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ABSTRACT

Finite State Machines (FSM) are widely used computation mod-

els for many application domains. These embarrassingly sequential

applications with irregular memory access patterns perform poorly

on conventional von-Neumann architectures. The Micron Automata

Processor (AP) is an in-situ memory-based computational architec-

ture that accelerates non-deterministic finite automata (NFA) pro-

cessing in hardware. However, each FSM on the AP is processed

sequentially, limiting potential speedups.

In this paper, we explore the FSM parallelization problem in the

context of the AP. Extending classical parallelization techniques to

NFAs executing on AP is non-trivial because of high state-transition

tracking overheads and exponential computation complexity. We

present the associated challenges and propose solutions that lever-

age both the unique properties of the NFAs (connected compo-

nents, input symbol ranges, convergence, common parent states)

and unique features in the AP (support for simultaneous transitions,

low-overhead flow switching, state vector cache) to realize parallel

NFA execution on the AP.

We evaluate our techniques against several important benchmarks

including NFAs used for network intrusion detection, malware detec-

tion, text processing, protein motif searching, DNA sequencing, and

data analytics. Our proposed parallelization scheme demonstrates

significant speedup (25.5× on average) compared to sequential exe-

cution on AP. Prior work has already shown that sequential execution

on AP is at least an order of magnitude better than GPUs, multi-core

processors and Xeon Phi accelerator.
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1 INTRODUCTION

Finite State Machines (FSM) are widely used as a computation

model in a number of application domains such as data analytics

and data mining [9, 33], network security [13, 21, 24, 38], bioinfor-

matics [11, 28, 36], tokenization of web pages [25], computational

finance [1, 4] and software engineering [5, 10, 26]. These applica-

tions require processing tens to thousands of patterns for a stream of

input data.

NFAs form the core of many end-to-end applications that uti-

lize pattern matching. These pattern matching routines are typically

implemented as if-else or switch-case nests in conventional CPUs

and contribute to a significant fraction of the overall execution time

because of poor branch behavior and irregular memory access pat-

terns. For example, FSM-like computations form the core of many

activities inside a web browser, taking about 40% of the loading time

for many web pages [17]. The oligo_scan routine used in Weeder

2.0, an open-source tool for motif discovery in DNA sequences con-

tributes 30-62% of the total runtime [35]. In the Apriori algorithm

for frequent itemset mining, NFA processing accounts for 33-95%

of the execution time, based on the frequency threshold [32]. Prior

work [40] has shown that without accelerating FSM operations, it is

infeasible for these applications to achieve sustained performance

improvement, no matter how well other parts of these applications

are parallelized (Amdahl’s law).

FSM computation, especially Non-Determinstic Finite Automata

(NFA) computation is inherently hard to speedup. Modern multi-

core processors are limited by the number of transitions they can do

per thread in a given cycle, limiting the number of patterns they can

identify. Their processing capability is also limited by the available

memory bandwidth. GPGPUs have limited success with automaton

processing because it is inherently dominated by irregular memory

access patterns.

In comparison, custom architectures which facilitate in-situ com-

putation in memories can facilitate highly parallel and energy effi-

cient processing of finite state automata in hardware. For instance,

Micron’s Automata Processor (AP) [12] has been shown to accel-

erate several applications like entity resolution in databases [9](by

434×) and motif search in biological sequences [28] (by 201×).

Recent efforts from Virginia’s Center for Automata Processing has

demonstrated that AP can outperform GPGPUs by 32×, and accel-

erators such as XeonPhi by 62×, across a wide variety of automata

benchmarks [31]. Some key problems in bioinformatics like (28,

12), i.e., matching protein motifs of length 28, within edit distance

12 were previously unsolvable by von-Neumann architectures [28].

The Micron AP is a generalized accelerator supporting many ap-

plication domains which can benefit from fast NFA processing and is

not limited to regular expressions. The success of AP relies on three

factors: massive parallelism, eliminating data movement (between

memory and CPU) overheads, and reducing instruction processing

overheads significantly. Massive parallelism follows from the fact
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that all state elements (mapped to columns in DRAM arrays) can be

independently activated in a given cycle. An AP chip can support

up to 48K transitions in each cycle. Thus it can efficiently execute

massive Non-deterministic Finite Automata (NFA) that encapsulate

hundreds to thousands of patterns.

While AP significantly improves the state-of-art, our work aims

to further improve its performance by custom parallelization of FSM

processing on AP. To our knowledge, no existing work parallelizes

NFA FSMs for AP. Parallelization of FSM is known to be a hard

problem due to its inherent sequential nature and high computational

complexity. A logical way to parallelize FSM traversal is by parti-

tioning the input string into segments, and processing these segments

concurrently. The problem with this approach is that starting states

for each segment are unknown except the first segment (which starts

from the FSM’s designated start states). The starting states for a seg-

ment are essentially the ending states of the previous segment. Prior

work [25] has solved this by executing the input segment for every

state of the FSM by leveraging classic parallel prefix-sum [22]. This

method is referred to as enumerative computation as it enumerates

all possible start states. We refer to the sequence of states visited by

each enumeration start state as the enumeration path. Once the first

segment is finished, we know the correct start states of the second

segment and can pick the results of enumerated paths belonging to

the correct start states (Section 2.2, and Figure 2 discuss an example

enumeration).

While enumerative approach is promising, there are several chal-

lenges to realize it in AP. In a conventional processor a SIMD thread

can process enumeration paths and thread’s local variables keep

track of the start state for each enumerated path. Tracking the start

state of an enumerated path is important for combining the results of

individual input segments as discussed above. In the AP, there is no

notion of software threads or local variables which can keep track

of start states of enumerated paths. A processing unit or half core

simply accepts a stream of input symbols and does transitions via

a routing matrix (custom interconnect) each cycle. Thus it can be

challenging to execute concurrently and keep track of all enumer-

ation paths. Another critical challenge to be solved is taming the

enormous computational complexity of enumeration. Enumerations

can be highly inefficient because in the worst case each state has

to be enumerated. NFAs can have several thousands of states (See

Table 1). In general enumeration of an FSM with n states, over k

input segments can lead to an ideal speedup of k provided we have

n × k independent computing resources. For typical NFAs, these

resources far exceed what is available in AP. Current generation of

Micron’s D480 AP board supports up to 4 ranks, were each rank

has 16 independent processing units or half cores. If each FSM oc-

cupies one half-core, we can afford to have at best, 64 independent

processing units.

Our architecture solves the above problems by leveraging some

unique properties of NFAs and unique features of the AP. For in-

stance, we utilize the connected components (disconnected sub-

graphs) in an NFA to merge enumeration paths and thereby take

advantage of the massive parallelism of the AP. Furthermore, the

range (or all reachable states) of an input symbol can be utilized to

prune the enumeration paths. Another NFA property we leverage is

based on parent states in an NFA. If the start states of enumeration

paths have a common parent state, they can be merged. Similar to

prior work [25, 29], we observe enumeration paths converge at run-

time and implement dynamic convergence checks in AP. To solve the

start state tracking problem, we utilize AP flows. The flow abstrac-

tion also allows for near-zero overhead convergence checks. Our

framework also discusses the details of combining the results from

input segments, and hiding these processing overheads by leveraging

the asymmetric finish times of input segments.

In summary this paper offers the following contributions:

• This is the first work to explore parallelization of non-

deterministic FSMs on the Automata Processor (AP). In

particular we examine enumerative approaches to paral-

lelize processing of non-deterministic FSMs. AP’s unique

in-memory architecture and huge computational complexity

of enumerations pose interesting challenges for parallelis-

ing FSMs.

• Our work systematically explores the challenges in par-

allelizing FSMs for AP, such as tracking of enumeration

paths and explosion in computational complexity. The com-

putational complexity is tackled by leveraging unique prop-

erties of NFAs, such as connected components, common

parents, input symbol range, convergence, and monitoring

unproductive enumeration paths. We utilize AP’s flows to

solve the state tracking problem. The flow abstraction also

allows implementation of near-zero convergence checks.

Our framework also discusses the details of composing the

results at the host and proposes techniques to hide this over-

head by utilizing asymmetric finish time of different input

segments.

• We evaluate our techniques against several important bench-

marks including NFAs used for network intrusion detection,

malware detection, text processing, protein motif searching,

DNA sequencing, and data analytics. Our proposed paral-

lelization scheme demonstrates significant speedup (25.5×
on average) compared to sequential execution on AP. Prior

work has already shown that sequential execution on AP is

at least an order of magnitude better than GPUs, multi-core

processors and the Xeon Phi accelerator [31].

2 BACKGROUND

In this section we provide a brief background on the Automata Pro-

cessor and enumerative techniques for parallelizing FSM processing.

2.1 NFA and Automata Processor

A Non-deterministic Finite Automata (NFA) is formally described

by a quintuple ⟨Q,Σ,δ ,q0,F⟩, where Q is a set of states, Σ is the

input symbol alphabet, q0 is the set of start states and F is the set

of reporting or accepting states. The transition function δ
(

Q,α
)

defines the set of states reached by Q on input symbol α . The non-

determinism is due to the fact that an NFA can have multiple states

active at the same time and have multiple transitions on the same

input symbol.

NFA computation entails processing a stream of input symbols

one at a time, determining which of the current active states match an

incoming input symbol (state match) and looking up the transition

function to determine the next set of active states (state transition).
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Conventional compute-centric architectures store the complete tran-

sition function as a lookup table in the cache/memory. Since a lookup

is required for every active state on every input symbol, symbol pro-

cessing is bottlenecked by the available memory bandwidth. This

leads to performance degradation especially for large NFAs with

many active states. With limited memory bandwidth, the number

of state transitions that can be processed in parallel is also limited.

Converting these NFAs to equivalent DFAs also cannot help improve

performance since it leads to exponential growth in the number of

states.

The memory-centric Automata Processor (AP) accelerates finite

state automata processing by implementing NFA states and state

transitions in memory. Each automata board fits in a DIMM slot

and can be interfaced to a host CPU/FPGA using the DDR/PCIe

interface. Figure 1 illustrates the automata processor architecture.
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Figure 1: Automata Processor Overview.

For processing in AP, the classic representation of NFAs is trans-

formed to a compact ANML NFA representation [12] where each

state has valid incoming transitions for only one input symbol. Thus

each state in an ANML NFA can be labeled by one unique input

symbol. ANML NFA computation entails processing a stream of

input symbols one at a time. Initially, all the start states are active

states. Each step has two phases. In the state match phase, we iden-

tify which of the active states have the same label as the current input

symbol. In the state transition phase, we look up the transition table

to determine the destination states for these matched states. These

destination states would become the active states for the next step.

In AP, the FSM states (called State-Transition Elements or STEs)

are stored as columns in DRAM arrays (256 bits). Each STE is

programmed to the one-hot encoding of the 8-bit input symbol (same

as it is label) that it is required to match against. For example, for an

STE to match the input symbol a, the bit position corresponding to

the 97th row must be set to 1.

Each cycle, the input symbol (ASCII alphabet) is broadcast to all

DRAM arrays and serves as the row address. If an STE has a ’1’

bit set in the row, it means that the label of the state it has stored

matches the input symbol. State match is then simply a DRAM row

read operation, with the input symbol as the row address and the

contents of the row determining the STEs that match against the

input symbol. Thus, by broadcasting the input symbol to all DRAM

arrays, it is possible to determine in parallel all the states which

match with the current input symbol.

State transitions between currently active states to next states is

accomplished by a proprietary interconnect (routing matrix) which

encodes the transition function. Reconfiguring this interconnect

requires a costly recompilation step. Only the states which matched

with the current input symbol and are active, undergo state transition.

The bits of a register (active state mask) at the bottom of STE

columns determine the set of STEs that are active in a particular

symbol cycle. These bits are initially set for only start states. All

active bits for all STEs can be independently set in a given cycle,

as they are all mapped to different columns of DRAM arrays. Thus,

AP allows any number of transitions to be triggered in a given cycle,

enabling massive parallelism and efficient NFA processing.

Due to physical routing constraints, each logical AP device (D480)

is organized hierarchically as half-cores, blocks, rows and STEs with

no state transitions across half-cores. Therefore, each half-core can

be considered as the smallest unit of parallellization for partitioning

into input segments. STEs configured as reporting have no outgoing

transitions and their results are communicated to the CPU by writing

to an output event buffer. Each entry in this buffer contains a report

code and byte offset (in input stream) of the symbol causing the

report. These entries are parsed in the host and communicated to the

user.

The current generation AP contains 4 ranks of 8 D480 devices

each. Each device consists of 2 half-cores encompassing 49152

STEs, organized into 192 blocks. Each block further contains 256

rows and each row stores 16 STEs. The Micron AP also includes

block-level power gating circuitry that disables a block with no

active states.

In terms of the reporting hierarchy, each AP device is also par-

titioned into 6 output regions, with each output region storing a

maximum of 1024 reporting elements. Also present are 768 coun-

ters and 2304 programmable boolean elements to augment pattern

matching functionality.

2.2 Parallel FSM

Parallelizing FSM traversal is known to be extremely difficult due

to the inherent sequential nature of computation arising because of

dependencies between every consecutive state transitions. One way

to parallelize FSM traversal is by partitioning the input string into

segments, and processing these segments concurrently. This is feasi-

ble because FSM computation can be expressed as a composition of

transition functions [15]. Parallelization is possible because transi-

tion function composition is associative. Figure 2 shows an example

of parallelizing the FSM with two input segments (I1 and I2) each

with five symbols. The FSM shown detects the first word in every

line. The transition table is shown on right. Both these segments can

be executed in parallel to provide a speedup of 2× over sequential

baseline.

However, the starting states for each input segment are unknown

except the first segment (which starts from initial start states). The

starting states for a segment are essentially the ending states of the
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and ASG (Section 3.3.2). This step generate the contents for the

State Vector Cache (SVC). The state vector cache is then loaded

onto the AP chips. This pre-processing can be augmented to the

compilation and configuration process for the AP. Following this,

the input is partitioned at boundaries of the chosen range symbol.

Each input segment starts getting processed in parallel on AP half-

cores. Deactivation and convergence checks occur dynamically to

invalidate redundant or unproductive flows (Sections 3.3.4 and 3.3.3).

A segment can also receive a flow invalidation vector from the previ-

ous segment during its runtime. Once an input segment finishes, the

composition of output reports happens in the CPU (Section 3.4).

4 METHODOLOGY

The proposed approach and optimizations are evaluated on a wide

range of benchmark FSMs from the ANMLZoo [31] and the Regex [8]

benchmark suites. These real world benchmarks span multiple do-

mains including network packet monitoring [8], gene sequence

matching [28] and natural language processing [41]. Table 1 sum-

marizes some of the important characteristics of these FSMs and the

parameters used in our simulations. We first describe these work-

loads in detail, our modifications to these workloads, followed by a

discussion on the experimental setup.

4.1 FSM workloads

The Regex suite consisting of 8 workloads, contains both real-world

and synthetic regular expressions primarily meant for network intru-

sion detection. ExactMatch looks for exact pattern matches in the

input stream. The Dotstar rulesets are parameterized by the fraction

of unbounded repetitions of the wildcard .∗. The Ranges dataset

accounts for character classes in regular expressions. These are pa-

rameterized by the fraction of the ruleset that contains character

classes. Bro217 is an open-sourced set of 217 regular expressions

used for packet sniffing. The TCP workload consists of regular

expressions used for packet header filtering prior to actual packet

inspection.

We use the synthetic trace generator tool from Becchi and oth-

ers [8] to generate input traces for these workloads. We use traces

with pm = 0.75, which is the probability that a state matches on an

input character and activates subsequent states as in a depth-wise tra-

versal. pm = 0.75 has been shown to be representative of real-world

traffic [8]. Both 1 MB and 10 MB traces are used in our evaluation.

While the Regex suite targeted only the network security domain,

several recent efforts have uncovered relatively diverse automata-

based applications in bioinformatics, data mining and natural lan-

guage processing that are not necessarily derived from regular ex-

pressions [28, 33, 41]. The ANMLZoo benchmark suite is one of

the first attempts to group these benchmarks and create "standard

candles" for comparing different automata architectures and algo-

rithms. While these benchmarks were developed aiming to saturate

the resources on one AP chip, newer versions of the AP compiler

place and route some of these automata (e.g., Levenshtein, Entity

Resolution) on multiple AP dies since several of these benchmarks

are densely connected. We account for this physical automata dis-

tribution in our experimental results. The ANMLZoo benchmarks

along with their input parameters are tabulated in Table 1.

The Snort ruleset for network intrusion detection is from Snap-

shot 2.9.7.0. ClamAV contains a set of regular expressions from an

open source virus database. Dotstar in this suite contains a combi-

nation of 5%, 10% and 20% wildcard .* repetitions. Levenshtein

implements the Levenshtein automata used for fuzzy string matching

with deletions and insertions allowed. In this suite, strings are of

length 24, with edit distance = 3. It is used to match against encoded

DNA sequences. Hamming is similar to Levenshtein and counts the

number of mismatches against input strings. Entity Resolution has

applicability in databases, when the same entity represented with

small differences is required to be resolved correctly. For example,

names of individuals J. L. Doe and John Doe. PowerEN is part of

a proprietary set of regular expressions from IBM. Fermi predicts

high-energy particle paths by matching against known trajectories.

Random Forest is a machine learning application that implements

hand-written digit classification and SPM is a data-mining appli-

cation that mines sequential relations between item transactions to

predict future transactions.

It can be seen from Table 1 that the state-space of these bench-

marks varies greatly and so does the average active set. Furthermore

several of these benchmarks also exhibit potential for compression.

Similar to the work in [31], we compress automata using the common

prefix merging technique [7] prior to execution to remove redundant

traversals from the automata. For ClamAV, Fermi and Random Forest

we do not employ common prefix merging as it reduces the num-

ber of connected components with only minor benefits in terms of

reduction in number of states. We use both the 1 MB and 10 MB

representative input traces provided with each benchmark to evaluate

our optimizations. The cost for pre-processing input stream and post-

processing output reports is minor. Few symbols at the boundary of

input segments (64kB for 1 rank and 16kB for 4 ranks) are compared

to pre-chosen low-range symbol and chosen for partitioning.

4.2 Experimental Setup

We utilize the open-source virtual automata simulator VASim [31] to

simulate the proposed architecture as well as implement the range-

guided input partitioning, and all flow merging optimizations dis-

cussed in Section 3.3. VASim allows for fast non-deterministic finite

automata emulation by traversing paths only for active states. It

supports multi-threading and can partition the input stream and au-

tomata processing across many threads. We partition the input stream

into nearly equal chunks at symbols with small range and execute a

VASim context for each flow. Deactivation and convergence of flows

is tracked in the simulator as described in Section 3.3.

The Automata Processor can deterministically process 1 symbol

every 7.5 ns (as long as its output buffers to convey reports are not

full), so the latency for symbol processing is known apriori. Context

switching between flows requires writing out the old context into

the State Vector Cache, reading the new context and loading the

new state in the counters and STEs. This has been estimated as 3

cycles [3, 14]. Transferring the 59,936 bit state-vector to the CPU for

dynamic invalidation of incorrect flows takes 1668 symbol cycles [2].

On the return path from the CPU, transferring the 512 bit-vector

to invalidate flows takes 15 AP cycles. We find that in several of

our benchmarks, flows are deactivated before the completion of

execution of the previous chunk and we do not incur this extra
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# Benchmark States Range Connected Num. Half-Cores Input Segments Input Segments

Components (1 Rank) (4 Ranks)

1 Dotstar03 11124 163 56 1 16 64

2 Dotstar06 11598 315 54 1 16 64

3 Dotstar09 11229 314 51 1 16 64

4 Ranges05 11596 1 63 1 16 64

5 Ranges1 11418 1 57 1 16 64

6 ExactMatch 11270 1 53 1 16 64

7 Bro217 1893 6 59 1 16 64

8 TCP 13834 550 57 1 16 64

9 PowerEN1 12195 466 62 1 16 64

10 Fermi 40783 30027 2399 2 8 32

11 RandomForest 33220 1616 1661 2 8 32

12 SPM 100500 20100 5025 2 8 32

13 Dotstar 38951 600 90 2 8 32

14 Hamming 11254 8151 49 2 8 32

15 Protomata 38251 667 513 2 8 32

16 Levenshtein 2660 2090 4 3 5 21

17 EntityResolution 5689 1515 5 3 5 21

18 Snort 34480 792 90 3 5 21

19 ClamAV 49538 5452 515 3 5 21

Table 1: Benchmark Characteristics

invalidation overhead in the common case. We assume a latency of

7.5 ns (1 symbol cycle) to determine if any two flows have converged.

We estimate the time taken to identify false paths (and false flows)

on a Xeon E3-1240V5 workstation with 8 cores and 32GB RAM.

It is also possible for our enumerative approach to falsely trigger

reporting elements in some of its false paths. For each benchmark

we also account for the overheads of removing these false positives

in the output reports as described in Section 3.4.

5 RESULTS

In this section we first present the speedups obtained by the pro-

posed Parallel Automata Processor Architecture (PAP), followed

by a detailed explanation of the reasons for this speedup. We also

present an analysis of the different sources of overhead introduced

by the proposed optimizations.

5.1 Overall Speedup

Figure 8 shows the speedups obtained by our proposed Parallel

Automata Processor Architecture (PAP), when compared to the

baseline AP architecture. We present speedups for both 1 AP rank

(8 D480 devices) and 4 AP ranks (32 D480 devices in the current

AP generation) and 1 MB and 10 MB input streams. We also exploit

the parallelism offered by each of the half-cores in a D480 device

when our FSMs can fit in a single half-core. Table 1 details the

AP footprint and number of input segments created for each of our

benchmark FSMs. The Ideal legend in the figure equals the number

of input segments that can be processed in parallel. Overall, across

the complete range of 19 benchmark FSMs, for the 1 rank and 4 rank

cases, PAP achieves 6.6× and 18.8× speedup for the 1MB input

stream and 7.6× and 25.5× speedup for the 10MB input stream.

It can be seen from the figure that PAP outperforms the sequential

AP baseline for most benchmarks. A noticeable trend is the larger

performance gains with the 10 MB stream. This is because the

larger stream provides opportunity for creating larger input segments.

These larger input segments help in reducing in the number of active

flows due to the deactivation and convergence properties of the

FSMs discussed in Sections 3.3.3 and 3.3.4 and the associated flow

switching overhead. Furthermore, large input segments also help

amortize the cost of false path invalidation and input composition

in the CPU. For benchmarks with small input symbol ranges, in

particular Ranges05, Ranges1 and ExactMatch, PAP achieves near

ideal speedup both in the 1 rank and 4 rank cases. Even FSMs with

significantly large number of initial flows like SPM (20101) and

Hamming (8152), achieve greater than 16× speedup in the 10MB

case because of the connected components and common parent

optimizations for flow reduction discussed in Section 3.3. A detailed

analysis of our optimizations for flow reduction is presented in the

next section.

It is also important to note that the current generation of AP only

supports 512 active flows in its State Vector Cache per D480 AP

device. Several of the studied FSMs significantly exceed the 512

limit as can be noticed from the Range entries in Table 1. The pro-

posed flow reduction optimizations are therefore essential to the

success of the proposed parallelization approach. For benchmarks

like Fermi, consisting of a large number of active states and Entity

Resolution with highly dense connected components, our optimiza-

tions are unable to significantly reduce the initial number of active

flows, limiting speedups.

Our parallel approach is never worse than the sequential baseline

as the half-core processing the first input segment, after completion,

continues to process the remaining segments (golden execution).

In case this half-core finishes processing all input segments, we

invalidate all other executing flows and report results for the golden

execution. A more aggressive policy need not wait for completion

of golden execution. It can invalidate all flows after the golden
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Figure 8: Speedups obtained by our proposed architecture Parallel Automata Processor Architecture

execution has finished x segments (with x calculated based on the

minimum expected speedup).

5.2 Active Flow Set

Figure 9 shows the contribution of each of our flow reduction op-

timizations in achieving the speedups discussed in the previous

section. We also plot the average number of active flows in different

benchmarks for the 1 MB input stream case as an example. Note

that the y-axis scale is logarithmic.

While benchmarks with small input symbol ranges are inherently

good candidates for the flow-based enumeration scheme, it can be

seen that several of our benchmarks have greater than 1000 states in

their initial range. In particular SPM consisting of 20101 initial flows

and 5025 distinct connected components greatly benefits from the

connected components optimization which reduces these to 5 flows.

Note that our pre-processing step identifies frequently occurring

input symbols with small range. In their absence, other optimizations

like connected components prune the number of enumeration flows

as discussed above. All optimizations work synergistically to reduce

the number of enumeration paths.

We noticed that even though the connected components optimiza-

tion greatly helped reduce the number of flows (e.g., from 467 to 32

for PowerEN) several flows remained active for the complete execu-

tion. Investigating further revealed that the connected components

optimization artificially creates more flows for states originating

from the same parent as discussed in Section 3.3.2. With the pro-

posed common parent merging algorithm, we achieved a 1.6× and

1.4× reduction in flows for Levenshtein and Hamming. Also, the

dynamic flow convergence and deactivation checks discussed in Sec-

tion 3.3 contribute to a great reduction in number of active flows for

all benchmarks. In particular we see an order of magnitude reduction

in number of flows for Dotstar0x and several orders of magnitude

improvement for RandomForest, Fermi and SPM.

5.3 Overheads

This section discusses the different sources of overhead in the pro-

posed PAP architecture.

Flow Switching and Dynamic Checks: It can be seen from Fig-

ure 10 that the overheads of context switching between flows are

less than 2% for most benchmarks. As discussed before, since the

number of active flows greatly reduces as input symbols are pro-

cessed, the corresponding convergence and deactivation checking

overheads also reduce. Furthermore these checks can be overlapped

with symbol processing. ClamAV however has a large number of

active flows and sees 2.4% overhead. This accounts for the relatively

low speedup for ClamAV when compared to other benchmarks in

Figure 8. Our speedup for 1 MB inputs reduces by on average, 0.5%

(1.75% worst case) and 1.2% (5.04% worst case) for 2× (6 cycles)

and 4× (12 cycles) context switch time respectively. The context

switch overhead is proportional to the number of active flows, which

greatly reduce as symbols are processed due to convergence and

deactivations. Also, dynamic convergence checks can be overlapped

with symbol processing, since these checks are carried out on state

vector cache entries, which do not participate in symbol processing

(state transitions).

False Path Decoding: Figure 11 illustrates the overheads of de-

coding false paths at the host CPU after an input segment finishes

and sending a flow invalidation vector (FIV) to the next segment.

On an average most benchmarks see around 2000 symbol cycles

overhead. Fortunately, this cost is largely amortized because of two

reasons: (1) it can be overlapped with symbol processing in subse-

quent segments, (2) these invalidations are infrequent since several

flows have either already converged or have been deactivated and do

not require this invalidation.

Output Reports: The AP uses reporting elements to inform the

host CPU about pattern matches against the input. The host reads

the output event buffer on the AP and decodes each entry to finally

report matches to the user. Since our approach uses enumeration for

parallelization, false paths are traversed and output events may be

generated along these false paths. Figure 12 illustrates the increase in

output reports due to false paths for each of the benchmarks. These

false positives are filtered out on the host. We account for the time

taken for post-processing the output reports in both baseline AP and

PAP for our final speedup measurements shown in Figure 8.
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Figure 9: Average number of flows across benchmarks.
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Figure 10: Costs of flow switching.

On average, output reporting and worst case FIV on host CPU

take ∼1% and ∼6% of total execution time respectively, without

accounting for overlap of FIV computation. This is because output

reporting and flow invalidation are infrequent.

Energy: Since the PAP architecture reduces overall execution

time, we expect a reduction in static energy. However in the PAP

architecture, we activate more state-transition-elements than the

baseline due to traversal of false paths which can lead to increase

in dynamic energy. On an average there are 2.4× extra transitions

per input symbol. State activation only writes to multiple flip-flops

(mask register) and does not require additional writes to the DRAM

or activation of large number of additional DRAM rows. The AP
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Figure 11: Costs of decoding false paths at the end of input seg-

ment.

activates an entire DRAM row for every input symbol and reads

out different columns based on the bits stored in these flip-flops.

Therefore, these additional activations do not lead to significantly

increased dynamic energy costs.

6 RELATED WORK

To the best of our knowledge this work is the first to explore paral-

lelization of non-deterministic FSMs (NFA) on the Automata Pro-

cessor. Below we discuss the most closely related works:
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Figure 12: Increase in output reports due to false paths

Parallelization of FSMs: Parallelization of FSMs is a well stud-

ied problem. Ladner and Fischer [22] parallelize deterministic FSMs

(DFA) using parallel prefix-sums. Hillis and Steele [15] present

an improved parallel prefix algorithm that reduces the execution

time from O
(

log
(

m
)

×n3
)

to O
(

log
(

m
)

×n
)

when executing on

m processors.

More recently, Todd and others [25] leverage classic parallel

prefix sums to do enumeration of FSMs on modern hardware. The

key contribution of their work is three fold: improving enumeration

efficiency by reducing the dependence on n (number of states in the

FSM) by cleverly leveraging convergence, demonstrating a scalable

implementation on modern multi-core processors with vector SIMD

units and careful data mapping of the transition table based on the

range of input symbols to improve spatial locality of cache accesses.

However, their work is limited to small DFAs, primarily due to the

large computational complexity of enumerating NFAs.

To reduce the computational complexity and space footprint of

conventional NFAs in multi-core architectures, modular NFA ar-

chitectures have also been proposed [37]. To improve locality of

access, several small regular expressions and regular expressions

with common prefixes are merged into larger segments. Parallelism

is achieved by mapping these segments to separate threads, with

each thread processing either the same or different inputs in parallel.

This paper builds on the above concepts, generalizes these insights

to emerging applications with large NFAs and proposes custom

parallelization for an entirely different memory centric architecture–

Automata Processor.

An alternative to enumerating all states in the FSM is speculation,

i.e. guessing the start states of input segments [27, 39, 40]. Specula-

tion for parallelizing FSMs has been applied to specific application

domains such as browser’s front end [18], JPEG decoder that uses

parallel Huffman decoding [20], intrusion detection using hot state

prediction [23], and speculative parsing [19]. Notably, Zhao and oth-

ers [39, 40] introduce the concept of principled speculation, which

is the first rigorous approach to speculative parallelization. While

our proposed architecture does not employ speculation, we believe

this is a promising direction for reducing the number of active flows.

Automata Processor: The unconventional architecture of Au-

tomata Processor (AP) [1, 12] has sparked interest in the academic

community. Many recent works have re-designed and analyzed criti-

cal algorithms for AP across diverse application domains, such as big

data analysis [9], data-mining [33], bioinformatics [28], high-energy

particle physics [34], machine learning [16], pseudo-random number

generation and simulation [30], and natural language processing [41].

Wadden and others [31] have developed a multi-threaded data-flow

automata simulator (VASim) and released a diverse automata bench-

mark suite (ANMLZoo). Angstadt and others [6] developed RAPID,

a new high-level programming language that can be easily compiled

to AP and tessellation techniques that can reduce the compilation

time by up to four orders of magnitude by leveraging repeated NFA

designs between FSMs. Complementary to the above works which

have advanced the state-of-art by demonstrating the efficiency of the

AP, our work aims to further improve the efficiency by designing

new methods for parallelization of FSMs running on AP.

7 CONCLUSION

This paper attempts to break the sequential NFA execution bottle-

neck on the Micron Automata Procesor (AP). We identify two main

challenges to applying enumerative NFA parallelization techniques

on the AP: (1) high state-tracking overhead for input composition (2)

huge computational complexity for enumerating parallel paths on

large NFAs. Using the AP flow abstraction and properties of FSMs

like small input symbol transition range, connected components and

common parents we amortize the overhead of state-tracking and

realize a time-mutliplexed execution of enumerated paths. To tackle

the computational complexity, we leverage properties of the FSMs

like path convergence to dynamically reduce the number of executed

enumerated flows. The algorithmic insights about large real-word

NFA provided in this work (e.g., presence of connected components,

common parents, active state groups, range partitioning) are gen-

eral and can be applied to parallelize NFA execution on any spatial,

data-flow substrate with memory and interconnects, like FPGAs,

cache sub-arrays or memristor crossbar arrays. What is required is

an efficient state-encoding and state-mapping scheme along with

a mechanism for supporting state-transitions using interconnects.

Furthermore, different connected components and flow contexts may

also be mapped to separate GPU threads for parallelism. We leave

this exploration for future work. Our evaluation on a range of FSM

benchmarks shows 25.5× speedup over the sequential baseline AP.
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