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Multicomponent transition metal oxides are among the most successful lithium-ion battery cathode
materials, and many previous reports have described the sensitivity of final electrochemical performance
of the active materids to the detsiled composition and processing. Coprecipitation of a precursor
template is a popular, scalable route to synthesize these tramsition metal owide cathode materials
because of the homogeneous mixing of the transition metals within the partidles, and the momphology
control provided by the precursors. However, the dewviation of the precursor composition from feed
conditions is a challenge that has generslly not been reported in previous studies. Using a target final
materizl of the high woltage spinel LiMngsMig<0y a5 an example, we show in this study that the
compositional deviation caused by coprecipitation can be significant under certain conditions, impacting
the calcined final materal structure and electrochemical properties. The study herein provides insights
into the role of solution equilibrium and ate of precipitation of the transition metals during precipitate
formation on precursor, and thus final active material composition. Such knowledge is necessary to
rationally predict and tune multicomponent battery precursor compositions synthesized wia
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Introduction

Due to their high energy density, lithium-on [Li<ion] batteries
have become a popular choice for applications ranging in scale
from consumer electronics to electric wehicles to stationary
energy storage systems.' Especially with regards o cathode
materials, Li-ion batteries do not have a single material struc-
ture or composition that dominstes but have many different
materials that may be suited to 2 particular performance or cost
objective.”™ Many current and future commercial cathode
materials are muldcomponent transition metal (TM] oxides
including LiMNiggqC0g 154l 0500 " LiNisMng g Coyps0s,
LiNi, Mng 20, LiMn, Nig 50,7 and LiMn,041 — )
LiMi; ghn, 200y,:05.°** Such materials have been reported to
have material structure and electrochemical performance that
is highly sensitive to the stoichiometry of the final material,
Various routes haw been reported in the litersture to
synthesize mulicomponent metal oxide cathode materials,
including direct solid-state conversion of individual precur-
sors, ™ hydrothermal synthesis®* = spray pyrolysis ™ and
various deposition techniques.™** One method that is very
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coprecipitation with high levels of accuracy.

popular in the literature is coprecipitation of precursors fol-
lowed by caleination to final active materials, Coprecipitation
has the advantages that it is relatively easy to perform in the lab,
scalable, allows tunable and monodisperse particle morphol-
ogies, " ***™ and provides homogencous mixing of the mult ple
TM components throughout the secondary particles, While
coprecipitation has many advantages and there are many
reports synthesizing high perfformance materials using this
method, one common assumption of materials produced via
coprecipitation is that the particles retain the stoichiometry of
the feed solution. However, depending on solution conditions
this may not be a reasonable assumpton. van Bommel ef al
previously showed through equilibrivm caleulations that the
fractions of Ni, Mn, and Co that remained as soluble species
during hydrosdde coprecipitation with a chelating agent were
highly variable and pH dependent.”™ While these results suggest
that predictive caleulations should be done to adjust the feed
stoichiometry o targpet the desired precipitate stoichiometry,
the use of such analysis has rarely been reported, Many reports
of multicomponent TM battery actve materials that wsed
coprecipitation of precursors for the final sctive material do not
confirm the stoichiometry of the TMs in the precipitate. If
caleulations were performed, generally only solution equilib-
rium was considered; and the calculations were not used to
guide decisions on precursor solution feed conditions. Also, no
reports have considered whether the relative rate of coprecipi-
tation varied for the different Ths. In this paper, a technigue for
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determining the extent of coprecipitation of each TM inde-
pendently in solution during synthesis will be deseribed. Rates
of coprecipitation from these measurements were used in
combination with equilibrivm caleolations o achiew the gpoal
of explicit composition control, We will demonstrate the impact
of such control on material structural and electroche mical
properties using an exemplar cathode material,

For this study, we have chosen the target cathode materisl
LiMn4 sMig0s (LMNO), and to produce the material an oalate
precursor (Mg 5Mig 25020, 2H,0) was synthesized via copre-
cipitation with a 3 : 1 target Mo : Ni ratio. LMNO has a high
operating voltage of 47 V v Li, and the power and enengy
density advantages have made LMNO a good candidate as the
cathode  active material for transportation and  energy
storage 757 The sensitivity of LMMNO material properties to
T™ stoichiometry,*™* coupled with the materizl having only
two T cations to consider, made this material an ideal
candidate for this inital study.

Wi have chosen omal ate coprecipitation chemistry for LMNO
synthesis because in isolation both Mo and Ni form stable
ooalate dilydrate precipitates in agqueous solutions exposed to
air, and oxalates have been previously used as battery precur-
SOCESASEATAT Carbonate coprecipitation is another popular
method to synthesize 3 + 1 Mo Ni precursor; however, NiCO; is
difficult to form as a stble precipitate.®* Hyd roxide cop reci-
pitation is more complex because of the tendency of Mn to
odize to MoOOH. 4" Moreover, oxalate ions in the sole-
tion play a dual role as both the precipitation resgent and
a complexing agent.™* The formation of metal complexes with
moalate ions as the ligand slows down the precipitat on rate and
thus the nucleation and particle growth process becomes mone
controllable. According to previous reports, omlate coprecipi-
tmtion can be used to synthesiee precursor particles of narrow
size distribution, and particle morphologies were successtully
tuned by careful control over solution conditions. ™ Explicit
control over particle morphology can be important for battery
active materials due to the role that morphology plays in elec-
trode packing, electrode microstructure, and actw material
transport limitations *#* However, synthesis that incorpo-
rates mor phol ogy control of precursor is often perfformed at low
feed reagent concentrations where equilibriuvm and rate of
precipitation need to be carefully considered and predefined.
For the particular Mn-Ni blend ocalate copreci pitation resction,
previous reports hawe even explicitly noted adjustment of T
feed ratios using an empirical approach to compensate for the
composiion deviaton,**

Equilibrium calculations in this study will show that feed
stoichiometry can deviate significantly from the precipitate
stoichiometry, and thus resulting final material composition. In
addition, we will demonstrate that rate of precipitation of TMs
needs to be considered, though expermental evidence will
sugpest the formation of seeds of the faster forming precipitate
likely mitigates the impact of different rates of precipitation
under some solution conditions. The tschnigues in this report
should be translatable to other precursor systems such as
hydrosddes and carbonates,
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Results and discussion

Concentration influence on deviation between actual and feed
ratios

At equilibrium, stoichiometry deviations of the solid precipitates
relative to the stoichiometry ratio of the feed solubons is
primarily a result of the solubility differences between the
Ths"* As will be shown Later, all TMs in this study proecipita e
as oxalate dibwdrates. At room tempersture the solubility of
MICy0,- 2H0 is 0.0018 g'100 g water, whereas MnCy0,- 2HO
solubility is significanty greater at 0.0309 g/100 ¢ water.™ This
solubility difference between MnCy0,- 2H,0 and MiC0,- 2HO
leads to the prediction that during a copreci pitation ofa blend of
Mn and Ni using oxalate the precipitate would be relatvely
enriched in Ni.** The proportional deviation from stoichiometry
of the precipitatewould be expected to beome more significant
as the totsl solution concentraton of the TMs and oxalate is
decreased, because the solubility limit would hawe a grester
relative impect at lower concentrations. Fig. 1 displays the
calculated Mn : Mi ratios in the precipitabes at equilibrium as
g function of totl feed concentrations. Note that these are
detailed caleulations with many solution species at 60 *C, and
not & result of only using the TM oxalate solubility values
Tabulated values are also listed in Table 5.1 In all cases the
Mn : Ni feed soluton ratio was 3 : 1 and the TM @ omlate tato
was 1: 1, and if all of the TM were to precipitate as oxalate the
3 : 1 ratiowould be retained. Tt is observed that the Mo Ni catio
drops sharply away from the 3 : 1 feed rato as the total feed
concentration decreases below 50 mM. The calculated ratio is
1.7 at 10 mM, which is nearly a 50% deviation from the feed
ratio. Fig. 1 also containg the experimentally measured Mn @ Ni
ratios of the collected precursor powders determined by digest-
ing the powders and using ICP analysis, All the precursors were
collected 30 minutes after the TM and oalate solutions were
mixed together at 60 *C. In comparison to equilibriom

——Measurad

== Calculated
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Total feed concentration (mol/L)

Fig.1 The measured [diamonds) and calculated at equilibrium icircles)
Mn : Ni stoichiometric ratio in the precipitate as a function of total TM
feed concentration. The feed ratio of Mn : Niis 3:1in all cases, and
a dashed line is added at Mn : Mi = 3.0 for comparison. Lines between
data points added to guide the eye.
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caleulations, all the measured ratios are higher and closer to the
feed ratiog and the gap increases as the total feed concentration
decreases. As will be discussed later, our experiments sugpest
that this gap reflects the differences in the rate of precipitation
of the Mn relatve to Ni. As the concentration increases, the
difference between the measured valoes and the caleulated
values decreases becanse the solution mowes closer to equilib-
rium conditions faster with the rate of precipitation increasing
at higher initial solution concentrations.

Precipitation tmescales for pure and blend systems

The differences  between  equilibriom  caleolations  and
measured stoichiometries for the ocalate precipitates led to
investigations of the concentration of the TM left in solution as
afunction of ime. Before determining the concentration profile
for the 3 @ 1 Mn @ Ni feed, first experments were conducted with
solutions containing only pure Mn or Mi at 20 mM. We chose to
use 20 mM total TM (and oxalate) as the initial feed concen-
tration for these experiments because (1) the concentration was
low enowgh that it resulted in significant deviation betwesn the
equilibrinm caleulated and measured precipitate ratios (Fig. 1],
and 2] this concentration was high enough to provide adeguate
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amounts of precipitate powder for lithiaton and calcination to
final battery active material as well as materials characteriza-
tion. Fig. 2a shows the concentration of soluble Mn as a fune-
tion of time during coprecipiation of MoCy0, -2H0. Fig. 2b
shows the results of the same experiment where the only
difference was the substitution of Mn with Mi. The soluble Mn
concentration decreased faster than Ni for the pure TM exper-
iments, indicating that pure MnCy0,-2Hp0 initially precipi-
tated faster than pure NMiC#Os 2H20. These results indicated
that the manganese coprecipitation reaction had a lower acti-
vaton barrer, resuling in MnCy0,-2HO crystallizing and
precipitating faster than NMiC,0y - 2H0 at the early nucleation
stages. As discussed earlier, initial copreci pitation experiments
were 30 minutes, The concentration of residual TM in the pure
Ni experiment has not plateaved in this time frame, indicating
that 30 minutes was not a sufficient tmescale to approach
equilibrium. We also note that while the pure Mo concentration
appears to have reached a plateao in less than 30 minotes, the
residual concentration still exceeds equilibrium (0.0045 mol
L7 compared to 00036 mol L7'). SEMs of the resulting
MnCy0, - 2H0 and MiCy0, - 2H0 precipitates collected after 30
minutes can be found in ESL Fig. S1.1 The faster precipitating
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Fg 2 Residual soluble (3] Mn and [B] Niin solution during coprecipitation of pure MNCy04:2H0 and MiCz04: 2H: 0. 2] Residual soluble Mn
ftriangles) and Mi (diamonds] during coprecipitation of feed with 3 : 1 Mn : Niratio. The total concent ations of TM and oxalate at the beginning of
the coprecipitation for all solutions were 20 mM. (dl Fraction of Mn and Ni ions in precipitate. Dashed lines added to guide the eye.
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MnCy Oy - 2H:0 particles were larger and had rougher surfaces
than the NiC, 0, 2H0 material.

Although MnCy0,-2H, O initially precipitated faster, after
a sufficient time period (40 minotes), the soluble Ni concen-
tration was significantly lower than the soluble Mn concentra-
tion At long times, the preci pitation of NiC0y - 2H0 was more
complete, consistent with the solubilities of the two TM
oalates. Based on the extent of copreci pitation measured for
the two pure TM oxalate systems, the precipitate collected from
the blend precipitation after 30 minutes would be expected to
be relatively entiched in Mn; however, the opposite Mn-lean
precipitate was observed experimentally (Fig 1), These results
indicated that there were additional considerations when Mn
and Ni were coprecipitated from the same solution. Another
interesting outcome from the experiments in Fig. 2a and b is
that if the TMs precipitate at different rates, the resulting
precursor would not be expected to be homogenous with
regards t0 TM  distribution in the precursor, which is
a commonly cited advantage of coprecipimtion synthesis for
battery precursor materials. The pure Mn and Ni copreci pita-
tion data suggests a Mn-rich core and Ni-rich shell, or separately
Mn-rich and then MNi-rich precipitate particles, would likely
result, To gain further insights, we conducted the same residual
concentration as a function of time analysis for both Mo and Ni
during the coprecipitation of 23 : 1 Mn : Ni feed.

Fig. Zc displays the residosl soluble Ni and Mn during
precipitation of a feed 20 mM 3 @ 1 Mn : Ni TM solution. Due to
the difference in initial concentration of Ni and Mn, Fig. 2d
shows the extent of Mi and Mn precipitated as a function of
time, which is more instructive for compari ng the homogeneity
of the coprecipitation. Interestingly, in this synthesis with the
blended TM feed both species precipitate at a nearly 1: 1 rato
throughout the synthesis, contrary to expectations based on the
pure Mn and MNi precipitation experments. This implies an
interaction between the two TMs andior the TMs and the
malate precipitabes were facilitating this process. The precipi-
tation of MNi in the 3: 1 blend feed solution proceeds much
faster than for the pure Ni feed, even though the 3 @ 1 blend has
the same total TM and oxalate concentration and lower Ni
concentration. The blend coprecipitation resulted in higher
overall extent of precipitaton for both species after 30 minutes,
Quantitatively, 87% of manganese fon and 92% of nickel fon
precipitated, compared to 77% and 60% in their pure o late
precipitation reactons, respectively. The resulting precipitate
was now Mi-rich, which was consistent with previous observa-
tions (Fig. 1). These results led us o speculate that the faster
forming MnCyOy-2H0 particles were providing seeds in the
blend system to facilitate MiC,0, 2HO coprecipitation. To
provide support for this speculation, we then conducted seed-
ing experiments by adding 0.34 g of pure MnC:0s- 2H20 seeds
at the beginning of a coprecipitation of 20 mM pure Ni*" with
ooalate (identical conditions to Fig. 2b exce pt for seed addition].
The mass of the seeds was chosen such that the amount of Mn
agtoms were 10% of the Ni atoms in the soluton. Residual
soluble nickel as a function of time during copreci pitation of
pure MNi, pure Ni with MnCy0y -2H,0 seeds, and theMn : Nid : 1
system are shown in Fig. 3a. Fig. 3b is the fraction of Ni that has
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Fig. 3 (al Measured soluble Mi as a function of time during copreci-
pitation of 20 mM coalate with 20 mM Mi (tiangles] 20 mM Ni with
M0y - 2H 20 seeds [diamonds), and 20 mM 3 : 1 Mn : Ni [circles). (b)
The fraction of Ni lost to the precipitate phase using the data in (a).
Dashed lines added to guide the eye.

been precipitated as a function of time for the same experi-
ments. It can be seen from Fig. 3a that adding MnC, 0, 2H,0
seeds facilitated faster coprecipitaton of nickel. However,
inspection of Fig. 3b reveals that the coprecipitation of Niin the
seeded experiment was still slower than for the Mn :Mi 3:1
blend. We speculate that this difference was largely due to
differences in surface area between the initial particles in the
3:1 blend synthesis and the MnCy0,-2H,O particles in the
seeded experiment. We expect that the initial precipitates that
formed in the 3 :1 blend synthesis were very small, though
detailed characterization of their size was challenging and is
a focus of current i meestigations in our lab. In contrast, the seed
particles were from pure MnCyO, - 2H, O synthesis experiments
and these partcles were quite large, with an average size of ~20
pm that was consistent with previous reports -4 4 SEM
image of the seeds can be found in ESI, Fig. 51.% The smaller
particles that form in sty during synthesis in the 3: 1 blend
system provide more surface for the coprecipitation, speeding
up the loss of residual Ni in the solution to the precipitate phase
relative to the lower surface arca seeded experiments. In
summary, the seeded precipitation experiments  provided
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evidence that the MnCeOy 2H20 in the 3:1 blend facilitates
faster initial precipitate formation, which speeds up the
precipitation of MiC,Oy - 2Hy0. These results indicated that at
least in some cases TMs with very different precipimtion rates
can precipitate almost at the same rate in blends because seeds
of faster forming precipitates will facilitate increasing the
precipitation rate of the slower precipitation compouwnds,
Further investigation is needed to determine how general this
observation is with regands to concentraton regimes, TM
species, and coprecipimtion anions; however, it provides
evidence that coprecipitaton does indeed provide homoge-
neous TM precipitates = even if the rates of precipimton ane
quite different.

Cralates structural and thermal characterization

According to previous reports, both Mn and Ni oxalates may
exist in an a-phase dibydrate oalate®+* whose prototype is the
mineral humbodtine o-FeCp0s- 2H20 with monoclinic space
group C2ie.® Nickel oxalate dibydrates have also been reported
o crystallize in the orthorhombic system in space group
Ceom, ™ whose Xeray peaks are i ndewed with f-FeCy04- 2H, 0%
Mn oxalate, unlike the other d-block TM oxalates, does not
present an orthor hombic B-MTC 20 2HO [where M stands for
the d-block TM) modification.®*** It has another dibydrate,
however, denominated as y-MnC,0,-2H0 which is also
orthorhombic while belonging to space group P2,2,2, and is
found to crystallize under high pH conditions, *

XRD patter ns of the pureand blend T oo late powd ers were
analysed to determine the resulting structures (Fig. 4). The pure
Mn oalate was indexed with the oFeC,0,-2H0 monoclinic
phase and the pure Ni oxalate was indexed with the p-FeCOs-
*2H.0 orthorhombic phase® The XRD pattern of the blend
3 : 1 feed TM oxalate [note: ICP compositon was 2.6 : 1 Mn : Ni)
powder was identical to the pattern of Ni oxalate powder,
consistent with the feoxalate, rather than a coexstence of the
two oxalate polymorphs. The peaks in the blend oolate,
however, are less sharp and intense compared o the pure Ni

5 als =
é —‘ﬁgi,- -1,:,- ‘Hﬁ;@ima:u:m
T SSEEGEESEE
T
26 (degree)

Fig. 4 XRD patterns of MiC04 2H; QO red), Mn: Ni 3 : 1 feed cxalate
dihydrate (bluel, and MnC 0y -2H0 black. Miller indices comes pond
to orthorhombic and monodinic symmetnes for MiCz04-2HzO and
MnC: Oy 2H0, respectively.
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oxalate dibydrate, whichindicates some non-ideal mixing of the
cations in the lattice structure and/or smaller erystallite siees.™
The peaks of the blend powder were also shifted o lower 20
values compared to the peaks of pure Mi omalate powder, which
indicated expansion of the crystal lattice, ™ The lattice param-
eters calculated for the blend oxalate dibydrate were o = 11.99
A, b= 553 A, and ¢ = 15.62 A, compared with those of NiC,
0,-2H O being o = 1175 A, b = 528 & and ¢ = 15.52 A" The
shift in the lattice parameters with the addition of Mn to the
precipitation soluton indicated incorporation of larger stee Mo
106 [an" = 0.81 A, Ni* = 0.60 AJ into the crystal, consistent
with homogeneous precipitation of the TM oxalates and not
independent precipitation of individual MoCy0,-2HO and
MiCx04 ZH:0 particles.

Previous studies haw also shown Mo-Ni forms a solid
solution when precipitated with oealate "= Unepectedly,
even though the blend system has 75% Mn and MnC, 0y 2HO
precipitates faster than NiC, Oy 2H,0, the resulting phase was
consiste nt with the B-NiC, 0, 2H,0 instead of o-MnC, 0, - 2HL0.
Thus, the BMIC0,-2H,0 phase was favourable at these solu-
tion conditions. Whether the blend oxalate is o- or B-ocalate is
dependent on the synthesis conditons.™ We are currently
exploring the detailed phase disgram for these oxalate materials
and this topic will be the subject of a future publication;
however, it appears that under the majority of soluton
compositions in the Mn-Ni blend system, adjusting only the
Mn : Mi ratio, the BNiCyOy- ZH20 was the preferned structure,
The extent of Mn precipitation was greater in the blend system
compared to pure MoC,0,-2H, 0 [Fig. 2). This observation also
suggrested that the fNiC, 0y - ZH0 strocture faci litated a grester
extent of Mn precipitation relative to the o phase croystal strue-
ture that forms in the pure Mn precipitation,

TGA analyses were conducted on the three oxalate samples.,
The debwdration step, which occurs below 200 °C, caused
& mass loss of ~20% for all samples, which indicated the oxalate
precursors synthesized were dibydrates (Mn and Ni composi-
tion of MngzraMiazeCz04 ZHz0 for the blend precursors from
ICP, feed was 3 : 1 Mn : Ni). Both the dehydration temperature
and the malate decomposition temperature are grester for
NiCy0s 2HxO than for MnCyOs-2Hz0, indicating that the
thermal stability of MiCu0,-2H,0 was greater, In the case of
Ming 73Ny 24020, 2H0, the dehydration and oxalate decom-
position peaks were between the valoes for NMiCy0, - 2H20 and
MnCy0,- 2H20. The relatively broad and high temperature for
the dehydration peak, however, sugpested the structural water
was in an environment more similar o that of NiC,0, - 2HL0.
This observation was consistent with the XRD patberns indi-
cating that the blend oxalate strocture was consistent with
NiCy0,- 2H, 0. TGA profiles and full discussions can be found in
the ESI, Fig. 52.1

Synthesis of slight variations of Mn : Ni ratio stoichiometry
materials

As discussed above, solution equilibrium calculations provide
insights into selecting feed stolchiometry, but these caleula-
tions alone were not quantitative enough to use for predictive
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synthesis, partcularly at low solution concentrations desirable
for tuneable particle morphologies. Quantitative predictive
muodels incorporating the precipitation rate will be a long-term
goal; howewer, further study and information on particle size
distribution as a function of time will be needed to appropri-
ately normalize the precipitation rate. To further demonstrate
the impormanee of working towards these predictivwe smthesis
methods, two  additional blend oxalate precipitates  wene
wrnthesized such that three resulting precursors were made:
one that was almost exactly at the desired 3 : 1 Moo Ni stoi-
chiometry, one that was enrched inMi (<3 1 1), and one that was
enriched in Mn [=3 : 1), All oxalates were synthesized wsing
20 mM total TM and the particles were collected after 30
minutes to be consistent with earlier procedures, The 3:1
Mn : Ni feed from the earlier experiments resulted in 260 1
Mn : Ni, confirmed using ICP on digested powders, and this
served as the Ni-rich sample. A feed ratio of 3.52 @ 1 resulted in
302 :1 Mn:Ni (the swichiometric sample], and 3.82 : 1 feed
resulted in 333 :1 Mn : Mi (Mno-rich sample). The composi-
between  equilibriom  caleulations  and
messurements varied from ~5-15%. After calcination of the
malate samples in the presence of lithiom, the detailed

tonal deviston

composiions of the three "LMNO" materials were Lidng -
Niy 004, LiMng 5 Mig 500, and LiMng o Nig 0, which will be
referred to as Ni-rich, stoichiometrie, and Mn-rich LMNO,
respectively. These listed compositions have Mn: Ni ratios
consistent with ICP measurements on the final actwe material
and assume a Li: TM ado of 1:2 and TM : O ratdo of 1:2.
Actual Li: TM ratios and a summary of compositonal infor-
mation determined by 1CP can be found in EST, Table 52

Characterization of the stoichiometric and non-
stoichiometric LMNO materials
The three LMNO samples were synthesized to demonstrate that
small compositional  variatdons  during  coprecipitation
synthesis, when not accounting for the deviation from feed
stoichiometry, can result in detectable changes to the final
aretive material after caleination. LMNO is cubic with Li on the
tetrahedral sites of the strocture. Depending on the distribution
of Mn and Ni ions in the latice, LMNO has two different crys
tallographic structures: with disordered Ni and Mn on the
ocmbedral sites the cubic spinel has the space group Ri3m,
while with higher ordering of Ni** and Mo* it has the space
group P4:32 In synthesizing spinel LMNO the high cal cination
temperature leads to the reduction of manganese from Mn™ to
Mn®", which results in the Fd3m disordered structure™
Annealing at 700 “C for extended perods has been reported to
reoxidize the Mo®™ back to Mn** and may comvert the spinel to
the primitive cubic ordered structure -4

Achieving the appropriate chemical composition is essential
for extracting the maxdmum capacity from LMMNO materials. For
the molecular ratio of Mn : Ni 3 @ 1, theoretically all the electro-
chemical capacity comes from the NiT/NI™ redox couple. When
there is Mn : Ni deviation from 3 @ 1; however, either Mo-rich or
Mi-rich materials may result in changes to the oadation state
and/or the crystal phase, thus influencing the electrochemical
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performance, Since Ni in LiNigsMng 50y is N'L}', wir assume that
nickel ions in the whole series of Mo-fich LiNiMn, 0, mabe-
rials with 0 < x < 0.5 are also M Taking charge newtrality into
account, the Mn* and Mp** content in the materals can be
written as LiNL  Mng o Mg O, Assuming that the 4.7 v
high voltage capacity comes from the Mi redoo, and that Mn™
Mn* redox givesa ~4.1 V plateau during eyeling, we expect to get
2x Li capacity per formula unit at ~4.7 Vand (1 — 2x) Li capacity
at ~4.1 V, which have been observed experimentally, ™25
Within the Mo-rich range, the material should be stmble in the
spinel phase, LiMny Oy being the extreme case, though more Mo
content results in a higher fraction of Mie'™ jons which poten-
tially results in Jahn-Teller distorton, being detrimental to the
structural stability. For Mi-rich materials [0.5 < x < 1), we assume
the Mn*” will not be further odidized, and thus the oxidation
state of Ni ions will be increased from Ni™™ to Ni** to meet charge
neutrality and the result would be LN Niy, 5 Mo, "0,
Summing up the Ni¥/M* and the Ni¥"/Ni*" couples, the high
voltage capacity would be constant through the compositional
range, LiNE"Mn* 0y being the exdreme case. Based on the
analysis abowe, if the compositional devistion was Ni-rich,
a reducton in the high voltage electrochemiol capacity would
not be expected, However, as the Ni content i nereases, the risk of
forming a rock-salt impurity phase sgnificantly increases, which
potentially deteriorates both the electronic conductvity, ionic
conductivity, and total actve material and thus energy density.
The end point material, LiN*"Mn*" Os was previously reported to
have a rock-salt strocture, showing XRD patterns consiste nt with
LiMNi0, ™7 ** This means that there are likely multiple phases
coexisting across some range of compositions in the Nisrich
regime. The formation of layered structures also presents the
risk of phase segregation in the material, because Li-Mn-0O has
limited stability as a layered stnuctore 749582 5EM images of
the three precursors and theircorres ponding final cedd e samples
can be found in ESI, Fig. 53.1 All the precursors exhibit hexag-
onal platelet secondary partcle morphologies and  similar
secondary particle sizes of about 20 pm, The secondary particles
were comprised of multi-faceted primary particles with length
scales of approximately a couple hundred nanometers. The
overall morphologies of the LMNO samples exhibit no signifi-
cant differences and were not expected tocontribute significantly
to any observed differences in electrochemical cell perfor mance,

XRD patterns for Mi-rich, stoichiometrie, and Mn-rich LMNO
powders are shown in Fig. 5 The peaks, except those marked
with an *, all can be indexed w Fdim spinel cubic structures.
The Misrich sample contains impurity peaks, and their location
was consistent with previous reports of Li,M, 0. struce
tures,™™** This implies that the higher fraction of nickel
cannot be accommodated in the LMNO structure and thus the
Mi enrichment facilitates the formation of the rock-salt impu-
rity. The impurity phase was not observed in the Mn-rich LMNO
sample.

Rietveld refinements were done using only the Fd3m space
group and the resulting lattice parameters of the three LMNO
samples were 8.2046 A, 58,1909 A, and 81934 A for Nirich,
stoichiometric, and Moerich samples, respectively. The larger
lattce parameter for the Mi-rich LMNO sample was attributed o
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Fig.5 (a] ¥XRD patterns of Mi-rich (Bue] stoichiometric red), and Mn-
rch (back] LMNO. [b] Close up of pattems in (a] between 35-46
degrees to better highlight the rock-salt impurity phase peaks [marked
with *].

the higher Ni ion content, sinee the ionie radius of N [0.70 A)
is larger than the average of Mn* (053 A) and Ni** [0.69 A)™
Though some of the Ni distributes into the impurity phase, the
high Mi content likely helps to ensure high Ni within the LMNO
structure as well. The slightly higher lattice parameter of the
Mn-rich LMNO sample relative to the stichiometric sample
may have been due to the relatively incressed amount of Mo™
[0.645 A), whose jonic radius is greater than the average of Mo *
[0.53 A) and Ni** (0,69 A). Relative peak intensities reflect the
relative exposure degree of surface oremtations in the spinel
structure” *-** By normalizing to the (311) peak of the three
patterns, the relative intensiies were compared of the high-
active™ crystal facet, which were 2,066, 2,100, and 2,186 for Ni-
rich, stoichiometric, and Mn-rich LMNO samples respectively.
The similar values implied that the exposure degrees of the
high-active** facet was not expected o contribute to differences
in electrochemical measure ments,

The discharge curves of LULMNO coin cells, all charged/
discharged at a rate of C/10, are shown in Fig. 6. The stoichio
metric LMNO had the highest first cyele discharge capacity
of 123 mA h g7, while the Mo-rich and Ni-rich LMNO show
similar capacities of asround 115 mA h g ', The discharge
capacity was divided into the high [4.9 to 4.1 V, v LULT) and low
[4.1 to 3.6 V, vs. LUL) woltage ranges for comparison,
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corresponding to primarily NPNY and Mot Mo redoc
couples, respectively. Table 1 lists the electrochemical capacities
of the three LMNO materials within thess potential ranges, and
also the caleulated Mn® and Ni* amounts based on these
capacities, All the discharge capacities in Table 1 were averages
of results from three differentcells foresch representative LMMNO
sample. The low voltage capacities of the Mi-rich LMNO and
stodchi ometric LMINO were nearly i dentical, and thus so were the
caleulated amounts of Mo®™, The Mn® formation occurs to some
extent during the high temperature caleination procedure,
regardless of the composition of the samples. The Moerich
LMMNC, however, had a greater capacity within the low voltage
range, which was attributed to higher amounts of Mn* in the
structure. The higher fracHon of Mo®™ observed was also
consistent with the larger lattice parameters and the expected
composition of LiMig e Mg 2 Moy 5 0, with 0,08 mol Mn®
per formuls, which was close to 0,09 mol Mo® per mole of
LMNO calculated based on the low voltage range capacity. In
comparing Mmorich LMMO and stolchiometric LMNO, the
amount of Ni*” in the materials was caleulated by assuming that
all the high voltage capacity came from the NN N redox
couples) (Table 1) Even in the stoichiometric sample, the Ni
redox couple cannot be fully exploited during charge or
discharge, possibly due to ion diffusion or electron exchange
limitations.****** The Ni** amount calculated from the electro-
chemical capacities of the Mn-rich material contzing 94% the
Ni** of the stoichiometric sample, close to the theoretical Ni*
percentage of 92% obtained by comparing LiNi .~ Mngaq™
Mnye 0 0 LiNipsMngsOs. This implies that the intrinsic
capacity losses relative to the theoretical capacity appears to be
proporionally lost by Ni* in the materals, Therefore, the
detailed chemiml compositon of LMNO samples provides
insights into the expected relative capacities in the low voltage
and high voltage regions of the material, in partcular when
comparing Mn-rich and stoichiometric LMMNO materials, This
analysis was consistent with previous reports in the lierature
and was consistent with analysis of the dQYdV plots of the elec-
trode materials (see Fig. 54 in ESIT for the dQYdv plots and
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Tablel Summaries of the Ni-rich, stoichiometric, and Mn-rch LMNO dischange capacities. Standard deviations for capacity values were based

on 5 discharge cydles of 3 cells for each material

Specific capacity [mA h =)

T™ ion amount per maole of
LMN» based on capacities

Sample Mn : Ni (ICF) Tatal Low voliage High voltage ™ (mol) Wit [mal)
Nickel-rich 146 :0.54 118.6 =+ 5.0 99 + 13 1087 + 3.7 o7 a7
Stoichio metric 1.500: D50 121.8 + 2.4 95+ 1.0 1123 + 3.0 [1E 1 03B
mn.gan.ag&ri.d'u. 1.54 : D.AG 118.2 + 1.9 126 = 1.0 1055 = 1.0 [IEEe 036

“The Ni*" amount was caleulated assuming all the high voltage capacity was from Ni**/Ni'" redox couple.

further discussion).™*** Detailed comparison between Mi-rich
and stoichiometric LMNO was not quite as straightforward
because the impurity phase in the Mi-rich sample complicates
the analysis. The quantity of the impurity phase for the Ni-rich
LMMNO appears to have been insufficient to significantly reduce
the material capacity, though capacity decreases caused by more
substantial proportons of the rock-salt impurity for Mi-rich
LMMNO samples hawe been previously established in the liters-
ture.™ Similar levels of exposure of the high-active facet, as
aforementioned, and similar Mo®™ in the stoichiometric and Ni-
rich materials (Table 1) likely made identification of the elec-
trochemical performance differences due to the composit onal
varistion more difficult to obseove,

Cycle life testing of LiLMNO coin cells was also conducted
and the results can be found in ESI Fig, 55.1 All cells had similar
capacity fade after 200 charge/discharge cycles at C10. The
specific discharge capacities after 200 cycles were 1129 mA h
g 1159 mah g, and 107.1 maA hg " with capacity retentions
of 952%, 97.4%, and 91.9% [relative to the 10" cyele) for the
stoichiometric, Nisrich, and Moerich LMNO materials, respec-
tively. All cells appeared to have an actvaton-related capacity
increase for the first several cyeles, thus the 10 cyele was chosen
for relative capacity retention, = %= While the stmichiometric
LMMO had encouraging results both with regaeds o total
capacity and capacity retention, the relatively small differences
between the three materals makes it premature to assign
arhieving the smichiometric composition as improving thess
two metrics without more extensive cell testing and analysis,
Interestingly, the first cyele coulombic efficiency (CE) was
sgnificantly different for the three materials, where the values
were 00.8%, 85.0%, and 88.7% for stoichiometrie, Ni-rich, and
Mn-rich LMNO, respectively. The CE of the first few cyeles is an
indicator of the stability of the eledrode-electrolyte interface and
high CE indicates a stable interface.™ The high CE of the stoi-
chiometric LMNO suggested it formed a relatively stable elec-
trode-electrobyte interface, though more detailed i mvestgatons
would be needed o confirm the stoichiometry at the interface of
these materials with differing bulk compositons and the
potential impact on the resulting solid-electrolyte interphase,

Conclusions
Coprecipitation is a popular route to synthesize Liion battery

precursors, and performing coprecipitation in low solution

15792 | 1 Mater Cham A, 2017 5, 1378513748

concentration  regimes  can  enable  explicit  tuning  of
morphology of battery precursor materials, A study was con-
ducted to determine how significant the deviation in composi-
tion of multicomponent TM precursors may be from feed
stoichiometries in alowconcentration condition, using a model
system containing Mo™, N™, and C,0," as coprecipitation
species. Equilibriom calculations sugpest deviation between
feed and resulting precursor stoidchiometry, which had quali-
tative but not guant ative agreement. Experiments tracking the
extent of precipitation of cach of the TM species sugpests that
while TMs haw very different rates in isolstion, the faster
precipitating species results in seed particles that result in
nearly 1@ 1 precipitation of Mi and Mn when precipitated from
the same solution. Synthesis of precursor particles that were
produced using 3 : 1 Mn : Ni feed (Nienriched precipitate), 30 1
Mn : Ni precipitate, and an intentionally Mo-enriched precipi-
tate demonstrated that even small deviations in relative Mo : Ni
stoichiometry can have detectable impacts on material stroe-
ture and electrochemical properties - though for these relatively
small compositional deviations the material properties were not
extreme, These results suggrested that careful conside ration of
solution chemistry, including equilibrium distribution of T
and the rate at which different TM are precipitated, should be
given more careful consideration dur ng the synthesis of batteny
materials using coprecipitation methods. While in this study
low concentrations of TM were used which was more relevant to
morphology uning of active materials important for iovesti-
gating morphology effects on elecrochemical properties, these
results are also extendable o some effects observed with more
concentrated solutions. In particular, the incorporation of
chelating sgents commonly used in larger scale coprecipitation
will intensify compositional devistions between feed stoichi-
ometry and particle smichiometry even at relatively high T
concentrations.

Experimental methods

Preparation of calate precursor and cathode active material
particles

Leboratory grade MnSO0s-Ha O, NMiSOs -6Hz0, and MNaxCyOs (all
from Fisher) were used for the coprecipiation synthesis. T
sulfate and malate reagents were dissolved separately in
deionized (DI) water to prepare TM solution and owxalate solu-
tion, and both solutons were heated o 60 “C. The TM soluton
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was then poured all at once ioto the oalate solution to start the
copreci pitation reacton. The total volumes of the mixed solo-
tions were 0.8 L (within a 1 L beaker] for all syntheses, and the
reagent masses were adjusted to each desired  solution
concentration and TM feed ratio. The temperature was main-
tmined during the reaction at 60 “C using a hot plate. The
copreci pitation solution was stirred contmiously at 300 rpm
with a8 magnetic stirer to keep the solution homogeneous
during the precipitate formation and to prevent particles from
settling within the suspension, The particles were collected by
vacuum filtcation afer 30 minutes, and then fnsed with ~2 L
DI water before drying in the oven (carbolite] at 80 *Covernight.
The precursor particles were mixed with 5% excess LIOH with
1:2 Li: T ratio using a mortar and pestle by hand for 5
minutes. This micture was then fired in the furnace [carbolite
CWF 1300 box furnsce] in an air atmosphere at 850 °C for 6
hours to obtsin the final sctive material [with the et
composiion generally being  LiMng sNig20y). The furnasce
temperature ramp rate was set at 1°C per minote, and during
the firing process the temperature was programmed for holds at
200 “C and 350 *C each for 2 hours to complete the individual
steps of the structural water loss and oxalate decomposition,

Solution equilibrivm calculations

Equilibrium caleulations were perfformed using OLI™ Studio
9.2, Calculatons were also perfformed using an appropriate
system of equations  including  solubility constants  and
complexation  constants'** combined with an appropriate
numerical optimization package.”™ We noted that the equilib-
rium concentrations of the various selution species did not
deviate significantly when using literature data and numerical
optimization compared to commercial OLT™ caleulations;
however, the OLI™ walues are the only ones reported in this
study because they incorporated temperature influences, and
this information was not readily available in the literature.

Rate of precipitation of Ni and Mn

Experiments were conducted o determine the concentration of
cach soluble TM remaining in the soluton as a function of
copreci pitation time, The reactor vessels were 1 L beakers and
solutions were prepared in the same manner as deseribed
sbove, At perindic time intervals during the coprecipitation,
a sample (~2 mL) was withd rewn from the 1 L beaker using a 3
mil syringe, For the withdrawn sample, the agueous phase was
guickly separated from the solid precipitate particles by forcing
the solution through a 33 mm diameter syringe filter with 0.22
pm pore size (Fisherbrand). The aqueous phase was further
digested using agua regia and diluted with DD water into
a proper concentration for inductively coupled plasma optical
emission spoctroscopy (ICP] analysis [PerkinElmer Optima
8000). The typical concentration range for I0F analysis was 0.1
o 100 ppm for Mn and Ni. Samples were continuously collected
slong the course of the resction and the TM concentrations
remaining in the aqueous phase were obtained as a function of

reaction time. The total volume collected during the experiment
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for compositional analysis was typically 30 mL, or 3.5% of the
total intdal solution volume,

Material charactenzation and clecirochemical evaluation

The chemical compositions of the precursors were measured
using ICP analysis after the powders were digested with agua
regiaand diluted o appropriate concentrations for analysis. The
morphologies of the oxalate precursor and caleined final sctive
materials were characterized with a scanning electron micro-
scope (SEM, FEI Quanta 650). The crystal structure of the
materials were anabeed by powder Xeray diffraction (XRD) with
& PANalytical X'pert ProdMPD using a Co-Ka radistion source.
Thermal gravimetrical analysis (TGA, TA Q50]) was conducted o
confirm the amount of the structural water and the weight loss
profile of the oxalate precursors. All ther mal measurements were
performed in air at a heating rate of 10 °C min ", Electro-
chemical testing was performed using CR2032type coin cells.
The cathodes were fabricated by blending 80 wt% active mate-
rial, 10 wt% acetdene black as the conductve additve, and 10
wit% polyvinylidene difluoride binder [dissolved in N-methd-2-
pywrrolidone as the solvent] first by hand with mortar and
pestle and then in a slurry miver [Thinky] for 6 minootes, The
mixed electrode slurry was then pasted onto an aluminum foil
current collector with an AFA-3 automatic film coater (MTT) and
using a doctor blade with a gap thickness of 200 pm. The elec-
troede was dried at 80 °C overnight in an oven in air, followed by
another 3 hour vacuum drying at 80 “C prior to punching into 14
mm dismeter electrode disks, The loading of active material in
electrodes evaluated were all between 7.2 and 12.8 myg (4.5 and
8.0 myr e 7). Coin cells were assembled inside an anon-filled
glove box (<1 ppm Oy and Hp0) with a single thin film of
lithinm metal as the counter and reference anode, Celgard 2325
tril aver membrane was used as the separator, The electrolybe was
1.2 M LiPF; dissolved in ethylene carbonate (EC) and ethyl
methyl carbonate [EMC] (3 ¢ 7 vol%). The cells were tested in the
voltage range of 3.6-4.9 V at room temperature us ng a MACCOR
multichannel battery cycler. Where C rates are given, 10 was
assumed to correspond to 14.7 mA g~ ' LMNO active material,
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