
Cache Automaton

Arun Subramaniyan Jingcheng Wang Ezhil R. M. Balasubramanian
David Blaauw Dennis Sylvester Reetuparna Das

University of Michigan-Ann Arbor

{arunsub,jiwang,ezhilrmb,blaauw,dmcs,reetudas}@umich.edu

ABSTRACT

Finite State Automata are widely used to accelerate pattern matching

in many emerging application domains like DNA sequencing and

XML parsing. Conventional CPUs and compute-centric accelerators

are bottlenecked by memory bandwidth and irregular memory access

patterns in automata processing.

We present Cache Automaton, which repurposes last-level cache

for automata processing, and a compiler that automates the process

of mapping large real world Non-Deterministic Finite Automata

(NFAs) to the proposed architecture. Cache Automaton extends a

conventional last-level cache architecture with components to accel-

erate two phases in NFA processing: state-match and state-transition.

State-matching is made efficient using a sense-amplifier cycling

technique that exploits spatial locality in symbol matches. State-

transition is made efficient using a new compact switch architecture.

By overlapping these two phases for adjacent symbols we realize an

efficient pipelined design.

We evaluate two designs, one optimized for performance and the

other optimized for space, across a set of 20 diverse benchmarks.

The performance optimized design provides a speedup of 15× over

DRAM-based Micron’s Automata Processor and 3840× speedup

over processing in a conventional x86 CPU. The proposed design

utilizes on an average 1.2MB of cache space across benchmarks,

while consuming 2.3nJ of energy per input symbol. Our space opti-

mized design can reduce the cache utilization to 0.72MB, while still

providing a speedup of 9× over AP.

CCS CONCEPTS

• Hardware → Emerging architectures; • Theory of computa-

tion → Formal languages and automata theory;

KEYWORDS

Emerging technologies (memory and computing), Accelerators

ACM Reference format:

Arun Subramaniyan Jingcheng Wang Ezhil R. M. Balasubramanian David

Blaauw Dennis Sylvester Reetuparna Das. 2017. Cache Automaton. In

Proceedings of MICRO-50, Cambridge, MA, USA, October 14–18, 2017,

14 pages.

https://doi.org/10.1145/3123939.3123986

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MICRO-50, October 14–18, 2017, Cambridge, MA, USA

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Association
for Computing Machinery.
ACM ISBN 978-1-4503-4952-9/17/10. . . $15.00
https://doi.org/10.1145/3123939.3123986

1 INTRODUCTION

Non-deterministic Finite Automata (NFA) is a powerful compu-

tational model which is widely used in a number of application

domains such as data analytics and data mining [7, 41], network

security [16, 25, 29, 44], bioinformatics [13, 34, 42], tokenization

of web pages [30], computational finance [1, 28] and software en-

gineering [2, 11, 32]. These applications require processing tens to

thousands of patterns for a stream of input data. NFAs are especially

useful for efficient regular expression matching, as they can provide

high-speed analysis of unstructured textual data, which is being gen-

erated in large volumes in forms such as system logs, social media

posts, emails, and news articles [17].

NFA computation is inherently hard to speedup using compute

centric processing. Modern multi-core processors and accelera-

tors [37, 38] are limited by the number of transitions they can do in

a given cycle. Both CPUs and GPGPUs perform poorly as automata

processing is dominated by irregular memory access patterns and

memory bandwidth limitations.

In comparison, a memory centric processing model can facili-

tate highly parallel and energy efficient processing of finite state

automata in hardware. For instance, Micron’s DRAM-based Au-

tomata Processor (AP) [14] has been shown to accelerate several

applications like entity resolution in databases [7](by 434×) and

motif search in biological sequences [34] (by 201×). Recent efforts

at Virginia’s Center for Automata Processing have demonstrated that

AP can outperform x86 CPUs by 256×, GPGPUs by 32×, and accel-

erators such as XeonPhi by 62×, across a wide variety of automata

benchmarks [39].

The success of memory centric models such as AP relies on two

factors: massive parallelism and eliminating overheads in moving

data between memory and compute units. Massive parallelism is due

to the fact that all states (mapped to columns in DRAM arrays) can

be independently activated in a given cycle. An AP chip can support

up to 48K transitions in each cycle. Thus it can efficiently execute

massive Non-deterministic Finite Automata (NFA) that encapsulate

hundreds to thousands of patterns.

Given the large benefits of memory centric models, we explore

cache as a substrate for automata processing. Caches have two advan-

tages over DRAMs. First, SRAM-based caches are faster and more

energy efficient compared to DRAM. Second, caches are integrated

on processor dies which are manufactured in cutting edge technology

nodes and performance optimized logic. Thus cache based automata

processing can utilize significantly faster interconnects and logic.

On the flip side, caches typically have lower capacity compared to

DRAM. Interestingly, we observe that DRAM-based AP sacrifices

a huge fraction of die area to accommodate the routing matrix and

other non-memory components required for automaton processing.

An AP die can store 12 Mbits of data, while a conventional DRAM

die of equivalent area can store 200 Mbits of data (16.6× area

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Subramaniyan et al.

overhead) [18]. Thus, while DRAM memory’s packing density is

high, DRAM automata processor’s packing density is comparable

to caches. A rank of AP (8 dies) can accommodate 384K states.

Typical high-performance processors can have 20-40MB of last

level cache [8] and can accommodate 640K-1280K states, if the

entire cache is utilized to save NFAs.

In this paper, we propose the Cache Automaton architecture which

repurposes existing Last Level Cache (LLC) slices to enable efficient

automata processing. While the memory technology benefits of mov-

ing to SRAM are apparent, repurposing the 40-60% passive LLC die

area for massively parallel automata computation comes with several

challenges. A naive approach that processes an input symbol every

LLC access (∼20-30 cycles @ 4GHz), would lead to an operating

frequency comparable to DRAM-based AP (∼200 MHz), negating

the memory technology benefits. Increasing operating frequency

further can be made possible only by two insights.

First, architecting an in-situ computation model that is cognizant

of the internal geometry of LLC slices. We observe that LLC access

latency is dominated by wire-delays inside a cache slice, accessing

upper-level cache control structures, and network-on-chip. Thus,

while a typical LLC access can take ∼30 cycles, an SRAM array

access is only 1 cycle. Fortunately, in-situ architectures such as

cache automaton require only SRAM array accesses and do not

incur the overheads of a traditional cache access. Furthermore, we

leverage the internal geometry of LLC slices to build a hierarchical

state-transition interconnect.

Second, accelerating the two phases of input symbol processing

common in memory-centric automata processing models. These

are state-match, where the set of active states whose label matches

the input symbol are determined through an array read operation

and state-transition, where the matching states activate their cor-

responding next states by propagating signals through wires and

switches. Accelerating state-match is challenging because industrial

LLC subarrays are optimized for packing density and designed in

a manner that many bit-lines share I/O (or sense amplifiers) via a

column multiplexer. In our LLC design modeled exactly after the

Xeon E5 processor [10, 19], 8 states share a sense amplifier. This

implies that reading out all states will require 8 cycles, resulting

in a low throughput system. We observe that unlike conventional

cache accesses, automata processing requires reading out all the bits

which are sharing a sense amplifier and propose a sense amplifier

cycling technique to address this bottleneck. In the optimized read

sequence, all the bit-lines are pre-charged in parallel, which is then

followed by sequential sensing of each bit-line. This optimization

can improve our system throughput by 2×-3× depending on state

packing density.

Accelerating state-transition at low-area cost requires the design

of a scalable interconnect that efficiently encodes and supports multi-

ple state-transitions on the same cycle, often to the same destination

state. Automata switches also need to store a large array of connec-

tivity bits that are representative of transition edges between states.

We observe that an 8T SRAM memory array can be repurposed

to become a compact state-transition crossbar for automata. Alter-

natively, traditional crossbar designs that require arbitration every

cycle for determining input-output connections have prohibitive area

costs. Furthermore they cannot support large fan-in of states, i.e.

multiple inputs connecting to one output. Supporting this feature

would need multiple arbitrations/traversals through the crossbars or

multiple crossbars, making the state-transition either slow or have

higher area overheads.

Even with such compact switches, supporting all-to-all connectiv-

ity between states requires prohibitively large and slow switches. We

observe that large real-world NFA are typically composed of several

connected components, each of which can be grouped into densely

connected partitions with only few (8-16) interconnections between

partitions. This motivated us to explore a hierarchical switch topol-

ogy with local switches providing rich intra-partition connectivity

and global switches providing sparse inter-partition connectivity.

To this end, we develop a Cache Automaton compiler which scales

to real world NFAs with several thousand states and maps them

efficiently to hundreds of SRAM arrays. Our compiler uses graph

partitioning techniques [23] to satisfy the connectivity constraints

while maximizing space utilization.

To further improve throughput and parallelism, we develop a fully

pipelined design. Pipelining is possible because Cache Automaton

processes a stream of input symbols (MBs to GBs) sequentially,

and SRAM access for the current input symbol can be overlapped

with the switch propagation delay for processing the previous input

symbol.

In summary this paper offers the following contributions:

• This is the first work to explore automata processing in cache.

The proposed Cache Automaton architecture maps NFA states

to SRAM arrays of last level cache slices. In particular we

observe that memory centric automata processing models

can leverage not only the faster SRAM memory technology

of caches but also faster interconnect/logic in a processor

die. Further, the capacity of caches are quite comparable

to DRAM-based automata processors, which sacrifice the

density to accommodate custom interconnect-based transition

matrix.

• A critical component of the proposed architecture is a pro-

grammable interconnect which enables transitions between

NFA states. By repurposing 8T SRAM arrays, we develop

a new compact switch architecture customized for automata

processing.

• To improve performance, we propose a fully pipelined ar-

chitecture which is based on our observation that SRAM

access for the current input symbol can be overlapped with

interconnect delay for processing the previous input symbol.

• The bottleneck of the Cache Automaton pipeline is SRAM

array access delay which is slow due to sharing of I/O (sense-

amplifiers) between bit-lines. We observe that unlike conven-

tional cache accesses, Cache Automaton needs to read all

column multiplexed bits and propose sense-amplifier cycling

techniques to speedup SRAM array access.

• We develop a Cache Automaton compiler which leverages

many algorithmic insights and fully automate the process of

mapping real world NFAs with tens of thousands of states

to Cache Automaton which consists of hundreds of SRAM

arrays.

• We evaluate two designs, one optimized for performance

and the other optimized for space, across a set of 20 diverse

benchmarks. The performance optimized design provides a

speedup of 15× over Micron’s AP and 3840× speedup over

Cache Automaton MICRO-50, October 14–18, 2017, Cambridge, MA, USA

processing in a conventional x86 CPU. The proposed design

utilizes on an average 1.2MB of cache space across bench-

marks, while consuming 2.3nJ of energy per input symbol.

Our space optimized design can reduce the cache utilization

to 0.72MB on an average across benchmarks, while still pro-

viding a speedup of 9× over AP.

2 CACHE AUTOMATON ARCHITECTURE

In this section we provide an overview of NFAs, explain the concept

of Cache Automaton and provide a simple working example.

2.1 NFA Primer

A Non-deterministic Finite Automaton (NFA) is formally described

by a quintuple ⟨Q,Σ,δ ,q0,F⟩, where Q is a set of states, Σ is the

input symbol alphabet, q0 is the set of start states and F is the set

of reporting or accepting states. The transition function δ (Q,α)

defines the set of states reached by Q on input symbol α . The non-

determinism is due to the fact that an NFA can have multiple states

active at the same time and have multiple transitions on the same

input symbol.

The classic representation is transformed to ANML NFA repre-

sentation [14] where each state has valid incoming transitions for

only one input symbol. Thus each state in an ANML NFA can be

labeled by one unique input symbol. There exists various algorithms

(e.g. [35]) to transform a classical NFA to an optimized ANML NFA

format. Figure 1 (a) shows the classical representation of a sample

NFA which accepts patterns {bat, bar, bart, ar, at, art,

car, cat, cart}. Figure 1 (b) shows the ANML NFA represen-

tation for the same automata. State S1 in classical representation is

now represented by three states S1_a (with label a), S1_b (with label

b), and S1_c (with label c).

2.2 Cache Automaton Concept

ANML NFA computation entails processing a stream of input sym-

bols one at a time. Initially, all the start states are active states. Each

step has two phases. In state match phase, we identify which of the

active states have the same label as the current input symbol. In

the next state transition phase, we look up the transition table to

determine the destination states for these matched states. These des-

tination states would become the active states for the next step. Now,

we discuss how Cache Automaton implements these two phases

efficiently.

State Match: We adapt Micron’s AP processor [14] design for

implementing the state match phase. Each NFA state is mapped as a

State Transition Element (STE) to a column of SRAM arrays in the

last-level cache. The value of an STE column is set to the one-hot

encoding of the 8-bit input symbol it is mapped to. This means that

each STE (or column) is 256 bits and each bit position signifies an

input symbol in the ASCII alphabet. Figure 2 (a) shows an SRAM

array in Cache Automaton which holds 256 STEs. Every cycle, the

current input symbol is broadcasted to all SRAM arrays as a row

address and the corresponding row is read out. If an STE has a ’1’

bit set in the row, it means that the label of the state it has stored

matches the input symbol. Thus, by broadcasting the input symbol

to all SRAM arrays, it is possible to determine in parallel all the

states which match the current input symbol.

The row corresponding to the input symbol is read out and stored

in a match vector. An active state vector (one bit per STE; 256-bit

vector in our example) stores which STEs are active in a given cycle.

A logical AND of match and active state vectors determines the

subset of active states which match the current input symbol. The

destination states of these matched states would become the next set

of active states. Section 2.6 discusses solutions to implement this

state match phase efficiently in cache sub-arrays.

State Transition: This phase determines the destination states of the

matched states found in the previous phase. These states would then

become the next set of active states. We observe that a matrix-based

crossbar switch (essentially a N×N matrix of input and output ports)

is suitable to encode a transition function. In a crossbar, an input port

is connected to an output port via a cross-point. Each STE connects

to one input port of the switch. A cross-point is enabled if the input

STE connects to a specific output STE. The result of state-matches

serve as inputs to the switch, and the output of the switch is the next

set of active states.

The switches in the cache automaton architecture have modest

wiring requirements (256-512 input and output wires; see Table 2),

as data-bus width is only 1-bit. However, cache automaton switches

have two major differences from conventional switches. First, there

is no need for arbitration. The connections between the input and

output ports can be configured once during initialization for an

NFA and then used for processing all the input symbols. Since

there is no arbitration, the enable bits must be stored in the cross-

points. Automaton switches have a large number of cross-points,

and therefore we need a compact design to store the enable bit at

each cross-point. Second, unlike a conventional crossbar, an output

can be connected to multiple inputs at the same time. The output is

a logical OR of all active inputs. Section 2.7 discusses our proposed

switch architecture for Cache Automaton which supports the above

features.

Ideally, the entire transition function could be encoded in one

switch to provide maximum connectivity. However, such a design

will be incredibly slow. To scale to thousands of states and many

SRAM arrays, we adopt a hierarchical switch architecture as dis-

cussed in Section 2.4.

2.3 Working Example

We describe a simplified example which brings together all the above

concepts. Figure 1 shows an example NFA which accepts patterns

{bat, bar, bart, ar, at, art, car, cat, cart} and how it

is mapped to SRAM arrays and switches. The figure starts with a

classical representation of an NFA in terms of states and transitions

(Figure 1 (a)). Figure 1 (b) shows ANML NFA representation for the

same automata. Figure 1 (c) shows the transition table for ANML

NFA with STEs. This example NFA requires only 8 STEs. Real

world NFAs have tens of thousands of states which need to be

mapped into hundreds of SRAM arrays.

For this example, let us assume we have two small SRAM arrays

which can each accommodate 4 STEs as shown in Figure 1 (d). The

NFA requires 8 STEs, so we split the states into 4 STEs in Array_1

and Array_2. Each array has a 6×4 local switch, and together they

share a 2×2 global switch. Each STE can connect to all STEs in its

array. In this example, only two STEs (ST E1 and ST E2) in an array

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Subramaniyan et al.

S1

S2

S3

S4 S5

b a

ac

rstart

report

(a)

S6
t

report

a

t
Conventional NFA State Diagram

S1_b

S1_c

S2_a

S3_a

S4_r

start

(b)

S5_tS4_t

S1_a
start

report

report report

start

ANML NFA State Diagram with STEs

(c)

Transition Table between STEs for ANML NFA

T a b c r t

S1_b

S1_c

S1_a

S2_a

S3_a

S4_r

S4_t

S5_t

S2_a

S3_a

S4_r S5_t

S4_r S5_t

S4_r S5_t

S5_t

(d)

S
1

_
a

S
2

_
a

S
4

_
r

S
5

_
t

S
1

_
b

S
1

_
c

S
3

_
a

S
4

_
t

S
T

E
 (

1
)

S
T

E
 (

2
)

S
T

E
 (

3
)

S
T

E
 (

4
)

S
T

E
 (

1
)

S
T

E
 (

2
)

S
T

E
 (

3
)

S
T

E
 (

4
)

8-bit

input
8-bit

input

DecoderDecoder

0

255

0

255

G
1

G
2

to STE1
to STE2
to STE3
to STE4

G1
G2
G3
G4

G
4

G
3

Local Switch

Global Switch

Local Switch

Array_1 Array_2

to STE1
to STE2
to STE3
to STE4

Figure 1: An example NFA and its mapping to two small SRAM arrays and switches. The NFA accepts patterns {bat, bar, bart,

ar, at, art, car, cat, cart}.

16b

8b

256 b

8b

LS Local Switch

CBOX

W
a

y
 1

W
a

y
 2

0

W
a

y
 2

W
a

y
 1

9

L-switch G-switch-1

16kB subarray32kB

data

bank

Tag,

State, LRUArray_H PA[16] = 1
Array_L PA[16] = 0

I/
O

Chunk 62

Chunk 1
Chunk 0

Chunk 63

I/
O

SRAM SRAM

SRAMSRAM

4
:1

4
:1

4
:1

4
:1

2
:1

2
:1

2
:1

2
:1

Output bit

Decoder

16b
From G-Switch-1

256 STE Partition

(2 x 4KB SRAM Arrays)

(a)

256 b

Row

decoder

8-bit

Input

0

255

280x256
L-Switch

256 b

Match Vector

A
c
ti

v
e
 S

ta
te

 V
e
c
to

r

S
T

E
(0

)
S

T
E

(1
)

S
T

E
(2

)

S
T

E
(2

5
5

)

2
5

6
 b

To G-Switch-4

R
e

p
o

rt

V
e

ct
o

r

(b)

(c)

Input buffer

Output buffer

G-switch-4

To G-Switch-1

From G-Switch-4

Figure 2: The figure shows (a) SRAM arrays re-purposed to store 256 STEs, (b) one 2.5MB Last-Level Cache (LLC) slice architecture.,

and (c) Internal organization of one 8KB sub-array.

are allowed to connect to all STEs in the other array via the global

switch.

The transition table in Figure 1 (c) is mapped to local and global

switches. For instance, S1_a and S4_r, are mapped to ST E1 and ST E3,

of Array_1. Since S1_a can transition to S4_r, the local switch cross-

point between ST E1 and ST E3 is set to connected (represented by

black dot). The figure also shows how a connection via global switch

is established for states S2_a mapped to ST E2 of Array_1, and S4_t

mapped to ST E4 of Array_2. This is accomplished by (1) feeding

ST E2 as an input to global switch, (2) connecting second input of

global switch to G4 output which feeds as an input to Array_2’s

local switch, (3) G4 input is connected to ST E4 output (or S4_t) of

Array_2’s local switch.

2.4 Cache Slice Design

The proposed cache automaton is implemented in the Last-Level

Cache (LLC) in order to accommodate large NFA with thousands of

states. Figure 2 (b) shows the overall organization of a slice of LLC

with the Cache Automaton architecture. The depicted LLC slice is

modelled exactly after Xeon E5 processors [10, 19]. Each LLC slice

is 2.5MB. Intel processors support 8-16 such slices [8]. Each slice

has a central cache control box (CBOX). Remainder of the slice is

organized into 20 columns. A column consists of eight 16 KB data

sub-arrays, and a tag array. Each column represents a way of set-

associative cache. Internally a 16 KB data sub-array consists of four

SRAM arrays with 256×128 6T bit-cells as shown in Figure 2 (c).

Each array has 2 redundant columns and 4 redundant rows to map

Cache Automaton MICRO-50, October 14–18, 2017, Cambridge, MA, USA

peak power is high, the energy consumed is orders of magnitude

lower than that expended by conventional CPUs due to savings in

data movement and instruction processing overheads.

2.10 Configuration and ISA Interface

We adopt a configuration model similar to Micron’s Automata Pro-

cessor (AP). Before processing the NFA, the switches have to be

configured and the cache arrays have to be initialized with STEs.

The switches can be configured by utilizing their write-mode, where

they simply function as SRAM arrays. We assume switch locations

are I/O mapped and addressable by CPU load instructions.

The initialization of cache arrays can be done by CPU load in-

structions which fetch data from memory to caches. Our compiler

creates binary pages which consists of STEs stored in the order in

which they need to be mapped to cache arrays. The compiler care-

fully orders the STEs based on physical address decoding logic of

underlying cache architecture. These binary pages with STEs are

loaded in memory, just like code pages. Most LLC cache sets are

addressable by last 16 bits of memory address. These bits can be

kept same for both virtual pages and physical pages by mapping the

binary data (containing STEs) to huge pages [24]. LLC hashing is

disabled during configuration as discussed in Section 2.9.

The average initialization time is dictated by the number of SRAM

arrays occupied by an NFA. For our largest benchmark, we found

this to be about 0.2ms on a Xeon server workstation. In contrast AP’s

configuration time can be up to tens of milliseconds [36]. Once con-

figured, in typical use cases such as log processing, network traffic

monitoring and DNA alignment, NFAs typically process GBs/TBs

of data, thus processing time easily offsets configuration time. But

configuration may be costly when frequently switching between

structurally different automata. For these, optimizations like over-

lapping the configuration of one LLC slice with processing in others

and prefetching may be explored. We leave this exploration to future

work.

An ISA interface is required to specify (1) when to start process-

ing in Cache Automaton mode and (2) start address from which input

data needs to fetched to fill up input FIFO buffer. (3) the number of

input symbols to be processed. One new instruction can encapsulate

all the above information. Compiler can insert this special instruction

in code whenever it needs to process NFA data. An interrupt service

routine handles output buffer full reporting events.

3 CACHE AUTOMATON COMPILER

In this section we explain our compiler that takes as input an NFA

description consisting of several thousands of states and efficiently

maps them onto cache banks and sub-arrays. Care is taken to ensure

maximum cache utilization while respecting the connectivity con-

straints of the underlying interconnect architecture. The algorithms

proposed are general and the insights provided are also applicable for

mapping NFAs to any spatial reconfigurable substrate with memory

like FPGAs or memristor crossbar arrays.

The compiler takes as input an NFA described in a compact

XML-like format (ANML) and generates a bit-stream containing

information about the NFA state to cache array mapping and the con-

figuration enable bits to be stored in the various crossbar switches of

the automaton interconnect. We propose two mapping policies lead-

ing to two Cache Automaton designs, one optimized for performance

CA_P and the other optimized for space utilization CA_S. Before

proceeding to explain the mapping algorithm used by the compiler

(Section 3.2), we motivate the insights behind each of these designs

in Section 3.1.

3.1 Connectivity Constraints

Real-world NFAs are composed of several connected components

(CCs) with only a few hundred states each. Each connected compo-

nent describes a pattern or group of common patterns to be matched.

Since these connected components have no state transitions between

them, they can be treated as atomic units by the mapping algorithm.

Each connected component can be viewed as operating indepen-

dently matching against the input symbol in parallel.

Performance Optimized Mapping: In their baseline NFAs, most

benchmarks have connected components with less than 256 states

(refer Table 1), making it possible to fit at least one connected com-

ponent in each partition (256 STEs stored in two 4KB SRAM arrays,

Figure 2 (a)). This motivates our performance-optimized mapping

scheme that greedily packs connected components onto cache arrays.

We were able to operate all of the baseline NFA benchmarks while

limiting the connectivity across cache arrays to within a way. Only

cache arrays which are mapped to physical address with A[16] =

0 (Array_L in Figure 2 (c)) are used for mapping NFA and cache

arrays with A[16] = 1 (Array_L in Figure 2 (c)) can be used for stor-

ing regular data provided that compiler can ensure that regular data

are placed in 64KB segments in the virtual address space or OS does

not use physical pages with A[16] = 1. As we discuss in Section 5.1,

the performance-optimized design can operate at a frequency of 2

GHz.

Space Optimized Mapping: However, just using the baseline

NFAs forgoes algorithmic optimizations on NFAs that seek to re-

move redundant automata states and state traversals. These redun-

dancies are common in practice, since many patterns share common

prefixes (for example, patterns like art and artifact) and these com-

mon prefixes can be matched once for all connected components

together. Eliminating redundancies helps reduce the space footprint

of the NFA. It also reduces the average number of active states,

leading to reduction in dynamic energy consumption. This has been

the motivation for several state-merging algorithms in literature that

merge common prefixes across pattens [4]. However, it must be kept

in mind that since these optimizations merge states across many

connected components they tend to reduce the number of connected

components and increase the average connected component size.

Larger connected components require richer connectivity and de-

mand more interconnect resources (crossbar switches and wires).

To support such state-merged NFA, we propose a space-optimized

mapping policy that leverages graph partitioning techniques (Sec-

tion 3.2) to minimize outgoing edges between partitions. We also

provision additional global crossbar switches to ensure connectivity

across 4-8 ways of a cache slice. Our hierarchical switch design

provides a richer average fan-out transitions and fan-in transitions

per state compared to the AP (Section 5.4). However, richer connec-

tivity comes at the cost of higher latency due to increased wire delay,

therefore the space-optimized design operates at a lower frequency

(1.2 GHz) compared to the performance-optimized design (2 GHz).

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Subramaniyan et al.

3.2 Mapping Algorithm

The algorithm takes as input the ANML NFA description of the

benchmark, the number of cache arrays available and the size of each

cache array. The output is a mapping of NFA states to cache arrays.

It operates in three steps. In the first step, all connected components

which have size less than partition_size (i.e., 256 states) are identi-

fied. As discussed earlier, a connected component forms the smallest

mapping unit. Next, these connected components are mapped greed-

ily onto the cache arrays to pack multiple connected components

onto the same cache array when possible. We do not partition the con-

nected component in the first stage, since the connected component

inherently groups together states that have plenty of state-transitions

between them and mapping these states to the same array leads to

a more space-efficient packing. Connected components larger than

partition_size, need to be partitioned across k-different partitions (in

the same way or across multiple ways of the cache slice). We utilize

the open-source graph partitioning framework METIS [23] to solve

this k-way partitioning problem. METIS partitions the connected

component into different partitions such that the number of outgoing

state transitions between any two partitions is minimized. It works

by first coarsening the input connected component, performing bi-

sections on the coarsened connected component and later refining

the partitions produced to minimize the edge cuts. We ensure that

METIS produces load-balanced partitions with nearly equal number

of states per partition. For all of our benchmarks (in Table 1) METIS

consistently produces connected component partitions that have less

than 16 state-transitions between them. The maximum number of

outgoing state-transitions from an array determines the radix of the

global-switch to be supported.

3.3 Case Study: Entity Resolution

Figure 6 presents the application of our mapping algorithm to the

space-optimized version of the Entity Resolution benchmark. En-

tity Resolution is widely used for approximate string matching in

databases. The benchmark has 5672 states with 5 connected compo-

nents (CCs). The largest connected component CC4 has size 4568

and the smallest one CC0 has 75 states. Each of the arrays (Array_H

and Array_L) in a 16kB subarray of the LLC slice shown supports

256 states. Our mapping algorithm proceeds as follows. For each

unallocated array, starting from the smallest connected component,

greedily pack as many connected components in the array as the ar-

ray can accommodate. If the connected component size exceeds the

size of an array, then we invoke the k-way partitioning algorithm in

METIS for different values of k based on the connected component

size.

From the final mapping obtained, it can be seen that a fairly dense

packing of CCs is achieved. It can be seen that both CC0 and CC1

are allocated the same array. CC2 takes up a separate array while

CC4 spans across 3 ways. Local switches at each array and global

switches for both 1 and 4 ways support intra-array and inter-array

state transitions respectively. Furthermore, the densely connected

arrays for CC4 (having many outgoing transitions) are also allocated

to arrays in the same way.

CC0 (75)

CC1(87) CC3(768)

CC2(174)

CC4(4568)

CC0 CC1

CC2 CC3

CC4

32kB data bank

A
rr

a
y

_
H

A
rr

a
y

_
L

A
rr

a
y

_
H

A
rr

a
y

_
L

Way 0

Way 1

Way 2

Way 3

Unmapped

Portion of LLC slice

with local and global switches

(a)

(b)

16kB subarray

Entity Resolution

Figure 6: Figure showing mapping of connected components

in EntityResolution to cache arrays. The connected components

are labeled along their size in brackets

4 EVALUATION METHODOLOGY

In this section we first describe our workloads, followed by a discus-

sion on the experimental setup and finally report the different system

parameters.

NFA workloads: We evaluated the proposed approach and map-

ping schemes on a wide range of benchmark FSMs from the AN-

MLZoo [39] and the Regex [5] benchmark suites. These real world

benchmarks span multiple domains including network packet moni-

toring [5], gene sequence matching [34] and natural language pro-

cessing [49]. The NFAs used in this work form the core of many

end-to-end applications. For example, the oligo_scan routine used

for pattern matching in Weeder 2.0, an open-source tool for motif

discovery in DNA sequences, uses an automaton similar to Pro-

tomata that contributes 30-62% of the total runtime. In the Apriori

algorithm for frequent itemset mining, NFA processing accounts

for 33-95% of the execution time, based on the frequency threshold.

FSM-like computations form the core of many activities inside a

web browser, taking about 40% of the loading time for many web

pages [22, 48]. Table 1 summarizes some of the important charac-

teristics of these FSMs and the parameters used in our simulations.

We used the 10MB input traces for our evaluation. Similar trends in

results are observed for larger inputs.

Experimental Setup: We utilize the open-source virtual automata

simulator VASim [39] to simulate the proposed architecture. VASim

allows for fast NFA emulation by traversing paths only for active

states. The simulator takes as input the NFA partitions produced by

METIS and simulates each input cycle by cycle. After processing

the input stream, we use the per-cycle statistics on number of active

states in each array to derive energy statistics.

Table 2 provides the various delay and energy parameters assumed

in our design. To estimate the area, power and delay of the memory

array we use a standard foundry memory compiler for the 28nm

technology node. The nominal voltage for this technology is 0.9

Cache Automaton MICRO-50, October 14–18, 2017, Cambridge, MA, USA

Performance optimized Space optimized

Benchmark States Connected Largest CC Avg.Active States Connected Largest CC Avg.Active
Components Size States Components Size States

1 Dotstar03 12144 299 92 3.78 11124 56 1639 0.84

2 Dotstar06 12640 298 104 37.55 11598 54 1595 3.40

3 Dotstar09 12431 297 104 38.07 11229 59 1509 4.39

4 Ranges05 12439 299 94 6.00 11596 63 1197 1.53

5 Ranges1 12464 297 96 6,43 11418 57 1820 1.46

6 ExactMath 12439 297 87 5.99 11270 53 998 1.42

7 Bro217 2312 187 84 3.40 1893 59 245 1.89

8 TCP 19704 715 391 12.94 13819 47 3898 2.21

9 Snort 69029 2585 222 431.43 34480 73 10513 29.59

10 Brill 42568 1962 67 1662.76 26364 1 26364 14.29

11 ClamAV 49538 515 542 82.84 42543 41 11965 4.30

12 Dotstar 96438 2837 95 45.05 38951 90 2977 3.25

13 EntityResolution 95136 1000 96 1192.84 5672 5 4568 7.88

14 Levenshtein 2784 24 116 114.21 2784 1 2605 114.21

15 Hamming 11346 93 122 285.1 11254 69 11254 240.09

16 Fermi 40783 2399 17 4715.96 39032 648 39038 4715.96

17 SPM 100500 5025 20 6964.47 18126 1 18126 1432.55

18 RandomForest 33220 1661 20 398.24 33220 1 33220 398.24

19 PowerEN 14109 1000 48 61.02 12194 62 357 30.02

20 Protomata 42011 2340 123 1578.51 38243 513 3745 594.68

Table 1: Benchmark Characteristics

L_switch [L] G_switch(1 way) [G1] G_switch(4 ways) [G2]

Design Size Delay Energy Area Size Delay Energy Area Size Delay Energy Area

CA_P 280x256 163.5ps 0.191pJ/bit 0.033mm2 128x128 128ps 0.16pJ/bit 0.011mm2 - - - -

Number of switches Number of switches Number of switches

64 8 -

CA_S 280x256 163.5ps 0.191pJ/bit 0.033mm2 256x256 163ps 0.19pJ/bit 0.032mm2 512x512 327ps 0.381pJ/bit 0.1293mm2

Number of switches Number of switches Number of switches

128 8 1

Table 2: Switch Parameters

V. Our 8T crossbar switches are similar to an 8T SRAM array,

except without the associated decoding and control logic overheads

present in a regular 8T SRAM array. The energy for access to 6T

256×256 cache sub-arrays was estimated to be 22pJ. The global

wire delays were determined using wire models from the design

kit using SPICE modeling. Our analysis takes into account cross-

coupling capacitance of neighboring wires and metal layers. The

global wires have pitch 1µm and are routed on 4X metal layers with

double track assignment and repeaters spaced 1mm apart. The wire

delay was found to be 66ps/mm and wire energy was found to be

0.07pJ/mm/bit.

5 RESULTS

In this section we first present the speedups obtained by the pro-

posed Cache Automaton (CA) architecture, followed by analysis of

cache space utilization, energy consumption and reachability of the

proposed automaton architecture. As discussed in Section 3.1, we

evaluate two designs for Cache Automaton. The first design is opti-

mized for performance, and provides lower connectivity. We refer

to the performance optimized design as CA_P and space optimized

design as CA_S throughout the results section.

5.1 Overall Performance

Overall performance of the Cache Automaton is dictated by the clock-

period of pipeline. Table 3 shows the delay of various pipeline stages

across both performance optimized and space optimized designs.

For the performance optimized design (CA_P), the state-match

stage accesses 256 STEs. In our proposed architecture modelled after

Xeon’s LLC slice, each 16KB data sub-array is 8-way multiplexed.

Internally the sub-array is organized into two 8KB chunks which

can operate independently. Each chunk has two halves: Array_H

and Array_L which share I/O and 32 sense-amps. Each half consists

of 256×128 6T SRAM arrays. A column multiplexer in each half

feeds 32 sense-amps, allowing only 32 bits to be read in a cycle per

chunk. Thus, together across the two chunks, it is possible to match

64 STEs in a cycle. The SRAM arrays can operate from 1.2 GHz

to 4.6 GHz frequency range [10, 19]. We limit the highest possible

operating frequency for each SRAM array to 4 GHz or 256 ps cycle

time. Thus four cycles or 1024ps is necessary to match 256 STEs

without sense-amplifier cycling. With our proposed sense-amplifier

cycling optimization, the state match time for 256 STEs is 438ps as

shown in Table 3.

Design State-Match G-Switch L-Switch Freq. Max Freq. Operated

CA_P 438 ps 227 ps 263 ps 2.3 GHz 2 GHz

CA_S 687 ps 468 ps 304 ps 1.4 GHz 1.2 GHz

Table 3: Pipeline stage delays and operating frequency.

The G-Switch stage requires 227ps composed of 99ps due to

wire-delay and 128ps due to global switch. The distance between

SRAM array and global switch is estimated to be 1.5mm assuming

a slice dimension of 3.19mm×3mm. The L-Switch stage requires

263ps. The pipeline clock period or frequency is determined by the

slowest stage. Thus the maximum possible frequency for (CA_P) is

2.2 GHz. We choose to operate at 2 GHz. For the space optimized

design (CA_S), an operating frequency of 1.4 GHz can be achieved

and we choose to operate at 1.2 GHz. The space optimized design

is slower due to longer wire delays between the arrays and global

switch, and larger global switches.

In the Cache Automaton, since all state-matches and state-transitions

can happen in parallel, the system has a deterministic throughput of

one input symbol per cycle and is independent of input benchmarks.

This is true for Micron’s Automata Processor (AP) as well which

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Subramaniyan et al.

5.6 Comparison with ASIC implementations

The Unified Automata Processor (UAP) [15] and HARE [17] are two

recently proposed accelerators that have demonstrated impressive

line rates for automata processing and regular expression match-

ing on a number of network intrusion detection and log processing

benchmarks. UAP is noteworthy because of its generality and ability

to efficiently support many finite automata models using state tran-

sition packing and multi-stream processing at low area and power

costs. Similarly, HARE has been able to saturate DRAM bandwidth

(256 Gbps) while scanning up to 16 regular expressions.

The major advantage of Cache Automaton is its ability to exe-

cute several thousand state transitions in parallel (e.g., 128K state

transitions in a single cycle using 8 ways of LLC slice). This mas-

sive parallelism enables matching against several thousand patterns

(e.g., 5700 in Snort ruleset), while achieving ideal line rate, i.e., 1

symbol/cycle. In contrast, HARE incurs high area and power costs

(80mm2,125W) when scanning for more than 16 patterns and UAP’s

line rate drops for large NFA patterns with many concurrent activa-

tions, 0.27–0.75 symbols/cycle [15].

Metric HARE (W=32) UAP CA_P CA_S

Throughput (Gbps) 3.9 5.3 15.6 9.4

Runtime (ms) 20.48 15.83 5.24 8.74

Power (W) 125 0.507 7.72 1.08

Energy (nJ/byte) 256 0.802 4.04 0.94

Area (mm2) 80 5.67 4.3 4.6

Table 5: Comparison with related ASIC designs.

For fair quantitative comparison, we use Dotstar0.9, containing

1000 regular expressions and ∼38K states as used in UAP/HARE

for a 10MB input stream. It must be noted that CA can support

>3000 such regular expressions using less than 8 ways of LLC

slice and shows greater benefits for larger number of patterns and if

more ways are used to store NFA. From Table 5, it can be seen that

CA_P and CA_S provide 3.9× and 2.34× speedup over HARE and

3× and 1.8× speedup over UAP respectively. While UAP is more

energy efficient than CA_P due to efficient compression of state-

transitions, CA_S can provide comparable energy efficiency while

repurposing the LLC. Note that the 16 kB local memory in UAP can

accommodate only few Dotstar0.9 patterns without memory sharing

across lanes and we expect several additional DRAM accesses for

reading new patterns. This energy is not accounted in Table 5. UAP

incurs lesser area overhead than CA_P and CA_S, but its 8-entry

combining queue may be insufficient to support benchmarks with

several thousand active states (e.g., Fermi–4715).

6 RELATED WORK

To the best of our knowledge, this is the first work that demonstrates

the feasibility of in-situ FSM processing in the last-level cache.

Below we discuss some of the closely related works.

Compute-Centric Architectures: Compute-centric architectures

typically store the complete state-transition matrix as a lookup table

in cache/memory. These architectures have two main limitations: (1)

need for high memory bandwidth or memory capacity especially for

large NFA with many active states and (2) high instruction process-

ing overheads per state transition (as many as 24 x86 instructions

for a single DFA state transition [6]). As a result, several CPU/GPU-

based automata processing engines have either limited themselves to

DFAs [3, 6, 45, 46] or have explored SIMD operations to deal with

the high cache miss rates and branch misprediction rates [26, 30].

Several speculative and enumerative parallelization approaches have

also been proposed to speedup FSM processing [21, 30, 33, 47, 48].

However, all of the above approaches have been evaluated only for

small DFA. Scaling these approaches to NFAs is non-trivial because

of the huge computational complexity involved [43].

ASIC implementations: While several regular expression match-

ing and NFA processing ASIC designs have been proposed in litera-

ture [37, 38], we extensively discuss and evaluate two most relevant

and recent designs, HARE [17] and the Unified Automata Processor

(UAP) [15] in Section 5.6. In general, while ASIC implementations

offer high line rates for small DFA/NFA, they are limited by the

number of parallel matches and state transitions.

Memory-Centric Architectures: Memory-centric architectures

like the Micron Automata Processor (AP) [14, 40] leverage the inher-

ent bit-level parallelism of DRAM to support multiple parallel state

matches at bandwidths that far exceed available pin bandwidth with

reduced instruction processing overheads. A programmable routing

matrix enables efficient support for state-transitions without the as-

sociated data movement costs as in a compute-centric architecture.

Since the DRAM AP is not optimized for logic, it is slower and runs

at a low frequency (133 MHz), with the routing matrix accounting

for nearly 30% of the die area. In this work we demonstrate that

several real world NFA can be efficiently mapped onto LLC arrays

and propose two fully-pipelined designs that provide nearly an order

of magnitude throughput improvement compared to AP at low area

overheads. Similar to the Micron AP whose throughput scales with

the number of ranks and devices, the Cache Automaton architecture

can also exploit increased cache capacity in multi-chip/multi-socket

servers for throughput scaling based on the peak power requirements

of different NFAs.

7 CONCLUSION

This paper proposes the Cache Automaton architecture to accelerate

NFA processing in the last-level cache. Efficient NFA processing

requires both highly parallel state-matches as well as an interconnect

architecture that supports low-latency transitions and rich connec-

tivity between states. To optimize for state-matches we propose a

sense-amplifier cycling scheme that exploits spatial locality in state-

matches. To enable efficient state transitions, we adopt a hierarchical

topology of highly compact 8T-based local and global switches. We

also develop a Cache Automaton compiler that fully automates the

process of mapping NFA states to SRAM arrays. The two proposed

designs are fully pipelined, utilize on an average 1MB of cache space

across benchmarks and can provide a speedup of 12× over AP .

ACKNOWLEDGMENTS

We thank the anonymous reviewers and fellow members of the M-

Bits research group for their feedback which greatly helped improve

this work. This work was supported by the NSF under the CAREER-

1652294 award.

Cache Automaton MICRO-50, October 14–18, 2017, Cambridge, MA, USA

REFERENCES
[1] Alfred V. Aho and Margaret J. Corasick. 1975. Efficient String Matching: An Aid

to Bibliographic Search. Commun. ACM 18, 6 (June 1975), 333–340.
[2] Rajeev Alur and Mihalis Yannakakis. 1998. Model checking of hierarchical

state machines. In ACM SIGSOFT Software Engineering Notes, Vol. 23. ACM,
175–188.

[3] Michela Becchi and Patrick Crowley. 2007. An improved algorithm to accelerate
regular expression evaluation. In Proceedings of the 3rd ACM/IEEE Symposium

on Architecture for networking and communications systems. ACM, 145–154.
[4] Michela Becchi and Patrick Crowley. 2008. Efficient regular expression evalu-

ation: theory to practice. In Proceedings of the 2008 ACM/IEEE Symposium on

Architecture for Networking and Communications Systems, ANCS 2008, San Jose,

California, USA, November 6-7, 2008. 50–59.
[5] Michela Becchi, Mark A. Franklin, and Patrick Crowley. 2008. A workload for

evaluating deep packet inspection architectures. In 4th International Symposium on

Workload Characterization (IISWC 2008), Seattle, Washington, USA, September

14-16, 2008. 79–89.
[6] Michela Becchi, Charlie Wiseman, and Patrick Crowley. 2009. Evaluating regular

expression matching engines on network and general purpose processors. In
Proceedings of the 5th ACM/IEEE Symposium on Architectures for Networking

and Communications Systems. ACM, 30–39.
[7] Chunkun Bo, Ke Wang, Jeffrey J Fox, and Kevin Skadron. 2015. Entity Resolution

Acceleration using MicronâĂŹs Automata Processor. Architectures and Systems

for Big Data (ASBD), in conjunction with ISCA (2015).
[8] William J. Bowhill, Blaine A. Stackhouse, Nevine Nassif, Zibing Yang, Arvind

Raghavan, Oscar Mendoza, Charles Morganti, Chris Houghton, Dan Krueger,
Olivier Franza, Jayen Desai, Jason Crop, Brian Brock, Dave Bradley, Chris Bostak,
Sal Bhimji, and Matt Becker. 2016. The Xeon® Processor E5-2600 v3: a 22 nm
18-Core Product Family. J. Solid-State Circuits 51, 1 (2016), 92–104. https:
//doi.org/10.1109/JSSC.2015.2472598

[9] Niladrish Chatterjee, Mike O’Connor, Donghyuk Lee, Daniel R. Johnson,
Stephen W. Keckler, Minsoo Rhu, and William J. Dally. 2017. Architecting
an Energy-Efficient DRAM System for GPUs. In High Performance Computer

Architecture (HPCA).
[10] Wei Chen, Szu-Liang Chen, Siufu Chiu, Raghuraman Ganesan, Venkata Lukka,

Wei Wing Mar, and Stefan Rusu. 2013. A 22nm 2.5 MB slice on-die L3 cache
for the next generation Xeon® processor. In VLSI Technology (VLSIT), 2013

Symposium on. IEEE, C132–C133.
[11] Alessandro Cimatti, Edmund Clarke, Enrico Giunchiglia, Fausto Giunchiglia,

Marco Pistore, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. 2002.
Nusmv 2: An opensource tool for symbolic model checking. In International

Conference on Computer Aided Verification. Springer, 359–364.
[12] Subhasis Das, Tor M. Aamodt, and William J. Dally. 2015. SLIP: reducing wire

energy in the memory hierarchy. In Proceedings of the 42nd Annual International

Symposium on Computer Architecture, Portland, OR, USA, June 13-17, 2015.
349–361. https://doi.org/10.1145/2749469.2750398

[13] Sutapa Datta and Subhasis Mukhopadhyay. 2015. A grammar inference approach
for predicting kinase specific phosphorylation sites. PloS one 10, 4 (2015),
e0122294.

[14] Paul Dlugosch, Dave Brown, Paul Glendenning, Michael Leventhal, and Harold
Noyes. 2014. An efficient and scalable semiconductor architecture for parallel
automata processing. IEEE Transactions on Parallel and Distributed Systems 25,
12 (2014), 3088–3098.

[15] Yuanwei Fang, Tung Thanh Hoang, Michela Becchi, and Andrew A. Chien. 2015.
Fast support for unstructured data processing: the unified automata processor. In
Proceedings of the 48th International Symposium on Microarchitecture, MICRO

2015, Waikiki, HI, USA, December 5-9, 2015. 533–545. https://doi.org/10.1145/
2830772.2830809

[16] Domenico Ficara, Stefano Giordano, Gregorio Procissi, Fabio Vitucci, Gianni
Antichi, and Andrea Di Pietro. 2008. An improved DFA for fast regular expression
matching. ACM SIGCOMM Computer Communication Review 38, 5 (2008), 29–
40.

[17] Vaibhav Gogte, Aasheesh Kolli, Michael J. Cafarella, Loris D’Antoni, and
Thomas F. Wenisch. 2016. HARE: Hardware accelerator for regular expres-
sions. In 49th Annual IEEE/ACM International Symposium on Microarchitecture,

MICRO 2016, Taipei, Taiwan, October 15-19, 2016. 1–12. https://doi.org/10.1109/
MICRO.2016.7783747

[18] Linley Gwennap. 2014. Micron Accelerates Automata:New Chip Speeds NFA
Processing Using DRAM Architectures. In Microprocessor Report.

[19] Min Huang, Moty Mehalel, Ramesh Arvapalli, and Songnian He. 2013. An
Energy Efficient 32-nm 20-MB Shared On-Die L3 Cache for Intel® Xeon®
Processor E5 Family. J. Solid-State Circuits 48, 8 (2013), 1954–1962. https:
//doi.org/10.1109/JSSC.2013.2258815

[20] Intel. 2017. Cache Allocation Technology. (2017). https://software.intel.com/
en-us/articles/introduction-to-cache-allocation-technology

[21] Peng Jiang and Gagan Agrawal. 2017. Combining SIMD and Many/Multi-
core Parallelism for Finite State Machines with Enumerative Speculation. In

Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, Austin, TX, USA, February 4-8, 2017. 179–191.
http://dl.acm.org/citation.cfm?id=3018760

[22] Christopher Grant Jones, Rose Liu, Leo Meyerovich, Krste Asanovic, and
Rastislav Bodik. 2009. Parallelizing the web browser. In Proceedings of the

First USENIX Workshop on Hot Topics in Parallelism.
[23] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel

Scheme for Partitioning Irregular Graphs. SIAM J. Scientific Computing 20, 1
(1998), 359–392. https://doi.org/10.1137/S1064827595287997

[24] Linux kernel. 2017. Huge Pages. https://www.kernel.org/doc/Documentation/vm/
hugetlbpage.txt

[25] Sailesh Kumar, Sarang Dharmapurikar, Fang Yu, Patrick Crowley, and Jonathan
Turner. 2006. Algorithms to accelerate multiple regular expressions matching for
deep packet inspection. In ACM SIGCOMM Computer Communication Review,
Vol. 36. ACM, 339–350.

[26] Dan Lin, Nigel Medforth, Kenneth S. Herdy, Arrvindh Shriraman, and Robert D.
Cameron. 2012. Parabix: Boosting the efficiency of text processing on commodity
processors. In 18th IEEE International Symposium on High Performance Com-

puter Architecture, HPCA 2012, New Orleans, LA, USA, 25-29 February, 2012.
373–384. https://doi.org/10.1109/HPCA.2012.6169041

[27] Micron. 2016. Method and system to dynamically power-down a block of a
pattern-recognition processor. (2016). Patent US 9389833 B2.

[28] Micron. 2017. Micron Automata Processing. http://www.micronautomata.com/
[29] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C Ri-

nard. 2014. Chisel: Reliability-and accuracy-aware optimization of approximate
computational kernels. In ACM SIGPLAN Notices, Vol. 49. ACM, 309–328.

[30] Todd Mytkowicz, Madanlal Musuvathi, and Wolfram Schulte. 2014. Data-parallel
finite-state machines. In Architectural Support for Programming Languages and

Operating Systems, ASPLOS ’14, Salt Lake City, UT, USA, March 1-5, 2014.
529–542.

[31] Omar Naji, Christian Weis, Matthias Jung, Norbert Wehn, and Andreas Hansson.
2015. A high-level DRAM timing, power and area exploration tool. In Embedded

Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2015

International Conference on. IEEE, 149–156.
[32] Alexandre Petrenko. 2001. Fault model-driven test derivation from finite state mod-

els: Annotated bibliography. In Modeling and verification of parallel processes.
Springer, 196–205.

[33] Junqiao Qiu, Zhijia Zhao, and Bin Ren. 2016. MicroSpec: Speculation-Centric
Fine-Grained Parallelization for FSM Computations. In Proceedings of the 2016

International Conference on Parallel Architectures and Compilation, PACT 2016,

Haifa, Israel, September 11-15, 2016. 221–233.
[34] Indranil Roy and Srinivas Aluru. 2016. Discovering motifs in biological sequences

using the micron automata processor. IEEE/ACM Transactions on Computational

Biology and Bioinformatics 13, 1 (2016), 99–111.
[35] Indranil Roy, Ankit Srivastava, and Srinivas Aluru. 2016. Programming Tech-

niques for the Automata Processor. In 45th International Conference on Parallel

Processing, ICPP 2016, Philadelphia, PA, USA, August 16-19, 2016. 205–210.
https://doi.org/10.1109/ICPP.2016.30

[36] Indranil Roy, Ankit Srivastava, Marziyeh Nourian, Michela Becchi, and Srinivas
Aluru. 2016. High Performance Pattern Matching Using the Automata Processor.
In 2016 IEEE International Parallel and Distributed Processing Symposium,

IPDPS 2016, Chicago, IL, USA, May 23-27, 2016. 1123–1132. https://doi.org/10.
1109/IPDPS.2016.94

[37] Prateek Tandon, Faissal M. Sleiman, Michael J. Cafarella, and Thomas F. Wenisch.
2016. HAWK: Hardware support for unstructured log processing. In 32nd IEEE

International Conference on Data Engineering, ICDE 2016, Helsinki, Finland,

May 16-20, 2016. 469–480. https://doi.org/10.1109/ICDE.2016.7498263
[38] Jan van Lunteren, Christoph Hagleitner, Timothy Heil, Giora Biran, Uzi Shvadron,

and Kubilay Atasu. 2012. Designing a Programmable Wire-Speed Regular-
Expression Matching Accelerator. In 45th Annual IEEE/ACM International Sym-

posium on Microarchitecture, MICRO 2012, Vancouver, BC, Canada, December

1-5, 2012. 461–472. https://doi.org/10.1109/MICRO.2012.49
[39] Jack Wadden, Vinh Dang, Nathan Brunelle, Tommy Tracy II, Deyuan Guo, Ela-

heh Sadredini, Ke Wang, Chunkun Bo, Gabriel Robins, Mircea Stan, and Kevin
Skadron. 2016. ANMLzoo: a benchmark suite for exploring bottlenecks in au-
tomata processing engines and architectures. In 2016 IEEE International Sympo-

sium on Workload Characterization, IISWC 2016, Providence, RI, USA, September

25-27, 2016. 105–166.
[40] Ke Wang, Kevin Angstadt, Chunkun Bo, Nathan Brunelle, Elaheh Sadredini,

Tommy Tracy II, Jack Wadden, Mircea R. Stan, and Kevin Skadron. 2016.
An overview of micron’s automata processor. In Proceedings of the Eleventh

IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and

System Synthesis, CODES 2016, Pittsburgh, Pennsylvania, USA, October 1-7,

2016. 14:1–14:3. https://doi.org/10.1145/2968456.2976763
[41] Ke Wang, Elaheh Sadredini, and Kevin Skadron. 2016. Sequential pattern mining

with the Micron automata processor. In Proceedings of the ACM International

Conference on Computing Frontiers. ACM, 135–144.

MICRO-50, October 14–18, 2017, Cambridge, MA, USA A. Subramaniyan et al.

[42] Zhen-Gang Wang, Johann Elbaz, Françoise Remacle, RD Levine, and Itamar
Willner. 2010. All-DNA finite-state automata with finite memory. Proceedings of

the National Academy of Sciences 107, 51 (2010), 21996–22001.
[43] Yi-Hua E. Yang and Viktor K. Prasanna. 2011. Optimizing Regular Expression

Matching with SR-NFA on Multi-Core Systems. In 2011 International Conference

on Parallel Architectures and Compilation Techniques, PACT 2011, Galveston,

TX, USA, October 10-14, 2011. 424–433. https://doi.org/10.1109/PACT.2011.73
[44] Fang Yu, Zhifeng Chen, Yanlei Diao, TV Lakshman, and Randy H Katz. 2006.

Fast and memory-efficient regular expression matching for deep packet inspection.
In Proceedings of the 2006 ACM/IEEE symposium on Architecture for networking

and communications systems. ACM, 93–102.
[45] Fang Yu, Zhifeng Chen, Yanlei Diao, TV Lakshman, and Randy H Katz. 2006.

Fast and memory-efficient regular expression matching for deep packet inspection.
In Architecture for Networking and Communications systems, 2006. ANCS 2006.

ACM/IEEE Symposium on. IEEE, 93–102.

[46] Xiaodong Yu, Bill Lin, and Michela Becchi. 2014. Revisiting state blow-up:
Automatically building augmented-fa while preserving functional equivalence.
IEEE Journal on Selected Areas in Communications 32, 10 (2014), 1822–1833.

[47] Zhijia Zhao and Xipeng Shen. 2015. On-the-Fly Principled Speculation for
FSM Parallelization. In Proceedings of the Twentieth International Conference

on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’15, Istanbul, Turkey, March 14-18, 2015. 619–630.
[48] Zhijia Zhao, Bo Wu, and Xipeng Shen. 2014. Challenging the "embarrassingly se-

quential": parallelizing finite state machine-based computations through principled
speculation. In Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’14, Salt Lake City, UT, USA, March 1-5, 2014. 543–558.
[49] Keira Zhou, Jeffrey J Fox, Ke Wang, Donald E Brown, and Kevin Skadron. 2015.

Brill tagging on the micron automata processor. In Semantic Computing (ICSC),

2015 IEEE International Conference on. IEEE, 236–239.

	Abstract
	1 Introduction
	2 Cache Automaton Architecture
	2.1 NFA Primer
	2.2 Cache Automaton Concept
	2.3 Working Example
	2.4 Cache Slice Design
	2.5 Automaton Pipeline
	2.6 Enabling Low-Latency Matches
	2.7 Switch Design
	2.8 Input Streaming and Output Reporting
	2.9 System Integration
	2.10 Configuration and ISA Interface

	3 Cache Automaton Compiler
	3.1 Connectivity Constraints
	3.2 Mapping Algorithm
	3.3 Case Study: Entity Resolution

	4 Evaluation Methodology
	5 Results
	5.1 Overall Performance
	5.2 Cache Utilization
	5.3 Energy Consumption
	5.4 Reachability and Area Overheads
	5.5 Discussion
	5.6 Comparison with ASIC implementations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

