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Abstract— As the sharp growth of gas-fired power plants and the
new emergence of Power-to-Gas (PtG) technology intensify the
interdependency between electricity and natural gas systems, it is
imperative to co-optimize the two systems for improving overall
efficiency. This paper presents a long-term robust co-optimization
planning model for interdependent systems, for minimizing total
investment and operation costs. Beside generators, transmission
lines, gas suppliers, and pipelines, PtGs and gas compressor
stations are also considered as investment candidates to effectively
handle wind power uncertainties in the power system and
compensate pressure losses in the gas network. Furthermore, the
proposed model includes a joint N-1 and probabilistic reliability
criterion to promote economical and reliable planning solutions.
The proposed model is solved via a decomposition approach, by
iteratively solving a base-case master problem and two operation
subproblems to check N-1 and probabilistic reliability criteria.
Numerical case studies illustrate the effectiveness of the proposed
robust co-optimization planning approach.

Index Terms— Co-optimization planning, power-to-gas, robust
optimization, N-1 contingency, probabilistic reliability.

NOMENCLATURE

Indices:
dlb Index of electrical loads/transmission lines/buses.
gjp.cca Index of gas loads/gas suppliers/pipelines/gas

compressor stations/PtG facilities.
k,r Index of identified worst cases/dual reliability cuts.
m,n Indices of gas network nodes.
q Index of Monte Carlo (MC) simulation samples.
thiw Index of years/load blocks/generators/wind farms.
Variables:

AUy, , ALy, Binary variable which is equal to 1 if unit i/ line /
is available, being 0 otherwise.

AD,bC,AWtb" Base-case system load shedding/ wind spillage in

year £.

AD}*¢ Worst case system power imbalance in year ?.

f ;hz » fpne Binary variables to indicate gas flow direction of
pipeline p at load block % of year ¢.

Sopes fone  Operation status indicators of compressor station ¢

at load block / of year ¢.
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FC,, Gas production of gas supplier j/ gas consumption

]ht >

of compressor station ¢ at load block /4 of year .

Gipe » Gy Gas consumption of gas-fired unit i/gas production
of PtG facility « at load block % of year ¢.

1C,0C Investment/operation cost.

th , Pwht Dispatch of generator i/ wind farm w at load block
h of year ¢ in base case.

Pah, s thz Base-case power consumption of PtG a/ load

shedding of demand d at load block /4 of year ¢.
lhz , th, Base-case power flow of line // phase angle of
electrical bus b at load block % of year ¢.

Pryn: Squared pressure of gas node m at load block / of
year t.
Opnt » Qe Gas flow in pipeline p/compressor station ¢ at load

block /4 of year ¢.

Sine »San  Binary indicators for uncertainty set.

Yir» Vit » Ve Investment status of generator i/ transmission
line //PtG facility a in year ¢.

Zj, Zpt 2 Z Investment status of gas supplier j/ pipeline p/

compressor station c in year ¢.

()" Variables in response to uncertainties.

(-)Wc ,(-)mc Variables in worst case/MC simulation.
Constants:

c’,c”  Power imbalance/ wind spillage cost.

c* Threshold of wind power recourse cost.

cn Investment cost of a new electricity/gas asset.

Cloel 77l Fyel price/retirement year of unit i.

ch Production cost of gas supplier ;.

DT,dr Time duration and discount rate.

Ddht »Ggpy Forecast value of electrical load d/gas load g at

load block 4 of year ¢.
Dy » Py Load/wind deviation from forecast value of load

d/wind farm w at load block 4 of year ¢.

com "eP18  Efficiency of compressor station ¢/PtG facility a.

e,
K Coefficient of present-worth value.
K Gas flow constant of pipeline mn.
M A large enough positive number.

ND,NW Number of electrical loads/wind farms.
NT,NH,NS Number of years/load blocks/ MC samples.

P_?,thz Wind power forecast of wind farm w at load block
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h of year ¢.
Pr,f, , Pry; Squared pressure lower/upper bound of node m.
Ry, System spinning reserve at load block /4 of year ¢.
R, R*™™ Up/down ramping limit of unit i.

s(1),r(I) Sending/receiving bus of transmission line /.

X Reactance of transmission line /.

yretire Retirement status of unit i in year £.

Ay, A, Budgetofelectrical load/wind uncertainty in year ¢.
r. Compressor factor.

(-)mm/max Min/max value of a quantity.

Functions and Sets:

CG,CL,CA Set of candidate units/transmission lines/PtGs.

CS,CP,CC Set of candidate gas suppliers/pipelines/
compressor stations.

D,W Uncertainty set of electrical load/wind generation.

EG,EL,EA Set of existing units/transmission lines/PtGs.

ES,EP,EC Set of existing gas suppliers/pipelines/compressor
stations.

F; () Heat rate curve of generator i.

GU

(), I’®(-) Compact forms of certain system constraints.

Set of gas-fired generators

N(b), G(m) Set of components at electric bus b/ gas node m.

I. INTRODUCTION

wing to distinct advantages of gas-fired generators over

traditional fossil units, including lower capital cost, higher
efficiency, faster response capability, and lower carbon
emission, gas consumption by the power system has shown a
sharp growth from 27% in 2005 to 39% in 2016 [1]. In addition,
a new promising technology, Power-to-Gas (PtG), is being
deployed to effectively convert excessive electric energy,
especially from wind, into compatible gas [2]-[3].

Indeed, the growing reliance of the electricity grid on the
natural gas network has significantly intensified interaction of
the two systems, and brings new challenges on the reliability
and efficiency of both systems. Specifically, different from
fossil units whose fuel supply has been traditionally considered
sufficient, gas-fired units rely on just-in-time gas supply from
the natural gas network. In addition, PtG facilities count on the
natural gas network to absorb gas converted from excessive
wind energy. Consequently, co-optimization planning is in
urgent need for strengthening the reliability and sustainability
of interdependent energy infrastructures. In fact,
co-optimization planning models have been actively sought by
regional energy market operators [4]-[5] and federal agents [6].

The co-optimization planning problem of interdependent
electricity and gas systems determines the type, capacity,
location, and time of new components to be invested over the
planning horizon, in order to ensure reliable and cost-effective
power/gas production and delivery to meet electricity/gas
demands. Such components in interdependent energy
infrastructures would include generators, transmission lines,
PtG facilities, gas suppliers, pipelines, and compressor stations.

Some literatures have studied expansion planning of
integrated energy systems [7]-[13]. A long-term, multiarea, and
multistage model for the expansion planning of integrated
electricity and gas system is studied in [7], while considering
the whole natural gas value chain. Reference [8] develops a
combined gas and electricity network expansion planning
model to invest in new pipelines, compressors, storages
facilities, and transmission lines. Market interactions among
various stakeholders are considered in [9], which models
alternating current (AC) power flow of the power system and
nonlinear nature of the gas network. A transportation model of
the gas network is incorporated in the co-planning model in
[10], which is solved by an interactive process between a
least-cost investment master problem and two operation
subproblems representing physical feasibility and financial
optimality. The authors in [11]-[12] further consider power
system uncertainties such as demand growth, energy price, and
government policies in the co-planning model for a combined
electricity and gas market. An integrated multi-period
three-stage model is studied in [13] to determine optimal
generation, transmission, and natural gas network expansions.

Reliable electricity delivery is of the core value in the entire
power industry, and the N-1 criterion is widely used in power
system planning as a deterministic approach to ensure
reliability [14]-[15]. The N-1 standard requires that the normal
operation should be maintained, i.e., without any loss-of-load,
under any single contingency outage. However, the
deterministic N-1 standard neglects the stochastic nature of
simultaneous outage of multiple generators and transmission
lines. Alternatively, probabilistic models consider reliability
criteria, such as loss-of-load-expectation (LOLE), loss-of-
energy-probability (LOEP) and expected-energy-not -supplied
(EENS), in expansion planning of power systems [16]-[18].
Indeed, it is mentioned in [19] that the N-1 criterion may lead to
over-investment solutions, while probabilistic approaches,
focusing on high-probability/low- damage events to derive low
investment costs, could leave the system vulnerable to
low-probability/high-damage events. Both deterministic N-1
and probabilistic reliability criteria are adopted in [20] to
evaluate reliable planning of power systems.

This paper proposes an adjustable robust optimization based
co-optimization planning model for interdependent electricity
and natural gas systems, which minimizes the total investment
and operation costs of the two systems while considering power
system uncertainties. Specifically, due to variability and
uncertainty of wind power, wind spillage has long been an issue
[21]-[22]. This paper focuses on investing in new gas-fired
units and PtG facilities in the planning stage, and adopting wind
power recourse cost to mitigate wind spillage under
uncertainties. In addition, both N-1 and probabilistic reliability
criteria are incorporated into the co-optimization framework, so
that low-probability/high-impact events are adequately
addressed while overall reliability is also ensured. Unlike the
power system, the gas network is regarded highly reliable and
the N-1 criterion does not apply [11]-[12]. Thus, uncertainty
and curtailment of non-generation gas loads are not considered.

Major contributions of the paper are threefold.
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1) Modeling of Interdependent Systems: Compared with
[7]-[13] which consider generators, transmission lines, gas
suppliers, and pipelines in expansion planning of integrated
energy systems, the proposed co-optimization planning
model also considers PtGs and gas compressor stations as
investment candidates for facilitating a deeper penetration
of wind energy and compensating gas pressure losses with a
proliferation of gas-fired units. Moreover, retirement of
traditional coal-fired units is also considered. In addition, as
compressor stations typically consume about 3-5% of the
total transported gas [23], gas consumption of compressor
stations is rigorously modeled, which has been neglected in
(7], [10]-[11], [13].

2) Wind Power Utilization: To further avoid extensive wind
spillage under uncertainties and promote PtG facilities,
wind power recourse cost is proposed within the robust
optimization framework for enhancing wind power
utilization. Similar to the recourse cost for restricting
re-dispatch cost in [24], wind power recourse cost proposed
in this paper can effectively limit wind spillage quantities
when various uncertainties are revealed.

3) Reliability Evaluation Criterion: Compared with methods
in [14]-[15] which only consider the N-1 criterion and
methods in [16]-[19] which only explore the probabilistic
reliability criterion for power system planning, this paper
extends the robust optimization model to include a joint N-1
and probabilistic reliability criterion for further promoting
reliable and economical co-optimization planning solutions.
That is, low-probability/high-impact damages
corresponding to worst case realizations of uncertain
electrical loads, wind generations, and contingencies are
mitigated by the max-min N-1 subproblem, while the
overall system reliability with respect to random outages of
generators and transmission lines is guaranteed by the
probabilistic  reliability subproblem. Reference [20]
discusses a joint deterministic-probabilistic criterion to
evaluate reliability performance for a set of predefined
planning strategies. In comparison, this paper investigates
optimal planning solutions by integrating the N-1 criterion
and probabilistic reliability criterion into a robust
optimization framework.

The rest of the paper is organized as follows. Sections II-1II
discuss the proposed robust co-optimization planning model
and the solution methodology. Numerical case studies are
presented in Section IV, and Section V concludes the paper.

II. MODEL DESCRIPTION

This section presents the mathematical formulation of the
proposed robust co-optimization planning model, which
considers uncertainties in electrical loads/wind generations,
N-1 contingencies, and the overall system reliability. Although
a finer temporal model such as time-series could better capture
the stochastic nature and temporal correlation of renewable
energy, it may be computationally intractable in the long-term
planning problem due to the curse of dimensionality.
Furthermore, the LOLE index, as a long-term reliability
criterion used in power system planning, is traditionally
calculated using daily peak loads or load blocks [16], [25]-[27].

In turn, following the convention of optimization-based power
system planning [10], [15], [28], this paper adopts several
blocks to represent typical correlated load levels and renewable
energy outputs in multiple hours of each planning year.

A. Objective Function

The proposed robust co-optimization planning model of
electricity and natural gas systems is to minimize the total costs
associated with electricity/gas asset investments, electricity/gas
system operation, electrical load imbalance, and wind spillage
(1.1). Equation (1.2) calculates investment costs of generators,
transmission lines, PtGs, gas suppliers, gas pipelines, and
compressor stations. Equation (1.3) represents operation costs
of electricity and gas systems, in which operation costs of
gas-fired units are considered in terms of gas fuel cost and
carried out by gas production costs. Coefficient of present-

worth value is calculated as «;, = 1/ (1+ dr)H .

The proposed model is from the viewpoint of a cooperator of
power and gas systems, while the objective (1.3) includes the
total production costs of the power system and the gas network.
The production cost of the gas network is represented as
Y ¥ Y& - DTy, - C7™ -Gy , while the production cost of the

t hj
power system potentially includes costs of non-gas thermal
wmits ¥Y Y kDT, -CLF (PIZ;:) and gas units.
t higGU
However, as gas-fired units consume natural gas and are
regarded as gas loads in the gas network, different from non-gas
thermal units, their costs are indirectly calculated via the
production cost of natural gas suppliers.

min[IC+OC+C1 > ADY +c" ~ZAWtbcj (1.1)
t t
IC=x X Kt‘CiinV‘yit+z 2 Kt‘ClinV‘ylz
t ieCG t leCL
+Y % KOV oy +E 3 kO ez, (1.2)
t aeCA t jeCS
+Y Y & CVez 4% ¥ KOz,
t peCP t ceCC
OC=¥Y ¥ x-DT;-Cl*-F(pls)
t higGU (1.3)
10}
+Z%ZK,-DT,,,~C§.’ -Gy
thj

B. Investment Constraints

The co-optimization planning model considers investments
in units, transmission lines, PtGs, gas suppliers, pipelines, and
compressor stations. Once a candidate is installed, its
investment status will be fixed to 1 for the remaining years
(2.1)-(2.6). Retirement of existing units within the planning
horizon is also considered. That is, operation status of an
existing unit is switched to 0 after retirement (2.7). Constraint
(2.8) ensures that the total generation capacity can meet
forecasted electrical loads plus system reserve. Constraint (3)
describes the annual LOLE criterion, which is a widely
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accepted probabilistic method for evaluating power system
reliability. However, explicit analytical formula for (3) is not
readily available, as annual system LOLE is a probabilistic
criterion which depends on investment decisions as well as
electrical loads and available wind energy. In this paper, (3)
will be rigorously evaluated in the probabilistic reliability
checking subproblem as discussed in Section III.C.

Yi(e-1) < Vit ieCG (2.1)
Yie-1y < Vie leCL (2.2)
Ya(e-1) < Yar» aeCA (2.3)
Zj(-1) S Zjes jeCS (2.4)
Zp(t=1) < Zpts peCP (2.5)
ZC(t—l) < ZC[’ C e CC (26)
yi =002, icEG 2.7)
D Pl_max . ylyletire + 3 leax Vi >y Dg}c” " ha (2. 8)
icEG ieCG d
LOLE( Vit Vies Do P2 ) < LOLE™ 3)

C. Operation Constraints

The proposed planning model also evaluates operation
constraints for the power system and the gas network, as well as
their operational interdependency. Power system operation
constraints (4) describe operating conditions of units,
transmission lines, buses, wind farms, and PtGs in the base
case. Equation (4.1) represents nodal power balance. Constraint
(4.2)-(4.3) limits annual system load shedding in the base case.
Annual system wind spillage in base case is calculated in (4.4).
Using DC power flow model, constraints (4.5)-(4.8) enforce
power flow limits of existing and candidate lines. Bus phase
angles are limited by (4.9). Constraints (4.10)-(4.14) enforce
capacity limits of existing/ candidate generators, existing/
candidate PtGs and wind farms. Equation (4.14) represents that
wind power is dispatchable in the way of wind curtailment.
That is, wind generation is modeled as a dispatchable resource
because wind power can be spilled to maintain the operation
security of power systems, especially in high wind and low load
situations [28]-[29].

> B+ ¥ RN~ X Phg+ Y PL

ieN(b) weN (D) s(DeN(b) r()eN(b) 4.1)
- X Pfhct + X ngt = 2 Dglit
aeN(b) deN(b) deN(b)
AD¢ = 3 DTy Vi (4.2)
ADP¢ < Appe-max (4.3)
Awpe = LT, (PP = P0G ) (4.4)
w

P X :(9”" L ) IcEL  (45)

Iht " X1 s(ht ~ Oyt | .
—PLIM™ < P < L, leEL (4.6)
—PL™ .y < PIbC < pLPax .y, leCL (4.7)

—(1-yy)-M < PL, - X, —(Qg(cl)ht _arb(cl)ht)s(l_ylt)'M’

leCL (4.8)
-G < ghe < gmax (4.9)
0< PJ¢ < pmax. yretire. icEG  (4.10)
0< PJ¢ < pM.y, ieCG (4.11)
0< PY < pmax, aeEA (4.12)
0< P, <pmax.y aeCA (4.13)
0< Po < PP (4.14)

Gas network model (5) describes operating characteristics of
the gas system via Weymouth gas flow equations [30]. Gas
network nodal balance equation (5.1) describes that the total
gas flow injection is equal to the total withdrawn at each node.
Production limits of existing and candidate gas suppliers are
shown in (5.2)-(5.3). Constraint (5.4) represents the pressure
limit of each gas node. Nonlinear Weymouth equations
(5.5)-(5.6) describe the relationship between squared nodal
pressure and pipeline flow rates. Gas flow directions of

pipelines are determined by (5.7)-(5.9), where f;hz =1/

Jpne =1indicates that gas flows from node m/n to node n/m

through pipeline p. Constraints (5.10)-(5.20) describe operating
characteristics of compressor stations. Equations (5.10)-(5.12)
calculate terminal gas pressures of existing and candidate
compressor stations [31] with node m/n as primary/secondary
side. Constraints (5.13)-(5.15) describe operation status of a

compressor station, where f.j,, =1/ f,;, =1 indicates that a
compressor station is not/is operating. Constraints (5.16)-(5.20)
describe gas fuel consumptions of existing and candidate

compressor stations [23], which consume gas only if they are
invested and in operation.

) Py Gjh[ - Qpht + Py Qpht - p) Qcht

jeG(m) s(p)eG(m) r(p)eG(m) S(c)eG(m)

+ Y (O —FCp )+ T Guy— ¥ Gp= X G
r(c)eG(m) aeG(m) ieG(m) geG(m)

(5.1)
0< Gy <GP, JeES  (52)
0< Gjht < G;nax “Zjg jeCS (5.3)
Pr,:lnin < Pryy < Prg™ 54
(f;ht _f;;ht)’(P”mht _P”nhz): Q]zaht/Kr%m ,p€EP (5.5)

Zpt '(.f;hz _fp_ht)'(Prmht _Prnht):Q?)ht/Kr%m ,p€CP (5.6)
—(1—f;h,)-M o s(l—f;ht)-M, pe EPUCP (5.7)
f;ht+fp_ht =1,

_(l_f;ht)'M < Priype = Phupg S(l_fp_ht)'M’
pe EPUCP (5.9)

pe EPUCP (5.8)

T2 Prye = Pryy, ceEC (510
—Zy M < Pry —Pryp <z M, ceCC (5.11)
Pryy =T Proyy <(1-2,)- M, ceCC (5.12)
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_(l_fc-;tt)'M < Prypy = Py S(l_fc-;tt)'M

ce ECUCC (5.13)

Propps = Pl ce ECUcC (5.14)

(1= ).

S + Sore =1, ce ECUCC (5.15)

-(1—ﬁ?,;,)-M3Fcchtg(l—f;,,).M, ce EC (5.16)
_(l_f(:;lt)’MSFCcht_(l ) Oent < (1 fcht)

ce EC (5.17)
0<FC,y; <zy M, ceCC (5.18)
_(2_th _fc;n)'MSFCcht S(2_ Ct_cht)'M’

ceCC (5.19)
—(2—th—fcj,,)-MSFCcht—(l—ef,’om)-Qch,

(5.20)

Electricity and gas systems are linked by gas-fired units and
PtGs, which are regarded as generators/gas loads and electrical
loads/gas suppliers in electricity/gas system. Constraint (6.1)
describes the relationship between power dispatch and gas
consumption of gas-fired units via heat rate curve and high
heating value (HHV). PtGs are modeled via energy conversion

factor ¢, efficiency ef'¢, and HHV as in (6.2), where HHV=

1.026MBtu/kef and ¢=3.4MBtu/MWh. For the sake of
discussion, gas network constraints (5) and coupling
constraints (6) are rewritten in a compact form as in (7).

G = F; (P ) JHmV., ieGU 6.1)
Gaht =¢- Paht ptg/HHV (6.2)
r (Phta aht)<0 (M

Constraints (8)-(9) evaluate operation security, in terms of
maximum annual power imbalance in the worst case, of
interdependent systems in response to uncertainties of electrical
load, wind generation, and N-1 contingencies. That is, the
annual largest possible load imbalance under uncertainties is
identified via (8), which is further limited by the annual power
imbalance threshold as in (9). Constraint (8.2) describes the
N-1 criterion, i.e., at most one generator/ transmission line is on
contingency outage. Constraints (8.3)-(8.5) describe load and
wind uncertainty sets. Take load uncertainty set D as an

example. If s, =1/sz, =1, uncertain electrical load d
reaches its upper/lower limit at load block % of year #; if both are
0, the forecasted load value is achieved. In addition, budget
constraints in (8.3)-(8.4) control total deviations of loads and
wind generations from their forecast values, where budgets of

uncertainty Ay and A, take values between 0 and NH. Note

that in uncertainty sets (8.3)-(8.4), D, dht and P}’fwh, are base

case forecasted values of electrical loads and wind powers in
each year, which have already reflected average annual growths

of peak electrical load and wind power, while deviations D,

and P, from the base values are used to simulate the

combined effect of short-term variability and long-term annual
growth uncertainty.

Constraints (8.6)-(8.20) describe operation characters of
interdependent systems in response to uncertainty realizations

of electrical load Dy, , wind Pf,,, , and contingencies

Ui | ALy, Specifically, dispatch adjustments of

generators/wind farms/PtGs Py, / Py, / By, in response to

uncertainties need to satisfy system load balance (8.6), power
flow equations (8.7)-(8.8), power flow limits (8.9)-(8.10), bus
phase angle limits (8.11), and capacity limits (8.12)-(8.16).
Dispatches in the base case and under uncertainties are further
coupled via ramping capabilities (8.17). Wind power is
traditionally modeled as a dispatchable resource in robust
optimization, as wind power can be spilled for maintaining the
security of power systems [28]-[29]. In this paper, in order to
effectively utilize available wind energy in the worst case and
promote more PtGs, the wind power recourse cost is adopted to
limit wind spillage quantities under uncertainties (8.18), i.e.,
the annual wind spillage penalty cannot exceed the budget.
Constraint (8.19) ensures non-negativity of power mismatch
variables. Natural gas network feasibility under uncertainties is
guaranteed by (8.20). In (8), symbols bracketed in the end are
dual variables of corresponding constraints. For the sake of
discussion, operation constraints under uncertainties (8.6)-
(8.20) and (9) are further presented in a compact form as in

(10).

AD)" =max min % 07, (vt + vt (8.1)

st. (1= AUy, )+ X (1- ALy, ) <1 (8.2)
i 1

" NDXNHXNT . — + . - .
Dg R : %Sdht +Sant < Dp>San + Sane <1
D=

u bc + A - N + -
Dijne = Digie +Sant * Dane = Sane - Daane »Sdne »Sae € {0,1}
(8.3)

NWxNHxNT
eR stht +Swht < Awl’ wht +Swht <1

Pfu,wht

U D - D + -
P = f}é,whz +Swont Pt = Swhe * BuneSwoneSwne € {01}

(8.4)
Dght eD 5 P}t,wht eW (85)
> Pu+ X Pogw- X PLy+ X PLy
ieN(b) weN (b) s(HeN (b) r(eN (b) (8.6)
- X P+ X (V;ri'z —V(?Z't) > Dy (B
aeN(b) deN(b) deN(b)

PLjy, - X = ALy, '(95(1)/” —Hru(z)hz), leEL:(zy,) (87)
~(1=yy - ALy, )-M < PLy, - X, —(‘9.3(1)1” —eru(/)hz)

<(1=yy ALy, )-M, 1€ CL: (s> 7ipy )
PLlinaX < PLlht < PLmaX, ZEEL:(:ulhl’ﬂlhl) (89)

Vie - ALy s
I € CL: (8> 7y )

(8.8)

—PLMX .y AL, < PLY,, < PLP™
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—05™ <Oy <OF +(Epne i) (8.11)
0< PY, < pmax. yretire icEG:(oy)  (8.12)
0< By < B™ -y, i€ CG: (&) (8.13)
0< Py, <P, acEA:(cy,) (8.14)
0< Py, <P™ -y, aeCA:(vy,) (8.15)
0< Py, < P}{,wht :(Pwhz) (8.16)
(Pz% _deown)‘AUihz < Py S(Pi% +RiuP)‘AUiht (Pt Vine )

(8.17)
%%CW DTy (P he = Pine ) €€ 1(02) (8.18)
Vi = 0,v 4 >0 (8.19)
I (Bl Pl ) <0 (8.20)
AD}" < AD;¥emax )

pg ( pu u 7 u U +u o —u
L (E'ht’ Wwhi > aht»Ddhtan,whtaALlhz’AUihz’thts"dht)SO

(10)

III. SOLUTION METHODOLOGY

The proposed robust planning problem (1)-(6) and (8)-(9)
includes three optimization levels: (i) the upper level (1)-(6)
which determines optimal investment and operation decisions
of electricity and natural gas systems in the base case. In
addition, the probabilistic reliability constraint (3) ensures that
the investment of assets can meet the overall system reliability
requirement; (ii) the middle level (8.2)-(8.5) which identifies
worst-case scenarios with the highest load imbalance
corresponding to the solution from the upper level, with respect
to N-1 contingencies and uncertainties of electrical loads and
wind generations; and (iii) the lower level (8.6)-(8.20) which
determines dispatches of electricity and natural gas systems for
minimizing the system load imbalance, given upper level
investment decisions and middle level uncertainty realizations.

The proposed robust co-optimization planning model may
not be effectively solved without decomposition, especially in
recognizing the challenges from probabilistic reliability
constraint (3) and max-min security evaluation (8). A
decomposition based approach is adopted to effectively solve
the problem, by iteratively optimizing base-case investment/
operation decisions in a master problem and checking solution
quality of the master problem via N-1 and probabilistic
reliability criteria in two subproblems. The N-1 security
checking max-min subproblem generates primal cuts (via the
column-and-constraint generation approach [24], [32]) and the
probabilistic reliability subproblem generates dual cuts (via the
Benders decomposition method [10], [17]). Note that the N-1
security checking subproblem and the probabilistic reliability
subproblem are carried out for each year.

A. Master Problem
The master problem is presented as in (11), in which worst

case realizations Dgy, , Py, » AUj,; and ALy, identified
in the N-1 security subproblem in Section III.B and dual

reliability cuts generated from the probabilistic reliability
subproblem in Section III.C are iteratively added. Optimal

solutions PY¢, y.., y, , and y, are passed on to the two
subproblems.

min(1C+0C+CI > AD + " .zAW,”C]
t t
s.t. Constraints (2) and (4)-(6)

we,k pwe,k pwe,k Hwek pwek
Byt s Bond > Fane” »Pane L e

we,k we,k _+wek | —we,k
ALy AU Vane ™ Ve

—-we,k
tVant )

P8 <0

8D K =23 DI, (vt
hd

Dual reliability cuts generated so far.

(11

Note that the master problem is a mixed-integer nonlinear
programming (MINLP) problem with nonlinear gas flow
equation (5.3)-(5.4). We follow the convention to convert (11)
into a mixed-integer linear programming (MILP) problem with
a better computational performance [32]-[33]. For instance, the

nonlinear term (f;hz —f;/7,)~(Prmh, —Prn,”) in (5.3) can be

equivalently represented as in (12) via an auxiliary variable
grpn [34]. Equation (5.4) for candidate lines can be similarly

reformulated, with additional constraints (13) to further enforce
the relationship between gas flows and pipeline investment

decisions. Indeed, the quadratic term Q]%h[ in (13) can be

piecewise linearized to derive the final MILP representation
[32]-[35], while K

an 15 the pipeline constant. In [35], three
different models for linearizing nonlinear gas flow constraints
are compared, including convex combination model, multiple-
choice model, and incremental model. It is indicated that the
incremental model outperforms the other two techniques via
theoretical and computational analysis. Indeed, the most
promising advantage of the incremental model is its
computational performance for optimizing gas network
operations. In the piecewise linearization technique, more
segments in the linearization process would derive a better
approximation, at the cost of more continuous and binary
variables with a higher computational burden.

it > Prite = Prigay + (S = S +1)- (P =Prit) - (12.1)
8 pht Z Pripy = Prypy +(f;ht —Jfpht _1)'(P’% _Pr}’{) (12.2)
8 pht < Pryups = Priypy +(f;ht —Jphit +1)~(Prrﬁ _P”;f) (12.3)
8 pht < Pl = Pr, z"‘(f;ht —fpht _1)'(Pr£z_P”:) (12.4)
~(1=2p ) M < grope = Oppe [ K < (1= 2 ) M.,

peCP (13.1)
2y M <Oy <2y M, peCP  (132)
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B. N-1 Security Subproblem

The N-1 max-min subproblem (8.1)-(8.19) identifies the
worst-case realization Dy, , Pty » AUjy; and ALp, that
would lead to the largest possible system load imbalance, with
respect to the master solution P,% , Yir» vy and y, . This
worst-case scenario will be added into the master problem to
obtain a new solution that will mitigate the system load
imbalance. Note that gas network feasibility constraint (8.20)
for individual worst case realizations will be checked in the
master problem, instead of this subproblem. Thus, with an inner
linear programming model, the max-min subproblem (8.1)-

(8.19) can be converted into a single-level bilinear optimization
problem (14).

AD) =max¥ X Dy P +3 E (1=Fy - ALy )-M -y
 deN(b) i 1eCL

+3 % (1D ALy )M omy + X 3 P (A + e )
h leCL h leEL

+3 X PL™ - Jyy - ALy (g + O )+ X0 (s + S )
h leCL b

max _ retire max
XX By o2 X BT Dy G
h icEG h ieCG

ma max
2 X Bz X'gaht+z 2z Pa X'yat'Uaht
h acEA h aeCA

b be _ pd
+%Z(Pihf +Riup)'AUiht Vine _%Z(Pihf -k Own)'AUﬂn it
1 1

w
+%£R%,wht * Pwht +-(% '(Ctre _%ZC 'DTht 'P/l‘l',whtj
w w

S.t. _DTht < ﬁdhl‘ < DTht

Oppt —Epht — ALy - 2 + 2 ALy - Xipe
s(l)eN(b),leEL r(l)eN(b),leEL
- X () X (Ve —me)=0
s(l)eN(b),leCL r(l)eN(b),leCL

=Bsayne + Bryne + X1 Xine + ane — Fane =0, leEL

~Bsyne + Brayne + X1 -(Yine =i )+ %ine = S = 0,1 € CL

Boht + it +Vine = Pine <0, ie EGNN(b)
Byt + it +Vine = Pins <0, ie CGNN(b)
~Bohe +Sant <0, ae EANN(b)
~Pnt +Vant <0, ae CANN(b)
ﬂwht+Pwhz_CW'DTh,'-Qt <0, we N (b)

Constraint (8.2)-(8.5); By » Xipe Wnlimited; 7, ¥ e Mipe s Aine

Olht > Tiht > Ebhe » Cbht > Oiht > Sint s Saht » Caht > Pwhit > Pint»Wine » £ < 0
(14)

The objective function of (14) includes bilinear terms, i.e.,
products of two continuous variables (i.e., an uncertainty
variable and a dual variable) and products of a binary variable
and a dual variable. The product of an uncertainty variable and
a dual variable can be linearized via auxiliary binary variables
together with extreme values of uncertainty variables, because

in the worst case a continuous uncertainty variable D, always
takes its upper/lower limit or the forecasted value [36]. For

instance, bilinear term D}y, - S, can be linearized as in (15),

where cc;(,)ht, ccpy and ccpy, are auxiliary binary variables.

On the other hand, the product of a binary variable and a dual
variable can be linearized using the well-known algebra results.
For example, bilinear term ALy, -7y, can be linearized as in

(16).

u bc 0 bc ~ +
Dnt - Bone = Digt * Boie + (Ddht +Dgpy ) * Bt

(15.1)
+(D315z _Ddht)'ﬂb_htad e N(b)
Boie = Bohe + Bone + Bone (15.2)
ccght +echy +ccpp =1 (15.3)
—ccl(,)h, M < ﬂl(,)h, < ccgh, -M (15.4)
~CCpjy - M < Py < ccp - M (15.5)
—ccppr M < PBpps S ccppr - M (15.6)
"ihe = ALy * Vine (16.1)
—ALy, M <rry,; <0 (16.2)
Vime —(1= ALy )M < rrgy < g + (1= ALy, )- M (16.3)
With above linearization approaches, the bilinear

subproblem (14) can be reformulated as an MILP problem and
solved by commercial MILP solvers.

C. Probabilistic Reliability Subproblem

The probabilistic reliability subproblem evaluates system
reliability level (3) with respect to random outages of
generators and transmission lines. The LOLE index has been
widely accepted and used in power industry to evaluate the
overall reliability of power systems [16], [25]-[26], which
quantifies the number of days in a year that electrical loads
cannot be sufficiently supplied. This metric does not provide
information on the potential total energy shortfall. Usually, the
standard LOLE level in power industry is 0.1day/year or one
day in ten years. Following the practice in power industry, the
proposed model adopts the LOLE index (3) to evaluate the
reliability of power systems. As the annual wind power
generation profile of a certain location usually remains
unaltered from year to year [37], short-term load and wind
power uncertainties are addressed in the security operation
subproblem instead. That is, the LOLE index will reflect the
long-term overall reliability of the system over a long period of
time (say one year), and the operating security of the system is
guaranteed by the N-1 security subproblem.

In this paper, Latin Hypercube Sampling based Monte Carlo
(MC) simulation is adopted to estimate system LOLE with
forced outage rates of system components [38]. The reliability
checking subproblem for the gth MC sample of load block % in
year ¢ is given in (17). The MC simulation stops when
coefficient of variation is less than 1% [38]. Finally, the system
LOLE for each year ¢ can be calculated as in (18) using
solutions to all NS MC sample subproblems, where

1, (ENSht) is an indicator function with the value of 1 if

ENS;,, , is no smaller than a smaller threshold ¢ and otherwise 0.
If the reliability criterion (3) is not satisfied, a dual reliability
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cut (19) will be generated and incorporated into the master
problem.

: q _ +mc,q —mc,q
min ENS,, —%:DTht'(vdh; +Vnt )
S.t.

mc, s
> Pt X PR
ieN(b) weN(b)

me,q
> PLlht +
s(eN(b)

Y P
r(l)eN(b)
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As annual system LOLE is a probabilistic index which
depends on investment and operation decisions, explicit
analytical formula for (3) is not readily available. Alternatively,
the reliability checking subproblem (17) calculates potential
load shedding quantities among multiple scenarios, and
consequently the LOLE index is post-calculated as in (18) to
evaluate system reliability. However, as LOLE is not explicitly
treated as a decision variable in (17), the LOLE index cannot be
directly used to generate reliability cuts, while a dual reliability
cut (19) with respect to EENS is used when the LOLE criterion
is not met. Indeed, as Benders decomposition is an exact
algorithm which guarantees solution optimality via
decomposition [10], [17], dual reliability cuts generated via
dual solutions of the reliability checking subproblem (17)
represent valid cutting planes that can mitigate load shedding
by optimally adjusting planning decisions in the master
problem. The same strategy has also been adopted in [10], [17],

[37].

It is also noted that optimal planning decisions derived via
the EENS based dual reliability cut (19) could be different from
the LOLE index directly, while the proper setting on EENS™*
in (19) could help mitigate such difference. For instance,
reference [39] provides a way to set EENS™* according to
electrical load levels. For example, in case studies of this paper,
EENS™* can be set as 3% percent of the peak load (i.e., 2850
MW) which yields 205MWh (i.e., 0.1%24*2850%0.03 with
respect to the LOLE threshold of 0.1day/year). In practice, in
order to ensure that the final optimal planning decisions derived
from the dual reliability cut (19) are as close to those of the
LOLE index as possible, decision makers can dynamically
adjust EENS™* via an iterative procedure. That is, a relatively
large EENS™, saying 5% of the peak load, can be used in the
first few iterations, if the LOLE criterion is not met while the
EENS™* is satisfied, EENS™* can be gradually reduced in later
iterations until the LOLE criterion (18) is satisfied.

In this paper, both N-1 criterion and probabilistic
reliability criterion are adopted for evaluating co-optimization
planning decisions in two distinct subproblems. The max-min
N-1 security checking subproblem is formulated as a robust
optimization model, which simulates wind power uncertainties
via an uncertainty set (8.4). In comparison, concerning
stochastic nature of renewable energy, the approach discussed
in [40] calculates reliability indices with pre-calculated
deliverable capacity probability table (DCPT) and available
capacity probability table (ACPT). However, this technique
cannot be directly applied in the proposed robust optimization
based approach, because it only quantifies reliability
performance of certain planning decisions but does not presents
strategies on how planning decisions could be adjusted to
further improve system reliability. In addition, [41]-[43] use
sequential Monte Carlo simulation to sample uncertain wind
power scenarios via the ARMA model, which are integrated in
a stochastic programming framework to determine optimal
operations of power systems. In other words, the sequential
Monte Carlo Simulation, which generates multiple scenarios to
simulate random outages of generators/transmission lines and
uncertain loads/wind generations in stochastic programming, is
not suitable for the proposed robust optimization based
approach which is based on the uncertainty set. Furthermore, in
the max-min N-1 security checking subproblem, a sequential
model with 8760-hour time-series data may be computationally
intractable, because its equivalent single-level bilinear
optimization problem (14) will include a significant number of
binary variables indicating outage statuses of generators/
transmission lines and uncertainty levels of loads/wind
generations. It is noted that the single-level bilinear
optimization problem (14) needs to be equivalently converted
into a mixed-integer linear programming problem for the
solution, which will introduce additional binary variables and
further complicate the computation. In turn, we follow the
convention of robust optimization-based power system
planning in literature [28], [37], [44]-[45], to use several load
blocks instead of the 8760-hour time-series data.

In addition, the probabilistic reliability subproblem
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evaluates system reliability level with respect to random
outages of generators and transmission lines, while neglecting
uncertainties of renewable energy and loads. To keep
consistency of the two subproblems, the probabilistic reliability
subproblem also adopts load blocks. Consequently, a Latin
Hypercube Sampling based Monte Carlo simulation, instead of
the sequential Monte Carlo simulation, is used to sample
random outages of generators and transmission lines in each
load block for calculating LOLE index. Furthermore,
optimization-based planning approaches in [10]-[11], [37] also
adopt load blocks as a trade-off between computational
efficiency and solution accuracy to evaluate system reliability.

D. Implementation of the Algorithm
The solution procedure is as follows.

Step 1) Set thresholds for base-case load shedding ADP<™

and worst-case system power imbalance AD,"¢™ .
Initialize iteration counters k=1 and r=1.
Step 2) Solve the master problem (11), and pass the optimal
solution 25¢, $.., 9, and $,, to Step 3.
Step 3) Solve the N-1 security subproblem (14) with respect to
P2 5., $), and P, , and identify the worst-case

prek | AUNSR and ALYCF that

fowht >
leads to the largest possible system power imbalance.
If the annual largest possible security violation is

smaller than AD}*“™ g0 to Step 4; Otherwise, add

PR we,k
realization D, ",

the worst case D(;;ct’k , P}”;]}i ,» AU, ;Ztc’k and AL}Zi’k
into the master problem (11), set &=k+1, and go to Step
2.

Step 4) Solve the probabilistic reliability subproblem (17)

with respect to investment decisions 3}, and 7, , and

calculate the annual LOLE, (18). If the annual LOLE, is
smaller than LOLE™* Terminate; Otherwise, add dual
reliability cut (19) to the master problem (11), set
r=r+1, and go to Step 2.

IV. CASE STUDIES

In this section, the modified 24-bus IEEE Reliability Test
System (RTS) [46] and a 12-node gas system [47] is first used
to demonstrate the effectiveness of the proposed
co-optimization planning approach via numerical comparisons
with other alternatives. A larger system, consisting the
modified IEEE 118-bus power system and the Belgian
high-calorific 20-nodel natural gas system, is further studied to
evaluate its computational performance. Cost coefficients of

electrical load imbalance C” and wind spillage C " are set as
$105/MWh [48] and $100/MWh [49], respectively.

All case studies are solved on a Dell work station with two
Intel Xeon E5-2620 processors at 2.1 GHz and 64 GB memory,
and Gurobi 6.5 is used as the MILP solver. The incremental
model [32]-[35] with two segments is adopted to linearize the
Weymouth equation as a tradeoff between computational

efficiency and solution accuracy. Normally, the big-M should
be large enough to make sure that the reformulated constraints
are valid. However, a too-large big-M may deteriorate the
computational performance. Specifically, in this paper,
magnitudes of power flows, gas flows, and squared gas
pressure differences are all smaller than 10°. In addition, for
unbounded dual variables (15)-(16), reference [50] has tested
the performance of different values of big-M and concluded
that the ideal range is [10% 10°] for ensuring a good
computational efficiency. Thus, the big-M is set as 10° in all
case studies.

A. The modified 24-bus IEEE RTS and a 12-node gas system

The modified 24-bus IEEE RTS includes 19 non-gas and 7
gas units, 3 wind farms, 38 lines, and 17 electrical loads. 18
candidate units with 9 being gas, 16 candidate lines, and 3
candidate PtGs are considered. The gas system includes 3 gas
suppliers, 10 pipelines, and 8 non-power gas loads as shown in
Fig. 1. Candidate assets include 3 gas wells, 2 compressor
stations, and 10 pipelines. Discount rate is 5%. The optimality
gap is set as 0.01%. Other configuration data can be found in
[51].

A 10-year planning horizon is studied, with 4 load blocks in
each year. Electrical load, wind power, and non-power gas load
in the first planning year are 2850MW, 720MW, and
10000kct/h with average growth rates of 3%, 8%, and 5%. The
4-block load duration curve and wind profile used in case
studies are shown in Fig. 2, which are derived based on actual
ERCOT data in year 2014 [52] via the k-means algorithm [53].
Fig. 2 shows that characteristics of load/wind and their
correlations are partially kept in the 4-block curves.
Specifically, the first block of an 87-hour duration represents a
high-load/low-wind situation, and the last block of a 3408-hour
duration reflects a low-load/high-wind situation. Indeed, these
two situations represent the two most critical operation statuses
of power systems, which usually have a higher impact on
system reliability.

@
Cl

Fig. 1 A 12-node natural gas system.
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Fig. 2 4-block load duration curve and wind profile

Al. Advantage of Co-Optimization Planning Approach
This section demonstrates advantages of the proposed
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co-optimization planning approach via three cases:

Case I: Sequential planning of the two systems

Case 2: Co-optimization planning of interdependent systems

Case 3: Co-optimization  planning  while  considering
retirement of existing coal-fired units

Table 1 shows results of Cases 1-3, in which the two
subscripts represent indices of candidate assets and installation
years. For the sake of comparison, power system uncertainties
are not considered in these cases. In Case 1, electricity and gas
systems are planned sequentially with a total cost of 4.1905 BS.
That is, power system planning is first executed while ignoring
gas network characters, and gas system expansion is optimized
with fixed planning decisions of power systems (e.g., gas units
and PtGs). When co-optimization is considered in Case 2, the
total cost is reduced to 4.1476 B$. The reason is that in the
sequential planning process of Case 1, cheaper gas-fired units
like G4 and G14 are invested earlier while neglecting limited
gas delivery capability of the existing gas network. As a result,
the gas network has to invest in pipelines and compressor
stations more extensively and earlier. In contrary, the
co-optimization planning in Case 2 considers gas network costs
and limitations in the power system planning stage, and in turn
more economical investment decisions can be achieved.

In Case 3, retirement of existing coal-fired units is further
considered, i.e., by the end of the planning year, 5 units with a
total capacity of 372MW will be retired. In turn, as compared to
Case 2, two more gas units G6 and G16 are constructed to
replace the retired coal-fired units and meet increased electrical
loads. Consequently, pipeline P10 is constructed to ensure
sufficient natural gas supply to newly-built gas units.

In order to show the importance and advantage of PtGs and
compressor stations in the interdependent systems, two cases
are further carried out: Case 3 without PtGs (i.e., Case 3.1) and
Case 3 without compressor stations (i.e., Case 3.2). As shown
in Table II, in Case 3.1, due to the lack of PtG facility Al to
economically convert excessive wind energy into natural gas,
transmission lines L3 and L9 have to be constructed to
effectively utilize growing wind energy and prevent wind
spillage, which almost triples the investment cost. In Case 3.2,
as compressor station C1 is not installed, two pipelines P1 and
P8 are respectively constructed in years 5 and 10 to ensure gas
delivery capability to newly-built gas units with a much higher
investment cost. These two cases show that PtGs and gas
compressors provide a more economical way to effectively
support the growing penetration of wind energy and gas units.

TABLEI
COMPARISON OF AMONG CASES 1-3
Case Constructed components Total cost (B$)
Gl3 G37 G48 Gll 10: G139 Gl44 GlSé
1 35 G377, Gag, Giio, Gz, Giag, Gise, 4.1905
Al,% S3_5, P3,25 P4,4y P10,35 Cl,3s CZ,IO
G13, Gz6, Ga,10, G135, G139, Giaz, Gisa,
2 . 5 I3 T, LS. 4.1476
A[yg, S3,6; P3,45 P4,7,C1,5
G13 GS7 G47 G69 G8 10 G115 G139 Gl4(\ G154
3 35 G37, Ga7, Ge g, Gs 0, G s, Gizg, Guae, Gisg, 4.2960
Gies, Ao, S3.6, P3a, Pag, Pros, Ciis
TABLEII
RESULTS OF CASES 3.1-3.2 AS COMPARED TO CASE 3
Case Changes in investment decision  Changes in investment cost (M$)
3.1 A1_9 — L3,9, LQ,IO 3.3036 — 10.3692
32 C1 5> Pl,s, PS.IO 43846 — 14.9076

A2. Advantage of Robust Planning with the Joint Criterion

This section illustrates effectiveness of the robust planning
model with wind power recourse cost to mitigate wind spillage
under uncertainties as well as advantage of the joint N-1 and
probabilistic reliability criterion in providing economical and
reliable co-optimization expansion decisions via two cases:
Case 4: Robust co-optimization planning with uncertainties.
Case 5: Case 4 with the joint N-1 and probabilistic criterion.

Case 4: This case evaluates the impact of electrical load and
wind generation uncertainty on co-optimization planning via
the robust optimization approach. Uncertainty intervals of
electrical loads and wind generations are set as 5% and 20% of
their forecast values. Uncertainty budgets Ay and A, are

both set as 4. Because all case studies use 4 load blocks in each
year, the uncertainty budget is set as the largest value of 4 to
maximize the system’s ability for handling uncertainties.

System power imbalance thresholds AD"“™ and AD,"¢m2X

are both set as 0.01MW to ensure secure operation without load
shedding when contingencies are not considered.

Table I1I shows robust co-optimization planning results with
respect to different wind power recourse cost values, including
base/ worst case costs, incremental base-worst cost ratio (ICR),
and investment statuses of PtG facility A1 and transmission line
L3 that are connected to a wind farm. ICR is calculated as the
decrease in base-case cost over the increase in worst-case cost
for a certain value C™ as compared to C™=$0. It can be observed
that as a higher C™ allows more wind spillage, base-case cost
decreases because certain constructions such as Al and L3 are
delayed or avoided. On the other hand, worst case cost
increases because of a high wind spillage penalty cost. In
addition, the lowest base-case cost and the highest worst-case
cost are both reached when C™ is 40 M$, which indicates that
the recourse cost is not binding anymore and a further increase
in C™ will not postpone constructions of PtGs or transmission
lines. As shown in Table III, when C™ is set as 0 which does not
allow wind spillage, the co-optimization planning solution
could be over-conservative in terms that PtG facility A1 and
transmission line L3 are invested much earlier with the highest
base-case cost. In comparison, setting the wind power recourse
cost as certain values from 10M$ to 50MS$, less conservative
options could be available to decision makers. Specifically,
C*=10MS is considered as a better wind power recourse cost
threshold in this case because of its relatively larger ICR as
compared to other C™ values, i.e., its base case cost decreases
more significantly with a limited increase in worst-case cost. In
this case, the base-case cost decreases about 0.45% (19.7M8$) as
compared to C*=$0, while worst-case cost only increases by
0.2% (9MS$). That is, the optimal planning strategy with
C*=10MS$ could effectively reduce the base-case total cost,
while only slightly increases the worst-case operation cost
when extremely rare situations occur.

Investment details with C"*=10MS$ are further shown in Table
IV. As compared to Case 3, when load and wind uncertainties
are considered, constructions of gas units G1, G4, G14, and
G15 are delayed, while a large coal unit G13 is constructed
much earlier from year 9 in Case 3 to year 3 in this case. The
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reason is that gas-fired units G1, G4, G14 and G15 as a whole
would lead to gas network congestion in worst-case scenarios,
and in turn their constructions require extensive investments in
new pipelines in the same year. This would lead to expensive
over-investment in the gas network for handling rare
worst-case scenarios. Alternatively, the power system seeks for
other options (i.e., coal unit G13) to economically meet
electrical loads and postpone the construction of gas units and
associated expensive pipelines.

As robust optimization and stochastic programming have
been recognized as two effective approaches for handling
uncertainties in optimization problems, solutions of the
proposed robust model is further compared with the stochastic
programming model [54]-[55]. In the stochastic programming
model, the simulated electrical load and wind power scenarios
are assumed to follow uniform distributions within the
uncertainty set. 5000 scenarios of 10-year electrical loads and
wind generations are generated via the Latin Hypercube
sampling method. The number of reduced scenarios is chosen
to be 5 as a trade-off between computational speed and solution
quality [54]-[55], and these 5 scenarios are directly added in the
master problem in Section III.LA to obtain the final optimal
planning solution. Results of stochastic optimization with
C*=10MS$ are reported in Table III, and investment details are
presented in Table IV as Case 4.1. It is observed in Tables
III-1V that the stochastic programming model yield a smaller
total cost for covering high-probability scenarios, while its
electricity system planning decision is slightly different from
that of the proposed robust optimization approach. However,
the stochastic programming planning solution could lead to
much higher system load shedding when low-probability
high-impact worst case occurs. Indeed, the worst case cost of
5.3644BS$ in the stochastic programming solution is 19.73%
higher than that of the robust optimization solution.

TABLE III
SENSITIVITY ANALYSIS WITH DIFFERENT RECOURSE COSTS
. Base-case Worst-case
e Y =y
¢ (MS$) cost(B$) cost(BS) ICR Al (year) L3 (year)
0 4.4131 44711 0 6 8
10 4.3934 4.4801 2.1889 7 9
20 4.3932 44811 1.9900 7 9
30 4.3864 4.5292 0.4596 8 10
40 4.3847 4.5522 0.3502 9 -
50 4.3847 4.5522 0.3502 9 -
stochastic 4.3292 5.3644 0.0939 3 -
TABLE IV
COMPARISON OF CASES 4 AND 5 WITH C"*=$10M
Case Constructed components Total cost (B$)
G4, G35, Ga, Geo, Gg 10, Gi19, G133, Gua7, Gisg,
4 : ' 4.3934
Gl(v‘Xv LS“% L9.107 AI.7» SS.(» P3.4’ P4‘77 PIO.R’ CI.S
GIS G?7 G4"ﬂ G(x.‘) le(h G]l,’r G1'§9 GI4.(> GIS“’
4.1 o TS R T 4.3292
GI()‘Sa L\U<7a AIJ: 53.67 P3<4¢ P4.77 PHLX, CLS
GI.S» GS‘% G4.9’ G().I()v GX.IO» G]l.h GIZ.Z G]3.37 GI4.7’
5 Gise Giess Lag, Lag, Lsz, Liog, Lits, Lise, A, 4.7305

83.67P3.47 P4,7a PIU_X7 CLS

Case 5: This case demonstrates advantage of the proposed joint
N-1 and probabilistic reliability criterion, with the same
uncertainty settings as in Case 4 and C*=10MS$. Since N-1

contingency is considered, AD;"“™ is set as 10000MWh to

allow power imbalance under worst-case scenarios. Annual
probabilistic reliability criterion LOLE™* is 0.1day/year, and
EENS™ is set to 3% of annual peak load [39] which yields 205
MWh (i.e., 0.1*¥24*2850%0.03) in the first year. Investment
results of Case 5 are also shown in Table IV. As compared to
Case 4, Case 5 derives a higher investment cost with one more
generator and six more transmission lines to meet the joint N-1
and probabilistic reliability criterion.

Two more studies with separate N-1 criterion and
probabilistic reliability criterion are carried out, to compare
with the proposed joint criterion. Results are presented in Table
V, and annual LOLEs are further shown in Fig. 3. The 3%-5%
columns of Table V show the total number of transmission
lines, units, and generation capacities invested over the ten-year
planning horizon. Specifically, N-1 and probabilistic
approaches derive very different investment results, while the
joint criterion has similar results as the N-1 approach. Indeed,
applying N-1 criterion can effectively limit the maximum
power imbalance to 10000MWh under worst-case uncertainties
and contingencies. However, as shown in Fig. 3, annual LOLEs
in years 3-6 are all higher than LOLE™** of 0.1day/year. That is,
the overall system reliability is not guaranteed. When the
probabilistic reliability criterion is employed independently, a
lower total cost is obtained while all annual LOLEs are smaller
than LOLE™, i.e., system reliability is guaranteed. However,
the system could be vulnerable to low-probability/high-impact
scenarios. Indeed, the system presents a much higher maximum
annual power imbalance of 48770MWh under the worst-case
scenario. When N-1 and probabilistic reliability criteria are
jointly considered, a compromising result is obtained to limit
power imbalance of low-probability/high-damage worst case
within 10000MWh and guarantee annual LOLEs lower than
0.1day/year, with a slightly higher total cost than N-1 only.

The proposed joint criterion model is further tested with
different power imbalance levels. As shown in Table VI, the

total cost decreases with the increase in AD;"“™ | because

more power imbalance is allowed and certain investments can
be avoided. Specifically, the highest total cost is achieved with

AD}"™* =( | as more generation capacities are needed for

handling contingencies when load shedding is not allowed.
However, as both maximum and average annual LOLEs of
0.0645days/year and 0.037days/year are much smaller than
LOLE™* of 0.1day/year, over-investment would occur when
load shedding is not allowed under worst-case contingencies.
The adjustable robust optimization planning model
proposed in this paper allows decision makers to set the

expected load imbalance limit AD;*“™* under the worst case

scenarios, which could result in different investment decisions
with different system reliability performance as shown in Table
VL. In the proposed planning model, N-1 and probabilistic
reliability criteria have to be satisfied simultaneously. As
discussed above, conservativeness of the N-1 criterion can be
adjusted by setting different values of the worst-case load

imbalance limit AD;"“™* . As observed from Table VI, a
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smaller N-1 load imbalance limit AD;"“™* could enhance

system reliability with a higher total cost. On the other hand, as
indicated in Table V, when the probabilistic reliability criterion
is employed only, the system reliability can be guaranteed in
terms that all annual LOLEs are smaller than LOLE™*.
However, the system could be vulnerable to low-probability/
high-impact scenarios with a large load imbalance. Thus, by
leveraging N-1 and probabilistic reliability criteria within the
proposed joint reliability criterion framework, decision makers
can set proper values of the worst-case load imbalance limit

AD}"“™ and the reliability target LOLE™, so that system

LOLE requirement with respect to high-probability/
low-damage events and the worst-case load imbalance in
response to low-probability/high-damage events can be
balanced with a low overall cost.

12
g LOLE(day/year) Nl

Probabilistic

1 2 3 4 5 6 7 8 9 10
Fig. 3 Annual LOLEs of three different approaches.

TABLE V
COMPARISON AMONG DIFFERENT RELIABILITY CRITERIA

A h Total Total Total Total capacities Maximum power

pproach . o (B$) lines units (MW) imbalance (MWh)
Joint 4.7305 29 50 5914 10000
N-1 47114 29 49 5749 10000
Probabilistic  4.5298 4 52 6238 48770

TABLE VI
TOTAL COST SENSITIVITY ANALYSIS WITH AD/*%™ma%

AD/Me™%  Total  Total Total Total capacities LOLE, (day/year)

(MWh) cost (BS) lines units (MW) max mean
0 4.9872 24 59 6749 0.0645  0.0366
3000 4.8728 30 57 6518 0.0718  0.0450
6000 4.7862 30 54 6218 0.0752  0.0512
10000 4.7305 29 50 5914 0.0948  0.0707

B. The modified IEEE 118-bus power system and the Belgian
high-calorific 20-nodel natural gas system

In this section, the proposed approach is further applied to
a larger test system for evaluating its computational
performance. The test system consists of the modified IEEE
118-bus power system and the Belgian high-calorific 20-nodel
natural gas system. Specifically, the test system includes 46
non-gas and 8 gas units, 7 wind farms, 186 lines, 91 electrical
loads, 2 gas suppliers, 17 pipelines, 1 compressor station, and 9
non-power gas loads. Candidate assets include 21 generating
units with 9 being gas, 15 transmission lines, 3 PtGs, 3 gas
wells, 1 compressor station, and 5 pipelines [51]. A 10-year
planning horizon is carried out, with 4 load blocks in each year.
Peak electrical load, wind power, and non-power gas load in the
first planning year are 5400MW, 665MW, and 10000kcf/h,
with average annual growth rates of 3%, 8%, and 5%,
respectively. The MILP gap is set as 1%. Other parameter
settings are the same as the 24-bus RTS study.

The same five cases studied for the 24-bus RTS are
explored here, and their computational times are reported in
Table VII. Specifically, Case 1 cannot derived a feasible
sequential planning strategy, indicating that if all cheaper
gas-fired units are constructed in the first step, the natural gas
network cannot meet gas requirement of all gas-fired units. In
addition, heterogeneous computational performance among
multiple cases indicates that high computational cost of the
proposed robust co-optimization planning model is dependent
on two major factors.

1) The sophisticated and realistic natural gas network
modeling, including nonlinear Weymouth gas flow
equations and rigorous modeling of natural gas
compressors. Specifically, (i) linearized Weymouth gas
flow equations introduce a large number of binary variables,
and gas compressor modeling requires additional binary
investment/operation variables as well as big-M constraints.
In turn, as compared to the sequential planning strategy of
Case 1 which calculates power system planning in 6s,
computational time of the co-optimization planning in Case
2 is increased to 60s; (ii) considering compressors further
complicates the calculation, as compressors can enhance the
transportation capability of existing pipelines by elevating
gas nodal pressure levels and consequently could lead to
more flexible investment and operation options. As a result,
computational time of Case 3 increases significantly to 99s
as compared to 59s of Case 3.2 without compressors; (iii)
considering retirement of traditional coal-fired units triggers
more investments in cheaper gas-fired units, which further
intensifies interdependency of the two energy systems and
deteriorates the computational performance. Indeed,
computational time of Case 3 is increased by about 68% as
compared to Case 2.

2) Computational burden of the robust optimization approach.
As well recognized by [29] and [44]-[45], computational
efficiency of the robust optimization approach remains an
issue for practical large-scale systems. When uncertainties
of electrical loads and wind generations are considered, the
running time is increased from 99s in Case 3 to about 369s
in Case 4. The joint N-1 and probabilistic criterion in Case 5
requires even longer time because more worst-case
contingency scenarios and reliability cuts are generated.
However, the running time of about 30 hours for Case 5
would be still acceptable for a practical ten-year planning
problem (for instance, it spends several weeks for analyzing
a single future scenario in NYISO practice [56]).

TABLE VII
COMPUTATION TIME OF DIFFERENT CASES
Case Time Case Time Case Time
1 - 2 60s 32 59s
1-power 6s 3 99s 4 369s
1-gas - 3.1 55s 5 30h

V. CONCLUSION

This paper proposes a long-term robust co-optimization
planning model for electricity and gas systems with
uncertainties. The proposed model simultaneously optimizes



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 13

investments of generators, transmission lines, PtGs, gas
suppliers, pipelines, and compressor stations. The probabilistic
reliability criterion along with the widely accepted N-1
criterion is incorporated to derive reliable and economic
co-planning decisions. The proposed model is solved via a
decomposition approach, by iteratively solving a master
problem and two operation subproblems for checking N-1 and
probabilistic reliability criteria.

Simulation results show that: (i) co-optimization planning
can reduce the total cost of electricity and gas systems; (ii) the
joint N-1 and probabilistic reliability criterion can
simultaneously limit the worst-case power imbalance and
guarantee the overall system reliability; (iii) investment
decisions of the two systems are highly interdependent. For
instance, the retirement of coal units would trigger more gas
units to be invested, and consequently new pipelines and gas
compressors are needed to ensure sufficient gas supply. On the
other hand, potential gas network congestion under worst-case
scenarios would postpone investment of gas units; (iv) PtGs can
facilitate a deeper penetration of wind energy and postpone the
construction of transmission lines; (v) compressor stations can
enhance gas delivery capacity of the gas network and delay the
construction of pipelines; and (vi) wind power recourse cost is a
useful index to limit wind spillage under uncertainties, promote
PtGs, and utilize more wind energy. In sum, the proposed
co-optimization approach could benefit decision makers with
useful technique support in interdependent system planning.
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