impacts of the number of DERs on the 
computational performance and solution quality of the 
proposed ACOPF approach, the IEEE 8500-node system [27] 
is further tested with 6 more conventional DERs. The CROPF-
2 model is solved in 26.1s, which shows that the number of 
DERs presents limited impact on the computational time 
because the number of variables introduced by these 
additional DERs is relatively small as compared to the total 
number of variables in . In addition, all 1146  matrices 
remain rank one and (23l)-(23m) are also satisfied, which 
indicates that the number of DERs does not impact the 
solution quality. Tap ratios of VRT-1, VRT-2, and VRT-3 are 
1.05, 1.05, and 1.0454, respectively. Furthermore, in this study 
an additional single-phase DER connected at phase c of bus 
977 makes the phase c voltage value of bus 700 reaching its 
upper bound, which was 1.0493p.u. without this DER. Thus, 
power injections of these 6 additional DERs contribute to the 
raise of bus voltage levels and in turn reduce tap ratios of 
certain VRTs for mitigating potential violations on voltage 
upper bounds.  

D. Further discussions on the continuous tap ratio modeling  
Following the convention of many ACOPF studies, this 

paper models tap ratios as continuous variables (12), which 
provides a trade-off between model accuracy and 
computational efficiency and makes it suitable for real-time 
ACOPF applications in distribution systems. Continuous tap 
ratio solutions derived from the proposed model can be 
rounded up to the closest discrete tap ratio values, in order to 
recover a practical feasible tap ratio solution. In recognizing 
that voltage regulators usually have 8, 16, or more tap steps 
upward and downward, which means 17, 33, or more status 
with the tap ratio step of 0.00625, 0.003125, or even smaller 
[20], although the recovered discrete tap ratio values may not 
be the same as the solution of the discrete tap ratio based 
model, higher granularity tap ratio steps in practice would 
make the final roundup tap ratio solutions close to those of the 
discrete tap ratio based model, and thus acceptable in engineer 
practice. 

In fact, the proposed distribution ACOPF model and 
solution approach can be extended to consider discrete tap 
ratios, at the cost of higher computational burden. That is, 
constraints (23l)-(23m) in the proposed model can be replaced 
to consider tap ratios as discrete variables, which will derive a 
mixed-integer SDP (MISDP) problem. The MISDP problem 
can be solved by the branch-and-bound (BAB) method. The 
idea is to integrate a branch-and-bound (BAB) framework 
(such as BNB in Yalmip [32] and SCIP [33]) for handling 
binary variables, and an SDP solver for solving SDP problems 
at individual BAB nodes with relaxed integer variables. 
However, in general, solving large-scale MISDP is still facing 
with the dilemma of computational inefficiency and/or poor 
solution quality. Indeed, two main factors would impact 

computational performance of the MISDP based ACOPF 
model: 1) the number of ideal transformers and the number of 
tap positions, i.e., the number of binary variables, which may 
impact the efficiency of the BAB procedure, and 2) the scale 
of distribution systems, which would impact computational 
time of each SDP node in the BAB tree. This is the major 
reason that the application of the MISDP based ACOPF model 
for large-scale distribution systems is restricted in practice. 

Nevertheless, the following case study is provided to show 
the impact of the discrete tap ratio model on the computational 
performance. The MISDP based ACOPF problem is solved by 
integrating the BAB solver BNB in Yalmip for handling 
binary variables and Mosek for solving SDP problems at 
individual BAB nodes, because Yalmip has a well-designed 
interface with Mosek and Mosek is in general faster than 
SeDuMi. The modified IEEE 34-bus system and the IEEE 
8500-node system are studied. For all voltage regulator 
transformers,  is set as 0.0125 and  is set as 4. That is, 
each ideal transformer has 4 steps upward and downward, 
with each step of 0.0125. In turn, each ideal transformer has 9 
statuses. The computational performance is shown in Table 
XIII. It can be seen that, when considering discrete tap ratios 
the CPU time for solving the MISDP problem is about 2 
orders of magnitude higher than that of the continuous tap 
ratio model. For larger-scale systems with more VRTs, the 
computational burden will increase significantly due to the 
increase of both continuous and binary variables. 

TABLE XIII 
COMPUTATIONAL PERFORMANCE OF DISCRETE TAP RATIO MODEL 

Model  IEEE 34-bus IEEE 8500-node  

Discrete  
tap ratio  

CPU time (Second) 22.17 385.8 
# of SDP nodes searched 123 173 

# of total SDP nodes 289 (92) 729 (93) 
Objective ($) 1037.31 989.86 

Tap ratios 1.05/1.025 1.05/1.05/1.05 

Continuous 
tap ratio  

CPU time (Second) 0.21 2.89 
Objective ($) 1037.00 989.86 

Tap ratios 1.05/1.0306 1.05/1.05/1.05 

Based on the above study, considering tap radios as 
continuous variables actually provide significant 
computational benefits at the cost of accurate tap ratio 
solutions. Indeed, considering tap radios as continuous 
variables is consistent with existing studies on transmission 
and distribution ACOPF problems [R.34]-[R.35], [20], which 
provides a trade-off between model accuracy and 
computational efficiency and makes it suitable for real-time 
ACOPF applications in distribution systems. 

V. CONCLUSION 

Although network topology of an unbalanced three-phase 
distribution system is radial, the graph of the unbalanced 
ACOPF problem is strongly meshed, and in turn ACOPF 
approaches and conclusions for balanced distribution systems 
in literature may not be applicable. This paper proposes a 
chordal relaxation based SDP approach to derive global 
optimal solutions to unbalanced ACOPF problems. The 
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proposed unbalanced ACOPF model determines the optimal 
operation of conventional DERs, inverter interfaced renewable 
DERs, and voltage regulation devices for minimizing system 
operation cost while satisfying prevailing constraints. In 
addition, a tighter convexification model for VRTs is 
introduced to mitigate solution inexactness. Analytical 
conditions are presented and proved to determine whether the 
global optimal solution to the original ACOPF problem can be 
retrieved via solutions of the chordal relaxation based SDP 
model. Numerical case studies show that the proposed chordal 
relaxation based approach can solve unbalanced ACOPF 
problems much faster than the rank relaxation based SDP 
based model and general NLP solvers, and in turn presents a 
suitable tool for designing optimal operation strategies of 
practical large-scale distributions systems. 

APPENDIX 

A An Illustration Example for the Graph of ACOPF 
A 4-bus system shown on top of Fig. 6 is used for 

illustrating how to map the proposed ACOPF problem into a 
graph. Specifically, the distribution line connecting buses 0-1 
is a three-phase line segment, while those connecting buses 1-
2 and buses 2-3 respectively are two-phase and single-phase 
line segments. When mapping the ACOPF problem into a 
graph as shown on bottom of Fig. 6, voltage variables of 
individual phases at each bus are represented as nodes, and 
two nodes  and  are connected via an edge if and only if 

 for  and/or  is involved in problem 
(20). It is worth mentioning that in problem (20), only 
constraints (17)-(18) and (20c) contain bilinear terms 

 for  and/or .  

0
bV

0
cV

1
aV

1
bV

1
cV

2
aV

2
bV

3
aV

0 1 2 3

0
aV

a
b
c

 
Fig. 6 A 4-bus system and the graph of its ACOPF problem 

 
The graph in Fig. 6 shows that, for instance, 

 and  are both cycles while 
 is a minimal cycle. Indeed, it can be seen 

from Fig. 6 that all minimal cycles exclusively contain three 
nodes, which means that the graph is chordal. Furthermore, 
the graph includes three maximal cliques according to the 
definition of maximal clique in Section III.A, including 

, , and  which 
respectively are maximal 6-clique, 4-clique, and 2-clique. 
Obviously, they are all complete subgraphs and not contained 
in any other cliques, which means they are all maximal 
cliques. 

Three observations can be made from the graph of the 4-bus 

example: (i) the graph of the ACOPF problem is constructed 
by connecting a series of subgraphs in Fig. 2 according to 
network topology of the distribution system; (ii) subgraphs in 
Fig. 2 are all maximal cliques; and (iii) each distribution line 
corresponds to a subgraph in Fig. 2. The graph of the ACOPF 
problem for more complicated large-scale distribution systems 
can be similarly constructed by connecting sub-structures in 
Fig. 2 successively according to the distribution network 
topology. 

B An Illustration Example for Chordal Relaxation 
A 4-bus illustrative example with 3 three-phase lines shown 

in Fig. 7 is used to demonstrate the validity of the chordal 
relaxation, which separates the  matrix into several sub-
matrices . 

The voltage vector  is written as in (29). By introducing 
new variables  to substitute nonlinear terms , a 
12 12 square matrix  can be obtained as in (30). It is noted 
that as certain nonlinear terms (e.g.,  do not appear 
in the ACOPF problem (20), corresponding variable 
substitutions  (e.g.,  are not needed and can be 
replaced with 0 in order to reduce the number of variables. 
The corresponding graph is shown in Fig. 8. For the sake of 
illustration, each of the three nodes in the graph corresponding 
to , , and  is duplicated three times, which are 
connected via dash lines to indicate that they are the same 
node. Fig. 8 includes three maximal 6-cliques shown in the 
three dashed boxes, which correspond to three 6 6 
submatrices as in (31). It can be seen that the three  are 
sub-matrices of , which correspond to sub-vectors of  that 
are contained in each maximal clique of the graph.  

 0

2 3

a b c

1

  
Fig. 7 A 4-bus illustrative example  
 

1V

0V
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1V 1V

 
Fig. 8 Graph representation of the ACOPF problem for the 4-bus system 

In comparison, the rank relaxation based SDP model [16] is 
studied in Case 1, in which a 12 12 full square matrix  as 
shown in (32) is used. That is, a single positive semidefinite 
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matrix  for the entire system is built to contain all  
variables, which substitute all  in  no 
matter whether  appears in (20) or not. 

 (29) 

 (30) 

 (31) 

 (32) 

C Proof for Proposition 1 
As CROPF-1 and CROPF-2 are convex SDP problems, a 

local optimal solution  is also global optimal. In addition, 
as they are convex relaxations to the original ACOPF (20), 
their feasible regions are larger than that of (20). In turn, if a 
feasible  solution to the original ACOPF problem (20) can be 
recovered from the optimal solution  to CROPF-1/CROPF-
2, it must also be a global optimal solution to (20).  

Next, we discuss how to recover a feasible  solution to 
(20) from the optimal solution  of CROPF-1/CROPF-2. 
Without loss of generality, assuming that the distribution 
substation bus (indexed as 0) is connected to bus 1. 

1) As  is rank one,  is also rank one. With a 

given  at the distribution substation, voltages of 
bus 1 can be calculated via ; 
2) Voltages of remaining buses can be successively retrieved 
according to the network topology. With retrieved voltages 

 for bus n,  
a) If bus  is connected to bus  via a distribution line, 
voltages of bus  can be retrieved via 

, as  is rank one; 

b) If bus  is connected to bus  via a VRT, voltages of 
bus  can be obtained via , 
as (23l)-(23m) are met and a unique  is determined. 
In summary, a feasible  solution to the original problem, 

thereby global optimal to (20), can be retrieved from the 
optimal solution  to CROPF-1/ CROPF-2 under the 
conditions that all  are rank one and (23l)-(23m) are met. 

D Proof for Proposition 2 
We first prove that any feasible solution to CROPF-2 is also 

feasible to CROPF-1. If a feasible solution to CROPF-2 does 
not satisfy (24), without loss of generality, we consider the 

upper bound being violated, i.e., . 
That is, diagonal elements of  are all 
negative. This is contrary to the assumption that it is a feasible 
solution to CROPF-2 as the positive semidefinite constraint 
(25) is violated. Thus, a feasible solution to CROPF-2 always 
satisfies (24), and in turn is feasible to CROPF-1. 

To prove the second part, a branch in Fig. 9 is considered as 
an example. With a feasible solution  to CROPF-1 
together with , ,  and , if a fixed load at bus 

 satisfies  and 

 while (23l) and (24) are also met, 

 is a feasible solution for bus m. Thus, 

. Because 

determinant 

,  is negative 
semidefinite and (25) is violated. That is, a feasible solution to 
CROPF-1 could be infeasible to CROPF-2.  

VRTn m
,n nP Q ,m mP Q

m+1
Fix Load

 
Fig. 9 An illustrative example with a VRT and a fixed load 
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