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9TRIUMF, Vancouver, British Columbia V6T 2A3, Canada
10Institute of High Energy Physics, Beijing, China

11Physics Department, Colorado State University, Fort Collins, Colorado 80523, USA
12Department of Physics, Laurentian University, Sudbury, Ontario P3E 2C6, Canada

13SNOLAB, Sudbury, Ontario P3Y 1N2, Canada
14Physics Department, University of South Dakota, Vermillion, South Dakota 57069, USA

15Physics Department, Stanford University, Stanford, California 94305, USA
16Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA

17Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
18Amherst Center for Fundamental Interactions and Physics Department,

University of Massachusetts, Amherst, MA 01003, USA
19Technische Universität München, Physikdepartment and Excellence Cluster Universe, Garching 80805, Germany

20Physics Department, University of Maryland, College Park, Maryland 20742, USA
21Department of Physics and Astronomy, Stony Brook University, SUNY, Stony Brook, New York 11794, USA

22IBS Center for Underground Physics, Daejeon, Korea
23Department of Physics, Yale University, New Haven, Connecticut 06511, USA

24Waste Isolation Pilot Plant, Carlsbad, New Mexico 88220, USA
25Kellogg Lab, Caltech, Pasadena, California 91125, USA

26LHEP, Albert Einstein Center, University of Bern, Bern, Switzerland
(Dated: November 7, 2017)

Searches for double beta decay of 134Xe were performed with EXO-200, a single-phase liquid
xenon detector designed to search for neutrinoless double beta decay of 136Xe. Using an exposure
of 29.6 kg·yr, the lower limits of T2νββ

1/2 > 8.7 · 1020 yr and T0νββ
1/2 > 1.1 · 1023 yr at 90% confidence

level were derived, with corresponding half-life sensitivities of 1.2 · 1021 yr and 1.9 · 1023 yr. These
limits exceed those in the literature for 134Xe, improving by factors of nearly 105 and 2 for the two
antineutrino and neutrinoless modes, respectively.
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I. INTRODUCTION

This paper presents the search for two modes of double
beta (ββ) decay of 134Xe. ββ decay is a second-order weak
transition between two nuclei with the same mass num-
ber and nuclear charges that differ by two units. This
process can only be observed if the single beta (β) de-
cay is strongly suppressed or forbidden by energy con-
servation. The mode with emission of two antineutri-
nos and two electrons (2νββ) is an allowed decay by the
Standard Model (SM) and has been directly observed in
nine nuclei [1]. Among them, 136Xe presents the longest
half-life of 2.165±0.016 (stat.)±0.059 (syst.) ·1021 yr [2].
The hypothetical neutrinoless mode with emission of two
electrons and nothing else (0νββ) does not conserve lep-
ton number and, if observed, would imply that neutrinos
are massive Majorana particles [3]. The most stringent
lower limits derived for the half-life of 0νββ in 136Xe are
1.1·1026 yr [4] and 1.1·1025 yr [5] at 90% confidence level
(CL).
The ββ decay of 134Xe into 134Ba:

134Xe →134 Ba++ + 2 e− (+2 ν̄e) ,

has a Q-value of 825.8 ± 0.9 keV [6] and neither of the
two ββ modes have been observed to date. Because ββ
decay rates scale strongly with the Q-value: ∼ Q11 in
2νββ and ∼ Q5 in 0νββ [7, 8], experimental searches
have favored 136Xe (Q-value of 2457.83 ± 0.37 keV [9]).
Moreover, in xenon detectors containing both isotopes,
136Xe 2νββ produces a background that makes the ββ
searches in 134Xe even more challenging. The current
experimental limit for the half-life of 2νββ in 134Xe is

T2νββ
1/2 > 1.1 · 1016 yr at 68% CL [10], while theoretical

predictions put it in the range of ∼ 1024 − 1025 yr [11].
On the other hand, more recent searches set the most

stringent limit for the 0νββ half-life at T0νββ
1/2 > 5.8 ·

1022 yr at 90% CL [12].
The searches presented in this paper are rooted in the

success of the EXO-200 analyses of ββ decays in 136Xe [2,
5, 13, 14]. Unique to this work, the energy threshold
was extended to lower energies as required by the ββ
searches in 134Xe. As will be discussed in Sec. III, each
decay mode was analyzed independently, using a different
energy threshold. The Monte Carlo (MC) simulation and
reconstruction processes were improved, as detailed in
Sec. II, to further improve the agreement between data
and MC. Another change with respect to previous EXO-
200 analyses is the use of the full set of data between
June 2011, and February 2014, corresponding to a 25%
increase in livetime (EXO-200 Phase-I).

II. THE EXO-200 DETECTOR, DATA AND MC

SIMULATION

The EXO-200 detector consists of two back-to-
back cylindrical single-phase time projection chambers

(TPCs), sharing a central cathode, filled with liquid
xenon (LXe). The isotopic composition of the LXe is
80.672± 0.014% 136Xe and 19.098± 0.014% 134Xe. The
ratio between these two isotopes was measured using dy-
namic dual-inlet mass spectrometry [15]. In addition,
the contamination from other Xe isotopes was measured
to be < 0.25%, dominated by a 0.2% contamination of
132Xe. The significant concentration of 134Xe, almost
twice its natural abundance of 10.4%, presents a unique
opportunity and motivates this work.

The detector is located at the Waste Isolation Pilot
Plant (WIPP) in Carlsbad, NM, USA, in a clean room
under an overburden of 1624 meters water equivalent. An
active muon veto system surrounding the clean room on
four sides identifies 96% of the cosmic ray muons pass-
ing through the TPCs, and allows rejection of prompt
cosmogenic backgrounds [16].

A radiopure copper vessel, nearly 44 cm in length and
40 cm in diameter, contains the EXO-200 TPCs. Each
TPC is instrumented near the ends of the vessel with a
pair of wire planes, crossed at 60◦, in front of an array
of silicon large-area avalanche photodiodes (APDs). Ion-
izing particles passing through the LXe deposit energy
that produces both scintillation light (∼ 178 nm wave-
length), detected by the APDs almost instantenously,
and electron-ion pairs. The electrons are drifted towards
the wire grids, inducing signals in the front-most wire
plane (V-wires), and then are collected by the second
wire plane (U-wires). Copper “field-shaping” rings en-
sure a sufficient uniformity of the electric field over the
bulk of the LXe, and inside them a cylindrical PTFE re-
flector improves collection efficiency of the scintillation
light. A more detailed description of the detector can be
found in [17].

All three spatial coordinates (3D) of the energy de-
positions are reconstructed in EXO-200. Information
from the U- and V-wires results in 2D clusters (X and
Y coordinates) formed by the charge detection (charge
clusters). The time difference between the light signal
(scintillation cluster) and associated charge clusters pro-
vides their third coordinate (Z). The subcentimeter po-
sition resolution [2] provides strong separation between
single-site (SS) events, primarily β or ββ decays with
characteristic dimension of ∼ 2 − 3 mm, and multi-site
(MS) events, arising mostly from multiple interactions of
MeV-energy γ-rays. Furthermore, internally generated
β-like events in the fiducial volume (FV) are uniformly
distributed in the LXe, in contrast to the spatial distri-
bution of background events arising from γ-rays enter-
ing the TPC. This difference is captured in the analysis
by the standoff-distance variable, defined as the short-
est distance between any event cluster and the closest
material that is not LXe, other than the cathode. The
event energy is calculated using a linear combination of
the measured ionization and scintillation signals that op-
timizes the energy resolution [18], determined using the
2615 keV γ-line of 208Tl.

Both the spectral fitting analysis, presented in Sec. III,
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and detector calibration rely on detailed modeling of the
detector response. For these purposes, a GEANT4-based
application [19] is part of the EXO-200 MC simulation
software, as described in [2]. The collaboration has been
gradually implementing changes into this package to bet-
ter describe the measurements with the detector [13]. For
this analysis, the simulation was updated to incorporate
three important effects, in order to improve the spectral
agreement with data at low energies. First, since elec-
tronegative impurities can capture electrons drifting in
the LXe, the charge collection is exponentially attenu-
ated with drifting distance before the simulation of the
electronics pulse shapes. The average electron lifetime
included in the simulation is based on calibration mea-
surements (τ̄e = 4.5 ms). In addition, a more realistic
light response of the APDs is included, which is now
based on EXO-200 data to account for the complexity
of optical propagation in the detector, such as internal
reflections. Finally, the diffusion of the drifting electrons
has been incorporated following the EXO-200 measure-
ment of the transverse coefficient in LXe at the nominal
drift field of 380 V/cm (D = 55 cm2/s) [20].
The energy calibration relies on data acquired with ra-

dioactive γ sources deployed near the detector [2]. The
energy scale and resolution are simultaneously deter-
mined by fitting the expected energy spectra, as gener-
ated by MC, to the corresponding calibration data [13].
These fits were performed with a reduced energy thresh-
old suited for both ββ decay searches of 134Xe. The ef-
fective livetime-weighted average of the resolution in this
analysis is σ/E = 1.60% and 3.56% for SS events at the
Q-value of 136Xe and 134Xe, respectively. To reach this
result, a sophisticated de-noising algorithm was devel-
oped optimizing the energy resolution in the presence of
correlated noise from the APD electronics [21].
The total livetime of the EXO-200 data considered here

is 596.7 days. The fiducial volume (FV) is defined by
events within 10 mm < |Z| < 182 mm, where Z = 0 is
the cathode plane, and constrained in a hexagon with
162 mm apothem, centered at (X,Y ) = (0, 0). This cor-
responds to 18.1 kg of 134Xe, i.e. 8.14 ·1025 atoms, which
results in an exposure of 29.6 kg·yr (221 mol·yr).

III. ANALYSIS PROCEDURE

The low Q-value of the ββ decay of 134Xe requires
an energy threshold that is substantially lower than the
980 keV used in other EXO-200 publications. The im-
provements described in Sec. II produce an agreement
between data and MC better than 10% for energies above
600 keV, as shown in Fig. 1. The agreement worsens
below this energy and reaches 30% near 460 keV in SS
events induced by γ-rays from calibration sources. The
effects of these discrepancies are discussed in Sec. IV.
The standoff-distance agreement was not observed to de-
grade at low energies when compared to previous EXO-
200 analyses.
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Figure 1. Energy spectral agreement between data and MC
simulation in SS (top) and MS (bottom) events. The com-
parison is presented between 460 keV and 1600 keV for two
calibration sources, 228Th and 226Ra, deployed near the cath-
ode of the detector for calibration runs. The background-
subtracted 136Xe-2νββ spectrum is compared to MC only in
SS events. A worsening of the agreement in SS γ-like spectra
is observed for energies . 600 keV. This effect was considered
in the searches as discussed in Sec. IV.

Following a similar procedure from previous analy-
ses [2, 5, 13, 14], the search for each ββ decay mode of
134Xe was performed independently using a binned neg-
ative log-likelihood (NLL) function to fit simultaneously
both SS and MS events with their corresponding proba-
bility density functions (PDFs), as generated by MC, in
energy and standoff-distance. Five Gaussian constraints,
presented in Sec. IV, were included in the NLL func-
tion to incorporate the systematic uncertainties indepen-
dently evaluated for each search, in a similar approach
as [2]. The SS fraction of each component, defined by
the ratio of the number of SS events to the total number
of events (SS/(SS+MS)), parametrizes the proportion of
counts assigned to SS and MS PDFs. Unlike previous
analyses, these searches used non-uniform bin widths,
which optimize the calculation speed without decreasing
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the experimental sensitivity. In particular, the standoff-
distance binning partitions the LXe in equal volumes. A
profile-likelihood scan was then performed to derive the
limits at 90% CL using a profile-likelihood ratio (∆NLL)
of 1.35, under the assumption of Wilks’s theorem [22, 23],
which applies, given the large statistics of the data set in
the region of interest.

A fit model comprising the significant components that
contribute to events with energies above 700 keV was de-
veloped in [2]. At lower energies, two additional compo-
nents are expected to contribute to backgrounds:

• 85Kr dissolved in the LXe, producing β decays with
end point at 687.4 keV;

• 137Cs in the materials near the LXe, with γ-rays of
661.7 keV.

The shape of the simulated ββ decay spectrum of 134Xe
is the same as that of 136Xe, with the appropriate Q-
value. The simulated energy spectrum of 85Kr includes
the two β-decay modes with branching ratios of 99.56%
and 0.44% to the ground and excited states of 85Rb,
respectively. The latter is followed by the release of a
514 keV γ-ray. A shape correction accounting for the for-
bidden nature of the first unique β decay was calculated
using the method described in [24], and found between
−15% and 80% depending on its energy. This correction
was applied as an event weighting in the MC simulation.

The possible difference between the energy scale of β-
and γ-like events is modeled by a scaling factor, the β-
scale. This is a free parameter applied on the β-like PDFs
that allows for a possible shift in energy scale between β-
like PDFs and the γ calibration sources.

Different energy thresholds are used to optimize the
sensitivities for 2νββ and 0νββ decays. The 2νββ decay
requires the lowest possible energy threshold, in order
to maximize the signal detection efficiency and discrim-
ination power between low-energy backgrounds, while
keeping the systematic errors arising from the spectral
agreement at reasonable levels. Because all these ef-
fects are propagated into the profile-likelihood ratio, the
sensitivity (obtained through fits of toy data sets gener-
ated by the background model) was evaluated with en-
ergy thresholds varying between 400 keV and 500 keV,
in steps of 20 keV, and found to be optimal in the region
between 460 keV and 480 keV (with negligible differences
within this range). The choice of 460 keV can then be
motivated by its signal detection efficiency, 5.6% as op-
posed to 4.5%. On the other hand, the 0νββ detection
efficiency is nearly maximal, 89%, for all energies below
760 keV. The energy threshold of this search is then se-
lected at 740 keV, sufficiently away from the low-energy
background components, even when accounting for the
energy resolution. For this reason, the 85Kr and 137Cs
PDFs are only included in the fit model of the 134Xe
2νββ search.

IV. SYSTEMATIC ERRORS

The five Gaussian constraints added to the NLL, re-
sponsible for the propagation of the systematic errors into
the searches, correspond to:

• uncertainty in the activity of radon in the LXe as
determined in stand-alone studies;

• uncertainty in the relative fractions of neutron-
capture-related PDF components generated by
dedicated simulations;

• uncertainty in SS fractions as obtained in MC;

• uncertainty in the overall efficiency, also referred
to as normalization, caused by imperfections in the
MC model;

• uncertainty in the signal efficiency, also referred to
as signal-specific normalization, caused by spectral
differences between data and MC simulations.

The first two were evaluated in previous analyses [2], and
are presented in Table I along with the other three, ex-
plained below. Table II shows the contribution of each
constraint to the 90% CL limits (derived in Sec. V and
shown in Fig. 2), evaluated by setting a negligible error
to the constraint in the fit.
The uncertainty in SS fractions was evaluated using

calibration data and was defined as the weighted aver-
age of the SS fractions residuals ((data-MC)/MC), with
weights based on the signal spectrum and detector live-
time. Since the SS fraction is observed to depend on
energy, being & 90% for energies below 700 keV for all
components, this error was considered as the largest be-
tween those evaluated in energy and standoff-distance
projections. The resulting SS-fraction constraint for each
search is shown in Table I.
Imperfections in the MC model, common to all com-

ponents, translate into an overall difference in number
of events between data and MC prediction. This overall
efficiency uncertainty is acccounted for by an additional
degree of freedom added to the fitting PDF through a
normalization parameter that scales all PDF coefficients
equally. This normalization factor is constrained to unity
within the estimated systematic error, whose largest con-
tributions arise from the FV cut and the 3D clustering
step of the reconstruction [5]. Using a similar approach
as in previous analyses, these errors were found to be
5.8% (3.6%) and 2.3% (3.1%), respectively, for the 2νββ
(0νββ) analysis. Other sources were found to contribute
negligibly (. 1%) to the total normalization error, shown
in Table I.
Discrepancies in the shape distributions between data

and MC are propagated into the signal rate through a
normalization parameter that only scales the coefficient
of the signal PDFs. This signal-specific normalization pa-
rameter is constrained to unity within the errors arising
from spectral shape agreement and background model.
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To estimate the effect of shape errors, the ratio be-
tween data and MC of the projections onto energy, shown
in Fig. 1, and standoff-distance were used to weight
all PDF components (also referred to as un-skewing).
The standoff-distance ratios, as well as those for ener-
gies above 850 keV, were found to be negligible con-
tributors. 60Co and 238U-related PDFs were weighted
by ratios using data from the calibration sources 60Co
and 226Ra, respectively, while the other γ-like PDFs were
weighted by ratios obtained with a 228Th source. β-like
PDFs were weighted using ratios from the background
subtracted 136Xe-2νββ spectrum (Fig. 1), since these are
also uniformly distributed in LXe. Approximately 10,000
toy datasets were drawn from these un-skewed PDFs,
which were scaled by values arising from a data fit by the
background-only model (without a signal PDF), while
the number of signal counts included in the toy fits was
manually set. These toy data sets were then fit using the
normal PDFs and the average difference (bias) between
the manually set and best-fit number of signal counts de-
termined. This bias was found to be roughly constant
at 2250 cts (240 cts) for the 2νββ (0νββ) analysis. The
difference between these factors demonstrates the impact
of the spectral discrepancy at low energies.

The dependence of the signal rate on the completeness
of the fit model was studied by individually including
possible background contributors in different locations
and/or from other decays. The relative change of the
estimated rate was then determined. This change was
found to be negligible for 39Ar and 42Ar dissolved in the
LXe, and for 60Co and 238U in components farther than
the TPC vessel. The dominant contribution to this term
in the 2νββ search arose from 210Bi (10%), while in the
0νββ search 85Kr in the LXe (12%) dominated. The im-
pact of the 85Kr on the 2νββ search is discussed in Sec.
V.

The total deviations arising from background model
uncertainties are shown in Table I (a), along with the
estimated errors from the spectral agreement (b). The
signal-specific normalization error is the largest system-
atic contribution in both searches, as presented in Table
II, contributing to 34.6% (30.4%) increase of the 90% CL
limit derived for 134Xe 2νββ (0νββ).

Table I. Summary of the constraints added to the searches of
ββ decays in 134Xe. The signal-specific normalization error is
calculated by σ =

√

(a · n)2 + b2, where n is the number of
signal counts.

Constraint 2νββ 0νββ
Radon in the LXe 10% 10%

Neutron-capture PDF fractions 20% 20%
SS fractions 5.7% 2.3%

Normalization 6.2% 4.9%

Signal-specific normalization
a = 11.8%
b = 2250 cts

a = 12.7%
b = 240 cts

Table II. Contribution of each systematic error to the 90% CL
limits derived in the searches of 134Xe ββ-decays, presented
in Sec. V.

Error Contribution 2νββ 0νββ
Radon in the LXe < 0.1% < 0.1%

Neutron-capture PDF fractions < 0.1% < 0.1%
SS fractions 16.6% 10.2%

Normalization 1.0% 0.2%
Signal-specific normalization 34.6% 30.4%

V. RESULTS AND DISCUSSION

Figure 2 shows the profile-likelihood scan performed
for the 134Xe 2νββ and 0νββ decays, where the lower

limits of T2νββ
1/2 > 8.7 ·1020 yr and T0νββ

1/2 > 1.1 ·1023 yr at

90% CL are derived for their half-lives, respectively. The
corresponding experimental sensitivities were evaluated
at 1.2 · 1021 yr and 1.9 · 1023 yr, respectively. The results
of the NLL fit from the 134Xe 2νββ search are presented
in Fig. 3, along with the fitted 134Xe 0νββ from the other
search. The limits presented in this paper increase the
sensitivity relative to those available in the current liter-
ature by 5 orders of magnitude for the 2νββ search [10],
while the limit set for 0νββ is nearly twice as stringent
than the one in [12].

0 2000 4000 6000 8000
134 Xe 2νββ (counts)

0.0

0.5

1.0

1.5

2.0

2.5

∆
N

LL

1σ

90%

2νββ

0νββ

0 200 400 600 800

134 Xe 0νββ (counts)

Figure 2. Profile-likelihood ratio, ∆NLL, for 134Xe 2νββ and
0νββ. The dashed lines represent the 1σ and 90% CLs, as-
suming the validity of Wilks’s theorem [22, 23]. The latter
intersects the profile curves at 5900 and 730 counts for 2νββ
and 0νββ, respectively.

The significance of the presence of a signal relative to
the null hypothesis is calculated using fits of toy data
sets and comparing the NLL between hypotheses. The
p-values were found to be 0.24 and 0.19 for the 2νββ
and 0νββ searches, respectively, showing that there is no
statistically significant evidence for a non-zero signal.
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Figure 4. Contour lines of the profile-likelihood ratio, ∆NLL,
scanned for the 85Kr β and 134Xe 2νββ components using two
NLL functions. The blue solid lines were obtained using the
same function as the 134Xe 2νββ search, which accounts for all
the systematic errors. The green dashed lines were evaluated
without consideration of the normalization errors. The table
shows ∆NLL values of various CL for 1 and 2 dof.

consideration of either the normalization error nor the
signal-specific one. The latter better represents the large
correlation between the two PDFs, ρ = −0.97, as ex-
pected from their shapes presented in Fig. 3, and shows
the extent to which they are not fully degenerate. Con-
tour lines for 2 degrees of freedom (dof) were evaluated,
showing the regions where both variables are contained
with corresponding CL. The data prefer non-zero 85Kr
β counts, which was checked to be driven by SS shape
differences. As a result, the upper limit set on 134Xe
2νββ, 5900 cts, is improved by a factor of nearly two,
if compared to the limit that would be set by the sum
of components, estimated by the intersection of the solid
∆NLL = 2.30 line and the y-axis, 12000 cts.

A contamination of 25.5±3 ppt natural krypton in the
enriched LXe was measured before filling the TPC [25].
Combined with the current work, which does not per-

form a complete measurement of the 85Kr contamina-
tion, these results suggest an isotopic abundance in the
enriched LXe consistent with those at atmospheric levels,
∼ 10−11 g 85Kr/g

nat.
Kr [26]. Since the right edge of the

solid lines can be identified with the profile depicted in
Fig. 2, contour lines for 1 dof were also evaluated in this
case. Thus, the impact of 85Kr β in the 134Xe-2νββ limit
can be estimated by its difference to the limit that would
be set for a fixed amount of 85Kr β. Considering this
value to be that near the NLL minimum, 9000 cts, the
solid ∆NLL = 1.35 line in Fig. 4 indicates a contribution
of about 15% increase in the 134Xe-2νββ 90% CL upper
limit. Further, as might be expected given the very dif-
ferent energy response, the impact of this uncertainty on
the 0νββ search limit is significantly smaller.
EXO-200 has begun Phase-II data taking, after a two-

year hiatus, with upgraded electronics that may result
in better detection efficiency at low energies as well as
improved spectral agreement between data and MC sim-
ulation. These improvements can positively impact fu-
ture EXO-200 searches for ββ-decay of 134Xe. In the
long term, the proposed nEXO detector is projected to
increase the EXO-200 sensitivity to 0νββ in 136Xe by
nearly 3 orders of magnitude [27]. While the sensitiv-
ity for ββ-decay in 134Xe has not been directly studied
yet, a similar increase in performance for 134Xe would
allow this next generation experiment to probe the 2νββ
decay of this isotope to half-lives within the theoretical
expectations.
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