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Abstract—We consider the problem of orchestrating the exe-
cution of workflow applications structured as Directed Acyclic
Graphs (DAGs) on parallel computing platforms that are subject
to fail-stop failures. The objective is to minimize expected overall
execution time, or makespan. A solution to this problem consists
of a schedule of the workflow tasks on the available processors
and of a decision of which application data to checkpoint to stable
storage, so as to mitigate the impact of processor failures. For
general DAGs this problem is hopelessly intractable. In fact, given
a solution, computing its expected makespan is still a difficult
problem. To address this challenge, we consider a restricted
class of graphs, Generalized Series-Parallel Graphs (G-SPGS).
It turns out that many real-world workflow applications are
naturally structured as G-SPGsS. For this class of graphs, we
propose a recursive list-scheduling algorithm that exploits the
G-SPG structure to assign sub-graphs to individual processors,
and uses dynamic programming to decide which tasks in these
sub-gaphs should be checkpointed. Furthermore, it is possible to
compute a first-order approximation of the expected makespan
for the solution produced by this algorithm. We evaluate our
algorithm for production workflow configurations, comparing it
to (i) an approach in which all application data is checkpointed,
which corresponds to the standard way in which most production
workflows are executed today; and (ii) an approach in which
no application data is checkpointed. Our results demonstrate
that our algorithm strikes a good compromise between these
two extremes, leading to lower checkpointing overhead than the
former and to better resilience to failure than the latter. To the
best of our knowledge, this is the first scheduling/checkpointing
algorithm for workflow applications with fail-stop failures that
considers workflow structures more general than mere linear
chains of tasks.

I. INTRODUCTION

This paper proposes a new algorithm to execute workflows
on parallel computing platforms subject to fail-stop processor
failures, e.g., a large-scale cluster. The de-facto approach to
handle fail-stop failures is Checkpoint/Restart (C/R), by which
application state is saved to stable storage, such as a shared
file system, throughout execution. Workflows are structured as
Directed Acyclic Graphs (DAGs) of tasks. Workflow tasks can
be checkpointed individually and asynchronously, and rather
than checkpointing the entire memory footprint of a task,
it is typically only necessary to checkpoint its output data.
Therefore, workflows are good candidates for a C/R approach.

The common strategy used in practice is checkpoint every-
thing, or CKPTALL: the output data of each task is saved
onto stable storage (in which case we say “the task is check-
pointed”). For instance, in production Workflow Management
Systems (WMSs) [1], [2], [3], [4], [5], [6], the default behavior
is that all output data is saved to files and all input data
is read from files, which is exactly the CKPTALL strategy.
While this strategy leads to fast restarts in case of failures,
its downside is that it maximizes checkpointing overhead. At
the other end of the spectrum would be a checkpoint nothing
strategy, or CKPTNONE, by which all output data is kept in
memory (up to memory capacity constraints) and no task is
ever checkpointed, which falls under the “in-situ” workflow
execution paradigm [7]. While in a failure-free execution the
checkpointing overhead is zero, the downside of this approach
is that in case of a failure a large number of tasks may have to
be re-executed, leading to slow restarts. The objective of this
work is to achieve a desirable compromise between CKPTALL
and CKPTNONE.

Consider the problem of scheduling a workflow execution
and deciding which tasks should checkpoint their output data.
The objective is to minimize the expectation of the execution
time, or makespan, which is a random variable due to task
failures and re-executions. The complexity of this problem is
steep. Indeed, consider the CKPTALL strategy and assume a
given schedule in which each task is assigned to a different
processor. Consider now the problem of computing the ex-
pected makespan, which amounts to computing the expected
longest path in the schedule. Because of failures, task durations
are probabilistic, and computing the expected length of the
longest path in a DAG with probabilistic task durations is a
known difficult problem [8], [9]. Even in the simplified case
in which each task is re-executed at most once, i.e., when task
durations are random variables that can take only two discrete
values, the problem is #P-complete [8].!

In this work we consider strategies by which some tasks
are checkpointed and others are not. When some tasks are
not checkpointed, computing the expected makespan becomes

IRecall that #P is the class of counting problems that correspond to NP
decision problems [10], [11], [12], and that #P-complete problems are at least
as hard as NP-complete problems.



more combinatorial due to the complexity of failure recoveries.
To understand this intuitively, consider a workflow for which
there is a given schedule, i.e., each processor is assigned a
sequence of tasks to execute. Furthermore, assume that for
each task it has already been decided whether to checkpoint
it or not. Consider a non-checkpointed task 7' assigned to
processor P that sends output data to an immediate successor
T’, which is scheduled on another processor, P’. In this case
we say that 7' and T” have a “crossover dependency”. For
simplicity, assume that all predecessors of 7" are checkpointed,
meaning that 7' can always be restarted immediately after a
failure of P. After a successful execution of 7T, a datum d is
sent to P’, perhaps immediately or delayed until 7" begins
execution. Regardless, d is stored in memory. If P crashes
before d has been sent, then T must be re-executed on P
(after a reboot) or on a spare processor. If P’ crashes before
T’ completes, then d must be retrieved from P, assuming P
has not crashed and has kept d in memory (which may not be
the case due to memory space constraints), or 7' must be re-
executed if P has crashed. A series of alternating failures on
P and P/, albeit unlikely, causes many re-executions and data
transfers. In general, each processor is scheduled to execute
many tasks. Due to the presence of crossover dependencies, a
few crashes can thus lead to many task re-executions and data
re-transfers, during which other crashes can occur. Computing
the expected makespan in this case seems, if anything, more
difficult than in the CKPTALL strategy which, as seen above,
is already #P-complete. Finally, consider the other extreme
strategy, CKPTNONE. To the best of our knowledge, the
complexity of computing, or even approximating, the expected
makespan for this strategy remained an open problem. In this
work, we prove that it is #P-complete.

The above shows that merely computing the expected
makespan of a workflow execution in the presence of fail-
stop failures, when all scheduling and checkpointing decisions
are given, is computationally difficult. Therefore, hoping to
compute good scheduling and checkpointing decisions, the ef-
fectiveness of which cannot be tractably quantified, seems out
of reach. We address this challenge by restricting the problem
to Generalized Series Parallel Graphs (G-SPGS). A G-SPG is
essentially a Series Parallel Graph (SPG), but with a slightly
modified definition so as to avoid the proliferation of dummy
nodes when converting a general DAG into an SPG. It turns
out that most production workflows, e.g., those enabled by
production WMSs [1], [2], [3], [4], [5], [6], are G-SPGS. The
structure of these graphs makes it possible to orchestrate the
execution in fork-join fashion, by which processors compute
independent task sets, before joining and exchanging data
with other processors. We call these independent task sets
superchains, because tasks in these sets are linearized into
a chain but have forward dependencies that can “skip over”
immediate successors. We decide which tasks in a superchain
should be checkpointed via a new algorithm, which extends the
dynamic programming algorithm of Toueg and Babaoglu [13]
for regular chains. Our solution thus checkpoints fewer tasks
than the standard CKPTALL strategy. Furthermore, we always

checkpoint the exit tasks of each superchain, which removes
all crossover dependencies. As a result, we can tractably
compute a first-order approximation of the expected makespan.
More specifically, the contributions of this work are:

e The introduction of G-SPGS, a variant of classical SPGsS
that is better suited to modeling real-world workflows
(Section II-A);

o A method to approximate the expected makespan of a
checkpointed G-SPG (Section 1I-B);

o A scheduling/checkpointing strategy CKPTSOME for G-
SPGs that improves upon the de-facto standard CKP-
TALL strategy and avoids all crossover dependencies,
relying on the two algorithms below (Section II-C);

o A list-scheduling algorithm for scheduling G-SPG work-
flows as sets of superchains (Section III);

o An algorithm to checkpoint an optimal subset of tasks in
a superchain (Section IV);

o The #P-completeness of the problem of computing the
expected makespan for the CKPTNONE strategy (Sec-
tion V);

o Experimental evaluation with real-world Pegasus [1]
workflows to quantify the performance gain afforded by
our proposed approach in practice (Section VI).

In addition to the above sections, Section VII reviews

relevant related work, and Section VIII provides concluding
remarks and highlights directions for future work.

II. PRELIMINARIES AND PROPOSED APPROACH

In this section we define G-SPGSs, the class of workflow
DAGs that we consider in this work. We then review results
on how to compute the makespan of a 2-state probabilistic G-
SPG, and how to approximate the probability distribution of
the execution time of a checkpointed task. Finally, we provide
an overview of our proposed approach, including how we
compute a schedule and how we determine which tasks should
be checkpointed.

A. General Series Parallel Graphs (G-SPG)

We consider computational workflows structured as Gener-
alized Series Parallel Graphs (G-SPGs), which are general-
izations of standards SPGsS (see [14] for a definition of series-
parallel graphs). A G-SPG is a graph G = (V, E), where V
is a set of vertices (representing workflow tasks) and F is a
set of edges (representing task dependencies). Each task has
a weight, i.e., its execution time in a no-failure scenario. Each
edge between two tasks T; and T is also weighted by the size
of the output data produced by T; that is needed as input to
T;. A G-SPG is defined recursively based on two operators,
“and ||, defined as follows:

o The serial composition operator, 7 takes two graphs as
input and adds dependencies from all sinks of the first
graph to all sources of the second graph. Formally, given
two graphs G1 = (V1,Ey) and Gy = (Va, By), Gy ;.
Gy = (‘/1 uVs, E1UEs U (Skl X SCQ)), where sk is the
set of sinks of (G1 and scs the set of sources of Go. This
is similar to the serial composition of SPGS, but without
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Figure 1: Example G-SPG structures: (a) fork:
(91792)7 (G1]|Gal|Gs): (b) join: (G1||Ga]|Ga) Y (917 92):
(c) bipartite: (G1]|G2]|Gs) ; (G4]|G5]|Gs).
merging the sink of the first graph to the source of the
second, and extending the construct to multiple sources
and sinks.

o The parallel composition operator, ||, simply makes the
union of two graphs. Formally, given two graphs G; =
(Vl,El) and Go = (‘/Q,EQ), G1||G2 = (Vl uVs, E1 U
Es). This is similar to the parallel composition of SPGS,
but without merging sources and sinks. Also, we extend
the parallel composition to arbitrary numbers of graphs,
say G1||...||Gp. This is in contrast to the binary parallel
composition of SPGs, by which composing n parallel
SPGS requires adding ©(n) dummy vertices.

Given the above operators, a G-SPG is then defined recur-

sively as follows:

e A chain, ie., g1 7 7 gn, Where each g; is an atomic
task;

o A serial composition, i.e., Gy 7 ..
G; is a G-SPG; or

o A parallel composition, i.e., G1||...||G, where each G;
is a G-SPG.

Figure 1 shows example G-SPG structures. Due to the
above definition supporting multiple sources and sinks, and not
merging sources and sinks, G-SPGS naturally support fork,
join (and therefore fork-join), and bipartite structures. It turns
out that these structures are common in production workflow
applications. For instance, most workflows from the Pegasus
benchmark suite [15], [1], which comprises workflows from
20 real-world applications that span various fields of physics,
biology, and engineering, are G-SPGS. Overall, G-SPGs
exhibit the recursive structure of SPGS (which is key to de-
veloping tractable scheduling/checkpointing solutions), but are
more convenient since they allow vertices with arbitrary arity
(which avoids the proliferation of dummy nodes, which simpli-
fies both modeling and solving the scheduling/checkpointing
problem), and as a result maps directly to most production
workflow applications. Moreover, G-SPGS can also model
communication patterns that cannot be modeled with SPGS
(this is the case of the bipartite structure shown in Figure 1.(c)
and are thus more general.

N
. ; Gy, where each

B. First-Order Makespan Approximation for 2-State Proba-
bilistic G-SPGS

As discussed in Section I, a key question is the estimation
of the expected makespan of a workflow execution for a

given schedule and a set of checkpointed tasks. This is
because without this estimation it is not possible to make any
claim regarding the effectiveness of scheduling/checkpointing
strategies. Computing the expected makespan is #P-complete,
even if one considers that the execution time of a task is a
discrete random variable that can take only 2 values, i.e., the
application is a 2-state probabilistic DAG [8]. However, basic
probability theory tells us how to compute the probability
distribution of the sum of two independent random variables
(by a convolution) and of the maximum of two independent
random variables (by taking the product of their cumulative
density functions). As a result, one can compute the makespan
distribution and its expected value if the DAG is an SPG, due
to its recursive structure [16], [17]. However, the makespan
may take an exponential number of values, which makes its
direct evaluation inefficient. In fact, the problem of computing
the expected makespan remains NP-complete, but in the weak
sense, and admits a pseudo-polynomial solution [16]. These
results are directly generalizable to G-SPGs.

In this work we consider failure-prone processors. Consider
a single task 7', with weight w, scheduled on such a processor.
Consider that this task has a recovery cost of r in case of a
failure. T”s execution time, W, is a random variable because
several execution attempts may be needed before the task
succeeds. Let A < 1 be the exponential failure rate of the
processor. With probability e = 1 — \w + O(\2) (no
failure), W is equal to w. With probability (1 —e *¥)e A =
Aw + ©()\?) a single failure has occurred. For exponentially
distributed failures, the expected time to failure knowing that
a failure occurs during the task execution (i.e., in the next w
seconds), is 1/\ —w/(e* — 1) [18], which converges to w/2
as A tends to 0. Therefore, when one failure occurs during the
first execution of 7', and the second execution is successful,
W is equal to 7+ 3w + O(A) (one failure after w/2 seconds,
a recovery that takes r seconds, and one successful execution
that takes w seconds). As a first order approximation, we can
ignore the cases in which more than one failure occurs (which
occurs with probability ©(\?)) leading to:

with probability e " |

w={" . - W D
r+3/2w with probability 1 — e "% .

Consider now a workflow application with a given schedule
and with all tasks checkpointed, so that each task has a known
deterministic recovery cost (that of loading from stable storage
the output of its predecessors, which are all checkpointed).
Then, with the first-order approximation above, computing the
expected makespan of the application is the same problem
as that of computing the expected makespan of a 2-state
probabilistic DAG. We compare four well-known algorithms to
solve this latter problem in Section VI-B. Therefore, if all tasks
are checkpointed, we can compute a first-order approximation
of the overall expected makespan. This observation is the key
driver for our proposed approach, which is outlined in the next
section.



C. Proposed Approach

Thanks to the results in the previous section, given a
scheduled G-SPG we can compute a first-order approximation
of the expected makespan for the CKPTALL strategy. However,
as outlined in Section I, our objective is to not checkpoint
all tasks so as to save on checkpointing overhead and thus
reduce the expected makespan. The approach proposed in this
work achieves this objective, while retaining the property that
a first-order approximation of the expected makespan can be
computed.

Consider a G-SPG, G. Without loss of generality,
G = C’?(G1||...\|Gn)?Gn+1, where C' is a chain and
Gi,...,Gpn,Gpy1 are G-SPG graphs, with some of these
graphs possibly empty graphs. The schedule for G is the
temporal concatenation of the schedule for C, the schedule for
G1||...||Gp, and the schedule for Gy 41. A chain is always
scheduled on a single processor, with all its tasks executed
in sequence on that processor. When scheduling a parallel
composition of G-SPGS we use the following polynomial
time list-scheduling approach, inspired by the “proportional
mapping” heuristic [19]. Given an available number of pro-
cessors, we allocate to each parallel component G; an integral
fraction of the processors in proportion to the sum of the task
weights in G;. In other terms, we allocate more processors
to more costly graphs. We apply this process recursively,
each time scheduling a sub-G-SPG on some number of
processors. Eventually, each sub-G-SPG is scheduled on a
single processor, either because it is a chain or because it is
allocated a single processor. In this case, all atomic tasks in the
G-SPG are linearized based on a topological order induced by
task dependencies and scheduled sequentially on the processor.
This algorithm is described in Section III.

Each time a sub-G-SPG is scheduled on a single processor,
we call the set of its atomic tasks a superchain, because the
tasks are executed sequentially even though the graph may
not be a chain. We call the entry tasks, resp. exit tasks, of a
superchain the tasks in the superchain that have predecessors,
resp. successors, outside the superchain. Due to the recursive
structure of a G-SPG, all predecessors of the entry tasks in
a superchain are themselves exit tasks in other superchains.
Similarly, all successors of the exit tasks in a superchain are
themselves entry tasks in other superchains. This has two
important consequences:

o The workflow is a “G-SPG of superchains”; and

o Checkpointing the exit tasks of a superchain means that

this superchain never needs to be re-executed. In this case

we say that the superchain is checkpointed.
A natural strategy is then simply to checkpoint all superchains,
which avoids all crossover dependencies (see Section I). More
precisely, given a superchain, a systematic checkpoint is taken
after the execution of the last task of that superchain. This
checkpoint saves the output files of all the exit tasks in the
superchainr. This strategy is detailed in Section I'V-A. Figure 3
shows an example of a schedule obtained on two processors
for the G-SPG in Figure 2. A set of tasks is linearized on

Py

P

Figure 3: Mapping the G-SPG of Figure 2 onto two pro-
cessors. The two superchains are shown inside boxes, with
all internal and external dependencies from the original graph
(red edges result from the linearization). T1¢ is the only exit
task of the top superchain while 771 and T}» are the two exit
tasks of the bottom superchain. A checkpoint is performed to
save the output of each shadowed task.

each processor (additional dependencies are added to enforce
a sequential execution). Four checkpoints are taken: after the
executions of T4, T19, Th2, and T13. The checkpoint after T2
also saves the output of 771, because 77 is an exit task. This
guarantees that once 733 starts its execution, any failure on
P, will have no effect (if P; fails, T3 will be immediately
restarted, otherwise the execution will succeed).

For the makespan evaluation, a naive solution would be
to coalesce all the tasks in any superchain into a single
checkpointed task, leading to a G-SPG in which all tasks
are checkpointed. In the example, the four tasks of the top
superchain would be coalesced into one checkpointed task, and
so would the seven tasks of the bottom superchain. Thanks
to the results in the previous section, one could then com-
pute the expected makespan using the algorithms for 2-state
probabilistic DAGs. This naive solution meets our objective,
but it may not lead to enough checkpoints. Depending on the
parallelism of the G-SPG and the total number of available
processors, superchains may contain large numbers of tasks.
If only the exit tasks are checkpointed, then the expected
execution time of the superchain can be large due to many
re-executions from scratch. The solution is to checkpoint other
tasks in the superchain in addition to the exit tasks. To this
end, we propose a polynomial time dynamic programming



algorithm that determines the optimal set of tasks to check-
point in each superchain. This algorithm is described in detail
in Section IV-B. Once the checkpoints are decided, thereby
creating task segments ended by a checkpoint, we coalesce
each task segment into a single task. Again, this is so that we
can reuse algorithms for computing the expected makespan of
2-state probabilistic DAGs.

III. SCHEDULING G-SPGs

In this section, we describe the list-scheduling algorithm by
which we assign sub-graphs to processors. Consider a G-SPG
workflow, G, which comprises sequential atomic tasks, to be
executed on a finite set of processors P. Our algorithm decides
how many processors should be allocated to parallel sub-
graphs. Furthermore, the algorithm is recursive, thus following
the recursive G-SPG structure and producing a schedule of
superchains, as explained in Section II-C.

The pseudo-code of our approach is given in Algorithm 1.
Procedure ALLOCATE schedules a G-SPG G on a set P of
processors. It does nothing if G = () (Line 2), otherwise it
decomposes G into the sequential composition of a chain, C,
a parallel composition, G1l|...||Gp, and a G-SPG, G, 41
(Line 3). To ensure termination, either C' is non-empty, or
two G-SPGS are non-empty among {G1,...,Gp41}. It then
schedules these three components in sequence. To do so it
relies on two helper procedures.

The ONONEPROCESSOR procedure (Lines 39-43) takes as
input a G-SPG and a processor, performs a random topolog-
ical sort of the G-SPG’s atomic tasks, and then schedules
these tasks in sequence onto the processor. (It also decides
which tasks to checkpoint by calling the CHECKPOINT pro-
cedure, which is described in Section IV). ALLOCATE calls
ONONEPROCESSOR to schedule C (Line 4) and to schedule
Gi||...||Gy, if a single processor is available (Line 6). If
|P| > 1, then ALLOCATE calls the second helper procedure,
PROPMAP (Line 8). This procedure takes in a set of n G-
SPGS and a number of processors, p, and returns a list of G-
SPGS and a list of processor counts. ALLOCATE then simply
recursively schedules the i-th returned G-SPG onto a partition
of the platform that contains the i-th processor count (Lines 9-
12). Finally, ALLOCATE is called recursively to schedule G,, 1
(Line 13).

The PROPMAP procedure is the core of our scheduling
algorithm. Let & = min(p, n) be the number of returned G-
SPGs and processor counts (Line 17). Initially, the £ G-SPGS
are set to empty graphs (Line 18), and the k processor counts
are set to 1 (Line 19). Array W contains the weight of each
returned G-SPGS, initially all zeros (Line 20). Then, input
G-SPGs are sorted by non-increasing weight, the weight of a
G-SPG being the sum of the weights of all its atomic tasks
(Line 21). Two cases are then handled. If n > p, PROPMAP
iteratively merges each G; with the output G-SPG that has the
lowest weight so as to obtain a total of p non-empty output
G-SPGs (Lines 23-26). The processor counts remain set to
1 for each output G-SPG. If instead n < p, then there is a
surplus of processors. PROPMAP first assigns each input G; to

one output G-SPG (Lines 28-30). The p — n extra processors
are then allocated iteratively to the output G-SPG with the
largest weight (Lines 31-36). Finally, PROPMAP returns the
lists of output G-SPGS and of processor counts.

Algorithm 1 Algorithm CKPTSOME
1: procedure ALLOCATE(G, P)

2: | if G =0 then return

3: 7(G1||"'||Gn)u Gnt1 < G

4: | ONONEPROCESSOR (C, P[0])

5: | if (|P| =1) then

6: | | ONONEPROCESSOR (Gil|...||Gn, P[0])

7: else

8: (Graphs, Counts) <— PROPMAP (G1,...,Gny, |P))
9: 10

10: for each graph, count in Graphs, Counts do

11: ALLOCATE (graph, {P]i], ..., P[i + count — 1]})
12: 1 4 1+ count

13: ALLOCATE (Gn+1, P)

14: return

15:

16: procedure PROPMAP(G, . ..
17: | k < min(n,p)

18: Graphs < [0, ...,0] (k elements)

19: | procNums < [1,...,1] (k elements)

,Gn, D)

20: W «[0,...,0] (k elements)

21: | Sort [Gh,...,Gy] by non-increasing total weight
22: if n > p then

23: fori=1...ndo

24: J - argmini<q<, (Wlq])

25: Wj] < W[j] + weight(G:)

26: Graphslj) < Graphs|j] || Gs

27: else

28: fori=1...nin G; do

29: Graphs[ |+ G

30: Wi] < weight(G;)

31: p<—p—n

32: while p # 0 do

33: Jj « argmaxi<g<n (W]q])

34: procNums[j| < procNumsl[j] + 1

35: Wj] < W[j] x (1 — 1/procNums[j])
36: p—p—1

37: return Graphs, procNums

38:

39: procedure ONONEPROCESSOR(G, proc)

40: L <+topological_sort(G)

41: CHECKPOINT (L) > Decide which tasks to checkpoint
42: MAP (L, proc) > Schedule tasks serially on one processor
43: return

IV. PLACING CHECKPOINTS IN SUPER CHAINS

In this section we describe our approach for deciding which
tasks in a superchain should be checkpointed. We first describe
existing results for simple chains and explain how the problem
is more difficult in the case of superchains. We then describe
an optimal dynamic programming algorithm for superchains.

A. From chains to superchains

Toueg and Babaoglu [13] have proposed an optimal dy-
namic programming algorithm to decide which tasks to check-
point in a linear chain of tasks. For a linear chain, when
a failure occurs during the execution of a task 7', one has



Figure 4: Example G-SPG. Tasks that are followed by a
checkpoint (77 and 73) are shadowed.

Figure 5: Linearization of the example G-SPG in Figure 4.
Vertical dashed lines correspond to checkpoints (after 77 and
T3). Dotted lines correspond to dependencies from tasks that
have been checkpointed. The dependency from 75 to T3, in
red, results from the linearization.

to recover from the latest checkpoint and re-execute all non-
checkpointed ancestors of 7.

In this work we target G-SPG (sub-)graphs that are lin-
earized on a single processor. As a result, recovery from
failure is more complex than in the case of a linear chain.
Consider a failure during the execution of a task 7'. For T' to
be re-executed, all its input data must be available in memory.
Therefore, for each reverse path in the graph from 7' back
to entry tasks of the superchain, one must find the latest
checkpoint. One must then recover by re-executing all non-
checkpointed ancestors of 7' along all reverse paths. As an
example consider the G-SPG in Figure 4, and its linearization
on a single processor in Figure 5. Let us assume that tasks 77
and T3 are checkpointed (shadowed in the figures). According
to the standard definition of checkpoints, the checkpoint of T}
includes both its output for 75 and its output for 753, while the
checkpoint of 73 includes only its output for 7}.

HC: The task numbers in the 2 paragraphs below are
very wrong... was the intent to change the figure(s)?
Or should just fix them?

Let us now consider a single failure that occurs during
the execution of T,. To re-execute 1), one needs to recover
from the checkpointed output of 75. But one also needs to
re-execute 75, which was not checkpointed, since the output
of T5 is needed for executing Tj. To re-execute 75, one
needs to recover from the checkpoint of 73. This sequence
of recoveries and re-executions must be re-attempted until 7}
executes successfully. As a result, the problem of deciding
which tasks to checkpoint to minimize expected makespan
cannot be solved by the simple linear chain algorithm in [13].

We thus propose an alternative approach by which a
checkpoint, which takes place after the execution of a task,
saves not only the output from that task, but also the output
of all non-checkpointed tasks with at least one yet-to-be-

executed successor. This is shown on the example in Figure 5,
where checkpoint times are depicted as vertical dashed lines,
after each execution of a checkpointed task (in this case 7}
and 73). Graphically, “taking a checkpoint” means saving to
stable storage all output data of previously executed but un-
checkpointed tasks, which corresponds to solid dependence
edges that cross the checkpoint time. With this extended
definition of checkpoints, the checkpoint of T3 now includes
the output data of 75 for T}, in addition to the output of T3
for T}.

B. Checkpointing algorithm

To answer the question of when to take checkpoints through-
out the execution of a superchain on a processor, we propose
an O(n?) algorithm. Let us consider a superchain that contains
tasks 71, ...,T),, and without loss of generality let us assume
that T} executes immediately before T}, 7 =1,...,n — L.
Our approach always takes a checkpoint after 7,, completes.
This is to avoid crossover dependencies. Recall from Section I
that a crossover dependency occurs when a processor failure
during the execution of a superchain would require the re-
execution of a previously executed superchain. With the check-
pointing approach described in the previous section, taking
a checkpoint after 7,, completes ensures that all output data
from all exit tasks of the superchain are checkpointed. As a
result, crossover dependencies are prevented. Let ETime(5)
be the optimal expected time to successfully execute tasks
Ty,...,T;, when a checkpoint is taken immediately after T}
completes (with possibly earlier checkpoints). Our goal is to
minimize ETime(n).

To compute ETime(j), we formulate the following dynamic
program by trying all possible locations for the last checkpoint
before T7:

ETime(j) = Oglii?j

{ETime(i) FT(i+1,5) + OJ@} ,
where T'(i+ 1, j) is the expected time to successfully execute
tasks Tj1q to T}, provided that T; and T} are both check-
pointed, while no other task in between is checkpointed; and
C’j(»l) is the time taken to perform the checkpoint after task
T; completes, given that the previous checkpoint occurred
after the completion of task 7;. Note that C'](»Z) is the time to
checkpoint the input data of T}, ...,T},, which is produced
by Tiy1,...,T; (i.e., the non-checkpointed predecessors of
Tjit,..., Ty in Tpy1,..., Tj). Thus, Ct) > ¢;, where ¢; is
the time to checkpoint all output data of T}.

To initialize the dynamic program, we define ETime(0) =
0. A first-order approximation of the expected time needed to
execute tasks T; to T; for each (i, j) pair with ¢ < j is given
by

' . , _ 3 ,
T(i,7) = (1= AW/) x W] + AW/ x (gwg + R{) )
where )\ is the processor’s exponential failure rate, WZJ =

w; + ...+ wj is the time to execute tasks 7; to 7; when no
failures occur, and R? is the (recovery) time necessary to read



from stable storage all data produced by tasks 77,...,7T; 1
and needed by tasks Tj,...,T; for ¢ > 2 and R] = 0 for
1 < j < n. The first term above corresponds to the “no failure”
case (with probability (1 — AW}) the execution takes time
W). The second term corresponds to the “one failure” case
(with probability AW/ there is one failed execution, which on
average takes time %Wf , followed by a successful execution,
which takes time W). As explained in Section II-B we neglect
the A\? terms. The pseudo-code for this dynamic programming
solution is given in Algorithm 2.

Algorithm 2 CHECKPOINT

1: procedure CHECKPOINT(T1,...,Ty)

2: last_ckpt < [0, ...,0] (n elements)

3: | ETime(0) + 0

4: for j=1...ndo

5: ETime(j) + T(1,5) + C¥

6: last_ckpt[j] < 0

7: for:=1...5—1do

8: | temp <+ ETime(i) +T(i +1,j) + C;l)

9: if temp < ETime(j) then

10: ETime(j) + temp

11: last_ckpt[j] < i

12: Ckpts + 0 > List of tasks to checkpoint
13: while n # 0 do > Backtracking
14: Ckpts < Ckpts U{T,} > Checkpoint after task 7,
15: n + last_ckpt[n]

16: return Ckpts

The computation of ET'ime(j) takes O(n) time, as it
depends on at most j other entries. The computation of 7'(¢, j)
for all (i, j) pairs with i < j takes O(n?) time. Therefore, the
overall complexity is O(n?).

We conclude this section with a technical remark. We
said a superchain is checkpointed when all its exit tasks are
checkpointed. The exact definition should be: a superchain
is checkpointed when all the output data of all its exit tasks
are saved onto stable storage. Consider the superchain in the
example of Figure 3 with two exit tasks 77; and Tio. Algo-
rithm 2 systematically checkpoints the last task 775 but not
necessarily 77;. However, if 773 turns out not checkpointed,
the algorithm guarantees that all its output files are saved
when checkpointing 7' ». In addition, the structure of G-SPGS
ensures that 737 and T35 have the same successors outside the
superchain, and the recovery is straightforward to implement.

V. THE CKPTNONE STRATEGY

In this section we establish the complexity of computing
the expected makespan of a scheduled task graph when the
CKPTNONE strategy is used. In Section V-A we construct
a simple instance and show that it is already #P-Complete,
thereby establishing the #P-completeness of the problem. Then
in Section V-B we derive a simple formula to compute an
approximation of the expected makespan.

A. #P-completeness

Let us first define the problem:

Definition 1 (DAG-MKS). Consider a task graph with n tasks.
Each task T is scheduled on its own processor P; and has a
unitary cost. Each task can thus start executing as soon as
all its predecessors have completed (there are no resource
constraints). There is a fixed probability, p;, that processor
P; fails when it executes its allocated task T; for 1 < ¢ < n.
Once P; has failed, it restarts at the next time-step and it
cannot fail again. Hence, if P; fails while executing T;, it
will successfully re-execute 7; during the next time-step. The
problem is to compute the expected makespan of the schedule.

In this simplified problem, we have discrete times-steps, and
failures hit processors only once, similarly to the approximated
execution model given in Equation (1). Note that with this
simple model, the makespan is bounded. Also, since tasks are
unitary, there is no distinction between transient and fail-stop
failures.

Theorem 1. DAG-MKS is #P-complete.

Proof. We show this result with a reduction from REL [8], a
#P-complete problem. Consider a DAG with a source vertex,
and let V; be the set of vertices with a path of length ¢ —1 from
the source. In what follows, we consider layered graphs, and
V; is thus the set of nodes on layer i. A transportation DAG
is a graph in which edges go only from the source v; € V; to
vertices in V5, from vertices in V5 to vertices in V3 and from
vertices in V3 to the sink v,, € Vj. In other words, this is a
four-layer graph shaped as a directed bipartite graph with a
source and a sink (see Figure 6).

Wi Va
Vi
Va Vi
Vi
Vs Ve
V7
Vi Vs
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Figure 6: The transportation graph of the REL instance (left)
and the corresponding DAG-MKS instance (right). In the REL
instance, each edge may fail with probability p. In the DAG-
MKS instance, tasks with a double circle (v1g to va2) may fail
with probability 1 — p, while other tasks never fail.

Definition 2 (REL). We consider a transportation DAG where
each edge may fail with probability p. The objective is to



determine the probability that there is path between the source
and the sink.

We first transform an instance of REL into an instance of
a related problem in which the vertices fail instead of the
edges. Each initial vertex remains unchanged and cannot fail.
We replace each edge by a vertex that can fail with probability
p and connect this vertex to the predecessor and the successor
of the edge. This leads to a transformed graph with 7 layers of
vertices. Vertices in even layers fail with probability p, whereas
vertices in odd layers do not fail. The probability that there
is a path between the source and the sink is the same as with
the initial REL instance.

We now build an instance of DAG-MKS with the same
graph structure, and we let p; = 1 — p for all vertices of even
layers and p; = 0 otherwise. We will prove that determining
the probability that the makespan of this DAG is equal to 10
solves the REL instance.

We introduce some notations for the REL instance. Let F;;
be the event that occurs when the edge from vertex v; to v;
succeeds (Pr[E;;] = 1 — p). All E;; are independent. Let
F! be the event that occurs when there is a path from the
source to a vertex v; € Vj in the REL instance. Then, I}
always occurs, F; = Ey; for v; € Vo, F; = Ujepred(vi) Fin
Eji for v; € V3 and F,, = UjGPred(v,,,) Fj N Ejn =
Ujepred(on) Ukepred(v;) E1k N EkjN Ejn. Solving REL consists
in determining Pr[F},].

We now focus on the DAG-MKS instance. Let GG; be the

event that occurs when vertex v; in layer V; fails at step j
and is re-executed, for j € {2,4,6} (recall that vertices in
odd layers never fail). We have Pr[G;] = 1 — p, which is
equivalent to the event Epred(u, )suce(v,)- All G are independent.
Let C; be the completion time of vertex v;. Consider the first
three layers. The event {C; = 1} always occurs, because the
source vertex never fails. For v; € V5, either no fault occurs
(G;) and C; = 2, or a fault occurs and it takes one more time-
step to execute task v;, i.e., we derive that G; = {C; = 3}.
Finally, {C; = 4} = {Cpredw;) = 3} = Gpred(v;) for
v; € V3. Analogously, for the two next layers, we have:
{Ci = 6} = {Cpred(vi) = 4} N G; for v; € V4 and
{Cl = 7} = UjePred(vi){C’j = 6} = UjePred(vi){CPred(Uj) =
4} N G, for v; € V. For the last two layers, we have:
{Ci = 9} = {Cpred(vs) = 7T} N G; for v; € Vg and {C), =
10} = UjEPred(vi){Cj = 9} = UjePred(vn,){CPred(“j)
7} N G;. After simplification, we have {C, = 10} =
UjePred(v,L) UkePred(pred(vj)) Gpred(pred(vk)) NGk N Gj' We see
that Pr[{C}, = 10}] = Pr[F},] because the graph structure of
the DAG-MKS instance is the same as REL.

It remains to prove that determining the probability that the
makespan is 10 (i.e., Pr[{C, = 10}]) can be done by deter-
mining the expected makespan. We use a technique similar to
the one used in [8]. We simply add a series of 7 never-failing
vertices between the source and the sink, in parallel of the
previous graph (see Figure 6). Then, the expected makespan
of this new DAG is Pr[{C, = 10}] + 9. O

The general problem (i.e., when task costs are not unitary,
when several tasks may be allocated to a given processor, when
there is a probability of failure during re-execution, when there
are recovery costs, etc.) is thus also #P-completed, and likely
even more challenging than DAG-MKS.

B. Lower bound on makespan

Section V-A shows the difficulty of computing the makespan
of a schedule where no task is checkpointed. Still, for the
sake of comparing the CKPTNONE strategy with our new
algorithm CKPTSOME, we derive the following (lower bound)
approximation:

Theorem 2. Consider a schedule for a G-SPG G with P
processors, in which no task is checkpointed. Let W, be the
parallel time of the schedule with no failure, and let )\ be the
processor’s exponential failure rate. A formula to estimate the
expected makespan EM (G) is

3
EM(G) = (1 = PA\Wyar) X Wpar + PAWper X (iwpm)
Proof. The idea is to consider a single task of weight W,
and to compute its expected execution time as in Equation (2).
The only differences are that: (i) we use the platform’s
exponential failure rate PA; and (ii) we neglect the recovery
cost. O

In Section VI, we use EM(G) to evaluate the expected
makespan of the CKPTNONE strategy. While this formula
is likely to be inaccurate, we are not aware of any better
approximation.

VI. EXPERIMENTS

In this section, we present experimental results that quantify
the effectiveness of the proposed CKPTSOME algorithm.

A. Experimental methodology

Our experiments are for representative workflow ap-
plications generated by the Pegasus Workflow Generator
(PWG) [20], [21], [15]. PWG uses the information gathered
from actual executions of scientific workflows as well as
domain-specific knowledge of these workflows to generate
representative and realistic synthetic workflows (the param-
eters of which, e.g., total number of tasks, can be chosen).
We consider three different classes of workflows generated by
PWG, which are G-SPG (information on the corresponding
scientific applications is available in [15], [22]):

e MONTAGE: The NASA/IPAC Montage application
stitches together multiple input images to create custom
mosaics of the sky. The average weight of a MON-
TAGE task is 10s. Structurally, MONTAGE is a three-level
graph [23]. The first level (reprojection of input image)
consists of a bipartite directed graph. The second level
(background rectification) is a bottleneck that consists in
a join followed by a fork. Then the third level (co-addition
to form the final mosaic) is simply a join.

e L1GO: LIGO’s Inspiral Analysis workflow is used to
generate and analyze gravitational waveforms from data



collected during the coalescing of compact binary sys-
tems. The average weight of a L1GO task is 220s. Struc-
turally, L1IGO can be seen as a succession of Fork-Joins
meta-tasks, that each contains either fork-join graphs or
bipartite graphs (see the LIGO IHOPE workflow in [15]).
Depending on the number of tasks required, PWG may
not output a G-SPG Ligo workflow because of some
incomplete bipartite graphs. In these cases, to ensure full
fairness when comparing approaches, the baseline strate-
gies process the original workflow while CKPTSOME
processes a workflow where bipartite graphs have been
extended with dummy dependencies carrying empty files
(which adds synchronizations but no data transfers).

o GENOME: The epigenomics workflow created by the
USC Epigenome Center and the Pegasus team automates
various operations in genome sequence processing. The
average weight of a GENOME task depends on the total
number of tasks and is greater than 1000s. Structurally,
GENOME starts with many parallel fork-join graphs,
whose exit tasks are then both joined into a new exit task,
which is the root of fork graphs (see the Epigenomics
workflow in [15]).

We generate MONTAGE, L1GO, and GENOME workflows
with various number of tasks. For each task 7; in the workflow,
its weight w; is generated by PWG. We compute the time
required to checkpoint it as ¢; = Of,;/BW and its recovery
time as r; = If,/BW, where Of;, resp. If,, represents the
sum of 7;’s output, resp. input, file sizes in bytes, and BW
is the file system bandwidth in byte/sec. Of, and If, are
generated by PWG.

In the experiments we consider different exponential pro-
cessor failure rates. To allow for consistent comparisons of
results across different G-SPGs (with different numbers of
tasks and different task weights), we simply fix the probability
that a task fails, which we denote as pg,;, and then simulate
the corresponding failure rate. Formally, for a given G-SPG
G = (V,FE) and a given pg,; value, we compute the average
task weight as w = ),y w;/|V|, where w; is the weight of
the i-th task in V. We then pick the failure rate A such that

Prait =1 —e .
We conduct experiments for three p,; values: 0.01, 0.001, and
0.0001.

An important factor that influences the performance of
checkpointing strategies, and more precisely of the check-
pointing and recovery overheads, is the time spent computing
relative to the time spent performing I/O. The workflows
generated by PWG give task durations in seconds and file sizes
in bytes. We thus define the Communication-to-Computation
Ratio (CCR) as the time needed to store all the files handled
by a workflow (input, output, and intermediate files) divided
by the time needed to perform all the computations of that
workflow on a single processor. The total store time is the
total file size divided by the bandwidth to the stable storage.
Instead of picking arbitrary bandwidth values, which would
have different meanings for different workflows, we vary the

CCR by scaling file data sizes (i.e., Of; and If;) by a factor.
This makes it possible to study the performance impact of
I/O operations in a coherent manner across experiments and
workflow classes and configurations.

The experiments compare our proposed approach (CKPT-
SOME) to the two extreme approaches, CKPTALL and CKPT-
NONE. Recall from Section V-B that we have only an estimate
for CKPTNONE. Expected makespan results are discussed in
Section VI-C. But since the expected makespan in those results
is computed using approximation algorithms, we first evaluate
the accuracy of these algorithms in Section VI-B. The code is
publicly available at http://graal.ens-lyon.fr/~yrobert/code.zip.

B. Accuracy of makespan evaluation

In this section, we evaluate the accuracy of the approxima-
tion of the expected makespan, using four methods to compute
the expected longest path in 2-state probabilistic DAGs. To this
end, we follow the methodology in [24], and also reuse the
simulator developed by the authors. Essentially, we compare
a brute-force Monte Carlo approach [25], [26] with three
previously proposed approximation techniques [27], [28], [24],
as described hereafter.

MONTECARLO — A task in the DAG succeeds or fails as de-
termined by sampling its 2-state distribution. After sampling,
the DAG is deterministic and its makespan can be computed
as a longest path. This operation is repeated for a large number
of trials, each of which produced a sample makespan. These
samples approach the actual makespan distribution as the
number of trials increases. Following [24], we use 300,000
trials and approximate the expected makespan as the average
over the 300,000 makespan samples. This huge number of
trials is prohibitively expensive in practice, but provides us
with an accurate ground truth. In all results hereafter we report
on the relative error between the three other approximations
and this ground truth.

DODIN (approximation by series-parallel graphs) — Basic
probability theory tells us how to compute the probability
distribution of the sum of two random variables (by a con-
volution) and of the maximum of two random variables (by
taking the product of their cuamulative density functions). This
simple consideration leads to an exact method to compute the
expected makespan when the DAG is series-parallel. When
the DAG is not series-parallel, one approach is to approximate
it by a series-parallel graph, which is constructed iteratively,
first by a sequence of reductions and then by duplicating some
vertices. Dodin’s method [27] constructs such an approximated
series-parallel graph, whose expected makespan is used to
estimate that of the original DAG. See [16], [17] for a detailed
description of Dodin’s method.

NORMAL (approximation via a normality assumption) — The
central-limit theorem states that the sum of independent ran-
dom variables tends to be normally distributed as the number
of variables increases. Since the expected makespan of the
DAG is a combination of sums and maxima of the original
task weights, a popular approach proposed by Sculli [28]



is based on the normality assumption: (i) Approximate the
distribution of each task by a normal distribution of same
mean and variance. This step has constant cost per task for
probabilistic 2-state DAGs; (ii) Use Clarke’s formulas in [29]
to compute the mean and variance of the sum and maximum
of two (correlated) normal distributions, and then assuming
that they also follow normal distributions; and (iii) Traverse
the original DAG and compute the mean and variance of the
makespan. See [17] for a full description of Sculli’s method.

PATHAPPROX (approximation via longest paths) — A fourth
approach is to provide an approximation of the expected
makespan based upon non-overlapping failures [24]. Consider
a workflow G = (V, E) whose tasks have been assigned to
processors, and are all checkpointed. Without failures, the
expected makespan £(G) is the longest path L(G) when
weights are chosen according to the first case in Equation (1).
With failures, £(G) can be expressed as an infinite series in
Aind, the common failure rate of individual processors, as
follows:

S(G) = L(G) + a1 \ing + ag)\%nd + a3/\?nd —+ ...

Intuitively, the term aj/\gn 4 corresponds to the average
makespan increase when the workflow if struck by j failures.
The PATHAPPROX approximation method uses

E(G) = L(G) + a1Xind

and is accurate whenever \;, 4 is close to zero, which allows us
to neglect O(\?, ;) terms. The coefficient a; is then computed
using a series of traversals, at total cost O(|V|? + |V |.|E|)
(see [24] for details). Each traversal computes the longest path
when one task fails, hence the approach is accurate unless we
have more than one failure in a given dependence path of
the DAG (hence the name PATHAPPROX). PATHAPPROX has
proven both faster and more accurate than the previous three
methods for dense LU and QR factorization workflows subject
to silent errors [24].

Figure 7 show the relative error (compared to MONTE-
CARLO) of PATHAPPROX, DODIN, and NORMAL vs. the
number of tasks for Genome workflows, for CCR=1.6 x 102
and the three different pg,;; values. The results in Figure 7 are
representative. Full results for other workflow classes and other
CCR values are provided in a companion research report [30].
Although CCR values and workflow classes lead to different
curve shapes for a given pg; value, the range of the relative
error is consistent (in some cases DODIN is omitted due to
taking a prohibitively long time for large workflows). For
low failure rates (pg; = 0.0001), PATHAPPROX achieves
relative errors well below 0.1% and in most cases orders of
magnitude lower that that achieve by DODIN and NORMAL.
For moderate failure rates (pg; = 0.001), it achieves relative
errors below 10%, which is comparable to that achieved by
DoDIN and NORMAL, with DODIN typically leading to higher
error. For large failure rates (pr,j = 0.01), the relative error
of PATHAPPROX becomes larger, and is often larger than
that of DODIN and NORMAL although their relative errors

also increase. This is not surprising: when there are 1,000
tasks, there will be on average 10 failures per execution but
PATHAPPROX assumes at most one failure on each path from
an entry task to an exit task [24]. This leads to high error
when failures are more frequent than this assumption.

The above puts in question the usefulness of PATHAPPROX
for (possibly not very relevant to practice) high failure rate
scenarios. However, we find that PATHAPPROX remains useful
even in such scenarios in terms of comparing checkpoint
strategies. As an example, Figure 8 presents results obtained
with PATHAPPROX and with MONTECARLO for quantify-
ing the expected makespan of CKPTALL relative to that of
CKPTSOME vs. the CCR. Results are shown for each of the
three workflow classes, for workflows with 1,000 tasks, and
for various numbers of processors P. PATHAPPROX delivers
quantitatively accurate (i.e., similar to MONTECARLO) results
in all cases except for Montage at very high CCR. However,
even in that case, the qualitative prediction of PATHAPPROX
is the same as that of MONTECARLO: CKPTALL achieves
significantly worse performance than CKPTSOME. Overall, we
conclude that PATHAPPROX provides a sound basis for com-
paring the expected makespan achieved by different schedul-
ing/checkpointing policies in relevant practical configurations.

To assess the scalability of the three methods, we run
them (using one core of a 2.3GHz AMD Opteron Processor
8356), with 3000 tasks for GENOME, and pg,; = 0.0001. For
this large graph, we still ran the Monte Carlo for 300,000
times, so as to ensure the accuracy of the ground truth. Error
(normalized difference with Monte Carlo) and execution times
are shown in Table I. We see DODIN exhibits very large
error. PATHAPPROX is roughly one order of magnitude more
accurate than NORMAL. We also see that PATHAPPROX can be
computed in under a 0.1 second, while NORMAL and DODIN
requires about 1 minute, i.e., about three orders of magnitude
slower. We conclude that not only PATHAPPROX achieves a
good accuracy, but is also significantly faster than DODIN
and NORMAL, which makes it the method of choice for our
experiments

C. Expected makespan

In this section, we compare the expected makespan of
two baseline strategies (CKPTALL and CKPTNONE) over
that of our proposed strategy (CKPTSOME). Figures 9, 10,
and 11 show these relative expected makespans vs. the
Communication-to-Computation Ratio (CCR). Data points
above the y = 1 line denote cases in which our strategy leads
to better performance than a competitor (i.e., a lower expected
makespan). Each figure shows results for workflows with 50,
300, and 1000 tasks, for various numbers of processors P,
and for the three pg,; values (0.01, 0.001, and 0.0001). More
comprehensive results are provided in a companion research
report [30].

A clear observation is that CKPTSOME always outper-



Table I: Results for GENOME with 3000 tasks and pg,; = 0.0001.
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Figure 7: Relative error vs. workflow size
processors for CCR = 1.6 x 1072,

forms CKPTALL.2 In each scenario, above some CCR value,
which depends on the failure rate and the workflow size,
CKPTSOME leads to significant improvement over CKPTALL.
As the CCR decreases, the relative expected makespan of
CKPTALL decreases and converges to 1. This is because when
checkpointing becomes cheap enough CKPTSOME decides to
checkpoint every task, and thus is equivalent to CKPTALL.

Another common trend is that the relative expected
makespan of CKPTNONE increases as the CCR decreases
since as checkpoints become cheaper not checkpointing be-
comes a losing strategy (poorer resilience to failures, but
little saving on checkpointing overhead). Overall, CKPTNONE
becomes worse whenever there are more failing tasks, i.e.,
when the failure rate increases (going from the rightmost
column to the leftmost one in the figures), and/or when the
number of tasks increases (going from the topmost row to the
bottom one in the figures). When the failure rate is high and
the workflows are large (the bottom left corner of the figures),
the relative expected makespan of CKPTNONE is so high that
it does not appear in the plots.

CKPTSOME achieves better results than CKPTNONE except
when (i) checkpoints are expensive (high CCR) and/or (ii) fail-
ures are rare (low pgi). In these cases, checkpointing is a
losing proposition, and yet CKPTSOME always checkpoints
some tasks (the exit tasks of superchains). In practice, in such
cases, the optimal approach is to bet that no failure will happen
and to restart the whole workflow execution from scratch upon
the very rare occurrence of a failure. The results above for
our particular benchmark workflows, and our experimental
methodology in general, make it possible to identify these
cases so as to select which approach to use in particular
practical situation.

2There are in fact a couple of CCR values for Ligo with 300 tasks for
which this is not true. This is an artifact of our slight transformation of the
Ligo workflow (see Section VI-A for details).
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for different approximations of the expected makespan for GENOME with 300

VII. RELATED WORK

Checkpointing workflows has received considerable atten-
tion in the recent years, but no satisfactory solution is available
for fail-stop failures and general DAGs. For completeness we
first review related work devoted to soft errors (Section VII-A).
We then review work devoted, like this work, to fail-stop errors
(Section VII-B).

A. Soft and silent errors

Many authors have considered soft errors, by which a
task execution fails but does not lead to completely losing
the data present in the processor memory. Checkpointing, or
more precisely making a copy of all task input/output data,
is the most widely used technique to address soft errors. If
a soft error occurs during its execution, a task can then be
re-executed from scratch. This solution can be too costly,
and it is possible to save a copy of task input/output data
only periodically, at the price of more re-execution when
an error is detected. This is the trade-off analyzed by Cao
et al. [31] for Cholesky factorization. Several authors have
suggested techniques that identify tasks on the critical path,
and then making scheduling decisions that attempt to ensure
the timely execution of these tasks [32], [33]. A widely used
technique to cope with soft errors is task replication, the
challenge being to avoid over-duplicating tasks so as strike a
good balance between fast failure-free executions and resilient
executions [34]. Two representative practical frameworks are
the NARBIT system [35], which recovers from soft errors
via task replication and work stealing, and Nanos [36], [37],
a runtime system that supports the OpenMP programming
model.

Silent errors represent a different challenge than soft errors,
in that they do not interrupt the execution of the task but
corrupt its output data. However, their net effect is the same,
since a task must be re-executed whenever a silent error is
detected. Since a silent detector is applied at the end of a
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Figure 8: Comparison of the performance predicted by the PATHAPPROX (left column) and by MONTECARLO (right column)
for the ratio of the expected makespan of CKPTALL with respect to that of CKPTSOME, when pg; = 0.01, for the three

workflows, for 1000 tasks, and for various values of the CCR.

task’s execution, the task must be re-executed from scratch in
case of an error. Checkpointing (making copies of input/output
data) or replicating tasks and comparing outputs, are two com-
mon techniques to mitigate the impact of silent errors. With
checkpointing, several application-specific detectors can be
used to avoid replication and increase performance in failure-
free executions. Two well-known examples are Algorithm-
Based Fault Tolerance (ABFT) [38], [39], [40] and silent error
detectors based on domain-specific data analytics [41], [42],
[43].

B. Fail-stop failures

By contrast with soft errors, relatively few published works
have studied fail-stop failures in the context of workflow ap-
plications. In fact, to the best of our knowledge, existing work
only considers linear chains of tasks or considers workflows
that are fully linearized before execution.

Consider first a workflow that consists of a linear chain
of tasks. The problem of finding the optimal checkpoint
strategy, i.e., of determining which tasks to checkpoint, in
order to minimize the expected execution time, has been solved
by Toueg and Babaoglu [?], using a dynamic programming
algorithm. Note that the tasks can themselves be parallel, but
the execution flow is sequential, which dramatically limits the

amount of re-execution in case of a failure. The algorithm
of [?] was later extended in [44] to cope with both fail-stop
and silent errors simultaneously.

Consider now a general workflow comprised of parallel
tasks that each executes on the whole platform. Therefore,
the workflow execution is linearized, and in essence executes
as a chain of macro-tasks that execute on a single macro-
processor whose speed is the aggregate speed of the available
processors and whose failure rate is proportional to the number
of available processors. Checkpoints can then be placed after
some tasks. However, because the original workflow is not a
chain, it is more complicated to keep track of live output data,
and the problem of placing checkpoints is NP-complete for
simple join graphs [45]. To circumvent this problem, when
checkpointing a task, one can decide to checkpoint not only
the task’s own output data, but also all the live data that will
be needed later on in the workflow. This is the main idea of
the algorithm proposed in Section IV.

To the best of our knowledge, this work is the first approach
that does not resort to linearizing the entire workflow as a
chain of (macro-)tasks. As a result, we propose the first DAG
scheduling/checkpointing algorithm that allows independent
(sequential) tasks to execute concurrently on multiple proces-
sors in standard task-parallel fashion.
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Figure 9: Relative expected makespan of CKPTALL and of CKPTNONE with that of CKPTSOME for the GENOME workflow,
three different failure rates, three workflow sizes, and varying Communication-to-Computation Ratio (CCR).

VIII. CONCLUSION

In this work we have proposed a scheduling/checkpointing
algorithm, called CKPTSOME, for executing workflow appli-
cations on parallel computing platforms in which processors
are subject to fail-stop failures. The objective function to be
minimized is the expectation of the makespan, which is a
random variable due to non-deterministic task re-executions
when failures occur. For general Directed Acyclic Graphs
(DAGs), this problem is intractable and even computing the
objective function is itself a #P-complete problem. However,
by restricting our work to a class of structured recursive
DAGs, Generalized Series-Parallel Graphs (G-SPGS), which
are broadly relevant to production workflow applications, we
are able to design a sensible algorithm and are able to compute
a first-order approximation of the expected makespan of the
solutions it produces. A competing approach, CKPTALL, side-
steps part of the difficulty of solving the problem by saving all
application data to stable storage so as to minimize the impact
of failures, with the drawback of maximizing checkpointing
overhead. This is the approach employed by default in most
production workflow executions, in which each task is an
executable that reads all its input from files and writes all its
output to files. Another competing approach, CKPTNONE, is

a risky zero-overhead approach in which the whole workflow
is re-executed from scratch in case of a failure. The broad
objective of our algorithm is to produce solutions that strike a
good compromise between these two extremes. Note that for
the CKPTNONE approach, when applied to general DAGs, we
have established that the problem of computing the expected
makespan is #P-complete, which to the best of our knowledge
is a new result.

We have evaluated the effectiveness of our algorithm by
considering realistic workflow configurations produced by
a workflow generator from the Pegasus community [20],
[21], [15]. We have first demonstrated that the PATHAP-
PROX method for the expected makespan leads to accurate
results, and in particular to results close to those obtained
using a brute-force Monte Carlo method, while much faster
than DODIN or NORMAL. Then, we have shown that our
CKPTSOME algorithm does indeed provide an attractive com-
promise between the CKPTALL and CKPTNONE approaches.
More specifically, CKPTSOME always outperforms CKPTALL,
is only outperformed by CKPTNONE when checkpoints are
expensive and/or failures are rare. Our experimental method-
ology provides the quantitative means to identify these cases
(based on application CCR, platform scale, and failure rates),
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Figure 10: Relative expected makespan of CKPTALL and of CKPTNONE with that of CKPTSOME for the MONTAGE workflow,
three different failure rates, three workflow sizes, and varying Communication-to-Computation Ratio (CCR).

so as to select which approach to use in practice.

Future work will be devoted to extending the scheduling
algorithms to parallel (moldable) tasks, and to derive graph
transformation techniques to enable the approach to arbitrary
workflows. Another promising direction is to refine the lin-
earization algorithm for superchains (Algorithm 1). Instead
of choosing the topological sort arbitrarily, one may try and
reduce the total volume of output files, in the hope of reducing
the total checkpointing cost when applying Algorithm 2 after
the linearization. This problem is related to the sum cut
problem [46], which is NP-Complete for general DAGs, but
may be amenable to efficient solutions for G-SPGSs.
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