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ABSTRACT

Finite State Machines (FSM) are widely used computation mod-
els for many application domains. These embarrassingly sequential
applications with irregular memory access patterns perform poorly
on conventional von-Neumann architectures. The Micron Automata
Processor (AP) is an in-situ memory-based computational architec-
ture that accelerates non-deterministic finite automata (NFA) pro-
cessing in hardware. However, each FSM on the AP is processed
sequentially, limiting potential speedups.

In this paper, we explore the FSM parallelization problem in the
context of the AP. Extending classical parallelization techniques to
NFAs executing on AP is non-trivial because of high state-transition
tracking overheads and exponential computation complexity. We
present the associated challenges and propose solutions that lever-
age both the unique properties of the NFAs (connected compo-
nents, input symbol ranges, convergence, common parent states)
and unique features in the AP (support for simultaneous transitions,
low-overhead flow switching, state vector cache) to realize parallel
NFA execution on the AP.

We evaluate our techniques against several important benchmarks
including NFAs used for network intrusion detection, malware detec-
tion, text processing, protein motif searching, DNA sequencing, and
data analytics. Our proposed parallelization scheme demonstrates
significant speedup (25.5 X on average) compared to sequential exe-
cution on AP. Prior work has already shown that sequential execution
on AP is at least an order of magnitude better than GPUs, multi-core
processors and Xeon Phi accelerator.
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1 INTRODUCTION

Finite State Machines (FSM) are widely used as a computation
model in a number of application domains such as data analytics
and data mining [9, 33], network security [13, 21, 24, 38], bioinfor-
matics [11, 28, 36], tokenization of web pages [25], computational
finance [1, 4] and software engineering [5, 10, 26]. These applica-
tions require processing tens to thousands of patterns for a stream of
input data.

NFAs form the core of many end-to-end applications that uti-
lize pattern matching. These pattern matching routines are typically
implemented as if-else or switch-case nests in conventional CPUs
and contribute to a significant fraction of the overall execution time
because of poor branch behavior and irregular memory access pat-
terns. For example, FSM-like computations form the core of many
activities inside a web browser, taking about 40% of the loading time
for many web pages [17]. The oligo_scan routine used in Weeder
2.0, an open-source tool for motif discovery in DNA sequences con-
tributes 30-62% of the total runtime [35]. In the Apriori algorithm
for frequent itemset mining, NFA processing accounts for 33-95%
of the execution time, based on the frequency threshold [32]. Prior
work [40] has shown that without accelerating FSM operations, it is
infeasible for these applications to achieve sustained performance
improvement, no matter how well other parts of these applications
are parallelized (Amdahl’s law).

FSM computation, especially Non-Determinstic Finite Automata
(NFA) computation is inherently hard to speedup. Modern multi-
core processors are limited by the number of transitions they can do
per thread in a given cycle, limiting the number of patterns they can
identify. Their processing capability is also limited by the available
memory bandwidth. GPGPUs have limited success with automaton
processing because it is inherently dominated by irregular memory
access patterns.

In comparison, custom architectures which facilitate in-situ com-
putation in memories can facilitate highly parallel and energy effi-
cient processing of finite state automata in hardware. For instance,
Micron’s Automata Processor (AP) [12] has been shown to accel-
erate several applications like entity resolution in databases [9](by
434 x) and motif search in biological sequences [28] (by 201 x).
Recent efforts from Virginia’s Center for Automata Processing has
demonstrated that AP can outperform GPGPUs by 32X, and accel-
erators such as XeonPhi by 62, across a wide variety of automata
benchmarks [31]. Some key problems in bioinformatics like (28,
12), i.e., matching protein motifs of length 28, within edit distance
12 were previously unsolvable by von-Neumann architectures [28].

The Micron AP is a generalized accelerator supporting many ap-
plication domains which can benefit from fast NFA processing and is
not limited to regular expressions. The success of AP relies on three
factors: massive parallelism, eliminating data movement (between
memory and CPU) overheads, and reducing instruction processing
overheads significantly. Massive parallelism follows from the fact
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that all state elements (mapped to columns in DRAM arrays) can be
independently activated in a given cycle. An AP chip can support
up to 48K transitions in each cycle. Thus it can efficiently execute
massive Non-deterministic Finite Automata (NFA) that encapsulate
hundreds to thousands of patterns.

While AP significantly improves the state-of-art, our work aims
to further improve its performance by custom parallelization of FSM
processing on AP. To our knowledge, no existing work parallelizes
NFA FSMs for AP. Parallelization of FSM is known to be a hard
problem due to its inherent sequential nature and high computational
complexity. A logical way to parallelize FSM traversal is by parti-
tioning the input string into segments, and processing these segments
concurrently. The problem with this approach is that starting states
for each segment are unknown except the first segment (which starts
from the FSM’s designated start states). The starting states for a seg-
ment are essentially the ending states of the previous segment. Prior
work [25] has solved this by executing the input segment for every
state of the FSM by leveraging classic parallel prefix-sum [22]. This
method is referred to as enumerative computation as it enumerates
all possible start states. We refer to the sequence of states visited by
each enumeration start state as the enumeration path. Once the first
segment is finished, we know the correct start states of the second
segment and can pick the results of enumerated paths belonging to
the correct start states (Section 2.2, and Figure 2 discuss an example
enumeration).

While enumerative approach is promising, there are several chal-
lenges to realize it in AP. In a conventional processor a SIMD thread
can process enumeration paths and thread’s local variables keep
track of the start state for each enumerated path. Tracking the start
state of an enumerated path is important for combining the results of
individual input segments as discussed above. In the AP, there is no
notion of software threads or local variables which can keep track
of start states of enumerated paths. A processing unit or half core
simply accepts a stream of input symbols and does transitions via
a routing matrix (custom interconnect) each cycle. Thus it can be
challenging to execute concurrently and keep track of all enumer-
ation paths. Another critical challenge to be solved is taming the
enormous computational complexity of enumeration. Enumerations
can be highly inefficient because in the worst case each state has
to be enumerated. NFAs can have several thousands of states (See
Table 1). In general enumeration of an FSM with n states, over k
input segments can lead to an ideal speedup of k provided we have
n x k independent computing resources. For typical NFAs, these
resources far exceed what is available in AP. Current generation of
Micron’s D480 AP board supports up to 4 ranks, were each rank
has 16 independent processing units or half cores. If each FSM oc-
cupies one half-core, we can afford to have at best, 64 independent
processing units.

Our architecture solves the above problems by leveraging some
unique properties of NFAs and unique features of the AP. For in-
stance, we utilize the connected components (disconnected sub-
graphs) in an NFA to merge enumeration paths and thereby take
advantage of the massive parallelism of the AP. Furthermore, the
range (or all reachable states) of an input symbol can be utilized to
prune the enumeration paths. Another NFA property we leverage is
based on parent states in an NFA. If the start states of enumeration
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paths have a common parent state, they can be merged. Similar to
prior work [25, 29], we observe enumeration paths converge at run-
time and implement dynamic convergence checks in AP. To solve the
start state tracking problem, we utilize AP flows. The flow abstrac-
tion also allows for near-zero overhead convergence checks. Our
framework also discusses the details of combining the results from
input segments, and hiding these processing overheads by leveraging
the asymmetric finish times of input segments.
In summary this paper offers the following contributions:

e This is the first work to explore parallelization of non-
deterministic FSMs on the Automata Processor (AP). In
particular we examine enumerative approaches to paral-
lelize processing of non-deterministic FSMs. AP’s unique
in-memory architecture and huge computational complexity
of enumerations pose interesting challenges for parallelis-
ing FSMs.

e Our work systematically explores the challenges in par-
allelizing FSMs for AP, such as tracking of enumeration
paths and explosion in computational complexity. The com-
putational complexity is tackled by leveraging unique prop-
erties of NFAs, such as connected components, common
parents, input symbol range, convergence, and monitoring
unproductive enumeration paths. We utilize AP’s flows to
solve the state tracking problem. The flow abstraction also
allows implementation of near-zero convergence checks.
Our framework also discusses the details of composing the
results at the host and proposes techniques to hide this over-
head by utilizing asymmetric finish time of different input
segments.

e We evaluate our techniques against several important bench-
marks including NFAs used for network intrusion detection,
malware detection, text processing, protein motif searching,
DNA sequencing, and data analytics. Our proposed paral-
lelization scheme demonstrates significant speedup (25.5 x
on average) compared to sequential execution on AP. Prior
work has already shown that sequential execution on AP is
at least an order of magnitude better than GPUs, multi-core
processors and the Xeon Phi accelerator [31].

2 BACKGROUND

In this section we provide a brief background on the Automata Pro-
cessor and enumerative techniques for parallelizing FSM processing.

2.1 NFA and Automata Processor

A Non-deterministic Finite Automata (NFA) is formally described
by a quintuple (0,3, 8,qo,F), where Q is a set of states, X is the
input symbol alphabet, gq is the set of start states and F is the set
of reporting or accepting states. The transition function § (Q7 Oc)
defines the set of states reached by Q on input symbol ¢. The non-
determinism is due to the fact that an NFA can have multiple states
active at the same time and have multiple transitions on the same
input symbol.

NFA computation entails processing a stream of input symbols
one at a time, determining which of the current active states match an
incoming input symbol (state match) and looking up the transition
function to determine the next set of active states (state transition).
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Conventional compute-centric architectures store the complete tran-
sition function as a lookup table in the cache/memory. Since a lookup
is required for every active state on every input symbol, symbol pro-
cessing is bottlenecked by the available memory bandwidth. This
leads to performance degradation especially for large NFAs with
many active states. With limited memory bandwidth, the number
of state transitions that can be processed in parallel is also limited.
Converting these NFAs to equivalent DFAs also cannot help improve
performance since it leads to exponential growth in the number of
states.

The memory-centric Automata Processor (AP) accelerates finite
state automata processing by implementing NFA states and state
transitions in memory. Each automata board fits in a DIMM slot
and can be interfaced to a host CPU/FPGA using the DDR/PCle
interface. Figure 1 illustrates the automata processor architecture.
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Figure 1: Automata Processor Overview.

For processing in AP, the classic representation of NFAs is trans-
formed to a compact ANML NFA representation [12] where each
state has valid incoming transitions for only one input symbol. Thus
each state in an ANML NFA can be labeled by one unique input
symbol. ANML NFA computation entails processing a stream of
input symbols one at a time. Initially, all the start states are active
states. Each step has two phases. In the state match phase, we iden-
tify which of the active states have the same label as the current input
symbol. In the state transition phase, we look up the transition table
to determine the destination states for these matched states. These
destination states would become the active states for the next step.

In AP, the FSM states (called State-Transition Elements or STEs)
are stored as columns in DRAM arrays (256 bits). Each STE is
programmed to the one-hot encoding of the 8-bit input symbol (same
as it is label) that it is required to match against. For example, for an
STE to match the input symbol a, the bit position corresponding to
the 97" row must be set to 1.

Each cycle, the input symbol (ASCII alphabet) is broadcast to all
DRAM arrays and serves as the row address. If an STE has a’1’
bit set in the row, it means that the label of the state it has stored
matches the input symbol. State match is then simply a DRAM row
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read operation, with the input symbol as the row address and the
contents of the row determining the STEs that match against the
input symbol. Thus, by broadcasting the input symbol to all DRAM
arrays, it is possible to determine in parallel all the states which
match with the current input symbol.

State transitions between currently active states to next states is
accomplished by a proprietary interconnect (routing matrix) which
encodes the transition function. Reconfiguring this interconnect
requires a costly recompilation step. Only the states which matched
with the current input symbol and are active, undergo state transition.
The bits of a register (active state mask) at the bottom of STE
columns determine the set of STEs that are active in a particular
symbol cycle. These bits are initially set for only start states. All
active bits for all STEs can be independently set in a given cycle,
as they are all mapped to different columns of DRAM arrays. Thus,
AP allows any number of transitions to be triggered in a given cycle,
enabling massive parallelism and efficient NFA processing.

Due to physical routing constraints, each logical AP device (D480)
is organized hierarchically as half-cores, blocks, rows and STEs with
no state transitions across half-cores. Therefore, each half-core can
be considered as the smallest unit of parallellization for partitioning
into input segments. STEs configured as reporting have no outgoing
transitions and their results are communicated to the CPU by writing
to an output event buffer. Each entry in this buffer contains a report
code and byte offset (in input stream) of the symbol causing the
report. These entries are parsed in the host and communicated to the
user.

The current generation AP contains 4 ranks of 8 D480 devices
each. Each device consists of 2 half-cores encompassing 49152
STEs, organized into 192 blocks. Each block further contains 256
rows and each row stores 16 STEs. The Micron AP also includes
block-level power gating circuitry that disables a block with no
active states.

In terms of the reporting hierarchy, each AP device is also par-
titioned into 6 output regions, with each output region storing a
maximum of 1024 reporting elements. Also present are 768 coun-
ters and 2304 programmable boolean elements to augment pattern
matching functionality.

2.2 Parallel FSM

Parallelizing FSM traversal is known to be extremely difficult due
to the inherent sequential nature of computation arising because of
dependencies between every consecutive state transitions. One way
to parallelize FSM traversal is by partitioning the input string into
segments, and processing these segments concurrently. This is feasi-
ble because FSM computation can be expressed as a composition of
transition functions [15]. Parallelization is possible because transi-
tion function composition is associative. Figure 2 shows an example
of parallelizing the FSM with two input segments (/; and /) each
with five symbols. The FSM shown detects the first word in every
line. The transition table is shown on right. Both these segments can
be executed in parallel to provide a speedup of 2 x over sequential
baseline.

However, the starting states for each input segment are unknown
except the first segment (which starts from initial start states). The
starting states for a segment are essentially the ending states of the
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Figure 2: An FSM example with enumeration.

previous segment. These dependencies prevent concurrent execution
among threads.This problem can be solved by leveraging classic
parallel prefix-sum [22]. The basic idea is to execute the second
segment for every state of the FSM. This method is referred to
as an enumerative computation as it enumerates all possible start
states [25].

In Figure 2 the start state of the first segment is known (Sq)
which is the start state of the FSM. However, the start states of input
segment I, are unknown. Figure 2 shows an example enumeration
for the second input segment, I>. This example FSM has 3 states,
so each segment (except the first) enumerates all 3 states. Once the
first segment has finished, it can pick the correct or true paths from
the enumerated paths of the second segment and discard false paths.
Thus, final results can be obtained by combining the intermediate
results of all input segments. The true path for I, in Figure 2 starts
at Sy, the remaining two paths are false paths. The final path of the
FSM is highlighted.

The evident disadvantage of this method is the exponential blowup
in computational complexity for processing each input segment. Con-
sider a benchmark Protomata, an NFA which encapsulates 2340
known string patterns called motifs in protein sequences. Match-
ing with protein motifs is used to accelerate the discovery of un-
known motifs in biological sequences in the field of bioinformatics.
Protomata has 38,251 states. Enumerating all these states will make
the parallel version orders of magnitude slower than the serial ver-
sion.

Thus, unless we have the massive computational resources equiva-
lent to n (states in a NFA) x k (number of input segments) processing
units, enumeration can lead to slowdowns instead of speedup. In
this paper we explore different techniques for enumerating NFAs
on AP’s unique architecture and taming the computational complex-
ity of enumerations. For instance, we find that the set of reachable
states of an input symbol, and number of connected components can
drastically reduce the number of enumeration paths. Similar to prior
works on parallelization of deterministic finite automata (DFAs) [25],
we find that many enumeration paths converge and design an AP
architecture which is capable of near-zero cost dynamic convergence
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checks. The next section discusses the above and other optimizations
which make parallelization of NFAs on AP profitable.

3 PARALLEL AUTOMATA PROCESSOR

This section discusses our proposed framework and architectural
enhancements needed for effective parallelization of NFAs on the
Automata Processor (AP).

3.1 Range Guided Input Partitioning

Enumerating from all states of an FSM will lead to exponential
computational complexity. Fortunately, many of these states are im-
possible start states for the particular input segment. The range of
an input symbol is defined as the union of the set of all reachable
states, considering transitions from all states in the FSM that have
a transition defined for that symbol. During actual execution, the
range of the last input symbol in a particular segment determines
accurately the subset of start states for the next segment. Any states
outside this range are impossible start states. Our proposed paral-
lelization framework partitions the input such that input segments
end at frequently occurring symbols with small ranges to take advan-
tage of minimum range symbols. The symbol chosen for an FSM
is obtained by offline profiling. Frequently occurring symbols are
chosen to ensure that the size of input segments are roughly equal.

Figure 3 shows the average, and minimum range across 256 input
symbols. Note that AP only accepts 8 bit symbols, limiting us to 256
symbols. The bar depicts the total number of states in the system
and the dark line indicates the minimum, average and maximum
range across 256 symbols. The figure demonstrates that ranges of
input symbols is a small fraction of total states, greatly reducing
the complexity of enumeration. For instance for Protomata, we
can reduce the enumerated paths from 38251 start states to 667
start states. For some benchmarks the average range of symbols is
almost as large as half the state space, example SPM. We discuss
other optimizations for these benchmarks in the next section. Table 1
lists the range of the symbol chosen for input partitioning for each
benchmark.

3.2 Enumeration using Flows

In this section, we provide an understanding of why we need flows
to support enumeration, followed by a brief understanding of flows
in AP, and how we map enumeration paths to flows.

Ideally, one can activate all start states and execute all enumer-
ations simultaneously on one copy of the FSM. This is possible
and correct, given that AP seamlessly implements any number of
simultaneous transitions in a given cycle, and there is no limit on the
number of start states that can be activated. This seems like a perfect
solution, except that we lose all information about enumeration paths.
After processing the input segments we know what are the end states
for all enumeration paths, but there is no way of knowing which path
lead to which end states. Recall that after an input segment finishes
execution, it will inform the next input segment which enumeration
paths were the true paths and which paths were false paths. The next
input segment then must only use the results and end states of true
paths and discard false paths.

In a conventional processor, enumeration paths are executed on
SIMD threads and thread’s local variables keep track of the start state
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Figure 3: Range of symbols for different benchmarks. a) Smaller NFAs with state space limited to 15K states. b) Large NFAs

of each path. In the AP, however there is no notion of local variables
or state tracking. The only way to implement state tracking is by
propagating the start state via the routing matrix. Routing matrix
currently just routes 1 bit per state element pair (which encodes
transition between two state elements) and is already known to be a
bottleneck in the system, both in determining the cycle time, and area
complexity (occupies ~30% of the chip). Augmenting the routing
matrix with state information leads to exponential space complexity.
Another possibility is replicating the FSM and executing the different
enumeration paths in a separate replicated copy. Since each copy
is mapped to a different half-core (or half-cores for large FSMs),
we need as many half-cores as the number of enumeration paths. A
typical AP D480 board has 64 half-cores which is far smaller than
the number of enumeration paths for most of our benchmarks. This
means that we can run at best one input segment at a time, leading
to no speedup. Recall that speedup is proportional to number of
input segments executing in parallel. Ideally, we would like to run 64
input segments one on each half-core and obtain a speedup of 64 x.
Furthermore, mapping enumerations to different half-cores also
complicates checking for convergence between the paths, because
there is no path of direct communication between half-cores on
different dies or ranks.

Our solution leverages AP’s flows to solve the above problem
of tracking the start states of enumeration flows. Another unique
advantage of using flows is that we can do low cost convergence
checks, as we explain in Section 3.3.3. AP’s flows allow multiple
users to time multiplex the AP for independent input streams. Each
chip is equipped with a state vector cache which can store up to 512
state vectors. A state vector represents the state of a FSM execution
and consists of 59,936 bits [(256 enable bits per block + 56 counter
bits per block) x 192 blocks + 32 count]. The state vector allows AP
to context switch between two independent executions much like the
register save/restore that allows tasks to context switch on traditional
CPU architectures [3, 14]. The output match events also encapsulate
a flow identifier.

In our architecture each enumeration path is mapped to an inde-
pendent flow and time division multiplexed on the same half-core.

By association to a flow identifier, we can easily track the enumera-
tion paths that belong to each flow. The host CPU keeps a flow table
which tracks which start states (or enumeration paths) are mapped
to which flows. Each input segment comprising of several flows is
processed in several Time Division Multiplexing (TDM) steps. Each
flow processes k symbols before a context switch. Once all flows
process k symbols, a TDM step is finished. Each TDM step thus
processes k input symbols across all flows. The input symbols need
to buffered until an entire TDM step is completed. A pointer in the
input buffer is re-winded to the correct position after each context
switch within a TDM step.

The context switch between flows in our system is as fast as 3 AP
symbol cycles. This follows from the fact that in our architecture,
each enumerated path (and hence each flow) utilizes the same FSM.
Thus there is no need to load the memory arrays or configure the
routing matrix during a context switch between flows. To change
flows, AP transfers the current state to the state vector cache in
the first cycle, then retrieves a previous state from the cache in the
second cycle and finally loads it into the mask register (state-enable
bits) and counters in the third cycle.

3.3 Merging Flows

The speedup which can be obtained from our parallelization tech-
niques relies on two factors, the number of input segments executing
in parallel and the time taken to complete each input segment. In
general the speedup obtained is equal to number of input segments
divided by slowdown experienced by the slowest input segment.
Slowdown of an input segment is simply the time it takes when
compared to the time it would have taken had we known the exact
start states for that segment.

By utilizing flows we have maximized the number of input seg-
ments, however time division multiplexing of flows also slows down
processing of each input segment. Specifically the processing time
of each input segment is proportional to number of flows for that
segment. The range guided partitioning method significantly reduces
the number of enumeration paths and hence the number of flows
needed. However, the number of flows remaining is still large. This
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section discusses several techniques to further reduce the number of
active flows by merging flows.

3.3.1 Leveraging Connected Components. Intuitively, any
two flows can be merged if we can guarantee that there would be
no overlap between their state-spaces on any transition, i.e., they
belong to different connected components. Since the AP supports
any number of simultaneous transitions on a given cycle (subject to
routing constraints), we can merge states belonging to different flows
and execute them simultaneously in the same flow. This observation
can be generalized to merge any number of flows as long as we can
guarantee their state-spaces do not overlap.
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Figure 4: Merging paths belonging to separate connected com-
ponents. Initially we start with the entire Range indicated by
all the states in the shaded box. Horizontal lines are all states in
the range which belong to connected component CC;. Note °X’
means there is no state. Vertical line indicates a flow F; after
merging.

Interestingly we find that many of our benchmarks have large
number of connected components (or sub-graphs) which do not
overlap with each other, i.e. there is no transition edge between
the states belonging to different connected components. Intuitively
this makes sense because each NFA collects a number of regular
expressions or patterns. Patterns with common prefixes belong to
the same connected component but patterns which do not share any
common prefix belong to separate connected components. Table 1
lists the number of connected components in our benchmarks. Our
insight is that we can merge flows belonging to separate connected
components to reduce the number of flows. The AP compiler in one
of its initial stages also partitions the FSM into distinct sub-graphs,
however, to ease placement and routing [1]. Figure 4 shows our algo-
rithm to merge flows belonging to separate connected components.
We group the states obtained by range-guided input partitioning into
different connected components. The range table consists of all these
states as shown in the shaded box. All the 5000 states in the range
are grouped into CC; groups in the figure. The states on a vertical
line through each group were previously mapped to separate flows.
Note that we split the states in the same connected component across
separate flows so that we can uniquely distinguish them (true paths
vs false paths). It can be seen that the number of active flows is
equivalent to the number of vertical lines. In the figure we have 50
vertical lines, hence 50 active flows. Thus we started from 5000 enu-
meration paths in the range and merged them into 50 flows. Once the
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flow finishes, the end states of each state belonging to the flow can
be uniquely identified by simply masking with a bitmap consisting
of the state space of each connected component.

3.3.2 Active State Group and Common Parent. NFAs usu-
ally have several states which are always active due to self-loops on
all possible symbols (self loop labelled *). These states artificially
increase the number of enumeration paths. Given that these states
are always active, by definition they belong to the true path and
can be all combined into one flow which we refer to as the Active
State Group (ASG) flow. The output results of this flow are always
reported.

Range = {S, , S5 , S47, S5, Sye}

S,
So S5 F1={S;,Ss , Sy}
Si7 F2={S17, S15. Sue}
S Sig
S

Figure 5: Merging states in the range with common parent.

We also observe that states in the range of an input symbol which
originate due to the same parent state belong to the same enumeration
path. This follows from the fact that in a NFA, there can be many
outgoing transitions from a state on a given input symbol. Had we
started the input segment one symbol earlier, all these states would
have been part of the same enumeration path. Thus we map all
enumeration paths with a common parent to the same flow. Figure 5
illustrates the concept. The range consists of states: S,, S5, S17, S1g
and Sye. Initially, this would lead to 5 flows. Since S», Ss, S4¢ have
a common parent Sy, they can be merged into one flow. Similarly,
S17, S18, S46 have a common parent S; and can be merged into one
flow, resulting in only 2 flows. Note that for correctness S4¢ has to
be included in both flows.

3.3.3 Dynamic Convergence Checks. Enumerations can be
made more efficient by leveraging convergence. We can observe
an example of convergence in Figure 2. Consider input segment I,
starting with three different start states Sg, Sy, and S;. The figure
shows three enumeration paths for the state sequence, one for each
starting state. After processing the first two symbols, the first two
paths get into the same state S. After that, these two paths would
keep producing the same state sequence as they will observe the same
symbols. Hence there is no need to do redundant computation, and
the first two paths can be merged into one path. Thus an enumeration
which started with 3 paths reduces to 2 paths after processing the
first two symbols. Prior work on parallelizing DFAs have observed
that state convergence property widely exists in many FSMs [25].

Flow based enumeration allows for easy convergence checks. In
our architecture convergence checks can be implemented by compar-
ing the state vectors in the state vector cache. Comparison requires
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a simple bitwise logic comparator (one xor gate per state bit and
a common wired and) to be augmented to the state vector cache.
Accessing a state vector entry and comparing to a stored vector takes
one symbol cycle. If we have f active flows, convergence checks
over all the flows can take up to f x f symbol cycles. Fortunately,
the convergence checks can be entirely overlapped with symbol
processing because the state vector cache is not used while process-
ing symbols. However, combining enumeration paths from different
connected components into the same flow reduces the probability of
convergence. Thus, we invoke convergence checks every ten TDM
steps.

3.3.4 Deactivation Checks. Often many paths in an FSM are
not productive. For instance an enumeration path may process a few
symbols successfully, making transitions for each symbol until it
comes across a symbol for which none of the active states match.
In this case, the path is no longer productive and must be deacti-
vated to save time. In practice, we find many enumerations paths
become unproductive after processing few input symbols. If all the
enumeration paths mapped to a flow are unproductive the entire flow
can be deactivated to save time. We implement the flow deactivation
logic by simply comparing the state bits in the state vector to a
zero mask during a context switch and invalidate the state vector if
there is a match to the zero mask. We observe that many flows get
deactivated within processing few symbols (less than 20 symbols),
so we do a few extra deactivation checks even before the first TDM
step completes.

3.4 Composition of Input Partitions

Once the input segments finish, the final output results can be ob-
tained by combining the results of true paths of each segment. The
host CPU reads the final state vector from the AP and then con-
structs a Boolean array indicating which flow has results for true
enumeration paths. This Boolean array is checked when reading the
results out of the output buffer. Each output buffer entry has few
bits indicating the flow identifier. Only results for the output buffer
entries which match with true flows are reported. This computation
is done by utilizing the pre-computed range table and masks for
connected components (discussed in Sections 3.1 and 3.3.1).

It takes 1668 symbol cycles to transfer the final state vector from
AP to the host CPU’s save buffer [1]. It takes another few tens
of symbol cycles to interpret the state vector to figure out which
flows encompass true paths in the host CPU’s core. We find that this
overhead is not insignificant and thus explore methods to overlap this
overhead with input segment processing time at AP. The asymmetric
finish times of input segments can be leveraged for this purpose. In
general different input segments finish at different times based on
different rates of deactivations and convergence. Furthermore, the
first input segment executes only the true path, so it is likely to finish
quite ahead of others.

Thus the first input segment can read its final state vector and
create a Boolean array indicating true flows, while the second input
segment is still processing its symbols. Thus its composition over-
head is overlapped with the second input segment’s execution. In
addition to this, the Boolean array can be utilized to create a Flow
Invalidation Vector (FIV) which can be used to invalidate all false
flows in the second input segment. In addition to overlapping of
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Figure 6: Overlapping T;,, with next segment processing time
and dynamically merging flows based on previous segments end
results.

composition overhead whenever possible, this method can further
reduce the active flows and speedup input segment processing. The
concept can be generalized to all input segments. Figure 6 illustrates
the above concepts. The first input segment /; has only one flow and
completes first. The second input segment /5 on the other hand has
many flows (indicated by thickness of line) and is chugging along.
The first flows takes T¢p, time to compute its Boolean array for true
flows and FIV. The FIV is passed along to input segment /5. Note
T¢pu is hidden by I, processing time and after receiving the FIV the
number of flows in I; reduce substantially. In some cases when all
flows deactivate or converge to only one flow, there is no need to
spend T¢p, cycles.
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Figure 7: Overall framework.

3.5 Put It Together

This section describes our overall framework for parallelizing NFAs
on the AP. Figure 7 brings together all the concepts discussed in this
section to illustrate our overall framework. The parallelization frame-
work consists of pre-processing steps and dynamic runtime steps.
First, the range is computed for all input symbols and a frequently
occurring symbol is chosen based on profiling (Section 3.1). This
is followed by the merging the states in the range table into flows
based on connected components (Section 3.3.1), common parents,
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and ASG (Section 3.3.2). This step generate the contents for the
State Vector Cache (SVC). The state vector cache is then loaded
onto the AP chips. This pre-processing can be augmented to the
compilation and configuration process for the AP. Following this,
the input is partitioned at boundaries of the chosen range symbol.
Each input segment starts getting processed in parallel on AP half-
cores. Deactivation and convergence checks occur dynamically to
invalidate redundant or unproductive flows (Sections 3.3.4 and 3.3.3).
A segment can also receive a flow invalidation vector from the previ-
ous segment during its runtime. Once an input segment finishes, the
composition of output reports happens in the CPU (Section 3.4).

4 METHODOLOGY

The proposed approach and optimizations are evaluated on a wide
range of benchmark FSMs from the ANMLZoo [31] and the Regex [8]
benchmark suites. These real world benchmarks span multiple do-
mains including network packet monitoring [8], gene sequence
matching [28] and natural language processing [41]. Table 1 sum-
marizes some of the important characteristics of these FSMs and the
parameters used in our simulations. We first describe these work-
loads in detail, our modifications to these workloads, followed by a
discussion on the experimental setup.

4.1 FSM workloads

The Regex suite consisting of 8 workloads, contains both real-world
and synthetic regular expressions primarily meant for network intru-
sion detection. ExactMatch looks for exact pattern matches in the
input stream. The Dotstar rulesets are parameterized by the fraction
of unbounded repetitions of the wildcard .x. The Ranges dataset
accounts for character classes in regular expressions. These are pa-
rameterized by the fraction of the ruleset that contains character
classes. Bro217 is an open-sourced set of 217 regular expressions
used for packet sniffing. The TCP workload consists of regular
expressions used for packet header filtering prior to actual packet
inspection.

We use the synthetic trace generator tool from Becchi and oth-
ers [8] to generate input traces for these workloads. We use traces
with p,, = 0.75, which is the probability that a state matches on an
input character and activates subsequent states as in a depth-wise tra-
versal. p;,;, = 0.75 has been shown to be representative of real-world
traffic [8]. Both 1 MB and 10 MB traces are used in our evaluation.

While the Regex suite targeted only the network security domain,
several recent efforts have uncovered relatively diverse automata-
based applications in bioinformatics, data mining and natural lan-
guage processing that are not necessarily derived from regular ex-
pressions [28, 33, 41]. The ANMLZoo benchmark suite is one of
the first attempts to group these benchmarks and create "standard
candles" for comparing different automata architectures and algo-
rithms. While these benchmarks were developed aiming to saturate
the resources on one AP chip, newer versions of the AP compiler
place and route some of these automata (e.g., Levenshtein, Entity
Resolution) on multiple AP dies since several of these benchmarks
are densely connected. We account for this physical automata dis-
tribution in our experimental results. The ANMLZoo benchmarks
along with their input parameters are tabulated in Table 1.
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The Snort ruleset for network intrusion detection is from Snap-
shot 2.9.7.0. ClamAV contains a set of regular expressions from an
open source virus database. Dotstar in this suite contains a combi-
nation of 5%, 10% and 20% wildcard .* repetitions. Levenshtein
implements the Levenshtein automata used for fuzzy string matching
with deletions and insertions allowed. In this suite, strings are of
length 24, with edit distance = 3. It is used to match against encoded
DNA sequences. Hamming is similar to Levenshtein and counts the
number of mismatches against input strings. Entity Resolution has
applicability in databases, when the same entity represented with
small differences is required to be resolved correctly. For example,
names of individuals J. L. Doe and John Doe. PowerEN is part of
a proprietary set of regular expressions from IBM. Fermi predicts
high-energy particle paths by matching against known trajectories.
Random Forest is a machine learning application that implements
hand-written digit classification and SPM is a data-mining appli-
cation that mines sequential relations between item transactions to
predict future transactions.

It can be seen from Table 1 that the state-space of these bench-
marks varies greatly and so does the average active set. Furthermore
several of these benchmarks also exhibit potential for compression.
Similar to the work in [31], we compress automata using the common
prefix merging technique [7] prior to execution to remove redundant
traversals from the automata. For ClamAV, Fermi and Random Forest
we do not employ common prefix merging as it reduces the num-
ber of connected components with only minor benefits in terms of
reduction in number of states. We use both the 1 MB and 10 MB
representative input traces provided with each benchmark to evaluate
our optimizations. The cost for pre-processing input stream and post-
processing output reports is minor. Few symbols at the boundary of
input segments (64kB for 1 rank and 16kB for 4 ranks) are compared
to pre-chosen low-range symbol and chosen for partitioning.

4.2 Experimental Setup

We utilize the open-source virtual automata simulator VASim [31] to
simulate the proposed architecture as well as implement the range-
guided input partitioning, and all flow merging optimizations dis-
cussed in Section 3.3. VASim allows for fast non-deterministic finite
automata emulation by traversing paths only for active states. It
supports multi-threading and can partition the input stream and au-
tomata processing across many threads. We partition the input stream
into nearly equal chunks at symbols with small range and execute a
VASim context for each flow. Deactivation and convergence of flows
is tracked in the simulator as described in Section 3.3.

The Automata Processor can deterministically process 1 symbol
every 7.5 ns (as long as its output buffers to convey reports are not
full), so the latency for symbol processing is known apriori. Context
switching between flows requires writing out the old context into
the State Vector Cache, reading the new context and loading the
new state in the counters and STEs. This has been estimated as 3
cycles [3, 14]. Transferring the 59,936 bit state-vector to the CPU for
dynamic invalidation of incorrect flows takes 1668 symbol cycles [2].
On the return path from the CPU, transferring the 512 bit-vector
to invalidate flows takes 15 AP cycles. We find that in several of
our benchmarks, flows are deactivated before the completion of
execution of the previous chunk and we do not incur this extra
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# | Benchmark States | Range | Connected | Num. Half-Cores | Input Segments | Input Segments
Components (1 Rank) (4 Ranks)
1 | Dotstar03 11124 163 56 1 16 64
2 | Dotstar06 11598 315 54 1 16 64
3 | Dotstar09 11229 314 51 1 16 64
4 | Ranges05 11596 1 63 1 16 64
5 | Rangesl 11418 1 57 1 16 64
6 | ExactMatch 11270 1 53 1 16 64
7 | Bro217 1893 6 59 1 16 64
8 | TCP 13834 550 57 1 16 64
9 | PowerEN1 12195 466 62 1 16 64
10 | Fermi 40783 | 30027 2399 2 8 32
11 | RandomForest 33220 1616 1661 2 8 32
12 | SPM 100500 | 20100 5025 2 8 32
13 | Dotstar 38951 600 90 2 8 32
14 | Hamming 11254 | 8151 49 2 8 32
15 | Protomata 38251 667 513 2 8 32
16 | Levenshtein 2660 2090 4 3 5 21
17 | EntityResolution | 5689 1515 5 3 5 21
18 | Snort 34480 792 90 3 5 21
19 | ClamAV 49538 | 5452 515 3 5 21

Table 1: Benchmark Characteristics

invalidation overhead in the common case. We assume a latency of
7.5 ns (1 symbol cycle) to determine if any two flows have converged.

We estimate the time taken to identify false paths (and false flows)
on a Xeon E3-1240V5 workstation with 8 cores and 32GB RAM.
It is also possible for our enumerative approach to falsely trigger
reporting elements in some of its false paths. For each benchmark
we also account for the overheads of removing these false positives
in the output reports as described in Section 3.4.

5 RESULTS

In this section we first present the speedups obtained by the pro-
posed Parallel Automata Processor Architecture (PAP), followed
by a detailed explanation of the reasons for this speedup. We also
present an analysis of the different sources of overhead introduced
by the proposed optimizations.

5.1 Overall Speedup

Figure 8 shows the speedups obtained by our proposed Parallel
Automata Processor Architecture (PAP), when compared to the
baseline AP architecture. We present speedups for both 1 AP rank
(8 D480 devices) and 4 AP ranks (32 D480 devices in the current
AP generation) and 1 MB and 10 MB input streams. We also exploit
the parallelism offered by each of the half-cores in a D480 device
when our FSMs can fit in a single half-core. Table 1 details the
AP footprint and number of input segments created for each of our
benchmark FSMs. The Ideal legend in the figure equals the number
of input segments that can be processed in parallel. Overall, across
the complete range of 19 benchmark FSMs, for the 1 rank and 4 rank
cases, PAP achieves 6.6x and 18.8x speedup for the 1MB input
stream and 7.6x and 25.5x speedup for the 10MB input stream.

It can be seen from the figure that PAP outperforms the sequential
AP baseline for most benchmarks. A noticeable trend is the larger
performance gains with the 10 MB stream. This is because the

larger stream provides opportunity for creating larger input segments.
These larger input segments help in reducing in the number of active
flows due to the deactivation and convergence properties of the
FSMs discussed in Sections 3.3.3 and 3.3.4 and the associated flow
switching overhead. Furthermore, large input segments also help
amortize the cost of false path invalidation and input composition
in the CPU. For benchmarks with small input symbol ranges, in
particular Ranges05, Rangesl and ExactMatch, PAP achieves near
ideal speedup both in the 1 rank and 4 rank cases. Even FSMs with
significantly large number of initial flows like SPM (20101) and
Hamming (8152), achieve greater than 16 x speedup in the 10MB
case because of the connected components and common parent
optimizations for flow reduction discussed in Section 3.3. A detailed
analysis of our optimizations for flow reduction is presented in the
next section.

It is also important to note that the current generation of AP only
supports 512 active flows in its State Vector Cache per D480 AP
device. Several of the studied FSMs significantly exceed the 512
limit as can be noticed from the Range entries in Table 1. The pro-
posed flow reduction optimizations are therefore essential to the
success of the proposed parallelization approach. For benchmarks
like Fermi, consisting of a large number of active states and Entity
Resolution with highly dense connected components, our optimiza-
tions are unable to significantly reduce the initial number of active
flows, limiting speedups.

Our parallel approach is never worse than the sequential baseline
as the half-core processing the first input segment, after completion,
continues to process the remaining segments (golden execution).
In case this half-core finishes processing all input segments, we
invalidate all other executing flows and report results for the golden
execution. A more aggressive policy need not wait for completion
of golden execution. It can invalidate all flows after the golden
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Figure 8: Speedups obtained by our proposed architecture Parallel Automata Processor Architecture

execution has finished x segments (with x calculated based on the
minimum expected speedup).

5.2 Active Flow Set

Figure 9 shows the contribution of each of our flow reduction op-
timizations in achieving the speedups discussed in the previous
section. We also plot the average number of active flows in different
benchmarks for the 1 MB input stream case as an example. Note
that the y-axis scale is logarithmic.

While benchmarks with small input symbol ranges are inherently
good candidates for the flow-based enumeration scheme, it can be
seen that several of our benchmarks have greater than 1000 states in
their initial range. In particular SPM consisting of 20101 initial flows
and 5025 distinct connected components greatly benefits from the
connected components optimization which reduces these to 5 flows.
Note that our pre-processing step identifies frequently occurring
input symbols with small range. In their absence, other optimizations
like connected components prune the number of enumeration flows
as discussed above. All optimizations work synergistically to reduce
the number of enumeration paths.

We noticed that even though the connected components optimiza-
tion greatly helped reduce the number of flows (e.g., from 467 to 32
for PowerEN) several flows remained active for the complete execu-
tion. Investigating further revealed that the connected components
optimization artificially creates more flows for states originating
from the same parent as discussed in Section 3.3.2. With the pro-
posed common parent merging algorithm, we achieved a 1.6x and
1.4x reduction in flows for Levenshtein and Hamming. Also, the
dynamic flow convergence and deactivation checks discussed in Sec-
tion 3.3 contribute to a great reduction in number of active flows for
all benchmarks. In particular we see an order of magnitude reduction
in number of flows for DotstarOx and several orders of magnitude
improvement for RandomForest, Fermi and SPM.

5.3 Overheads

This section discusses the different sources of overhead in the pro-
posed PAP architecture.

Flow Switching and Dynamic Checks: It can be seen from Fig-
ure 10 that the overheads of context switching between flows are
less than 2% for most benchmarks. As discussed before, since the
number of active flows greatly reduces as input symbols are pro-
cessed, the corresponding convergence and deactivation checking
overheads also reduce. Furthermore these checks can be overlapped
with symbol processing. ClamAV however has a large number of
active flows and sees 2.4% overhead. This accounts for the relatively
low speedup for ClamAV when compared to other benchmarks in
Figure 8. Our speedup for 1 MB inputs reduces by on average, 0.5%
(1.75% worst case) and 1.2% (5.04% worst case) for 2x (6 cycles)
and 4x (12 cycles) context switch time respectively. The context
switch overhead is proportional to the number of active flows, which
greatly reduce as symbols are processed due to convergence and
deactivations. Also, dynamic convergence checks can be overlapped
with symbol processing, since these checks are carried out on state
vector cache entries, which do not participate in symbol processing
(state transitions).

False Path Decoding: Figure 11 illustrates the overheads of de-
coding false paths at the host CPU after an input segment finishes
and sending a flow invalidation vector (FIV) to the next segment.
On an average most benchmarks see around 2000 symbol cycles
overhead. Fortunately, this cost is largely amortized because of two
reasons: (1) it can be overlapped with symbol processing in subse-
quent segments, (2) these invalidations are infrequent since several
flows have either already converged or have been deactivated and do
not require this invalidation.

Output Reports: The AP uses reporting elements to inform the
host CPU about pattern matches against the input. The host reads
the output event buffer on the AP and decodes each entry to finally
report matches to the user. Since our approach uses enumeration for
parallelization, false paths are traversed and output events may be
generated along these false paths. Figure 12 illustrates the increase in
output reports due to false paths for each of the benchmarks. These
false positives are filtered out on the host. We account for the time
taken for post-processing the output reports in both baseline AP and
PAP for our final speedup measurements shown in Figure 8.
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On average, output reporting and worst case FIV on host CPU
take ~1% and ~6% of total execution time respectively, without
accounting for overlap of FIV computation. This is because output
reporting and flow invalidation are infrequent.

Energy: Since the PAP architecture reduces overall execution
time, we expect a reduction in static energy. However in the PAP
architecture, we activate more state-transition-elements than the
baseline due to traversal of false paths which can lead to increase
in dynamic energy. On an average there are 2.4 extra transitions
per input symbol. State activation only writes to multiple flip-flops
(mask register) and does not require additional writes to the DRAM
or activation of large number of additional DRAM rows. The AP
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Figure 11: Costs of decoding false paths at the end of input seg-
ment.

activates an entire DRAM row for every input symbol and reads
out different columns based on the bits stored in these flip-flops.
Therefore, these additional activations do not lead to significantly
increased dynamic energy costs.

6 RELATED WORK

To the best of our knowledge this work is the first to explore paral-
lelization of non-deterministic FSMs (NFA) on the Automata Pro-
cessor. Below we discuss the most closely related works:
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Parallelization of FSMs: Parallelization of FSMs is a well stud-
ied problem. Ladner and Fischer [22] parallelize deterministic FSMs
(DFA) using parallel prefix-sums. Hillis and Steele [15] present
an improved parallel prefix algorithm that reduces the execution
time from O (log (m) x n*) to O (log (m) x n) when executing on
M Processors.

More recently, Todd and others [25] leverage classic parallel
prefix sums to do enumeration of FSMs on modern hardware. The
key contribution of their work is three fold: improving enumeration
efficiency by reducing the dependence on n (number of states in the
FSM) by cleverly leveraging convergence, demonstrating a scalable
implementation on modern multi-core processors with vector SIMD
units and careful data mapping of the transition table based on the
range of input symbols to improve spatial locality of cache accesses.
However, their work is limited to small DFAs, primarily due to the
large computational complexity of enumerating NFAs.

To reduce the computational complexity and space footprint of
conventional NFAs in multi-core architectures, modular NFA ar-
chitectures have also been proposed [37]. To improve locality of
access, several small regular expressions and regular expressions
with common prefixes are merged into larger segments. Parallelism
is achieved by mapping these segments to separate threads, with
each thread processing either the same or different inputs in parallel.
This paper builds on the above concepts, generalizes these insights
to emerging applications with large NFAs and proposes custom
parallelization for an entirely different memory centric architecture—
Automata Processor.

An alternative to enumerating all states in the FSM is speculation,
i.e. guessing the start states of input segments [27, 39, 40]. Specula-
tion for parallelizing FSMs has been applied to specific application
domains such as browser’s front end [18], JPEG decoder that uses
parallel Huffman decoding [20], intrusion detection using hot state
prediction [23], and speculative parsing [19]. Notably, Zhao and oth-
ers [39, 40] introduce the concept of principled speculation, which
is the first rigorous approach to speculative parallelization. While
our proposed architecture does not employ speculation, we believe
this is a promising direction for reducing the number of active flows.

A. Subramaniyan et al.

Automata Processor: The unconventional architecture of Au-
tomata Processor (AP) [1, 12] has sparked interest in the academic
community. Many recent works have re-designed and analyzed criti-
cal algorithms for AP across diverse application domains, such as big
data analysis [9], data-mining [33], bioinformatics [28], high-energy
particle physics [34], machine learning [16], pseudo-random number
generation and simulation [30], and natural language processing [41].
‘Wadden and others [31] have developed a multi-threaded data-flow
automata simulator (VASim) and released a diverse automata bench-
mark suite (ANMLZoo0). Angstadt and others [6] developed RAPID,
a new high-level programming language that can be easily compiled
to AP and tessellation techniques that can reduce the compilation
time by up to four orders of magnitude by leveraging repeated NFA
designs between FSMs. Complementary to the above works which
have advanced the state-of-art by demonstrating the efficiency of the
AP, our work aims to further improve the efficiency by designing
new methods for parallelization of FSMs running on AP.

7 CONCLUSION

This paper attempts to break the sequential NFA execution bottle-
neck on the Micron Automata Procesor (AP). We identify two main
challenges to applying enumerative NFA parallelization techniques
on the AP: (1) high state-tracking overhead for input composition (2)
huge computational complexity for enumerating parallel paths on
large NFAs. Using the AP flow abstraction and properties of FSMs
like small input symbol transition range, connected components and
common parents we amortize the overhead of state-tracking and
realize a time-mutliplexed execution of enumerated paths. To tackle
the computational complexity, we leverage properties of the FSMs
like path convergence to dynamically reduce the number of executed
enumerated flows. The algorithmic insights about large real-word
NFA provided in this work (e.g., presence of connected components,
common parents, active state groups, range partitioning) are gen-
eral and can be applied to parallelize NFA execution on any spatial,
data-flow substrate with memory and interconnects, like FPGAs,
cache sub-arrays or memristor crossbar arrays. What is required is
an efficient state-encoding and state-mapping scheme along with
a mechanism for supporting state-transitions using interconnects.
Furthermore, different connected components and flow contexts may
also be mapped to separate GPU threads for parallelism. We leave
this exploration for future work. Our evaluation on a range of FSM
benchmarks shows 25.5 speedup over the sequential baseline AP.
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