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ABSTRACT

Finite State Automata are widely used to accelerate pattern matching
in many emerging application domains like DNA sequencing and
XML parsing. Conventional CPUs and compute-centric accelerators
are bottlenecked by memory bandwidth and irregular memory access
patterns in automata processing.

We present Cache Automaton, which repurposes last-level cache
for automata processing, and a compiler that automates the process
of mapping large real world Non-Deterministic Finite Automata
(NFAs) to the proposed architecture. Cache Automaton extends a
conventional last-level cache architecture with components to accel-
erate two phases in NFA processing: state-match and state-transition.
State-matching is made efficient using a sense-amplifier cycling
technique that exploits spatial locality in symbol matches. State-
transition is made efficient using a new compact switch architecture.
By overlapping these two phases for adjacent symbols we realize an
efficient pipelined design.

We evaluate two designs, one optimized for performance and the
other optimized for space, across a set of 20 diverse benchmarks.
The performance optimized design provides a speedup of 15X over
DRAM-based Micron’s Automata Processor and 3840 speedup
over processing in a conventional x86 CPU. The proposed design
utilizes on an average 1.2MB of cache space across benchmarks,
while consuming 2.3nJ of energy per input symbol. Our space opti-
mized design can reduce the cache utilization to 0.72M B, while still
providing a speedup of 9x over AP.
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1 INTRODUCTION

Non-deterministic Finite Automata (NFA) is a powerful compu-
tational model which is widely used in a number of application
domains such as data analytics and data mining [7, 41], network
security [16, 25, 29, 44], bioinformatics [13, 34, 42], tokenization
of web pages [30], computational finance [1, 28] and software en-
gineering [2, 11, 32]. These applications require processing tens to
thousands of patterns for a stream of input data. NFAs are especially
useful for efficient regular expression matching, as they can provide
high-speed analysis of unstructured textual data, which is being gen-
erated in large volumes in forms such as system logs, social media
posts, emails, and news articles [17].

NFA computation is inherently hard to speedup using compute
centric processing. Modern multi-core processors and accelera-
tors [37, 38] are limited by the number of transitions they can do in
a given cycle. Both CPUs and GPGPUs perform poorly as automata
processing is dominated by irregular memory access patterns and
memory bandwidth limitations.

In comparison, a memory centric processing model can facili-
tate highly parallel and energy efficient processing of finite state
automata in hardware. For instance, Micron’s DRAM-based Au-
tomata Processor (AP) [14] has been shown to accelerate several
applications like entity resolution in databases [7](by 434 %) and
motif search in biological sequences [34] (by 201 x). Recent efforts
at Virginia’s Center for Automata Processing have demonstrated that
AP can outperform x86 CPUs by 256 x, GPGPUs by 32 x, and accel-
erators such as XeonPhi by 62, across a wide variety of automata
benchmarks [39].

The success of memory centric models such as AP relies on two
factors: massive parallelism and eliminating overheads in moving
data between memory and compute units. Massive parallelism is due
to the fact that all states (mapped to columns in DRAM arrays) can
be independently activated in a given cycle. An AP chip can support
up to 48K transitions in each cycle. Thus it can efficiently execute
massive Non-deterministic Finite Automata (NFA) that encapsulate
hundreds to thousands of patterns.

Given the large benefits of memory centric models, we explore
cache as a substrate for automata processing. Caches have two advan-
tages over DRAMs. First, SRAM-based caches are faster and more
energy efficient compared to DRAM. Second, caches are integrated
on processor dies which are manufactured in cutting edge technology
nodes and performance optimized logic. Thus cache based automata
processing can utilize significantly faster interconnects and logic.

On the flip side, caches typically have lower capacity compared to
DRAM. Interestingly, we observe that DRAM-based AP sacrifices
a huge fraction of die area to accommodate the routing matrix and
other non-memory components required for automaton processing.
An AP die can store 12 Mbits of data, while a conventional DRAM
die of equivalent area can store 200 Mbits of data (16.6x area
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overhead) [18]. Thus, while DRAM memory’s packing density is
high, DRAM automata processor’s packing density is comparable
to caches. A rank of AP (8 dies) can accommodate 384K states.
Typical high-performance processors can have 20-40MB of last
level cache [8] and can accommodate 640K-1280K states, if the
entire cache is utilized to save NFAs.

In this paper, we propose the Cache Automaton architecture which
repurposes existing Last Level Cache (LLC) slices to enable efficient
automata processing. While the memory technology benefits of mov-
ing to SRAM are apparent, repurposing the 40-60% passive LLC die
area for massively parallel automata computation comes with several
challenges. A naive approach that processes an input symbol every
LLC access (~20-30 cycles @ 4GHz), would lead to an operating
frequency comparable to DRAM-based AP (~200 MHz), negating
the memory technology benefits. Increasing operating frequency
further can be made possible only by two insights.

First, architecting an in-situ computation model that is cognizant
of the internal geometry of LLC slices. We observe that LLC access
latency is dominated by wire-delays inside a cache slice, accessing
upper-level cache control structures, and network-on-chip. Thus,
while a typical LLC access can take ~30 cycles, an SRAM array
access is only 1 cycle. Fortunately, in-situ architectures such as
cache automaton require only SRAM array accesses and do not
incur the overheads of a traditional cache access. Furthermore, we
leverage the internal geometry of LLC slices to build a hierarchical
state-transition interconnect.

Second, accelerating the two phases of input symbol processing
common in memory-centric automata processing models. These
are state-match, where the set of active states whose label matches
the input symbol are determined through an array read operation
and state-transition, where the matching states activate their cor-
responding next states by propagating signals through wires and
switches. Accelerating state-match is challenging because industrial
LLC subarrays are optimized for packing density and designed in
a manner that many bit-lines share I/O (or sense amplifiers) via a
column multiplexer. In our LLC design modeled exactly after the
Xeon E5 processor [10, 19], 8 states share a sense amplifier. This
implies that reading out all states will require 8 cycles, resulting
in a low throughput system. We observe that unlike conventional
cache accesses, automata processing requires reading out all the bits
which are sharing a sense amplifier and propose a sense amplifier
cycling technique to address this bottleneck. In the optimized read
sequence, all the bit-lines are pre-charged in parallel, which is then
followed by sequential sensing of each bit-line. This optimization
can improve our system throughput by 2x-3x depending on state
packing density.

Accelerating state-transition at low-area cost requires the design
of a scalable interconnect that efficiently encodes and supports multi-
ple state-transitions on the same cycle, often to the same destination
state. Automata switches also need to store a large array of connec-
tivity bits that are representative of transition edges between states.
We observe that an 8T SRAM memory array can be repurposed
to become a compact state-transition crossbar for automata. Alter-
natively, traditional crossbar designs that require arbitration every
cycle for determining input-output connections have prohibitive area
costs. Furthermore they cannot support large fan-in of states, i.e.
multiple inputs connecting to one output. Supporting this feature
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would need multiple arbitrations/traversals through the crossbars or
multiple crossbars, making the state-transition either slow or have
higher area overheads.

Even with such compact switches, supporting all-to-all connectiv-
ity between states requires prohibitively large and slow switches. We
observe that large real-world NFA are typically composed of several
connected components, each of which can be grouped into densely
connected partitions with only few (8-16) interconnections between
partitions. This motivated us to explore a hierarchical switch topol-
ogy with local switches providing rich intra-partition connectivity
and global switches providing sparse inter-partition connectivity.
To this end, we develop a Cache Automaton compiler which scales
to real world NFAs with several thousand states and maps them
efficiently to hundreds of SRAM arrays. Our compiler uses graph
partitioning techniques [23] to satisfy the connectivity constraints
while maximizing space utilization.

To further improve throughput and parallelism, we develop a fully
pipelined design. Pipelining is possible because Cache Automaton
processes a stream of input symbols (MBs to GBs) sequentially,
and SRAM access for the current input symbol can be overlapped
with the switch propagation delay for processing the previous input
symbol.

In summary this paper offers the following contributions:

e This is the first work to explore automata processing in cache.
The proposed Cache Automaton architecture maps NFA states
to SRAM arrays of last level cache slices. In particular we
observe that memory centric automata processing models
can leverage not only the faster SRAM memory technology
of caches but also faster interconnect/logic in a processor
die. Further, the capacity of caches are quite comparable
to DRAM-based automata processors, which sacrifice the
density to accommodate custom interconnect-based transition
matrix.

e A critical component of the proposed architecture is a pro-
grammable interconnect which enables transitions between
NFA states. By repurposing 8T SRAM arrays, we develop
a new compact switch architecture customized for automata
processing.

e To improve performance, we propose a fully pipelined ar-
chitecture which is based on our observation that SRAM
access for the current input symbol can be overlapped with
interconnect delay for processing the previous input symbol.

e The bottleneck of the Cache Automaton pipeline is SRAM
array access delay which is slow due to sharing of I/O (sense-
amplifiers) between bit-lines. We observe that unlike conven-
tional cache accesses, Cache Automaton needs to read all
column multiplexed bits and propose sense-amplifier cycling
techniques to speedup SRAM array access.

e We develop a Cache Automaton compiler which leverages
many algorithmic insights and fully automate the process of
mapping real world NFAs with tens of thousands of states
to Cache Automaton which consists of hundreds of SRAM
arrays.

e We evaluate two designs, one optimized for performance
and the other optimized for space, across a set of 20 diverse
benchmarks. The performance optimized design provides a
speedup of 15x over Micron’s AP and 3840 x speedup over
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processing in a conventional x86 CPU. The proposed design
utilizes on an average 1.2MB of cache space across bench-
marks, while consuming 2.3nJ of energy per input symbol.
Our space optimized design can reduce the cache utilization
to 0.72MB on an average across benchmarks, while still pro-
viding a speedup of 9x over AP.

2 CACHE AUTOMATON ARCHITECTURE

In this section we provide an overview of NFAs, explain the concept
of Cache Automaton and provide a simple working example.

2.1 NFA Primer

A Non-deterministic Finite Automaton (NFA) is formally described
by a quintuple (Q,¥,8,qo, F), where Q is a set of states, ¥ is the
input symbol alphabet, g is the set of start states and F is the set
of reporting or accepting states. The transition function & (Q, &)
defines the set of states reached by Q on input symbol ¢. The non-
determinism is due to the fact that an NFA can have multiple states
active at the same time and have multiple transitions on the same
input symbol.

The classic representation is transformed to ANML NFA repre-
sentation [14] where each state has valid incoming transitions for
only one input symbol. Thus each state in an ANML NFA can be
labeled by one unique input symbol. There exists various algorithms
(e.g. [35]) to transform a classical NFA to an optimized ANML NFA
format. Figure 1 (a) shows the classical representation of a sample
NFA which accepts patterns {bat, bar, bart, ar, at, art,
car, cat, cart}. Figure 1 (b) shows the ANML NFA represen-
tation for the same automata. State S1 in classical representation is
now represented by three states S1_a (with label a), S1_b (with label
b), and S1_c (with label c).

2.2 Cache Automaton Concept

ANML NFA computation entails processing a stream of input sym-
bols one at a time. Initially, all the start states are active states. Each
step has two phases. In state match phase, we identify which of the
active states have the same label as the current input symbol. In
the next state transition phase, we look up the transition table to
determine the destination states for these matched states. These des-
tination states would become the active states for the next step. Now,
we discuss how Cache Automaton implements these two phases
efficiently.

State Match: We adapt Micron’s AP processor [14] design for
implementing the state match phase. Each NFA state is mapped as a
State Transition Element (STE) to a column of SRAM arrays in the
last-level cache. The value of an STE column is set to the one-hot
encoding of the 8-bit input symbol it is mapped to. This means that
each STE (or column) is 256 bits and each bit position signifies an
input symbol in the ASCII alphabet. Figure 2 (a) shows an SRAM
array in Cache Automaton which holds 256 STEs. Every cycle, the
current input symbol is broadcasted to all SRAM arrays as a row
address and the corresponding row is read out. If an STE has a1’
bit set in the row, it means that the label of the state it has stored
matches the input symbol. Thus, by broadcasting the input symbol
to all SRAM arrays, it is possible to determine in parallel all the
states which match the current input symbol.
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The row corresponding to the input symbol is read out and stored

in a match vector. An active state vector (one bit per STE; 256-bit
vector in our example) stores which STEs are active in a given cycle.
A logical AND of match and active state vectors determines the
subset of active states which match the current input symbol. The
destination states of these matched states would become the next set
of active states. Section 2.6 discusses solutions to implement this
state match phase efficiently in cache sub-arrays.
State Transition: This phase determines the destination states of the
matched states found in the previous phase. These states would then
become the next set of active states. We observe that a matrix-based
crossbar switch (essentially a N x N matrix of input and output ports)
is suitable to encode a transition function. In a crossbar, an input port
is connected to an output port via a cross-point. Each STE connects
to one input port of the switch. A cross-point is enabled if the input
STE connects to a specific output STE. The result of state-matches
serve as inputs to the switch, and the output of the switch is the next
set of active states.

The switches in the cache automaton architecture have modest
wiring requirements (256-512 input and output wires; see Table 2),
as data-bus width is only 1-bit. However, cache automaton switches
have two major differences from conventional switches. First, there
is no need for arbitration. The connections between the input and
output ports can be configured once during initialization for an
NFA and then used for processing all the input symbols. Since
there is no arbitration, the enable bits must be stored in the cross-
points. Automaton switches have a large number of cross-points,
and therefore we need a compact design to store the enable bit at
each cross-point. Second, unlike a conventional crossbar, an output
can be connected to multiple inputs at the same time. The output is
a logical OR of all active inputs. Section 2.7 discusses our proposed
switch architecture for Cache Automaton which supports the above
features.

Ideally, the entire transition function could be encoded in one
switch to provide maximum connectivity. However, such a design
will be incredibly slow. To scale to thousands of states and many
SRAM arrays, we adopt a hierarchical switch architecture as dis-
cussed in Section 2.4.

2.3 Working Example

We describe a simplified example which brings together all the above
concepts. Figure 1 shows an example NFA which accepts patterns
{bat, bar, bart, ar, at, art, car, cat, cart} and how it
is mapped to SRAM arrays and switches. The figure starts with a
classical representation of an NFA in terms of states and transitions
(Figure 1 (a)). Figure 1 (b) shows ANML NFA representation for the
same automata. Figure 1 (c) shows the transition table for ANML
NFA with STEs. This example NFA requires only 8 STEs. Real
world NFAs have tens of thousands of states which need to be
mapped into hundreds of SRAM arrays.

For this example, let us assume we have two small SRAM arrays
which can each accommodate 4 STEs as shown in Figure 1 (d). The
NFA requires 8 STEs, so we split the states into 4 STEs in Array_1
and Array_2. Each array has a 6 x 4 local switch, and together they
share a 2 x 2 global switch. Each STE can connect to all STEs in its
array. In this example, only two STEs (ST E; and STE5) in an array
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Figure 1: An example NFA and its mapping to two small SRAM arrays and switches. The NFA accepts patterns {bat, bar, bart,

ar, at, art, car, cat, cart}.

256 STE Partition

(2 x 4KB SRAM Arrays)
_____________ ———— 0 L-switch 0 G-switch-1 0 G-switch-4
— @ N ~
[SRala) ~ 1
W ou ) =
555 = 1 ~ ( - - ee o
1 C i | el [
| | E m /,2 I;l—» _—— —
] 1 o 0o | — o
1 1| SRAM k5=l SRAM / -
1 1 : : / Bl Output buffer
| X 1 1 Output bit m [
| 1 1 T N> / B Input buffer
1 }
1
1 255 ! ! ind / oo ¢
jdecoder 1 1 . . i . /
| 1 1 o | . / -
ToG-switch-1 | 1 1O ee — o
: To G-Switch4 1 1 SR’AM IFI=H SRQM / [
1 From G-Switch-1 1 1 * U * / |
1 o From G-Switch-4 | 1 [ TChunk 1 0 = 0o [0
. o ls_b 1 \ [] 3Chunk 0 [ 1 |
a Y ahEE oo 2’
280x256 1 (c) & & z z
1 L-Switch 1 / E g =
}
1 1/ 32kB } 16kB subarray Tag,
| 4 data Array_H PA[16]=1 state, LRl
bank Array_L PA[16]=0

(b)

Figure 2: The figure shows (a) SRAM arrays re-purposed to store 256 STEs, (b) one 2.5MB Last-Level Cache (LLC) slice architecture.,

and (c) Internal organization of one 8KB sub-array.

are allowed to connect to all STEs in the other array via the global
switch.

The transition table in Figure 1 (c) is mapped to local and global
switches. For instance, S1_, and S4_,, are mapped to STE| and STE3,
of Array_1. Since S1_, can transition to S4_,, the local switch cross-
point between ST E; and STEj is set to connected (represented by
black dot). The figure also shows how a connection via global switch
is established for states S»_, mapped to STE; of Array_1, and Sy ;
mapped to STE,4 of Array_2. This is accomplished by (1) feeding
STE; as an input to global switch, (2) connecting second input of
global switch to G4 output which feeds as an input to Array_2’s
local switch, (3) G4 input is connected to ST E4 output (or Sy ;) of
Array_2’s local switch.

2.4 Cache Slice Design

The proposed cache automaton is implemented in the Last-Level
Cache (LLC) in order to accommodate large NFA with thousands of
states. Figure 2 (b) shows the overall organization of a slice of LLC
with the Cache Automaton architecture. The depicted LLC slice is
modelled exactly after Xeon E5 processors [10, 19]. Each LLC slice
is 2.5MB. Intel processors support 8-16 such slices [8]. Each slice
has a central cache control box (CBOX). Remainder of the slice is
organized into 20 columns. A column consists of eight 16 KB data
sub-arrays, and a tag array. Each column represents a way of set-
associative cache. Internally a 16 KB data sub-array consists of four
SRAM arrays with 256 x 128 6T bit-cells as shown in Figure 2 (c).
Each array has 2 redundant columns and 4 redundant rows to map
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out dead lines. STEs are stored in columns of the 256x 128 SRAM
array. A 16 KB data sub-array can store up to 512 STEs. We define
a partition as group of 256 STEs mapped to two SRAM arrays each
of size 4KB.

Our interconnect design is based on the observation that real-
world NFA states can typically be grouped into partitions, with states
within a partition requiring rich connectivity and states in different
partitions needing only sparse connectivity (details in Sections 3.1
and 3.2). To support this partitioning, we add one local switch (L-
Switch) per partition providing rich intra-partition connectivity and
global switches (G-Switch) for sparse connections between partitions
across a way or multiple ways. Each L-Switch is of size 280 x
256, i.e., 280 input wires and 256 output wires. The input wires
correspond to 256 STEs in the sub-array and 16 input wires from the
G-Switch in the same way (G-switch-1) and 8 input wires from the
G-Switch connecting the 4 ways (G-switch-4). A STE in a partition
can connect to any other STE in its partition via the L-Switch. Also,
16 STEs from a partition can connect to other partitions in the same
way via G-Switch-1 and 8 STEs from a partition can connect to
other partitions via G-switch-4. We also observe that even without
connections between global switches, the proposed interconnect
topology provides sufficient headroom to our compiler to map all
evaluated NFA.

Figure 2 (a) shows a single partition. The input symbol match
result is read out and stored in the match vector. The logical AND
of the match vector and the active state vector is fed as input to the
local-switch (256 STEs) and the global-switches (16 STEs and 8
STEs respectively). After the signals return from the global-switches
to the local-switch, the next set of active states is available as the
output of the local-switch. This is written back to the active-state
vector. If any of the final or reporting states are active then an entry
is made into the output buffer in the CBOX recording the match
(Section 2.8).

2.5 Automaton Pipeline

The automaton processes a stream of input symbols sequentially and
hence the time to process each input symbol determines the clock
period. The clock period determines the rate of processing input sym-
bols and hence the overall system performance. We observe that each
input symbol is processed in two independent phases, SRAM access
for state match and propagation through the interconnect (switches
and wires) for state transition. Furthermore, SRAM access for the
current input symbol can be overlapped with interconnect delay for
processing the previous input symbol. Based on this observation we
design a three-stage pipeline for Cache Automaton. Typical appli-
cation scenarios process large amounts of input data (MBs to GBs),
thus the pipeline fill-up and drain time are inconsequential.

State-

Match L-Switch

G-Switch

Stage-1 Stage-2 Stage-3

Figure 3: Three-stage pipeline design for Cache Automaton.

The pipeline stages are shown in Figure 3. The first stage of the
pipeline is state-match or SRAM array read access. The output of
this stage is stored in the match vector (Figure 2 (a)). It is moved
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to another buffer at the end of the stage to make room for the next
state match. The second stage of the pipeline is propagation through
the global switch (G-Switch). This includes the wire delay from
SRAM array to global-switch. The output of this stage is stored in
the output latches of G-Switch. The third and last stage of pipeline is
propagation through local switch (L-Switch). This includes the wire
delay from G-Switch to L-Switch. This stage writes the next state
to active state vector and completes processing of the current input
symbol. Note, the output of the L-switch updates the active state
vector, and the active state cannot be updated until transition signals
from other partitions have reached their destination L-switches via
the G-switch. Thus G-Switch forms the second stage of pipeline
followed by L-switch.

As can be inferred from the above discussion, the symbol pro-
cessing time for Cache Automaton is determined by symbol-match
delay and switch delay. Hence for high-performance it is critical to
speedup both the symbol match delay and interconnect delay. The
next two sections discuss techniques towards this end. Section 5.1
quantifies the delay of each pipeline stage and overall operating
frequency.

2.6 [Enabling Low-Latency Matches

The input symbol match for cache automaton is simply an SRAM
array read operation. Conventional SRAM arrays share I/O or sense-

amps for increased packing density. This results in column-multiplexing

which increases the input symbol match time significantly. For exam-
ple, a 4-way column multiplexed SRAM array shares one sense-amp
across four bit-lines and hence can read out only 1 bit out of 4 bits
in a cycle as shown in the left side of Figure 4. A read (or match
operation) consists of decoding, bit-line pre-charging, and I/O or
sensing as shown in the baseline timing on the right side of Figure 4.
A 4-way column multiplexed array requires 4 cycles to read out all
the bits in a row of the array.

|
I .
I Baseline
| I CLKJ \_,‘ \_‘ L
: [er}e] [orlg] [e71% | : PCH—_ LT
AW L 1 1L
8 e [ B 6 | s 71—
§R\{VL J _ J L e ot al n .
a 7 | . w
lla” (et} [ether| [eThey| | Optimized
| ¢ H : : | CLKJ—|_E—
!
0T T frfy I " !
) ) T Rwe ;
seLfoL_| | s —o s
SEL[1]T | SAE |
|
|

Vref
SAE |

Figure 4: Design and timing diagram for a 4-way multiplexed
SRAM column.

A dynamic scheme which checks active state vector, and matches
fewer STEs, can save energy. Unfortunately this cannot improve
performance because the clock period is determined by worst case
state-match time. However, we observe that unlike conventional
cache read accesses, automata state transitions need to read all bits
which are column multiplexed. This can be leveraged to improve
match latency, by cycling the sensing phase. All the bit-lines of an
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SRAM array can be pre-charged in parallel, followed by sequentially
sensing column multiplexed bits.

Figure 4 shows the timeline of an optimized read sequence for
4-way column multiplexing. First pre-charge (PCH) is asserted, fol-
lowed by a read word-line (RWL) assertion. By the end of RWL
assertion all bit-lines are ready for sensing. The sense-amp enable
(SAE) is asserted in 4 steps. The column-multiplexer select sig-
nals (SEL) is set to O to read the first column, and changes to 1,2,
and 3 with each SAE assertion. Typically SRAM arrays use pulse
generators for control signals like SAE, PCH and RWL and are
not generated using a separate higher frequency (i.e., §GHz) clock.
These consist of a chain of high-Vt, long channel, current-starved
inverters and NAND gate that can be configured to generate pulses
of widths 1/2—1/4 of clock period. In our case, a 125 ps (8 GHz)
pulse can be generated for SAE and SEL. Power and area overhead
for the pulse generator is minimal-8-10 inverters switching once
every clock cycle (8 nW). Since sensing takes about 25% of the
cycle time, this optimized read sequence can read all bits for a 4-way
column multiplexed array 2x faster than the baseline. For 8-way
column multiplexing the benefits of the optimization are higher.

2.7 Switch Design

This section discusses the proposed switch design. As explained in
Section 2.2, an automaton switch needs to support two new features.
First, since it has a large number of 1-bit ports, it needs to store
a large number of cross-point enable bits. There is no need for
dynamic arbitration. But the switch needs to provide a configuration
mode which allows write to enable bits. Second, to allow efficient
many-to-many state transitions, an output needs to be connected to
multiple inputs and be the equivalent of logical OR of active inputs.

Enable Bit

TH L

VSS OBL

Figure 5: The 8T cross-point design for switches.

To support the above two features, we developed an 8 transistor
(8T) cross-point design as shown in Figure 5. The enable bit which
controls the connection of input bit-lines (/BL) to output bit-lines
(OBL) is stored in a 6T bit-cell. The connection between /BL and
OBL is via a 2T block. The switch supports two modes: crossbar
mode and write mode. During the crossbar mode, the OBL’s are pre-
charged. If any of the IBL’s carry a ’0’, the OBL is discharged. Thus
outputs carry a wired AND of inputs. Note the inputs and outputs
are active low. Thus the final result on an output wire is logical
OR of all inputs. Each OBL has a dedicated sense-amp. During the
write mode, the 6T enable bits can be programmed by writing to all
bit-cells sharing one write word-line (WWL) in a cycle. The switch
is provisioned with a decoder and wordline drivers for write mode.
The proposed switch can take advantage of standard 8T push rule
bit cells to achieve a compact layout.
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2.8 Input Streaming and Output Reporting

Cache Automaton takes a steady stream of input symbols and pro-
duces intermittent output matches. Input symbols (1 byte each) are
stored in a small 128 entry FIFO in the C-BOX as shown in Fig-
ure 2. The FIFO is associated with an input symbol counter which
indicates the symbol cycles elapsed. One input symbol is read from
the FIFO every cycle and broadcasted to all SRAM banks by using
the existing address bus within a cache slice. Our model assumes
that applications copy input data to a cache location. In the Cache
Automaton mode, as input symbols get processed and deleted from
the FIFO, the cache controller reads a cache block worth of input
data via regular cache access and fills up the FIFO.

We follow a model similar to Micron’s AP for output reporting.
An output buffer has 64 entries, an entry for each match with a
reporting state. An interrupt is sent to CPU if all output buffer entries
are full. The report states in the NFA can be mapped to designated
STEs in a partition. A 256-bit mask indicates if the reporting states
are mapped to these STEs. A wired OR of the result of logical
AND of active state mask and output reporting mask (report vector)
triggers an output reporting event. An output reporting event creates
a new entry in the output buffer consisting of active state mask,
partition ID, input symbol, and input symbol counter.

2.9 System Integration

While repurposing the last-level cache for automata processing, the
following system-level issues need to be kept in mind:

Sharing Model with CPU: Our architecture is aware of a way in
LLC, but there is no mode for directly addressing a cache way in x86
instructions. A load address can be mapped to any way in the LLC.
To overcome this limitation, Cache Automaton leverages Intel’s
Cache Allocation Technology (CAT) [20] to dynamically restrict
the ways accessed by a program and thus exactly control which
cache way the data gets written to. NFA computation is carried out
only in 4-8 ways of each slice. The remaining 12-16 ways can be
used by other processes/VMs executing on the same/different cores
without leading to starvation in inclusive caches. By associating
the NFA process to one of the highest cgroups (class-of-service),
CAT can ensure that incoming data from processes in low-priority
cgroups does not evict data in active NFA ways and guarantees
QoS during steady-state. With regard to addressing, LLC hashing
must be disabled during configuration time to place STE data into
specific slices. This can be done by writing to special Model-Specific-
Registers (MSRs) like those used to associate L3 cache ways with
cgroups in CAT. Note that LLC hashing need not be disabled during
normal execution.

Power Management: Since NFA computation has high peak
power requirements for some benchmarks, the OS scheduler together
with the power governor must ensure that the system TDP is not
exceeded while scheduling other processes simultaneously on CPU
cores. Based on the number of cache arrays, ways, slices allocated
for NFA computation and average active states for representative in-
puts, the compiler can provide coarse-grained peak-power estimates
(hints) to guide OS scheduling. In case the OS wishes to schedule a
higher-priority process, the NFA process may also be suspended and
later resumed by recording the number of input symbols processed
and the active state vector to memory. It must be noted that while
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peak power is high, the energy consumed is orders of magnitude
lower than that expended by conventional CPUs due to savings in
data movement and instruction processing overheads.

2.10 Configuration and ISA Interface

We adopt a configuration model similar to Micron’s Automata Pro-
cessor (AP). Before processing the NFA, the switches have to be
configured and the cache arrays have to be initialized with STEs.
The switches can be configured by utilizing their write-mode, where
they simply function as SRAM arrays. We assume switch locations
are I/O mapped and addressable by CPU load instructions.

The initialization of cache arrays can be done by CPU load in-
structions which fetch data from memory to caches. Our compiler
creates binary pages which consists of STEs stored in the order in
which they need to be mapped to cache arrays. The compiler care-
fully orders the STEs based on physical address decoding logic of
underlying cache architecture. These binary pages with STEs are
loaded in memory, just like code pages. Most LLC cache sets are
addressable by last 16 bits of memory address. These bits can be
kept same for both virtual pages and physical pages by mapping the
binary data (containing STEs) to huge pages [24]. LLC hashing is
disabled during configuration as discussed in Section 2.9.

The average initialization time is dictated by the number of SRAM
arrays occupied by an NFA. For our largest benchmark, we found
this to be about 0.2ms on a Xeon server workstation. In contrast AP’s
configuration time can be up to tens of milliseconds [36]. Once con-
figured, in typical use cases such as log processing, network traffic
monitoring and DNA alignment, NFAs typically process GBs/TBs
of data, thus processing time easily offsets configuration time. But
configuration may be costly when frequently switching between
structurally different automata. For these, optimizations like over-
lapping the configuration of one LLC slice with processing in others
and prefetching may be explored. We leave this exploration to future
work.

An ISA interface is required to specify (1) when to start process-
ing in Cache Automaton mode and (2) start address from which input
data needs to fetched to fill up input FIFO buffer. (3) the number of
input symbols to be processed. One new instruction can encapsulate
all the above information. Compiler can insert this special instruction
in code whenever it needs to process NFA data. An interrupt service
routine handles output buffer full reporting events.

3 CACHE AUTOMATON COMPILER

In this section we explain our compiler that takes as input an NFA
description consisting of several thousands of states and efficiently
maps them onto cache banks and sub-arrays. Care is taken to ensure
maximum cache utilization while respecting the connectivity con-
straints of the underlying interconnect architecture. The algorithms
proposed are general and the insights provided are also applicable for
mapping NFAs to any spatial reconfigurable substrate with memory
like FPGAs or memristor crossbar arrays.

The compiler takes as input an NFA described in a compact
XML-like format (ANML) and generates a bit-stream containing
information about the NFA state to cache array mapping and the con-
figuration enable bits to be stored in the various crossbar switches of
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the automaton interconnect. We propose two mapping policies lead-
ing to two Cache Automaton designs, one optimized for performance
CA_P and the other optimized for space utilization CA_S. Before
proceeding to explain the mapping algorithm used by the compiler
(Section 3.2), we motivate the insights behind each of these designs
in Section 3.1.

3.1 Connectivity Constraints

Real-world NFAs are composed of several connected components
(CCs) with only a few hundred states each. Each connected compo-
nent describes a pattern or group of common patterns to be matched.
Since these connected components have no state transitions between
them, they can be treated as atomic units by the mapping algorithm.
Each connected component can be viewed as operating indepen-
dently matching against the input symbol in parallel.

Performance Optimized Mapping: In their baseline NFAs, most
benchmarks have connected components with less than 256 states
(refer Table 1), making it possible to fit at least one connected com-
ponent in each partition (256 STEs stored in two 4KB SRAM arrays,
Figure 2 (a)). This motivates our performance-optimized mapping
scheme that greedily packs connected components onto cache arrays.
We were able to operate all of the baseline NFA benchmarks while
limiting the connectivity across cache arrays to within a way. Only
cache arrays which are mapped to physical address with A[16] =
0 (Array_L in Figure 2 (c)) are used for mapping NFA and cache
arrays with A[16] = 1 (Array_L in Figure 2 (c)) can be used for stor-
ing regular data provided that compiler can ensure that regular data
are placed in 64KB segments in the virtual address space or OS does
not use physical pages with A[16] = 1. As we discuss in Section 5.1,
the performance-optimized design can operate at a frequency of 2
GHz.

Space Optimized Mapping: However, just using the baseline
NFAs forgoes algorithmic optimizations on NFAs that seek to re-
move redundant automata states and state traversals. These redun-
dancies are common in practice, since many patterns share common
prefixes (for example, patterns like art and artifact) and these com-
mon prefixes can be matched once for all connected components
together. Eliminating redundancies helps reduce the space footprint
of the NFA. It also reduces the average number of active states,
leading to reduction in dynamic energy consumption. This has been
the motivation for several state-merging algorithms in literature that
merge common prefixes across pattens [4]. However, it must be kept
in mind that since these optimizations merge states across many
connected components they tend to reduce the number of connected
components and increase the average connected component size.
Larger connected components require richer connectivity and de-
mand more interconnect resources (crossbar switches and wires).
To support such state-merged NFA, we propose a space-optimized
mapping policy that leverages graph partitioning techniques (Sec-
tion 3.2) to minimize outgoing edges between partitions. We also
provision additional global crossbar switches to ensure connectivity
across 4-8 ways of a cache slice. Our hierarchical switch design
provides a richer average fan-out transitions and fan-in transitions
per state compared to the AP (Section 5.4). However, richer connec-
tivity comes at the cost of higher latency due to increased wire delay,
therefore the space-optimized design operates at a lower frequency
(1.2 GHz) compared to the performance-optimized design (2 GHz).
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3.2 Mapping Algorithm

The algorithm takes as input the ANML NFA description of the
benchmark, the number of cache arrays available and the size of each
cache array. The output is a mapping of NFA states to cache arrays.
It operates in three steps. In the first step, all connected components
which have size less than partition_size (i.e., 256 states) are identi-
fied. As discussed earlier, a connected component forms the smallest
mapping unit. Next, these connected components are mapped greed-
ily onto the cache arrays to pack multiple connected components
onto the same cache array when possible. We do not partition the con-
nected component in the first stage, since the connected component
inherently groups together states that have plenty of state-transitions
between them and mapping these states to the same array leads to
a more space-efficient packing. Connected components larger than
partition_size, need to be partitioned across k-different partitions (in
the same way or across multiple ways of the cache slice). We utilize
the open-source graph partitioning framework METIS [23] to solve
this k-way partitioning problem. METIS partitions the connected
component into different partitions such that the number of outgoing
state transitions between any two partitions is minimized. It works
by first coarsening the input connected component, performing bi-
sections on the coarsened connected component and later refining
the partitions produced to minimize the edge cuts. We ensure that
METIS produces load-balanced partitions with nearly equal number
of states per partition. For all of our benchmarks (in Table 1) METIS
consistently produces connected component partitions that have less
than 16 state-transitions between them. The maximum number of
outgoing state-transitions from an array determines the radix of the
global-switch to be supported.

3.3 Case Study: Entity Resolution

Figure 6 presents the application of our mapping algorithm to the
space-optimized version of the Entity Resolution benchmark. En-
tity Resolution is widely used for approximate string matching in
databases. The benchmark has 5672 states with 5 connected compo-
nents (CCs). The largest connected component CCy4 has size 4568
and the smallest one CCy has 75 states. Each of the arrays (Array_H
and Array_L) in a 16kB subarray of the LLC slice shown supports
256 states. Our mapping algorithm proceeds as follows. For each
unallocated array, starting from the smallest connected component,
greedily pack as many connected components in the array as the ar-
ray can accommodate. If the connected component size exceeds the
size of an array, then we invoke the k-way partitioning algorithm in
METIS for different values of k based on the connected component
size.

From the final mapping obtained, it can be seen that a fairly dense
packing of CCs is achieved. It can be seen that both CCy and CC;
are allocated the same array. CC; takes up a separate array while
CC4 spans across 3 ways. Local switches at each array and global
switches for both 1 and 4 ways support intra-array and inter-array
state transitions respectively. Furthermore, the densely connected
arrays for CC4 (having many outgoing transitions) are also allocated
to arrays in the same way.
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Figure 6: Figure showing mapping of connected components
in EntityResolution to cache arrays. The connected components
are labeled along their size in brackets

4 EVALUATION METHODOLOGY

In this section we first describe our workloads, followed by a discus-
sion on the experimental setup and finally report the different system
parameters.

NFA workloads: We evaluated the proposed approach and map-
ping schemes on a wide range of benchmark FSMs from the AN-
MLZoo [39] and the Regex [5] benchmark suites. These real world
benchmarks span multiple domains including network packet moni-
toring [5], gene sequence matching [34] and natural language pro-
cessing [49]. The NFAs used in this work form the core of many
end-to-end applications. For example, the oligo_scan routine used
for pattern matching in Weeder 2.0, an open-source tool for motif
discovery in DNA sequences, uses an automaton similar to Pro-
tomata that contributes 30-62% of the total runtime. In the Apriori
algorithm for frequent itemset mining, NFA processing accounts
for 33-95% of the execution time, based on the frequency threshold.
FSM-like computations form the core of many activities inside a
web browser, taking about 40% of the loading time for many web
pages [22, 48]. Table 1 summarizes some of the important charac-
teristics of these FSMs and the parameters used in our simulations.
We used the 10MB input traces for our evaluation. Similar trends in
results are observed for larger inputs.

Experimental Setup: We utilize the open-source virtual automata
simulator VASim [39] to simulate the proposed architecture. VASim
allows for fast NFA emulation by traversing paths only for active
states. The simulator takes as input the NFA partitions produced by
METIS and simulates each input cycle by cycle. After processing
the input stream, we use the per-cycle statistics on number of active
states in each array to derive energy statistics.

Table 2 provides the various delay and energy parameters assumed
in our design. To estimate the area, power and delay of the memory
array we use a standard foundry memory compiler for the 28nm
technology node. The nominal voltage for this technology is 0.9
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Performance optimized Space optimized

# Benchmark States Connected Largest CC | Avg.Active States Connected Largest CC | Avg.Active

Components Size States Components Size States
1 Dotstar03 12144 299 92 3.78 11124 56 1639 0.84
2 Dotstar06 12640 298 104 37.55 11598 54 1595 3.40
3 Dotstar09 12431 297 104 38.07 11229 59 1509 4.39
4 Ranges05 12439 299 94 6.00 11596 63 1197 1.53
5 Ranges1 12464 297 96 6,43 11418 57 1820 1.46
6 ExactMath 12439 297 87 5.99 11270 53 998 1.42
7 Bro217 2312 187 84 3.40 1893 59 245 1.89
8 TCP 19704 715 391 12.94 13819 47 3898 2.21
9 Snort 69029 2585 222 431.43 34480 73 10513 29.59
10 | Brill 42568 1962 67 1662.76 26364 1 26364 14.29
11 ClamAV 49538 515 542 82.84 42543 41 11965 4.30
12 | Dotstar 96438 2837 95 45.05 38951 90 2977 3.25
13 | EntityResolution 95136 1000 96 1192.84 5672 5 4568 7.88
14 | Levenshtein 2784 24 116 114.21 2784 1 2605 114.21
15 | Hamming 11346 93 122 285.1 11254 69 11254 240.09
16 | Fermi 40783 2399 17 4715.96 39032 648 39038 4715.96
17 | SPM 100500 5025 20 6964.47 18126 1 18126 1432.55
18 | RandomForest 33220 1661 20 398.24 33220 1 33220 398.24
19 | PowerEN 14109 1000 48 61.02 12194 62 357 30.02
20 | Protomata 42011 2340 123 1578.51 38243 513 3745 594.68

Table 1: Benchmark Characteristics
L_switch [L] G_switch(1 way) [G1] G_switch(4 ways) [G2]
Design Size | Delay | Energy | Area Size | Delay | Energy | Area

Size | Delay | Energy | Area

CA_P | 280x256 | 163.5ps | 0.191pJ/bit | 0.033mm’

128x128 | 128ps | 0.16pIbit | 0.011mm>

Number of switches

Number of switches

Number of switches

o4

8 -

CA_S | 280x256 | 163.5ps | 0.191pJ/bit | 0.033mm’

256x256 | 163ps | 0.19pI/bit | 0.032mm>

512x512 [ 327ps | 0.381pl/bit | 0.1293mm’

Number of switches

Number of switches

Number of switches

128

8 1

Table 2: Switch Parameters

V. Our 8T crossbar switches are similar to an 8T SRAM array,
except without the associated decoding and control logic overheads
present in a regular 8T SRAM array. The energy for access to 6T
256 x 256 cache sub-arrays was estimated to be 22pJ. The global
wire delays were determined using wire models from the design
kit using SPICE modeling. Our analysis takes into account cross-
coupling capacitance of neighboring wires and metal layers. The
global wires have pitch 1um and are routed on 4X metal layers with
double track assignment and repeaters spaced 1mm apart. The wire
delay was found to be 66ps/mm and wire energy was found to be
0.07pJ /mm/bit.

5 RESULTS

In this section we first present the speedups obtained by the pro-
posed Cache Automaton (CA) architecture, followed by analysis of
cache space utilization, energy consumption and reachability of the
proposed automaton architecture. As discussed in Section 3.1, we
evaluate two designs for Cache Automaton. The first design is opti-
mized for performance, and provides lower connectivity. We refer
to the performance optimized design as CA_P and space optimized
design as CA_S throughout the results section.

5.1 Overall Performance

Overall performance of the Cache Automaton is dictated by the clock-
period of pipeline. Table 3 shows the delay of various pipeline stages
across both performance optimized and space optimized designs.
For the performance optimized design (CA_P), the state-match
stage accesses 256 STEs. In our proposed architecture modelled after
Xeon’s LLC slice, each 16KB data sub-array is 8-way multiplexed.
Internally the sub-array is organized into two 8KB chunks which
can operate independently. Each chunk has two halves: Array_H

and Array_L which share I/O and 32 sense-amps. Each half consists
of 256 x 128 6T SRAM arrays. A column multiplexer in each half
feeds 32 sense-amps, allowing only 32 bits to be read in a cycle per
chunk. Thus, together across the two chunks, it is possible to match
64 STEs in a cycle. The SRAM arrays can operate from 1.2 GHz
to 4.6 GHz frequency range [10, 19]. We limit the highest possible
operating frequency for each SRAM array to 4 GHz or 256 ps cycle
time. Thus four cycles or 1024ps is necessary to match 256 STEs
without sense-amplifier cycling. With our proposed sense-amplifier
cycling optimization, the state match time for 256 STEs is 438ps as
shown in Table 3.

[ Design [ State-Match [ G-Switch [ L-Switch [ Freq. Max [ Freq. Operated ]
[CAP] 438ps [ 227ps | 263ps | 23GHz | 2GHz |
| CAS | 687ps [ 468ps | 304ps | 14GHz | 1.2 GHz |

Table 3: Pipeline stage delays and operating frequency.

The G-Switch stage requires 227ps composed of 99ps due to
wire-delay and 128ps due to global switch. The distance between
SRAM array and global switch is estimated to be 1.5mm assuming
a slice dimension of 3.19mm x 3mm. The L-Switch stage requires
263ps. The pipeline clock period or frequency is determined by the
slowest stage. Thus the maximum possible frequency for (CA_P) is
2.2 GHz. We choose to operate at 2 GHz. For the space optimized
design (CA_S), an operating frequency of 1.4 GHz can be achieved
and we choose to operate at 1.2 GHz. The space optimized design
is slower due to longer wire delays between the arrays and global
switch, and larger global switches.

In the Cache Automaton, since all state-matches and state-transitions
can happen in parallel, the system has a deterministic throughput of
one input symbol per cycle and is independent of input benchmarks.
This is true for Micron’s Automata Processor (AP) as well which
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Figure 7: Overall performance of Cache Automaton compared
to Micron’s Automata Processor in Gb/s.

operates at 133 MHz frequency. Figure 7 shows the overall achieved

throughput of Cache Automaton in Gb/s across all benchmarks.

Overall, the performance optimized design provides a speedup of
15x over Micron’s AP. Prior studies for same set of benchmarks
have shown 256 speedup over conventional x86 CPU [39], thus
the Cache Automaton provides a 3840 x speedup over processing
in CPU. Our space optimized design provides a speedup of 9x over
AP.

5.2 Cache Utilization

Figure 8 shows the cache utilization in MB for different applications
considering both the CA_P and CA_S designs.
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Figure 8: Cache utilization of benchmarks for the two evaluated
designs of Cache Automaton.

The CA_S design shows large space savings for Entity Resolu-
tion (3.64 MB), SPM (2.7 MB), Dotstar (1.76 MB) and Snort (1.19
MB). The savings achieved compared to CA_P are proportional
to the redundant state activity in each of the benchmarks. SPM in
particular benefits from merging several start states. Although Entity
Resolution in the CA_S design has only 5672 states, it has high
routing complexity with a high average out-degree (> 6 per FSM
state). Benchmarks from Regex have small connected components
and do not show much benefit from prefix merging. RandomForest
and Fermi perform a large number of distinct pattern matches and
subsequently show lesser state-redundancy with a high number of
active states per cycle. These benchmarks show little to no bene-
fit when compared to the CA_P design. It must be kept in mind
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that these space savings can be directly translated to speedup by
matching against multiple NFA instances. Also, the space-optimized
automata tend to have a lower average active set, on account of
lesser redundant state activity, leading to dynamic energy savings.
Averaged across all benchmarks, we see that the CA_P and CA_S
designs utilize 1.2 MB and 0.725 MB cache space respectively.

5.3 Energy Consumption

This section discusses the energy consumption and power consump-
tion of Cache Automaton. The energy consumption of Cache Au-
tomaton depends on two factors. First, number of active partitions.
Note that even if one STE is active in a partition, it results in an
array access and local switch access. Second, number of dynamic
transitions between partitions, because these result in global switch
accesses and expend wire energy. Both these factors are controlled
by the mapping algorithms used by the compiler. By grouping STEs
based on connected components the number of active partitions
are drastically reduced. By adopting graph partitioning techniques,
our compiler successfully reduces number of transitions between
partitions.

Since there is no publicly available data regarding AP’s energy
consumption, we use an Ideal AP energy model which assumes zero
energy for interconnects, routing matrix, and an optimistic 1 pJ/bit
Jor DRAM array access energy. Conventional DRAMs have been
reported to consume anywhere between 2.5pJ/bit to 10 pJ/bit for
array access energy (activation energy) [9, 31].

Figure 9 shows the energy expended per input symbol for per-
formance optimized (CA_P) and space optimized (CA_S) Cache
Automaton designs, as well as for Ideal AP with same mappings
as used by Cache Automaton. Several observations can be made.
Benchmarks with higher active state set (see Table 1) such as Entity
Resolution, SPM, Fermi consume higher energy. These benchmarks
also utilize global switches more frequently than other benchmarks.
The CA_S mapping has consistently lower energy consumption than
CA_P both for Cache Automaton and AP. This is because CA_S
mapping merges many redundant states and thus wastes lesser en-
ergy per input symbol on redundant transitions. On an average Cache
Automaton (CA_P, CA_S) consumes 3 x lesser energy than Ideal
AP with same mapping (Ideal AP w/CA_S) . The lowest energy
consumption of 2.3nJ/symbol is obtained by CA_S design, which is
3.1x better than best configuration for AP assuming an ideal energy
model. Thus for systems which are energy constrained, we recom-
mend a space optimized mapping. Similar to the Micron AP [27],
we also employ partition disabling circuits triggered when there is
no active state within a partition, detected using a simple wired OR
of all the bits in the active state vector.

Figure 9 shows the average power consumption across bench-
marks. The power consumption follows the general trends of energy
consumption. As expected the power consumption of Cache Au-
tomaton is higher, but much lower than TDP of the processor at
160W (Xeon E5-2600 v3). Thus we do not expect Cache Automaton
to create any power overdrive or thermal problems. Our prototype
Cache Automaton which supports NFA processing only in 8 ways
of a cache slice can consume a maximum power of 75W and has ca-
pacity to store 128K STEs. Note, CA_S and CA_P have a maximum
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Figure 9: (a) Overall energy consumption of Cache Automaton compared to Ideal Automata Processor. (b) Overall power consumption

of the two evaluated designs of Cache Automaton.
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Figure 10: Figure shows the performance (frequency for symbol
processing), reachability, and area overheads of various Cache
Automaton (CA) designs and DRAM-based Automaton Proces-
sor (AP).

power consumption of 14.9W and 71.3W. Thus, a system designer
can trade-off between performance and power.

5.4 Reachability and Area Overheads

Memory centric models such as Micron’s AP and proposed Cache
Automaton architecture do all state transitions for an input symbol in
parallel. Thus an important parameter which determines the perfor-
mance of these architectures and is representative of their scalability
to accommodate complex NFAs is the average reachability of a
state. Micron’s AP provides an average reachability of 230.5 states
from any state (Fan-out), while operating at 133 MHz. Figure 10
plots the frequency of Cache Automata (left Y-axis) with respect to
reachability. A highly performance optimized design can operate at
4 GHz, but provide a small reachability of 64 states. Larger degree
of reachability requires more and bigger global switches, hence has
a performance penalty. Proposed CA_P can operate at 2 GHz while
still providing a reachability of 361 states, which is 1.5x better

than AP. Proposed CA_S can operate at 1.2 GHz while providing
reachability of 936 states. Note that Cache Automaton supports a
maximum of 256 incoming transitions per state (Fan-in), in contrast
to only 16 supported by AP.

Figure 10 also plots the area overhead of Cache Automaton (right
Y-axis) with respect to reachability. Area overhead is reported for
supporting state space equivalent to 32K STEs. Proposed CA_P
and CA_S designs incur a modest area overhead of 4.3mm? and
4.6mm? (less than 2% of die area for Xeon E5 server processor
which has area of 354mm?), but offer high reachability and high
performance. In comparison, AP incurs a high area overhead of
38mm? for supporting transition matrix in DRAM dies.

5.5 Discussion

This section discusses the impact of various optimizations such as
sense-amplifier cycling and parameters such as wire delays. Table 4
column w/o SA cycling shows the frequency of Cache Automaton
without sense-amplifier cycling. It can be noted that the pipeline
can still operate up to 1 GHz frequency without this optimization.
Another alternative to boost frequency without sense-amplifier cy-
cling is to under utilize the cache space and read fewer column
multiplexed bits in each cycle.

The proposed designs use global metal layers for connecting local
and global switches. This is motivated by two factors. First, global
metal layers are much faster. Second, global metal layers are used
only for on-chip networks and are usually underutilized. It is also
possible to reuse the wires of hierarchical bus (H-Bus) or H-Tree
interconnects used inside a LLC slice. However, these interconnects
are much slower (300 ps/mm [12]). Table 4 column with H-Bus
shows the frequency of Cache Automaton when reusing wires of
H-Bus interconnect within a LLC slice. The operational frequency
is still 7.5x-11x better than AP.

| Design | Achieved | w/o SA cycling | with H-Bus |
CA_P 2 GHz 1 GHz 1.5 GHz
CA_S 1.2 GHz 500 MHz 1 GHz

Table 4: Impact of optimizations and parameters.
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5.6 Comparison with ASIC implementations

The Unified Automata Processor (UAP) [15] and HARE [17] are two
recently proposed accelerators that have demonstrated impressive
line rates for automata processing and regular expression match-
ing on a number of network intrusion detection and log processing
benchmarks. UAP is noteworthy because of its generality and ability
to efficiently support many finite automata models using state tran-
sition packing and multi-stream processing at low area and power
costs. Similarly, HARE has been able to saturate DRAM bandwidth
(256 Gbps) while scanning up to 16 regular expressions.

The major advantage of Cache Automaton is its ability to exe-
cute several thousand state transitions in parallel (e.g., 128K state
transitions in a single cycle using 8 ways of LLC slice). This mas-
sive parallelism enables matching against several thousand patterns
(e.g., 5700 in Snort ruleset), while achieving ideal line rate, i.e., 1
symbol/cycle. In contrast, HARE incurs high area and power costs
(80mm?,125W) when scanning for more than 16 patterns and UAP’s
line rate drops for large NFA patterns with many concurrent activa-
tions, 0.27-0.75 symbols/cycle [15].

[ Metric | HARE (W=32) | UAP [ CA_P [ CA_S ]
Throughput (Gbps) 39 5.3 15.6 9.4
Runtime (ms) 20.48 1583 | 5.24 8.74
Power (W) 125 0.507 | 7.72 | 1.08
Energy (nJ/byte) 256 0.802 | 4.04 | 0.94
Area (mm?) 80 567 | 43 4.6

Table 5: Comparison with related ASIC designs.

For fair quantitative comparison, we use Dotstar(0.9, containing
1000 regular expressions and ~38K states as used in UAP/HARE
for a 10MB input stream. It must be noted that CA can support
>3000 such regular expressions using less than 8 ways of LLC
slice and shows greater benefits for larger number of patterns and if
more ways are used to store NFA. From Table 5, it can be seen that
CA_P and CA_S provide 3.9 and 2.34 x speedup over HARE and
3% and 1.8x speedup over UAP respectively. While UAP is more
energy efficient than CA_P due to efficient compression of state-
transitions, CA_S can provide comparable energy efficiency while
repurposing the LLC. Note that the 16 kB local memory in UAP can
accommodate only few Dotstar0.9 patterns without memory sharing
across lanes and we expect several additional DRAM accesses for
reading new patterns. This energy is not accounted in Table 5. UAP
incurs lesser area overhead than CA_P and CA_S, but its 8-entry
combining queue may be insufficient to support benchmarks with
several thousand active states (e.g., Fermi—4715).

6 RELATED WORK

To the best of our knowledge, this is the first work that demonstrates
the feasibility of in-situ FSM processing in the last-level cache.
Below we discuss some of the closely related works.
Compute-Centric Architectures: Compute-centric architectures
typically store the complete state-transition matrix as a lookup table
in cache/memory. These architectures have two main limitations: (1)
need for high memory bandwidth or memory capacity especially for
large NFA with many active states and (2) high instruction process-
ing overheads per state transition (as many as 24 x86 instructions
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for a single DFA state transition [6]). As a result, several CPU/GPU-
based automata processing engines have either limited themselves to
DFAs [3, 6, 45, 46] or have explored SIMD operations to deal with
the high cache miss rates and branch misprediction rates [26, 30].
Several speculative and enumerative parallelization approaches have
also been proposed to speedup FSM processing [21, 30, 33, 47, 48].
However, all of the above approaches have been evaluated only for
small DFA. Scaling these approaches to NFAs is non-trivial because
of the huge computational complexity involved [43].

ASIC implementations: While several regular expression match-
ing and NFA processing ASIC designs have been proposed in litera-
ture [37, 38], we extensively discuss and evaluate two most relevant
and recent designs, HARE [17] and the Unified Automata Processor
(UAP) [15] in Section 5.6. In general, while ASIC implementations
offer high line rates for small DFA/NFA, they are limited by the
number of parallel matches and state transitions.

Memory-Centric Architectures: Memory-centric architectures
like the Micron Automata Processor (AP) [14, 40] leverage the inher-
ent bit-level parallelism of DRAM to support multiple parallel state
matches at bandwidths that far exceed available pin bandwidth with
reduced instruction processing overheads. A programmable routing
matrix enables efficient support for state-transitions without the as-
sociated data movement costs as in a compute-centric architecture.
Since the DRAM AP is not optimized for logic, it is slower and runs
at a low frequency (133 MHz), with the routing matrix accounting
for nearly 30% of the die area. In this work we demonstrate that
several real world NFA can be efficiently mapped onto LLC arrays
and propose two fully-pipelined designs that provide nearly an order
of magnitude throughput improvement compared to AP at low area
overheads. Similar to the Micron AP whose throughput scales with
the number of ranks and devices, the Cache Automaton architecture
can also exploit increased cache capacity in multi-chip/multi-socket
servers for throughput scaling based on the peak power requirements
of different NFAs.

7 CONCLUSION

This paper proposes the Cache Automaton architecture to accelerate
NFA processing in the last-level cache. Efficient NFA processing
requires both highly parallel state-matches as well as an interconnect
architecture that supports low-latency transitions and rich connec-
tivity between states. To optimize for state-matches we propose a
sense-amplifier cycling scheme that exploits spatial locality in state-
matches. To enable efficient state transitions, we adopt a hierarchical
topology of highly compact 8T-based local and global switches. We
also develop a Cache Automaton compiler that fully automates the
process of mapping NFA states to SRAM arrays. The two proposed
designs are fully pipelined, utilize on an average 1M B of cache space
across benchmarks and can provide a speedup of 12x over AP .
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