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 

Abstract— As the sharp growth of gas-fired power plants and the 
new emergence of Power-to-Gas (PtG) technology intensify the 
interdependency between electricity and natural gas systems, it is 
imperative to co-optimize the two systems for improving overall 
efficiency. This paper presents a long-term robust co-optimization 
planning model for interdependent systems, for minimizing total 
investment and operation costs. Beside generators, transmission 
lines, gas suppliers, and pipelines, PtGs and gas compressor 
stations are also considered as investment candidates to effectively 
handle wind power uncertainties in the power system and 
compensate pressure losses in the gas network. Furthermore, the 
proposed model includes a joint N-1 and probabilistic reliability 
criterion to promote economical and reliable planning solutions. 
The proposed model is solved via a decomposition approach, by 
iteratively solving a base-case master problem and two operation 
subproblems to check N-1 and probabilistic reliability criteria. 
Numerical case studies illustrate the effectiveness of the proposed 
robust co-optimization planning approach. 

Index Terms— Co-optimization planning, power-to-gas, robust 
optimization, N-1 contingency, probabilistic reliability. 

NOMENCLATURE 

Indices: 

d,l,b Index of electrical loads/transmission lines/buses. 

g,j,p,c,a Index of gas loads/gas suppliers/pipelines/gas 
compressor stations/PtG facilities. 

k,r Index of identified worst cases/dual reliability cuts. 
m,n Indices of gas network nodes. 
q Index of Monte Carlo (MC) simulation samples. 
t,h,i,w Index of years/load blocks/generators/wind farms. 

Variables: 

ihtAU , lhtAL Binary variable which is equal to 1 if unit i/ line l 

is available, being 0 otherwise. 
bc
tD , bc

tW Base-case system load shedding/ wind spillage in 

year t. 
wc
tD  Worst case system power imbalance in year t. 

phtf  , phtf   Binary variables to indicate gas flow direction of 

pipeline p at load block h of year t. 

chtf  , chtf   Operation status indicators of compressor station c 

at load block h of year t. 
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jhtG , chtFC  Gas production of gas supplier j/ gas consumption 

of compressor station c at load block h of year t. 

ihtG , ahtG  Gas consumption of gas-fired unit i/gas production 

of PtG facility a at load block h of year t. 
IC,OC Investment/operation cost. 

bc
ihtP , bc

whtP  Dispatch of generator i/ wind farm w at load block 

h of year t in base case.  
bc
ahtP , bc

dhtv  Base-case power consumption of PtG a/ load 

shedding of demand d at load block h of year t. 
bc
lhtPL , bc

bht  Base-case power flow of line l/ phase angle of 

electrical bus b at load block h of year t. 

mhtPr  Squared pressure of gas node m at load block h of 

year t. 

phtQ , chtQ  Gas flow in pipeline p/compressor station c at load 

block h of year t. 

dhts , dhts  Binary indicators for uncertainty set.  

ity , lty , aty  Investment status of generator i/ transmission 

line l/PtG facility a in year t. 

jtz , ptz , ctz  Investment status of gas supplier j/ pipeline p/ 

compressor station c in year t. 

 u  Variables in response to uncertainties. 

 wc ,  mc  Variables in worst case/MC simulation. 

Constants: 
IC , WC  Power imbalance/ wind spillage cost. 
reC  Threshold of wind power recourse cost. 
invC  Investment cost of a new electricity/gas asset. 
fuel
iC , retire

iT  Fuel price/retirement year of unit i. 
pro
jC  Production cost of gas supplier j. 

DT,dr Time duration and discount rate. 
bc
dhtD , ghtG  Forecast value of electrical load d/gas load g at 

load block h of year t. 

dhtD , whtP  Load/wind deviation from forecast value of load 

d/wind farm w at load block h of year t. 
com
ce , ptg

ae  Efficiency of compressor station c/PtG facility a. 

κ Coefficient of present-worth value. 

mnK  Gas flow constant of pipeline mn. 

M A large enough positive number. 
ND,NW Number of electrical loads/wind farms. 
NT,NH,NS Number of years/load blocks/ MC samples. 

,
bc
f whtP  Wind power forecast of wind farm w at load block 
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h of year t. 
l
mPr , u

mPr  Squared pressure lower/upper bound of node m. 

htR  System spinning reserve at load block h of year t. 
up
iR , down

iR  Up/down ramping limit of unit i. 

 s l ,  r l  Sending/receiving bus of transmission line l. 

lX  Reactance of transmission line l. 
retire
ity  Retirement status of unit i in year t.  

dt , wt  Budget of electrical load/wind uncertainty in year t. 

c  Compressor factor. 

 min/max  Min/max value of a quantity.  

Functions and Sets: 

CG,CL,CA Set of candidate units/transmission lines/PtGs. 
CS,CP,CC Set of candidate gas suppliers/pipelines/ 

compressor stations. 
D,W Uncertainty set of electrical load/wind generation. 
EG,EL,EA Set of existing units/transmission lines/PtGs. 
ES,EP,EC Set of existing gas suppliers/pipelines/compressor 

stations. 
 iF   Heat rate curve of generator i. 

GU Set of gas-fired generators 

 g L ,  pg L  Compact forms of certain system constraints. 

N(b), G(m) Set of components at electric bus b/ gas node m. 

I. INTRODUCTION 

wing to distinct advantages of gas-fired generators over 
traditional fossil units, including lower capital cost, higher 

efficiency, faster response capability, and lower carbon 
emission, gas consumption by the power system has shown a 
sharp growth from 27% in 2005 to 39% in 2016 [1]. In addition, 
a new promising technology, Power-to-Gas (PtG), is being 
deployed to effectively convert excessive electric energy, 
especially from wind, into compatible gas [2]-[3]. 

Indeed, the growing reliance of the electricity grid on the 
natural gas network has significantly intensified interaction of 
the two systems, and brings new challenges on the reliability 
and efficiency of both systems. Specifically, different from 
fossil units whose fuel supply has been traditionally considered 
sufficient, gas-fired units rely on just-in-time gas supply from 
the natural gas network. In addition, PtG facilities count on the 
natural gas network to absorb gas converted from excessive 
wind energy. Consequently, co-optimization planning is in 
urgent need for strengthening the reliability and sustainability 
of interdependent energy infrastructures. In fact, 
co-optimization planning models have been actively sought by 
regional energy market operators [4]-[5] and federal agents [6]. 

The co-optimization planning problem of interdependent 
electricity and gas systems determines the type, capacity, 
location, and time of new components to be invested over the 
planning horizon, in order to ensure reliable and cost-effective 
power/gas production and delivery to meet electricity/gas 
demands. Such components in interdependent energy 
infrastructures would include generators, transmission lines, 
PtG facilities, gas suppliers, pipelines, and compressor stations. 

Some literatures have studied expansion planning of 
integrated energy systems [7]-[13]. A long-term, multiarea, and 
multistage model for the expansion planning of integrated 
electricity and gas system is studied in [7], while considering 
the whole natural gas value chain. Reference [8] develops a 
combined gas and electricity network expansion planning 
model to invest in new pipelines, compressors, storages 
facilities, and transmission lines. Market interactions among 
various stakeholders are considered in [9], which models 
alternating current (AC) power flow of the power system and 
nonlinear nature of the gas network. A transportation model of 
the gas network is incorporated in the co-planning model in 
[10], which is solved by an interactive process between a 
least-cost investment master problem and two operation 
subproblems representing physical feasibility and financial 
optimality. The authors in [11]-[12] further consider power 
system uncertainties such as demand growth, energy price, and 
government policies in the co-planning model for a combined 
electricity and gas market. An integrated multi-period 
three-stage model is studied in [13] to determine optimal 
generation, transmission, and natural gas network expansions. 

Reliable electricity delivery is of the core value in the entire 
power industry, and the N-1 criterion is widely used in power 
system planning as a deterministic approach to ensure 
reliability [14]-[15]. The N-1 standard requires that the normal 
operation should be maintained, i.e., without any loss-of-load, 
under any single contingency outage. However, the 
deterministic N-1 standard neglects the stochastic nature of 
simultaneous outage of multiple generators and transmission 
lines. Alternatively, probabilistic models consider reliability 
criteria, such as loss-of-load-expectation (LOLE), loss-of- 
energy-probability (LOEP) and expected-energy-not -supplied 
(EENS), in expansion planning of power systems [16]-[18]. 
Indeed, it is mentioned in [19] that the N-1 criterion may lead to 
over-investment solutions, while probabilistic approaches, 
focusing on high-probability/low- damage events to derive low 
investment costs, could leave the system vulnerable to 
low-probability/high-damage events. Both deterministic N-1 
and probabilistic reliability criteria are adopted in [20] to 
evaluate reliable planning of power systems. 

This paper proposes an adjustable robust optimization based 
co-optimization planning model for interdependent electricity 
and natural gas systems, which minimizes the total investment 
and operation costs of the two systems while considering power 
system uncertainties. Specifically, due to variability and 
uncertainty of wind power, wind spillage has long been an issue 
[21]-[22]. This paper focuses on investing in new gas-fired 
units and PtG facilities in the planning stage, and adopting wind 
power recourse cost to mitigate wind spillage under 
uncertainties. In addition, both N-1 and probabilistic reliability 
criteria are incorporated into the co-optimization framework, so 
that low-probability/high-impact events are adequately 
addressed while overall reliability is also ensured. Unlike the 
power system, the gas network is regarded highly reliable and 
the N-1 criterion does not apply [11]-[12]. Thus, uncertainty 
and curtailment of non-generation gas loads are not considered. 

Major contributions of the paper are threefold. 

O



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

3

1) Modeling of Interdependent Systems: Compared with 
[7]-[13] which consider generators, transmission lines, gas 
suppliers, and pipelines in expansion planning of integrated 
energy systems, the proposed co-optimization planning 
model also considers PtGs and gas compressor stations as 
investment candidates for facilitating a deeper penetration 
of wind energy and compensating gas pressure losses with a 
proliferation of gas-fired units. Moreover, retirement of 
traditional coal-fired units is also considered. In addition, as 
compressor stations typically consume about 3-5% of the 
total transported gas [23], gas consumption of compressor 
stations is rigorously modeled, which has been neglected in 
[7], [10]-[11], [13]. 

2) Wind Power Utilization: To further avoid extensive wind 
spillage under uncertainties and promote PtG facilities, 
wind power recourse cost is proposed within the robust 
optimization framework for enhancing wind power 
utilization. Similar to the recourse cost for restricting 
re-dispatch cost in [24], wind power recourse cost proposed 
in this paper can effectively limit wind spillage quantities 
when various uncertainties are revealed. 

3) Reliability Evaluation Criterion: Compared with methods 
in [14]-[15] which only consider the N-1 criterion and 
methods in [16]-[19] which only explore the probabilistic 
reliability criterion for power system planning, this paper 
extends the robust optimization model to include a joint N-1 
and probabilistic reliability criterion for further promoting 
reliable and economical co-optimization planning solutions. 
That is, low-probability/high-impact damages 
corresponding to worst case realizations of uncertain 
electrical loads, wind generations, and contingencies are 
mitigated by the max-min N-1 subproblem, while the 
overall system reliability with respect to random outages of 
generators and transmission lines is guaranteed by the 
probabilistic reliability subproblem. Reference [20] 
discusses a joint deterministic-probabilistic criterion to 
evaluate reliability performance for a set of predefined 
planning strategies. In comparison, this paper investigates 
optimal planning solutions by integrating the N-1 criterion 
and probabilistic reliability criterion into a robust 
optimization framework. 

The rest of the paper is organized as follows. Sections II-III 
discuss the proposed robust co-optimization planning model 
and the solution methodology. Numerical case studies are 
presented in Section IV, and Section V concludes the paper. 

II. MODEL DESCRIPTION 

This section presents the mathematical formulation of the 
proposed robust co-optimization planning model, which 
considers uncertainties in electrical loads/wind generations, 
N-1 contingencies, and the overall system reliability. Although 
a finer temporal model such as time-series could better capture 
the stochastic nature and temporal correlation of renewable 
energy, it may be computationally intractable in the long-term 
planning problem due to the curse of dimensionality. 
Furthermore, the LOLE index, as a long-term reliability 
criterion used in power system planning, is traditionally 
calculated using daily peak loads or load blocks [16], [25]-[27]. 

In turn, following the convention of optimization-based power 
system planning [10], [15], [28], this paper adopts several 
blocks to represent typical correlated load levels and renewable 
energy outputs in multiple hours of each planning year. 

A. Objective Function 

The proposed robust co-optimization planning model of 
electricity and natural gas systems is to minimize the total costs 
associated with electricity/gas asset investments, electricity/gas 
system operation, electrical load imbalance, and wind spillage 
(1.1). Equation (1.2) calculates investment costs of generators, 
transmission lines, PtGs, gas suppliers, gas pipelines, and 
compressor stations. Equation (1.3) represents operation costs 
of electricity and gas systems, in which operation costs of 
gas-fired units are considered in terms of gas fuel cost and 
carried out by gas production costs. Coefficient of present- 

worth value is calculated as   11 1 t
t dr   . 

The proposed model is from the viewpoint of a cooperator of 
power and gas systems, while the objective (1.3) includes the 
total production costs of the power system and the gas network. 
The production cost of the gas network is represented as 

pro
t ht

t h j
jhtjCDT G    , while the production cost of the 

power system potentially includes costs of non-gas thermal 

units  fuel bc
t ht i i iht

t h i
DT C F P


   

GU
 and gas units. 

However, as gas-fired units consume natural gas and are 
regarded as gas loads in the gas network, different from non-gas 
thermal units, their costs are indirectly calculated via the 
production cost of natural gas suppliers. 

min I bc W bc
t t

t t
IC OC C D C W

 
        

 
 (1.1) 

inv inv

inv inv

inv inv

t i it t l lt
t i t l

t a at t j jt
t a t j

t p pt t c ct
t p t c

IC C y C y

C y C z

C z C z

 

 

 

 

 

 

        

        

        

CG CL

CA CS

CP CC

 (1.2) 

 f

pro

uel bc
t ht i i iht

t h i

t ht
t h j

jhtj

OC DT C F P

DT C G






    

   

GU
 (1.3) 

B. Investment Constraints 

The co-optimization planning model considers investments 
in units, transmission lines, PtGs, gas suppliers, pipelines, and 
compressor stations. Once a candidate is installed, its 
investment status will be fixed to 1 for the remaining years 
(2.1)-(2.6). Retirement of existing units within the planning 
horizon is also considered. That is, operation status of an 
existing unit is switched to 0 after retirement (2.7). Constraint 
(2.8) ensures that the total generation capacity can meet 
forecasted electrical loads plus system reserve. Constraint (3) 
describes the annual LOLE criterion, which is a widely 
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accepted probabilistic method for evaluating power system 
reliability. However, explicit analytical formula for (3) is not 
readily available, as annual system LOLE is a probabilistic 
criterion which depends on investment decisions as well as 
electrical loads and available wind energy. In this paper, (3) 
will be rigorously evaluated in the probabilistic reliability 
checking subproblem as discussed in Section III.C. 

( 1) ,i t ity y i  CG  (2.1) 

( 1) ,l t lty y l  CL  (2.2) 

( 1) ,a t aty y a  CA  (2.3) 

( 1) ,j t jtz z j  CS  (2.4) 

( 1) ,p t ptz z p  CP  (2.5) 

( 1) ,c t ctz z c  CC  (2.6) 

retire retire0, ,it iy t T i  EG  (2.7) 
max retire max bc

i it i it dht ht
i i d

P y P y D R
 

      
EG CG

 (2.8) 

  max
,, , ,bc bc

it lt dht f whtLOLE y y D P LOLE  (3) 

C. Operation Constraints 

The proposed planning model also evaluates operation 
constraints for the power system and the gas network, as well as 
their operational interdependency. Power system operation 
constraints (4) describe operating conditions of units, 
transmission lines, buses, wind farms, and PtGs in the base 
case. Equation (4.1) represents nodal power balance. Constraint 
(4.2)-(4.3) limits annual system load shedding in the base case. 
Annual system wind spillage in base case is calculated in (4.4). 
Using DC power flow model, constraints (4.5)-(4.8) enforce 
power flow limits of existing and candidate lines. Bus phase 
angles are limited by (4.9). Constraints (4.10)-(4.14) enforce 
capacity limits of existing/ candidate generators, existing/ 
candidate PtGs and wind farms. Equation (4.14) represents that 
wind power is dispatchable in the way of wind curtailment. 
That is, wind generation is modeled as a dispatchable resource 
because wind power can be spilled to maintain the operation 
security of power systems, especially in high wind and low load 
situations [28]-[29]. 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

bc bc bc bc
iht wht lht lht

i b w b s l b r l b

bc bc bc
aht dht dht

a b d b d b

P P PL PL

P v D

   

  

     

    

N N N N

N N N

 (4.1) 

bc bc
t ht dht

h d
D DT v     (4.2) 

,maxbc bc
t tD D    (4.3) 

 ,
bc bc bc

t ht f wht wht
h w

W DT P P     (4.4) 

 ( ) ( ) ,bc bc bc
lht l s l ht r l htPL X l     EL  (4.5) 

max max ,bc
l lht lPL PL PL l   EL  (4.6) 
max max ,bc
l lt lht l ltPL y PL PL y l     CL  (4.7) 

     ( ) ( )1 1 ,bc bc bc
lt lht l s l ht r l ht lty M PL X y M            

                                                                      l CL  (4.8) 
max maxbc
b bht b      (4.9) 

max retire0 ,bc
iht i itP P y i    EG  (4.10) 

max0 ,bc
iht i itP P y i   CG  (4.11) 

max0 ,bc
aht aP P a   EA  (4.12) 

max0 ,bc
aht a atP P y a   CA  (4.13) 

,0 bc bc
wht f whtP P   (4.14) 

Gas network model (5) describes operating characteristics of 
the gas system via Weymouth gas flow equations [30]. Gas 
network nodal balance equation (5.1) describes that the total 
gas flow injection is equal to the total withdrawn at each node. 
Production limits of existing and candidate gas suppliers are 
shown in (5.2)-(5.3). Constraint (5.4) represents the pressure 
limit of each gas node. Nonlinear Weymouth equations 
(5.5)-(5.6) describe the relationship between squared nodal 
pressure and pipeline flow rates. Gas flow directions of 

pipelines are determined by (5.7)-(5.9), where 1 /phtf  

1phtf   indicates that gas flows from node m/n to node n/m 

through pipeline p. Constraints (5.10)-(5.20) describe operating 
characteristics of compressor stations. Equations (5.10)-(5.12) 
calculate terminal gas pressures of existing and candidate 
compressor stations [31] with node m/n as primary/secondary 
side. Constraints (5.13)-(5.15) describe operation status of a 

compressor station, where 1/ 1cht chtf f    indicates that a 

compressor station is not/is operating. Constraints (5.16)-(5.20) 
describe gas fuel consumptions of existing and candidate 
compressor stations [23], which consume gas only if they are 
invested and in operation. 

             

 
         

pht pht cht
j m s p m r p m s c m

c

jht

aht iht cht
r c

ht ght
m a m i m g m

G Q Q Q

Q FC G G G

   

   

     

       

G G G G

G G G G

 

 (5.1) 
max0 ,jjhtG G j  ES  (5.2) 

max0 ,jt jj th G z jG   CS  (5.3) 

min max
m mht mPr Pr Pr   (5.4) 

    2 2 ,pht pht mht nht pht mnf f Pr Pr Q K p      EP  (5.5) 

    2 2 ,pt pht pht mht nht pht mnz f f Pr Pr Q K p      CP  (5.6) 

   1 1 ,pht pht phtf M Q f M p         EP CP  (5.7) 

1,pht phtf f p    EP CP  (5.8) 

   1 1 ,pht mht nht phtf M Pr Pr f M          

                                                                    p EP CP  (5.9) 
2 ,c mht nhtPr Pr c   EC  (5.10) 

,ct nht mht ctz M Pr Pr z M c      CC  (5.11) 

 2 1 ,nht c mht tPr Pr z M c     CC  (5.12) 
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   1 1 ,cht mht nht chtf M Pr Pr f M          

                                                                  c EC CC  (5.13) 

 1 ,mht nht chtPr Pr f M c     EC CC  (5.14) 

1,cht chtf f c    EC CC  (5.15) 

   1 1 ,cht cht chtf M FC f M c         EC  (5.16) 

     com1 1 1 ,cht cht c cht chtf M FC e Q f M            

                                                                 cEC  (5.17) 
0 ,cht ctFC z M c   CC  (5.18) 

   2 2 ,ct cht cht ct chtz f M FC z f M           

                                                                cCC  (5.19) 

   
 

com2 1

2 ,

ct cht cht c cht

ct cht

z f M FC e Q

z f M c





       

    CC
 (5.20) 

Electricity and gas systems are linked by gas-fired units and 
PtGs, which are regarded as generators/gas loads and electrical 
loads/gas suppliers in electricity/gas system. Constraint (6.1) 
describes the relationship between power dispatch and gas 
consumption of gas-fired units via heat rate curve and high 
heating value (HHV). PtGs are modeled via energy conversion 

factor ϕ, efficiency ptg
ae , and HHV as in (6.2), where HHV= 

1.026MBtu/kcf and ϕ=3.4MBtu/MWh. For the sake of 
discussion, gas network constraints (5) and coupling 
constraints (6) are rewritten in a compact form as in (7). 

  HHV ,bc
iht i ihtG F P i GU  (6.1) 

ptg HHVbc
aht aht aG P e    (6.2) 

 g , 0bc bc
iht ahtP P L  (7) 

Constraints (8)-(9) evaluate operation security, in terms of 
maximum annual power imbalance in the worst case, of 
interdependent systems in response to uncertainties of electrical 
load, wind generation, and N-1 contingencies. That is, the 
annual largest possible load imbalance under uncertainties is 
identified via (8), which is further limited by the annual power 
imbalance threshold as in (9). Constraint (8.2) describes the 
N-1 criterion, i.e., at most one generator/ transmission line is on 
contingency outage. Constraints (8.3)-(8.5) describe load and 
wind uncertainty sets. Take load uncertainty set D as an 

example. If 1/ 1dht dhts s   , uncertain electrical load d 

reaches its upper/lower limit at load block h of year t; if both are 
0, the forecasted load value is achieved. In addition, budget 
constraints in (8.3)-(8.4) control total deviations of loads and 
wind generations from their forecast values, where budgets of 
uncertainty dt and wt  take values between 0 and NH. Note 

that in uncertainty sets (8.3)-(8.4), bc
dhtD  and ,

bc
f whtP  are base 

case forecasted values of electrical loads and wind powers in 
each year, which have already reflected average annual growths 
of peak electrical load and wind power, while deviations dhtD  

and whtP  from the base values are used to simulate the 

combined effect of short-term variability and long-term annual 
growth uncertainty.  

Constraints (8.6)-(8.20) describe operation characters of 
interdependent systems in response to uncertainty realizations 

of electrical load u
dhtD , wind ,

u
f whtP , and contingencies 

/iht lhtAU AL . Specifically, dispatch adjustments of 

generators/wind farms/PtGs / /u u u
iht wht ahtP P P  in response to 

uncertainties need to satisfy system load balance (8.6), power 
flow equations (8.7)-(8.8), power flow limits (8.9)-(8.10), bus 
phase angle limits (8.11), and capacity limits (8.12)-(8.16). 
Dispatches in the base case and under uncertainties are further 
coupled via ramping capabilities (8.17). Wind power is 
traditionally modeled as a dispatchable resource in robust 
optimization, as wind power can be spilled for maintaining the 
security of power systems [28]-[29]. In this paper, in order to 
effectively utilize available wind energy in the worst case and 
promote more PtGs, the wind power recourse cost is adopted to 
limit wind spillage quantities under uncertainties (8.18), i.e., 
the annual wind spillage penalty cannot exceed the budget. 
Constraint (8.19) ensures non-negativity of power mismatch 
variables. Natural gas network feasibility under uncertainties is 
guaranteed by (8.20). In (8), symbols bracketed in the end are 
dual variables of corresponding constraints. For the sake of 
discussion, operation constraints under uncertainties (8.6)- 
(8.20) and (9) are further presented in a compact form as in 
(10). 

 max minwc u u
t ht dht dht

h d
D DT v v      (8.1) 

s.t.    1 1 1iht lht
i l

AU AL      (8.2) 

 

: , 1

, , 0,1

u ND NH NT
dht dht dht dt dht dht

h

u bc
dht dht dht dht dht dht dht dht

D s s s s

D D s D s D s s

     

   

         
       

D
 



 (8.3) 

 

,

, ,

: , 1

, , 0,1

u NW NH NT
f wht wht wht wt wht wht

h

u bc
f wht f wht wht wht wht wht wht wht

P s s s s

P P s P s P s s

     

   

         
       

W
 



 (8.4) 
u
dhtD D , ,

u
f whtP W  (8.5) 

   
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )
:

u u u u
iht wht lht lht

i b w b s l b r l b

u u u u
aht dht dht dht bht

a b d b d b

P P PL PL

P v v D 

   

 

  

     

     

N N N N

N N N

 (8.6) 

   ( ) ( ) , :u u u
lht l lht s l ht r l ht lhtPL X AL l      EL  (8.7) 

   
   

( ) ( )1

1 , : ,

u u u
lt lht lht l s l ht r l ht

lt lht lht lht

y AL M PL X

y AL M l

 

 

       

    CL
 (8.8) 

 max max , : ,u
l lht l lht lhtPL PL PL l     EL  (8.9) 

 

max max ,

: ,

u
l lt lht lht l lt lht

lht lht

PL y AL PL PL y AL

l  

      

CL
 (8.10) 
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 max max : ,u
b bht b bht bht        (8.11) 

 max retire0 , :u
iht i it ihtP P y i    EG  (8.12) 

 max0 , :u
iht i it ihtP P y i    CG  (8.13) 

 max0 , :u
aht a ahtP P a   EA  (8.14) 

 max0 , :u
aht a at ahtP P y a    CA  (8.15) 

 ,0 :u u
wht f wht whtP P    (8.16) 

     updown : ,bc u bc
iht i iht iht iht iht iht ihtiP R AU P P R AU       

 (8.17) 

   re
, :W u u

ht f wht wht t t
h w

C DT P P C      (8.18) 

0, 0u u
dht dhtv v    (8.19) 

 g , 0u u
iht ahtP P L  (8.20) 

,maxwc wc
t tD D    (9) 

 pg
,, , , , , , , , 0u u u u u u u

iht wht aht dht f wht lht iht dht dhtP P P D P AL AU v v  L

 (10) 

III. SOLUTION METHODOLOGY 

The proposed robust planning problem (1)-(6) and (8)-(9) 
includes three optimization levels: (i) the upper level (1)-(6) 
which determines optimal investment and operation decisions 
of electricity and natural gas systems in the base case. In 
addition, the probabilistic reliability constraint (3) ensures that 
the investment of assets can meet the overall system reliability 
requirement; (ii) the middle level (8.2)-(8.5) which identifies 
worst-case scenarios with the highest load imbalance 
corresponding to the solution from the upper level, with respect 
to N-1 contingencies and uncertainties of electrical loads and 
wind generations; and (iii) the lower level (8.6)-(8.20) which 
determines dispatches of electricity and natural gas systems for 
minimizing the system load imbalance, given upper level 
investment decisions and middle level uncertainty realizations.  

The proposed robust co-optimization planning model may 
not be effectively solved without decomposition, especially in 
recognizing the challenges from probabilistic reliability 
constraint (3) and max-min security evaluation (8). A 
decomposition based approach is adopted to effectively solve 
the problem, by iteratively optimizing base-case investment/ 
operation decisions in a master problem and checking solution 
quality of the master problem via N-1 and probabilistic 
reliability criteria in two subproblems. The N-1 security 
checking max-min subproblem generates primal cuts (via the 
column-and-constraint generation approach [24], [32]) and the 
probabilistic reliability subproblem generates dual cuts (via the 
Benders decomposition method [10], [17]). Note that the N-1 
security checking subproblem and the probabilistic reliability 
subproblem are carried out for each year.  

A. Master Problem 

The master problem is presented as in (11), in which worst 

case realizations wc
dhtD , ,

wc
f whtP , wc

ihtAU  and wc
lhtAL  identified 

in the N-1 security subproblem in Section III.B and dual 
reliability cuts generated from the probabilistic reliability 
subproblem in Section III.C are iteratively added. Optimal 

solutions bc
ihtP , ity , lty , and aty  are passed on to the two 

subproblems. 

min I bc W bc
t t

t t
IC OC C D C W

 
        

 
 

s.t. Constraints (2) and (4)-(6) 
, , , , ,

,pg

, , , ,

, , , , ,
0

, , ,

wc k wc k wc k wc k wc k
iht wht aht dht f wht

wc k wc k wc k wc k
lht iht dht dht

P P P D P

AL AU v v 

 
  
 
 

L  

 , , ,wc k wc k wc k
t ht dht dht

h d
D DT v v      

Dual reliability cuts generated so far.  (11) 

Note that the master problem is a mixed-integer nonlinear 
programming (MINLP) problem with nonlinear gas flow 
equation (5.3)-(5.4). We follow the convention to convert (11) 
into a mixed-integer linear programming (MILP) problem with 
a better computational performance [32]-[33]. For instance, the 

nonlinear term    pht pht mht nhtf f Pr Pr     in (5.3) can be 

equivalently represented as in (12) via an auxiliary variable 

phtgr  [34]. Equation (5.4) for candidate lines can be similarly 

reformulated, with additional constraints (13) to further enforce 
the relationship between gas flows and pipeline investment 

decisions. Indeed, the quadratic term 2
phtQ  in (13) can be 

piecewise linearized to derive the final MILP representation 

[32]-[35], while mnK  is the pipeline constant. In [35], three 

different models for linearizing nonlinear gas flow constraints 
are compared, including convex combination model, multiple- 
choice model, and incremental model. It is indicated that the 
incremental model outperforms the other two techniques via 
theoretical and computational analysis. Indeed, the most 
promising advantage of the incremental model is its 
computational performance for optimizing gas network 
operations. In the piecewise linearization technique, more 
segments in the linearization process would derive a better 
approximation, at the cost of more continuous and binary 
variables with a higher computational burden.  

   1 l u
pht nht mht pht pht m ngr Pr Pr f f Pr Pr         (12.1) 

   1 u l
pht mht nht pht pht m ngr Pr Pr f f Pr Pr         (12.2) 

   1 u l
pht nht mht pht pht m ngr Pr Pr f f Pr Pr         (12.3) 

   1 l u
pht mht nht pht pht m ngr Pr Pr f f Pr Pr         (12.4) 

   2 21 1 ,pt pht pht mn ptz M gr Q K z M         

                                                                      pCP  (13.1) 

,pt pht ptz M Q z M p     CP  (13.2) 
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B. N-1 Security Subproblem 

The N-1 max-min subproblem (8.1)-(8.19) identifies the 

worst-case realization wc
dhtD , ,

wc
f whtP , wc

ihtAU  and wc
lhtAL  that 

would lead to the largest possible system load imbalance, with 

respect to the master solution bc
ihtP , ity , lty  and aty . This 

worst-case scenario will be added into the master problem to 
obtain a new solution that will mitigate the system load 
imbalance. Note that gas network feasibility constraint (8.20) 
for individual worst case realizations will be checked in the 
master problem, instead of this subproblem. Thus, with an inner 
linear programming model, the max-min subproblem (8.1)- 
(8.19) can be converted into a single-level bilinear optimization 
problem (14). 

 

   

   

( )

max

max max

max retire max

ˆmax 1

ˆ1

ˆ

ˆ

wc u
t dht bht lt lht lht

h d b h l

lt lht lht l lht lht
h l h l

l lt lht lht lht b bht bht
h l h b

i it iht i it
h i

D D y AL M

y AL M PL

PL y AL

P y P y

 

  

    



 

 





          

          

         

     

N CL

CL EL

CL

EG

   

max max

up down

re
, ,

ˆ

iht
h i

a aht a at aht
h a h a

bc bc
iht iht iht iht i iht ihti

h i h i

u W u
f wht wht t t ht f wht

h w h w

P P y

P R AU P R AU

P C C DT P



 

 

 



 

 

       

        

 
        

 

CG

EA CA

 

s.t. ht dht htDT DT    

   
( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ),
0

bht bht lht lht lht lht
s l b l r l b l

lht lht lht lht
s l b l r l b l

AL AL   

   
   

   

     

     

N EL N EL

N CL N CL

 

( ) ( ) 0,s l ht r l ht l lht lht lhtX l            EL  

 ( ) ( ) 0,s l ht r l ht l lht lht lht lhtX l             CL  

0, ( )bht iht iht iht i b        EG N  

0, ( )bht iht iht iht i b        CG N  

0, ( )bht aht a b     EA N  

0, ( )bht aht a b     CA N  

0, ( )W
wht wht ht tC DT w b        N  

Constraint (8.2)-(8.5); ,bht lht  unlimited; , , ,lht lht lht lht   
, , , , , , , , , , , 0lht lht bht bht iht iht aht aht wht iht iht t            

 (14) 

The objective function of (14) includes bilinear terms, i.e., 
products of two continuous variables (i.e., an uncertainty 
variable and a dual variable) and products of a binary variable 
and a dual variable. The product of an uncertainty variable and 
a dual variable can be linearized via auxiliary binary variables 
together with extreme values of uncertainty variables, because 

in the worst case a continuous uncertainty variable u
dhtD always 

takes its upper/lower limit or the forecasted value [36]. For 

instance, bilinear term u
dht bhtD   can be linearized as in (15), 

where 0
bhtcc , bhtcc  and bhtcc are auxiliary binary variables. 

On the other hand, the product of a binary variable and a dual 
variable can be linearized using the well-known algebra results. 
For example, bilinear term lht lhtAL   can be linearized as in 

(16). 

 
 

0

, ( )

u bc bc
dht bht dht bht dht dht bht

bc
dht dht bht

D D D D

D D d N b

  







     

   




 (15.1) 

0
bht bht bht bht        (15.2) 
0 1bht bht bhtcc cc cc     (15.3) 

0 0 0
bht bht bhtcc M cc M      (15.4) 

bht bht bhtcc M cc M        (15.5) 

bht bht bhtcc M cc M        (15.6) 

lht lht lhtrr AL    (16.1) 

0lht lhtAL M rr     (16.2) 

   1 1lht lht lht lht lhtAL M rr AL M          (16.3) 

With above linearization approaches, the bilinear 
subproblem (14) can be reformulated as an MILP problem and 
solved by commercial MILP solvers. 

C. Probabilistic Reliability Subproblem 

The probabilistic reliability subproblem evaluates system 
reliability level (3) with respect to random outages of 
generators and transmission lines. The LOLE index has been 
widely accepted and used in power industry to evaluate the 
overall reliability of power systems [16], [25]-[26], which 
quantifies the number of days in a year that electrical loads 
cannot be sufficiently supplied. This metric does not provide 
information on the potential total energy shortfall. Usually, the 
standard LOLE level in power industry is 0.1day/year or one 
day in ten years. Following the practice in power industry, the 
proposed model adopts the LOLE index (3) to evaluate the 
reliability of power systems. As the annual wind power 
generation profile of a certain location usually remains 
unaltered from year to year [37], short-term load and wind 
power uncertainties are addressed in the security operation 
subproblem instead. That is, the LOLE index will reflect the 
long-term overall reliability of the system over a long period of 
time (say one year), and the operating security of the system is 
guaranteed by the N-1 security subproblem.  

In this paper, Latin Hypercube Sampling based Monte Carlo 
(MC) simulation is adopted to estimate system LOLE with 
forced outage rates of system components [38]. The reliability 
checking subproblem for the qth MC sample of load block h in 
year t is given in (17). The MC simulation stops when 
coefficient of variation is less than 1% [38]. Finally, the system 
LOLE for each year t can be calculated as in (18) using 
solutions to all NS MC sample subproblems, where 

 1 htENS  is an indicator function with the value of 1 if 

ENSht,q is no smaller than a smaller threshold ε and otherwise 0. 
If the reliability criterion (3) is not satisfied, a dual reliability 
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cut (19) will be generated and incorporated into the master 
problem.  

 , ,min q mc q mc q
htht dht dht

d
ENS DT v v     

s.t.

 

, , , ,

( ) ( ) ( ) ( ) ( ) ( )

, , ,

( ) ( ) ( )

mc q mc q mc q mc q
iht wht lht lht

i b w b s l b r l b

mc q mc q mc q bc
dhtaht dht dht

a b d b d b

P P PL PL

P v v D

   

 

  

     

     

N N N N

N N N

 

 , , , ,
( ) ( ) ,mc q mc q mc q mc q

llht lht s l ht r l htPL X AL l     EL  

   
   

, , , ,
( ) ( )

, 2, 1,

ˆ1

ˆ1 , : ,

mc q mc q mc q mc q
lt llht lht s l ht r l ht

mc q q q
lt lht lht lht

y AL M PL X

y AL M l

 

 

       

    CL
 

,max max ,mc q
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As annual system LOLE is a probabilistic index which 
depends on investment and operation decisions, explicit 
analytical formula for (3) is not readily available. Alternatively, 
the reliability checking subproblem (17) calculates potential 
load shedding quantities among multiple scenarios, and 
consequently the LOLE index is post-calculated as in (18) to 
evaluate system reliability. However, as LOLE is not explicitly 
treated as a decision variable in (17), the LOLE index cannot be 
directly used to generate reliability cuts, while a dual reliability 
cut (19) with respect to EENS is used when the LOLE criterion 
is not met. Indeed, as Benders decomposition is an exact 
algorithm which guarantees solution optimality via 
decomposition [10], [17], dual reliability cuts generated via 
dual solutions of the reliability checking subproblem (17) 
represent valid cutting planes that can mitigate load shedding 
by optimally adjusting planning decisions in the master 
problem. The same strategy has also been adopted in [10], [17], 

[37]. 
It is also noted that optimal planning decisions derived via 

the EENS based dual reliability cut (19) could be different from 
the LOLE index directly, while the proper setting on EENSmax 
in (19) could help mitigate such difference. For instance, 
reference [39] provides a way to set EENSmax according to 
electrical load levels. For example, in case studies of this paper, 
EENSmax can be set as 3% percent of the peak load (i.e., 2850 
MW) which yields 205MWh (i.e., 0.1*24*2850*0.03 with 
respect to the LOLE threshold of 0.1day/year). In practice, in 
order to ensure that the final optimal planning decisions derived 
from the dual reliability cut (19) are as close to those of the 
LOLE index as possible, decision makers can dynamically 
adjust EENSmax via an iterative procedure. That is, a relatively 
large EENSmax, saying 5% of the peak load, can be used in the 
first few iterations, if the LOLE criterion is not met while the 
EENSmax is satisfied, EENSmax can be gradually reduced in later 
iterations until the LOLE criterion (18) is satisfied. 

In this paper, both N-1 criterion and probabilistic 
reliability criterion are adopted for evaluating co-optimization 
planning decisions in two distinct subproblems. The max-min 
N-1 security checking subproblem is formulated as a robust 
optimization model, which simulates wind power uncertainties 
via an uncertainty set (8.4). In comparison, concerning 
stochastic nature of renewable energy, the approach discussed 
in [40] calculates reliability indices with pre-calculated 
deliverable capacity probability table (DCPT) and available 
capacity probability table (ACPT). However, this technique 
cannot be directly applied in the proposed robust optimization 
based approach, because it only quantifies reliability 
performance of certain planning decisions but does not presents 
strategies on how planning decisions could be adjusted to 
further improve system reliability. In addition, [41]-[43] use 
sequential Monte Carlo simulation to sample uncertain wind 
power scenarios via the ARMA model, which are integrated in 
a stochastic programming framework to determine optimal 
operations of power systems. In other words, the sequential 
Monte Carlo Simulation, which generates multiple scenarios to 
simulate random outages of generators/transmission lines and 
uncertain loads/wind generations in stochastic programming, is 
not suitable for the proposed robust optimization based 
approach which is based on the uncertainty set. Furthermore, in 
the max-min N-1 security checking subproblem, a sequential 
model with 8760-hour time-series data may be computationally 
intractable, because its equivalent single-level bilinear 
optimization problem (14) will include a significant number of 
binary variables indicating outage statuses of generators/ 
transmission lines and uncertainty levels of loads/wind 
generations. It is noted that the single-level bilinear 
optimization problem (14) needs to be equivalently converted 
into a mixed-integer linear programming problem for the 
solution, which will introduce additional binary variables and 
further complicate the computation. In turn, we follow the 
convention of robust optimization-based power system 
planning in literature [28], [37], [44]-[45], to use several load 
blocks instead of the 8760-hour time-series data. 

In addition, the probabilistic reliability subproblem 
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evaluates system reliability level with respect to random 
outages of generators and transmission lines, while neglecting 
uncertainties of renewable energy and loads. To keep 
consistency of the two subproblems, the probabilistic reliability 
subproblem also adopts load blocks. Consequently, a Latin 
Hypercube Sampling based Monte Carlo simulation, instead of 
the sequential Monte Carlo simulation, is used to sample 
random outages of generators and transmission lines in each 
load block for calculating LOLE index. Furthermore, 
optimization-based planning approaches in [10]-[11], [37] also 
adopt load blocks as a trade-off between computational 
efficiency and solution accuracy to evaluate system reliability. 

D. Implementation of the Algorithm 

The solution procedure is as follows.  

Step 1) Set thresholds for base-case load shedding ,maxbc
tD

and worst-case system power imbalance ,maxwc
tD . 

Initialize iteration counters k=1 and r=1. 

Step 2) Solve the master problem (11), and pass the optimal 

solution ˆbc
ihtP , ˆity , ˆlty  and ˆaty to Step 3. 

Step 3) Solve the N-1 security subproblem (14) with respect to 
ˆbc
ihtP , ˆity , ˆlty  and ˆaty , and identify the worst-case 

realization ,wc k
dhtD , ,

,
wc k
f whtP , ,wc k

ihtAU  and ,wc k
lhtAL  that 

leads to the largest possible system power imbalance. 
If the annual largest possible security violation is 

smaller than ,maxwc
tD , go to Step 4; Otherwise, add 

the worst case ,wc k
dhtD , ,

,
wc k
f whtP , ,wc k

ihtAU  and ,wc k
lhtAL  

into the master problem (11), set k=k+1, and go to Step 
2. 

Step 4) Solve the probabilistic reliability subproblem (17) 

with respect to investment decisions ˆ r
ity  and ˆ r

lty , and 

calculate the annual LOLEt (18). If the annual LOLEt is 
smaller than LOLEmax, Terminate; Otherwise, add dual 
reliability cut (19) to the master problem (11), set 
r=r+1, and go to Step 2.  

IV. CASE STUDIES 

In this section, the modified 24-bus IEEE Reliability Test 
System (RTS) [46] and a 12-node gas system [47] is first used 
to demonstrate the effectiveness of the proposed 
co-optimization planning approach via numerical comparisons 
with other alternatives. A larger system, consisting the 
modified IEEE 118-bus power system and the Belgian 
high-calorific 20-nodel natural gas system, is further studied to 
evaluate its computational performance. Cost coefficients of 

electrical load imbalance IC and wind spillage WC  are set as 
$106/MWh [48] and $100/MWh [49], respectively. 

All case studies are solved on a Dell work station with two 
Intel Xeon E5-2620 processors at 2.1 GHz and 64 GB memory, 
and Gurobi 6.5 is used as the MILP solver. The incremental 
model [32]-[35] with two segments is adopted to linearize the 
Weymouth equation as a tradeoff between computational 

efficiency and solution accuracy. Normally, the big-M should 
be large enough to make sure that the reformulated constraints 
are valid. However, a too-large big-M may deteriorate the 
computational performance. Specifically, in this paper, 
magnitudes of power flows, gas flows, and squared gas 
pressure differences are all smaller than 105. In addition, for 
unbounded dual variables (15)-(16), reference [50] has tested 
the performance of different values of big-M and concluded 
that the ideal range is [104, 106] for ensuring a good 
computational efficiency. Thus, the big-M is set as 106 in all 
case studies. 

A. The modified 24-bus IEEE RTS and a 12-node gas system 

The modified 24-bus IEEE RTS includes 19 non-gas and 7 
gas units, 3 wind farms, 38 lines, and 17 electrical loads. 18 
candidate units with 9 being gas, 16 candidate lines, and 3 
candidate PtGs are considered. The gas system includes 3 gas 
suppliers, 10 pipelines, and 8 non-power gas loads as shown in 
Fig. 1. Candidate assets include 3 gas wells, 2 compressor 
stations, and 10 pipelines. Discount rate is 5%. The optimality 
gap is set as 0.01%. Other configuration data can be found in 
[51]. 

A 10-year planning horizon is studied, with 4 load blocks in 
each year. Electrical load, wind power, and non-power gas load 
in the first planning year are 2850MW, 720MW, and 
10000kcf/h with average growth rates of 3%, 8%, and 5%. The 
4-block load duration curve and wind profile used in case 
studies are shown in Fig. 2, which are derived based on actual 
ERCOT data in year 2014 [52] via the k-means algorithm [53]. 
Fig. 2 shows that characteristics of load/wind and their 
correlations are partially kept in the 4-block curves. 
Specifically, the first block of an 87-hour duration represents a 
high-load/low-wind situation, and the last block of a 3408-hour 
duration reflects a low-load/high-wind situation. Indeed, these 
two situations represent the two most critical operation statuses 
of power systems, which usually have a higher impact on 
system reliability. 

W1

W2

W3

21

34

5

12

6 7 8 9

10

11  
Fig. 1 A 12-node natural gas system. 

 
Fig. 2 4-block load duration curve and wind profile 

A1. Advantage of Co-Optimization Planning Approach 

This section demonstrates advantages of the proposed 
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co-optimization planning approach via three cases: 
Case 1: Sequential planning of the two systems 
Case 2: Co-optimization planning of interdependent systems 
Case 3: Co-optimization planning while considering 

retirement of existing coal-fired units 

Table I shows results of Cases 1-3, in which the two 
subscripts represent indices of candidate assets and installation 
years. For the sake of comparison, power system uncertainties 
are not considered in these cases. In Case 1, electricity and gas 
systems are planned sequentially with a total cost of 4.1905 B$. 
That is, power system planning is first executed while ignoring 
gas network characters, and gas system expansion is optimized 
with fixed planning decisions of power systems (e.g., gas units 
and PtGs). When co-optimization is considered in Case 2, the 
total cost is reduced to 4.1476 B$. The reason is that in the 
sequential planning process of Case 1, cheaper gas-fired units 
like G4 and G14 are invested earlier while neglecting limited 
gas delivery capability of the existing gas network. As a result, 
the gas network has to invest in pipelines and compressor 
stations more extensively and earlier. In contrary, the 
co-optimization planning in Case 2 considers gas network costs 
and limitations in the power system planning stage, and in turn 
more economical investment decisions can be achieved. 

In Case 3, retirement of existing coal-fired units is further 
considered, i.e., by the end of the planning year, 5 units with a 
total capacity of 372MW will be retired. In turn, as compared to 
Case 2, two more gas units G6 and G16 are constructed to 
replace the retired coal-fired units and meet increased electrical 
loads. Consequently, pipeline P10 is constructed to ensure 
sufficient natural gas supply to newly-built gas units. 

In order to show the importance and advantage of PtGs and 
compressor stations in the interdependent systems, two cases 
are further carried out: Case 3 without PtGs (i.e., Case 3.1) and 
Case 3 without compressor stations (i.e., Case 3.2). As shown 
in Table II, in Case 3.1, due to the lack of PtG facility A1 to 
economically convert excessive wind energy into natural gas, 
transmission lines L3 and L9 have to be constructed to 
effectively utilize growing wind energy and prevent wind 
spillage, which almost triples the investment cost. In Case 3.2, 
as compressor station C1 is not installed, two pipelines P1 and 
P8 are respectively constructed in years 5 and 10 to ensure gas 
delivery capability to newly-built gas units with a much higher 
investment cost. These two cases show that PtGs and gas 
compressors provide a more economical way to effectively 
support the growing penetration of wind energy and gas units. 

TABLE I 
COMPARISON OF AMONG CASES 1-3  

Case Constructed components Total cost (B$) 

1 
G1,3, G3,7, G4,8, G11,10, G13,9, G14,4, G15,6, 

A1,9, S3,5, P3,2, P4,4, P10,3, C1,3, C2,10 
4.1905 

2 
G1,3, G3,6, G4,10, G11,5, G13,9, G14,7, G15,4, 

A1,9, S3,6, P3,4, P4,7,C1,5 
4.1476 

3 
G1,3, G3,7, G4,7, G6,9, G8,10, G11,5, G13,9, G14,6, G15,4, 

G16,8, A1,9, S3,6, P3,4, P4,7, P10,8, C1,5 
4.2960 

TABLE II 
RESULTS OF CASES 3.1-3.2 AS COMPARED TO CASE 3 

Case Changes in investment decision Changes in investment cost (M$) 
3.1 A1,9 → L3,9, L9,10 3.3036 → 10.3692 
3.2 C1,5 → P1,5, P8,10 4.3846 → 14.9076 

A2. Advantage of Robust Planning with the Joint Criterion 

This section illustrates effectiveness of the robust planning 
model with wind power recourse cost to mitigate wind spillage 
under uncertainties as well as advantage of the joint N-1 and 
probabilistic reliability criterion in providing economical and 
reliable co-optimization expansion decisions via two cases: 
Case 4: Robust co-optimization planning with uncertainties. 
Case 5: Case 4 with the joint N-1 and probabilistic criterion. 

Case 4: This case evaluates the impact of electrical load and 
wind generation uncertainty on co-optimization planning via 
the robust optimization approach. Uncertainty intervals of 
electrical loads and wind generations are set as 5% and 20% of 
their forecast values. Uncertainty budgets dt  and wt  are 

both set as 4. Because all case studies use 4 load blocks in each 
year, the uncertainty budget is set as the largest value of 4 to 
maximize the system’s ability for handling uncertainties. 

System power imbalance thresholds ,maxbc
tD  and ,maxwc

tD
are both set as 0.01MW to ensure secure operation without load 
shedding when contingencies are not considered. 

Table III shows robust co-optimization planning results with 
respect to different wind power recourse cost values, including 
base/ worst case costs, incremental base-worst cost ratio (ICR), 
and investment statuses of PtG facility A1 and transmission line 
L3 that are connected to a wind farm. ICR is calculated as the 
decrease in base-case cost over the increase in worst-case cost 
for a certain value Cre as compared to Cre=$0. It can be observed 
that as a higher Cre allows more wind spillage, base-case cost 
decreases because certain constructions such as A1 and L3 are 
delayed or avoided. On the other hand, worst case cost 
increases because of a high wind spillage penalty cost. In 
addition, the lowest base-case cost and the highest worst-case 
cost are both reached when Cre is 40 M$, which indicates that 
the recourse cost is not binding anymore and a further increase 
in Cre will not postpone constructions of PtGs or transmission 
lines. As shown in Table III, when Cre is set as 0 which does not 
allow wind spillage, the co-optimization planning solution 
could be over-conservative in terms that PtG facility A1 and 
transmission line L3 are invested much earlier with the highest 
base-case cost. In comparison, setting the wind power recourse 
cost as certain values from 10M$ to 50M$, less conservative 
options could be available to decision makers. Specifically, 
Cre=10M$ is considered as a better wind power recourse cost 
threshold in this case because of its relatively larger ICR as 
compared to other Cre values, i.e., its base case cost decreases 
more significantly with a limited increase in worst-case cost. In 
this case, the base-case cost decreases about 0.45% (19.7M$) as 
compared to Cre=$0, while worst-case cost only increases by 
0.2% (9M$). That is, the optimal planning strategy with 
Cre=10M$ could effectively reduce the base-case total cost, 
while only slightly increases the worst-case operation cost 
when extremely rare situations occur. 

Investment details with Cre=10M$ are further shown in Table 
IV. As compared to Case 3, when load and wind uncertainties 
are considered, constructions of gas units G1, G4, G14, and 
G15 are delayed, while a large coal unit G13 is constructed 
much earlier from year 9 in Case 3 to year 3 in this case. The 
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reason is that gas-fired units G1, G4, G14 and G15 as a whole 
would lead to gas network congestion in worst-case scenarios, 
and in turn their constructions require extensive investments in 
new pipelines in the same year. This would lead to expensive 
over-investment in the gas network for handling rare 
worst-case scenarios. Alternatively, the power system seeks for 
other options (i.e., coal unit G13) to economically meet 
electrical loads and postpone the construction of gas units and 
associated expensive pipelines. 

As robust optimization and stochastic programming have 
been recognized as two effective approaches for handling 
uncertainties in optimization problems, solutions of the 
proposed robust model is further compared with the stochastic 
programming model [54]-[55]. In the stochastic programming 
model, the simulated electrical load and wind power scenarios 
are assumed to follow uniform distributions within the 
uncertainty set. 5000 scenarios of 10-year electrical loads and 
wind generations are generated via the Latin Hypercube 
sampling method. The number of reduced scenarios is chosen 
to be 5 as a trade-off between computational speed and solution 
quality [54]-[55], and these 5 scenarios are directly added in the 
master problem in Section III.A to obtain the final optimal 
planning solution. Results of stochastic optimization with 
Cre=10M$ are reported in Table III, and investment details are 
presented in Table IV as Case 4.1. It is observed in Tables 
III-IV that the stochastic programming model yield a smaller 
total cost for covering high-probability scenarios, while its 
electricity system planning decision is slightly different from 
that of the proposed robust optimization approach. However, 
the stochastic programming planning solution could lead to 
much higher system load shedding when low-probability 
high-impact worst case occurs. Indeed, the worst case cost of 
5.3644B$ in the stochastic programming solution is 19.73% 
higher than that of the robust optimization solution. 

TABLE III 
SENSITIVITY ANALYSIS WITH DIFFERENT RECOURSE COSTS 

Cre (M$) 
 Base-case 

cost(B$) 
Worst-case 

cost(B$) 
ICR  A1 (year)  L3 (year)

0 4.4131 4.4711 0 6 8 
10 4.3934 4.4801 2.1889 7 9 
20 4.3932 4.4811 1.9900 7 9 
30 4.3864 4.5292 0.4596 8 10 
40 4.3847 4.5522 0.3502 9 - 
50 4.3847 4.5522 0.3502 9 - 

stochastic 4.3292 5.3644 0.0939 3 - 

TABLE IV 
COMPARISON OF CASES 4 AND 5 WITH Cre=$10M 

Case Constructed components Total cost (B$) 

4 
G1,4, G3,5, G4,9, G6,9, G8,10, G11,9, G13,3, G14,7, G15,6, 

G16,8, L3,9, L9,10, A1,7, S3,6, P3,4, P4,7, P10,8, C1,5 
4.3934 

4.1 
G1,5, G3,7, G4,7, G6,9, G8,10, G11,3, G13,9, G14,6, G15,4,  

G16,8, L10,7, A1,3, S3,6, P3,4, P4,7, P10,8, C1,5 
4.3292 

5 
G1,5, G3,9, G4,9, G6,10, G8,10, G11,1, G12,2 G13,3, G14,7, 
G15,6, G16,8, L2,9, L3,2, L5,7, L10,9, L11,3, L15,6, A1,4, 

S3,6,P3,4, P4,7, P10,8, C1,5 
4.7305 

Case 5: This case demonstrates advantage of the proposed joint 
N-1 and probabilistic reliability criterion, with the same 
uncertainty settings as in Case 4 and Cre=10M$. Since N-1 

contingency is considered, ,maxwc
tD  is set as 10000MWh to 

allow power imbalance under worst-case scenarios. Annual 
probabilistic reliability criterion LOLEmax is 0.1day/year, and 
EENSmax is set to 3% of annual peak load [39] which yields 205 
MWh (i.e., 0.1*24*2850*0.03) in the first year. Investment 
results of Case 5 are also shown in Table IV. As compared to 
Case 4, Case 5 derives a higher investment cost with one more 
generator and six more transmission lines to meet the joint N-1 
and probabilistic reliability criterion. 

Two more studies with separate N-1 criterion and 
probabilistic reliability criterion are carried out, to compare 
with the proposed joint criterion. Results are presented in Table 
V, and annual LOLEs are further shown in Fig. 3. The 3rd-5th 
columns of Table V show the total number of transmission 
lines, units, and generation capacities invested over the ten-year 
planning horizon. Specifically, N-1 and probabilistic 
approaches derive very different investment results, while the 
joint criterion has similar results as the N-1 approach. Indeed, 
applying N-1 criterion can effectively limit the maximum 
power imbalance to 10000MWh under worst-case uncertainties 
and contingencies. However, as shown in Fig. 3, annual LOLEs 
in years 3-6 are all higher than LOLEmax of 0.1day/year. That is, 
the overall system reliability is not guaranteed. When the 
probabilistic reliability criterion is employed independently, a 
lower total cost is obtained while all annual LOLEs are smaller 
than LOLEmax, i.e., system reliability is guaranteed. However, 
the system could be vulnerable to low-probability/high-impact 
scenarios. Indeed, the system presents a much higher maximum 
annual power imbalance of 48770MWh under the worst-case 
scenario. When N-1 and probabilistic reliability criteria are 
jointly considered, a compromising result is obtained to limit 
power imbalance of low-probability/high-damage worst case 
within 10000MWh and guarantee annual LOLEs lower than 
0.1day/year, with a slightly higher total cost than N-1 only. 

The proposed joint criterion model is further tested with 
different power imbalance levels. As shown in Table VI, the 

total cost decreases with the increase in ,maxwc
tD , because 

more power imbalance is allowed and certain investments can 
be avoided. Specifically, the highest total cost is achieved with 

,max 0wc
tD  , as more generation capacities are needed for 

handling contingencies when load shedding is not allowed. 
However, as both maximum and average annual LOLEs of 
0.0645days/year and 0.037days/year are much smaller than 
LOLEmax of 0.1day/year, over-investment would occur when 
load shedding is not allowed under worst-case contingencies.  

The adjustable robust optimization planning model 
proposed in this paper allows decision makers to set the 

expected load imbalance limit ,maxwc
tD under the worst case 

scenarios, which could result in different investment decisions 
with different system reliability performance as shown in Table 
VI. In the proposed planning model, N-1 and probabilistic 
reliability criteria have to be satisfied simultaneously. As 
discussed above, conservativeness of the N-1 criterion can be 
adjusted by setting different values of the worst-case load 

imbalance limit ,maxwc
tD . As observed from Table VI, a 
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smaller N-1 load imbalance limit ,maxwc
tD  could enhance 

system reliability with a higher total cost. On the other hand, as 
indicated in Table V, when the probabilistic reliability criterion 
is employed only, the system reliability can be guaranteed in 
terms that all annual LOLEs are smaller than LOLEmax. 
However, the system could be vulnerable to low-probability/ 
high-impact scenarios with a large load imbalance. Thus, by 
leveraging N-1 and probabilistic reliability criteria within the 
proposed joint reliability criterion framework, decision makers 
can set proper values of the worst-case load imbalance limit 

,maxwc
tD and the reliability target LOLEmax, so that system 

LOLE requirement with respect to high-probability/ 
low-damage events and the worst-case load imbalance in 
response to low-probability/high-damage events can be 
balanced with a low overall cost. 

 
Fig. 3 Annual LOLEs of three different approaches. 

TABLE V 
COMPARISON AMONG DIFFERENT RELIABILITY CRITERIA  

Approach 
Total  

cost (B$) 
Total  
lines  

Total  
units 

Total capacities 
(MW) 

Maximum power 
imbalance (MWh) 

Joint 4.7305 29 50 5914 10000 
N-1 4.7114 29 49 5749 10000 

Probabilistic 4.5298 4 52 6238 48770 

TABLE VI 
TOTAL COST SENSITIVITY ANALYSIS WITH ΔDt

wc,max  

ΔDt
wc,max  

(MWh) 
Total  

cost (B$) 
Total 
lines  

Total  
units 

Total capacities 
(MW) 

LOLEt (day/year) 
max mean 

0 4.9872 24 59 6749 0.0645 0.0366 
3000 4.8728 30 57 6518 0.0718 0.0450 
6000 4.7862 30 54 6218 0.0752 0.0512 
10000 4.7305 29 50 5914 0.0948 0.0707 

B. The modified IEEE 118-bus power system and the Belgian 
high-calorific 20-nodel natural gas system 

In this section, the proposed approach is further applied to 
a larger test system for evaluating its computational 
performance. The test system consists of the modified IEEE 
118-bus power system and the Belgian high-calorific 20-nodel 
natural gas system. Specifically, the test system includes 46 
non-gas and 8 gas units, 7 wind farms, 186 lines, 91 electrical 
loads, 2 gas suppliers, 17 pipelines, 1 compressor station, and 9 
non-power gas loads. Candidate assets include 21 generating 
units with 9 being gas, 15 transmission lines, 3 PtGs, 3 gas 
wells, 1 compressor station, and 5 pipelines [51]. A 10-year 
planning horizon is carried out, with 4 load blocks in each year. 
Peak electrical load, wind power, and non-power gas load in the 
first planning year are 5400MW, 665MW, and 10000kcf/h, 
with average annual growth rates of 3%, 8%, and 5%, 
respectively. The MILP gap is set as 1%. Other parameter 
settings are the same as the 24-bus RTS study.  

The same five cases studied for the 24-bus RTS are 
explored here, and their computational times are reported in 
Table VII. Specifically, Case 1 cannot derived a feasible 
sequential planning strategy, indicating that if all cheaper 
gas-fired units are constructed in the first step, the natural gas 
network cannot meet gas requirement of all gas-fired units. In 
addition, heterogeneous computational performance among 
multiple cases indicates that high computational cost of the 
proposed robust co-optimization planning model is dependent 
on two major factors. 

1) The sophisticated and realistic natural gas network 
modeling, including nonlinear Weymouth gas flow 
equations and rigorous modeling of natural gas 
compressors. Specifically, (i) linearized Weymouth gas 
flow equations introduce a large number of binary variables, 
and gas compressor modeling requires additional binary 
investment/operation variables as well as big-M constraints. 
In turn, as compared to the sequential planning strategy of 
Case 1 which calculates power system planning in 6s, 
computational time of the co-optimization planning in Case 
2 is increased to 60s; (ii) considering compressors further 
complicates the calculation, as compressors can enhance the 
transportation capability of existing pipelines by elevating 
gas nodal pressure levels and consequently could lead to 
more flexible investment and operation options. As a result, 
computational time of Case 3 increases significantly to 99s 
as compared to 59s of Case 3.2 without compressors; (iii) 
considering retirement of traditional coal-fired units triggers 
more investments in cheaper gas-fired units, which further 
intensifies interdependency of the two energy systems and 
deteriorates the computational performance. Indeed, 
computational time of Case 3 is increased by about 68% as 
compared to Case 2. 

2) Computational burden of the robust optimization approach. 
As well recognized by [29] and [44]-[45], computational 
efficiency of the robust optimization approach remains an 
issue for practical large-scale systems. When uncertainties 
of electrical loads and wind generations are considered, the 
running time is increased from 99s in Case 3 to about 369s 
in Case 4. The joint N-1 and probabilistic criterion in Case 5 
requires even longer time because more worst-case 
contingency scenarios and reliability cuts are generated. 
However, the running time of about 30 hours for Case 5 
would be still acceptable for a practical ten-year planning 
problem (for instance, it spends several weeks for analyzing 
a single future scenario in NYISO practice [56]). 

TABLE VII 
COMPUTATION TIME OF DIFFERENT CASES 

Case Time Case Time Case Time 
1 - 2 60s 3.2 59s 

1-power 6s 3 99s 4 369s 
1-gas - 3.1 55s 5 30h 

V. CONCLUSION 

This paper proposes a long-term robust co-optimization 
planning model for electricity and gas systems with 
uncertainties. The proposed model simultaneously optimizes 
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investments of generators, transmission lines, PtGs, gas 
suppliers, pipelines, and compressor stations. The probabilistic 
reliability criterion along with the widely accepted N-1 
criterion is incorporated to derive reliable and economic 
co-planning decisions. The proposed model is solved via a 
decomposition approach, by iteratively solving a master 
problem and two operation subproblems for checking N-1 and 
probabilistic reliability criteria. 

Simulation results show that: (i) co-optimization planning 
can reduce the total cost of electricity and gas systems; (ii) the 
joint N-1 and probabilistic reliability criterion can 
simultaneously limit the worst-case power imbalance and 
guarantee the overall system reliability; (iii) investment 
decisions of the two systems are highly interdependent. For 
instance, the retirement of coal units would trigger more gas 
units to be invested, and consequently new pipelines and gas 
compressors are needed to ensure sufficient gas supply. On the 
other hand, potential gas network congestion under worst-case 
scenarios would postpone investment of gas units; (iv) PtGs can 
facilitate a deeper penetration of wind energy and postpone the 
construction of transmission lines; (v) compressor stations can 
enhance gas delivery capacity of the gas network and delay the 
construction of pipelines; and (vi) wind power recourse cost is a 
useful index to limit wind spillage under uncertainties, promote 
PtGs, and utilize more wind energy. In sum, the proposed 
co-optimization approach could benefit decision makers with 
useful technique support in interdependent system planning. 
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