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The morphology�performance�fitness method for estimating selection on morphological traits 

has seen decades of successful application. At the same time, life�history approaches using 

matrix methods and perturbation studies have also allowed the direct estimate of selection acting 

on vital rates and the traits that comprise them.  Both methodologies have been successfully 

applied to the garter snakes of the long�term Eagle Lake research project to reveal selection on 

morphology, such as color pattern, number of vertebrae, gape size; and life�history traits such, 

such as birth size, growth rates, and juvenile survival.  Here we conduct a reciprocal transplant 

study in a common laboratory environment to partition genetic and environmental sources of 

variation in morphology and life�history. To place our results in the ecomorphology paradigm, 

we measure performance outcomes (feeding, growth, insulin growth factor 1 titres) of 

morphological variation (body size, condition) and their fitness consequences for juvenile 

survival – a trait that has large fitness sensitivities in these garter snake populations and therefore 

to be subject to strong selection.  To better merge these two complementary theories, we end by 

discussing our findings in a continuum of morphology – performance – fitness – life�history to 

highlight what these approaches, when combined, can reveal about selection in the wild. 
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The “morphology�performance�fitness” paradigm was put forth by Stevan Arnold in these pages 

(Arnold 1983) from a SICB (formerly American Society of Zoologists) 1981 symposium on 

snake feeding mechanisms. In that paper, Arnold presented a statistical method to test for the 

fitness consequences, and thereby adaptive significance, of changes to morphology that impact 

fitness through organismal performance traits, such as behavior or physiology.  This 

ecomorphology theory included regression methods for tracing the effects of morphological 

variation on organismal performance, and in turn, on an individual’s fitness. When framed in 

microevolutionary selection theory, the strength of natural selection on these phenotypes could 

be quantitatively assessed (Arnold and Wade 1984b; Lande and Arnold 1983) and the adaptive 

significance of this variation tested.  Ensuing studies of morphology/performance/fitness – i.e., 

the fitness consequences of morphological variation as mediated through behavior and 

physiology – helped to change the field of micro�evolution from adaptive story�telling (Gould 

and Lewontin 1979) to a comprehensive and robust assessment of adaptation in diverse taxa 

(Dudley 1996; Losos 1990; Schluter 1995). 

At the same time, the field of life�history theory (Stearns 1992), and the advent of matrix 

methods to test for the adaptive significance of variation in life�history traits (Caswell 2001) – 

complex traits that would not yield easily to the ecomorphology paradigm � rapidly enhanced our 

ability to ask how and when variation in life�history traits (themselves mediated by morphology 

and performance) could reveal adaptation. Specifically, matrix models of population 

demography allowed for the quantification of the strength of natural selection on individual vital 

rates and life�history traits, as well as comprehensive tests for adaptive significance of such 

variation – i.e., parallel questions could be addressed both in the realms of morphology/behavior 
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and life�history/demography. Because variation in vital rates (such as birth rates, juvenile 

survival, etc.) are underlain by variation in morphology and performance, these two theoretical 

constructs have a straight�forward complementarity in their use to assess selection gradients 

(Lande 1982b). 

Arnold’s long�term Eagle Lake garter snake study system (Lassen County, California) 

has figured prominently in empirical tests of ecomorphology theory and, more recently, in 

empirical tests of life�history theory.  On the ecomorphology side, Arnold’s pioneering work on 

the adaptive significance of morphological variation – feeding mechanisms, scale counts, and 

vertebral variation � produced textbook examples of the utility of using this framework to draw 

strong inferences on the adaptive significance of morphological variation e.g., (Arnold 1992; 

Arnold and Wade 1984a; Ayres and Arnold 1983; Kelley and others 1997; Manier and others 

2007). see also (Arnold and Bennett 1984) for T. radix example. Furthermore, this paradigm was 

extended to link behavioral variation to subsequent variation in performance and fitness (cf. 

(Arnold 1988). At the same time, discovered through our decades of mark/recapture efforts, 

these same populations of Eagle Lake garter snakes harbor two distinct life�history phenotypes 

whose study have provided examples of evolution of life histories within closely located 

populations (Bronikowski 2000; Bronikowski and Arnold 1999; Miller and others 2011; Miller 

and others 2014). 

Conventionally, this ecomorphological theory has been concerned with measuring 

traditional morphology (e.g., coloration, shape, number of vertebrae) and mapping these traits in 

a statistical model with traditional performance traits (e.g., prey capture, slither speed) and 

fitness. We contend that the possibilities for considering performance are much broader and 

include traits that represent rates or endpoints of rates.  For example, in our previous work on the 
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Eagle Lake garter snake system, we have measured non�traditional estimates of performance 

such as innate and acquired immune function (measures of natural antibodies production, 

bactericidal capability, and mitogen�stimulated lymphocyte proliferation (Palacios and others 

2013; Palacios and others 2011)); hormonal titers of glucocorticoids ((Palacios and others 2012) 

and IGF�1 (Reding and others 2016; Sparkman and others 2009) because they are the main 

mediators of stress and growth hormone signaling, respectively; and metabolic function 

(Gangloff and others 2015). Measurement of these traits are in addition to more standard 

measures of performance such as growth efficiency and feeding behavior (Gangloff and others 

2015).  Of these, we focus on the endocrine system in this study, proposing that it mediates 

relationships among morphology, fitness, and life�history traits similar to its role in mediating 

trade�offs among life�history traits (Ketterson and Nolan 1999; Lailvaux and Husak 2014; 

Ricklefs and Wikelski 2002; Zera and Bottsford 2001). Specifically, insulin�like growth factor�1 

(IGF1) facilitates variation in life�histories (e.g., (Dantzer and Swanson 2012; Lewin and others 

2017; Reding and others 2016; Schwartz and Bronikowski 2016). IGF1, the primary hormone of 

the insulin/insulin�like signaling (IIS) system, is a peptide hormone that is a paralog of insulin 

and has been highly conserved across amniotes (Annunziata and others 2011; Denley and others 

2005; Duan 1998; McGaugh and others 2015; Sparkman and others 2012; Zhu and others 2017). 

On the cellular level, IGF1 stimulates cell proliferation, differentiation, and migration, while on 

the organismal scale it triggers overall growth and maturation. 

Lailvaux and Husak (Lailvaux and Husak 2014) argued convincingly to make the 

linkages between ecomorphology and life�history direct and explicit. Following their lead, to 

better merge ecomorphology and life�history theory, and to make clear the connections between 

them, we undertake here an explicit test of the relationships among morphology, performance, 
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fitness, life�history, and demography in the Eagle Lake populations of garter snakes. Because of 

the clear function that IGF1 has for organismal growth, and because of the association of IGF1 

with life�history phenotypes in the Eagle Lake garter snake system, we focus our performance 

measures on IGF1, feeding, and growth. Specifically, we address: 1) How does morphological 

variation at birth translate into variation in performance � measured as feeding, growth, and 

circulating IGF1? 2) How do variation in these morphological and performance traits impact 

fitness – measured as survival until sexual maturation? And 3) how do phenotypes defined along 

specific morphology, performance, fitness trajectories map to variation in population 

demographic estimates of fitness – measured as population growth rates?  

 

��
�����

�

������
���

Populations of western terrestrial garter snakes (Thamnophis elegans) in the vicinity of Eagle 

Lake (Lassen County), California are characterized by either slow or fast�paced life history 

ecotypes. Lower elevation lakeshore snakes exhibit fast growth, large adult body size, early 

reproductive maturation with large reproductive effort, and low annual survival. Higher elevation 

meadow snakes exhibit slow growth, smaller adult body size, later maturation, low annual 

reproduction, high annual survival, and measurable demographic senescence with advancing 

adult age (“L�fast” versus “M�slow” ecotypes; (Bronikowski and Arnold 1999; Schwartz and 

others 2015). Selection gradients vary between these fast and slow ecotypes for survival and 

growth in the pre�adult stages (Miller and others 2011). As well, genetic differentiation persists 

among populations of contrasting ecotypes with significant FST for both nuclear markers (Manier 

and others 2007), and mitochondrial genomes (Schwartz and others 2015). Many ecological 

factors differ between the two ecotypes: predation rates are higher in the lakeshore habitat 
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(Sparkman and others 2013) as is prey abundance and average temperature (Bronikowski and 

Arnold, 1999). In wild�caught animals, variation in total plasma IGF�1 is driven by interactions 

among body size (snout�to�vent length), ecotype, and life�history stage. IGF�1 is also higher in 

wild�caught pregnant snakes Sparkman and others (2009). At the same time, IGF�1 is sensitive to 

ecological variation: levels vary across year and covary with precipitation – likely due to the 

relationship between precipitation and prey availability (Miller and others 2011; Sparkman and 

others 2009). 

�

�

���������������
���
���
����
���

Wild IGF1 and body size 

To assess the long�term trends in IGF1 plasma levels versus body size in wild animals, we 

assayed IGF1 plasma concentrations in an additional set (N=31) of wild�caught animals (males 

and non�pregnant females) from 2009 and 2010 to complement our published study of IGF1 

concentration in the wild from 2006 – 2008 (Sparkman and others 2009). 

 

Cohort morphology, growth, feeding, and survival 

In June 2010, we collected 40 pregnant females from six populations of Thamnophis elegans 

around Eagle Lake, California: three replicate populations of each of the lakeshore (L�fast) and 

meadow (M�slow) ecotypes. We transported these pregnant females to Iowa State University and 

housed them individually through gestation in 10�gallon glass aquaria with ground corncob 

substrate and a plastic bowl that served as both water dish and retreat site. We maintained them 

in a 20°C room with their tanks placed on a thermal gradient for 24 hours per day (range: 25�
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34°C across each tank), kept on a 12:12 light:dark schedule, and offered 1�2 mice once a week 

until parturition. 

Offspring (n=257) from these 40 pregnant females were born between 12 August and 19 

September 2010 (Table 1). Within 24 hours of birth, we measured offspring sex, weight, and 

snout�vent length (SVL, mm), and placed individual neonates in plastic home cages with paper 

substrate and a water bowl. We divided litters randomly, with sex split nearly evenly, into two 

temperature�treatment groups designed to mimic the differing thermal regimes of the warmer L�

fast and cooler M�slow habitats (Bronikowski 2000). Ambient room temperature was 20°C, with 

the warmer rearing treatment (“warm”) receiving 16 hours of supplemental heating per day and 

the cooler rearing treatment (“cool”) receiving supplemental heating for only 8 hours per day. 

This supplemental heating, supplied by under�tank heating elements, provided a gradient of 22°C 

to 32°C in each home box during heating (20°C during hours of no heat), allowing the animals to 

behaviorally thermoregulate. All juveniles were kept on a 12:12 light:dark schedule and offered 

thawed pinky mice once a week. Individuals that consumed all food were offered a greater 

amount in subsequent feedings. At every feeding, food consumption was recorded in grams of 

mouse eaten. L�fast and M�slow juveniles residing in the warm and cool treatments are referred 

to throughout as Lwarm, Lcool, Mwarm, and Mcool. Animals were housed accordingly for life. 

 

Repeated measures of IGF1 and growth 

A subset of the full colony, sampled from each sex × ecotype × rearing treatment group, were 

sampled for short�term repeated measures analysis of total plasma IGF1 concentration and 

growth to assess the relationship between IGF1 titer and short�term growth rate. These 130 

snakes from the 2010 cohort (Table 1) were weighed and measured on 6 May 2011; 14 Sept. 
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2011; 1 November 2011; and 12 January 2012 – approximately 10, 14, 16, and 18 months of age 

– and blood�sampled on the latter three dates. Blood was collected from the caudal vein in 

heparin�rinsed and dried syringes. Plasma was separated from red blood cells by centrifugation 

and was frozen and stored at �80°C. Treatment of all experimental animals was in accordance 

with Iowa State University Institutional Animal Care and Use Committee protocol #3�2�5125�J. 

 

 

	�������������
��������

Plasma IGF�1 concentrations were determined by radioimmunoassay (RIA) using GroPep 

Protocol #3002 (GroPep Ltd., Adelaide, Australia) via competitive binding with 
125

I labeled IGF�

1 (PerkinElmer #NEZ033). This assay uses an anti�human IGF�1, but was validated for the 

Western terrestrial garter snake by Sparkman and others (2009). IGF binding proteins were 

removed from IGF�1 by acid�ethanol extraction. All samples were assayed in duplicate within a 

single assay.  Intra�assay variation was 7.5%. 

 

�
�
��
��������������

All data were analyzed using SAS v9.4 (SAS Institute, Cary, NC). Significance was set at α = 

0.05. All data were first inspected for normality and homogeneity of variances and transformed 

to meet these assumptions as necessary (noted below). In all linear mixed model analyses, 

denominator degrees of freedom for F�tests were estimated using the Kenward�Roger Degrees of 

Freedom Approximation, which weights the denominator degrees of freedom according to the 

variance of the effect (Kenward and Roger 1997). Figures were made with the ‘ggplot’ package 

(Wickham 2009) for R (R Core Team 2014). 
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Wild IGF1 and body size 

We analyzed blood plasma concentrations of IGF�1 in field�caught animals, excluding 

reproductive females, from both ecotypes across five years (2006�2010). Data from 2006 – 2008 

were from Sparkman and others (2009). Data for 2009 and 2010 were from our standard blood 

field collecting. We utilized generalized linear models and concentrations were log10�

transformed to meet assumptions of normality. The initial model included the main effects of 

size (SVL in mm), ecotype (L�fast, M�slow), year (2006 – 2010), and life�history stage (adult or 

juvenile, with juvenile defined as snakes with SVL < 425 mm for L�fast and < 400 mm for M�

slow; Sparkman and others 2009), the four�way interaction of these effects, and all lower�order 

interactions. We retained statistically significant interactions and those of biological interest, 

resulting in a final model of: 

 

log10IGF1 = � + SVL + Ecotype + Life stage + Year + SVL×Ecotype + SVL×Life stage + 

SVL×Year + SVL×Ecotype×Life stage + ε 

 

where V represents the grand mean and ε is the error term. 

 

Cohort morphology, growth, feeding, and survival 

Morphology  

We analyzed body size across lifetime as the snout�vent length (SVL in mm) of individual 

snakes from birth until death. We used mixed linear models to test for the effects of ecotype, 

rearing treatment (warm/cool), age (in days, assuming an average birthday of 1 Sept. 2010), and 
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interactions thereof, on body size. We also included sex as a fixed effect in this model, though no 

interactions with this term because models did not converge when a large number of interactions 

were included and these interactions are not of primary biological concern. Population nested 

within ecotype was included in the model as a fixed effect to account for among�population 

habitat heterogeneity within ecotypes (Palacios and others 2013). We also included the random 

effect of litter nested within population and ecotype, which accounts for among�litter variation 

within populations (Robert and Bronikowski 2010). The final mixed linear models used for 

analysis of body size was: 

SVL = � + Ecotype + Rearing Treatment + Age + Sex + Ecotype×Rearing Treatment + 

Ecotype×Age + Rearing Treatment×Age + Ecotype×Rearing Treatment×Age + 

Population(Ecotype) + Litter(Population Ecotype) + ε 

 

Growth 

We analyzed growth as change in snout�vent length (SVL in mm) from the first uniform 

measurement date (29 Nov. 2010) to 10 Dec. 2014. We used mixed linear models to test for the 

effects of ecotype (L�fast, M�slow), rearing treatment (warm, cool), sex, and interactions thereof, 

on growth. To account for variation in growth due to size, we used initial size (i.e., at 29 Nov. 

2010, approximately 2 months post�birth) as a covariate in the analysis. To account for elapsed 

time, we used number of growth days (days between 29 Nov. 2010 and an individual’s final 

length measurement). As above, we included population nested within ecotype as a fixed effect 

and litter nested within population and ecotype as a random effect. The interaction of ecotype × 

rearing treatment was left in the model as this interaction is of biological interest; the remaining 
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non�significant interaction terms were removed from the model. The final mixed linear model 

used for our analysis of lifetime growth was: 

 

Change in SVL = � + Growth Days + Initial Size + Ecotype + Rearing Treatment + Sex + 

Ecotype×Rearing Treatment + Population(Ecotype) + Litter(Population Ecotype) + ε 

 

Feeding 

We analyzed the amount of food consumed (the number of fractional pieces of frozen/thawed 

pinkies consumed, converted to grams) from 29 Nov. 2010 until death. Covariates included 

Feeding Days, which is the number of days between 29 Nov. 2010 and death, and Initial Size, 

which is the 29 Nov. 2010 SVL. Using a model�reduction process identical to the above, we 

removed non�significant interaction terms and utilized this final model of lifetime food 

consumption: 

 

Amount Consumed = � + Feeding Days + Initial Size + Ecotype + Rearing Treatment + Sex + 

Ecotype*Rearing Treatment + Population(Ecotype) + Litter(Population Ecotype) + ε 

 

Survival 

We analyzed survivorship of captive�born snakes from ages 1 to 4 years (Sept. 2011 to Dec. 

2014) with semi�parametric Cox proportional hazards using PROC PHREG in SAS. We 

conditioned on surviving to age 1 to correspond to the timing of the repeated measures of growth 

and IGF1 study, and because we were interested in the effects of morphology and performance 

on survival after the duration of high neonatal mortality. We included the categorical factors of 
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rearing treatment, ecotype, and sex, as well as all possible two� and three�way interaction terms. 

Because the three�way interaction was significant, we retained this term and all lower�order 

terms in our final model. To test for the effect of morphology on survival, we included the 

continuous covariates of body size at one year (SVL in mm measured in Sept. 2011), and body 

condition at one year (residual of the log�mass on log�SVL regression). To test for the effect of 

performance on survival, we included lifetime feeding rate (calculated as the amount of food (in 

g) consumed before death divided by the number of days alive), and lifetime growth rate 

(calculated as the specific growth rate, a measure of growth scaled to body size: SGR = 100 × 

[ln(SVL2) – ln(SVL1)]/days; (Killen 2014; Reid and others 2011). No direct test of IGF1 titer on 

survival was performed because the IGF1 titers are plastic and can vary greatly over the lifetime; 

instead our analyses incorporates growth, for which we separately tested for an effect of IGF1 

concentration (below). Additionally, we included population nested within ecotype as a fixed 

effect and litter as a random effect to account for potential covariance among siblings. 

 

Repeated measures of IGF1 and growth 

To test for the main effects of ecotype and temperature on growth rates during the short term 

IGF�1 sampling intervals, and then to test for the effects of ecotype, temperature, and growth on 

IGF�1 levels, we used repeated measures mixed linear models with litter (nested within 

population) as a random effect.  

 

Repeated Growth 

We modeled short�term growth (change in SVL) during the three intervals of IGF�1 sampling 

with the main fixed effects of Sex; Interval (3 intervals: 10�14 months, 14�16 months, and 16�18 
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months of age); Ecotype (L�fast and M�slow); Rearing Temperature Treatment (warm, cool); and 

Population nested within Ecotype to reflect heterogeneity among similar ecotype populations. 

We also included the time�varying covariates of size at the start of each interval and food 

consumed in the preceding interval. Food consumption was not significant, likely due to 

confounding with body size and rearing treatment over this short time�course, and was therefore 

removed from the model. For this subsample of the full cohort, offspring from two neighboring 

M�slow populations were combined because only one litter was included from one M�slow 

population.  For the main effects of Time, Treatment and Ecotype, all interactions were included 

in the model. Our final model for growth (repeated increases in body length) was: 

 

Change in SVL = � + Interval start0size + Sex + Interval + Ecotype + Rearing Treatment + 

Ecotype×Interval + Rearing Treatment×Interval + Ecotype×Rearing Treatment + 

Ecotype×Rearing Treatment×Interval + Population(Ecotype) + Litter(Population) + ε. 

 

Repeated Plasma IGF1 Concentration 

For the analysis of repeated measures of plasma IGF�1 concentrations, all IGF�1 values (ng/mL) 

were log10 transformed to meet normality assumptions. Because IGF�1 is a main mediator of 

growth hormone, we considered three different proxies for growth in our analyses: body size 

(mm), growth in the interval preceding the IGF�1 measure (“prior interval growth”), and growth 

in the interval following the IGF�1 measure (“subsequent interval growth”). This latter variable 

of subsequent interval growth had far fewer observations available for the last IGF�1 measure 

because most animals were placed immediately into hibernation after the last blood draw. Our 

models using each of these explanatory growth variables were in general agreement with each 
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other (data not shown), but because we were interested in the effect of growth per se (and not 

body size) on IGF1 we included growth in the preceding interval as the covariate in our final 

model. “Prior Interval Growth” was calculated by taking the change in SVL divided by the 

duration of the interval. Because interactions with sex were never significant, we considered only 

the two and three way interactions of Time, Treatment, and Ecotype. Our initial model included 

food consumption as a covariate over the same period as growth, but as it was not significant, we 

removed it from the model: 

 

log10IGF1 = � + Prior Interval Growth + Sex + Time + Ecotype + Rearing Treatment + 

Ecotype×Time + Rearing Treatment×Time + Ecotype×Rearing Treatment + Ecotype×Rearing 

Treatment×Time + Population(Ecotype) + Litter(Population) + ε. 

 

�

���
�
��

�����	�����������������
��
�����

IGF�1 concentrations in field�caught snakes were dependent on the interaction of SVL, ecotype, 

and life�history stage such that larger adult L�fast snakes had higher concentrations of plasma 

IGF�1, whereas size did not affect IGF�1 concentrations in juvenile L�fast snakes or M�slow 

snakes (Table 2, Fig. 1). Additionally, plasma IGF�1 concentrations were heterogeneous across 

years. 

�

�

�
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Cohort morphology, growth, feeding 

For the repeated measures of body size from birth to age 4 yr, all two�way interactions of 

ecotype, rearing treatment, and age were significant in determining absolute body size across 

lifetime (Table 3, Fig. 2). The main effect of ecotype was significant as well, with L�fast snakes 

maintaining larger body size across lifetime than M�slow snakes. Additionally, sex was a 

significant factor, with males slightly larger in body size than females after correcting for age. 

For the single measure of growth over the first 4 years, after accounting for the number of 

growth days and initial size, the effects of ecotype, rearing treatment, and sex were significant in 

determining lifetime growth. L�fast snakes grew more than M�slow snakes while snakes in the 

warm rearing treatment grew more than snakes in the cool rearing treatment regardless of 

ecotype. Additionally, female snakes grew more than male snakes, despite males maintaining 

slightly greater absolute size (Table 4, Fig. 3A). For amount of food consumed (g) from birth 

through 4 years, after accounting for the number of feeding days and initial size, the main effects 

of both ecotype and rearing treatment, as well as their interaction, were significant factors in 

determining feeding rate (Table 5, Fig. 3B). L�warm snakes ate significantly more food than 

snakes in any other ecotype/treatment group combination. Additionally, female snakes ate more 

than male snakes. 

 

Cohort survival 

Survivorship to age 4 was dependent on the interaction of ecotype, rearing treatment, and sex 

(Table 6, Figure 4). Generally, L�fast snakes lived longer than M�slow snakes while snakes in the 

warm temperature treatment outlived snakes in the cool treatment. The effect of sex was 
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dependent on ecotype, with females experiencing higher survivorship in the L�fast ecotype and 

males in the M�slow. Additionally, snakes larger at one year of age and snakes with slower 

growth rates lived longer than small snakes and fast�growers. 

 

�����
�������
������	����

Repeated measures of growth and IGF1 plasma concentrations were undertaken over three 

intervals spanning 6 May, 2011 – 12 Jan. 2012, with blood draws at each interval end date.  

Snakes with larger body length at the start of each interval grew faster than smaller snakes during 

the interval (Table 7).  As well, females grew faster than males. L�fast animals grew faster than 

M�slow animals in the first interval, but not in the second or third intervals (Table 7, Fig. 5). All 

animals grew faster in the warm treatment during the first and second intervals, and in the cool 

treatment during third interval (Fig. 5). These short�term interval results contrast with overall 

growth over the entire experiment in which animals in the warm treatment both consumed more 

food and grew more than animals in the cool treatment (see Figs. 3 and 4) for both ecotypes. 

 In the analysis of IGF�1 concentration, growth in the interval preceding IGF�1 

concentrations negatively affected IGF�1 concentration (Table 8, Figure 6); higher rates of 

growth in the interval preceding IGF1 measurements corresponded to lower levels of circulating 

IGF�1. This negative correlation between previous growth and current IGF1 was consistent 

across all three intervals, particularly intervals 1 and 3. Consistent with this negative association 

between IGF1 plasma concentration and growth, males grew slower than females across these 

three sampling intervals and males had overall higher levels of plasma IGF1.  Other significant 

effects in the model of IGF1 variation included a marginally significant 3�way interaction among 
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ecotype, treatment, and time (Fig. 6).  Across sampling periods, snakes in the warm treatment 

had higher IGF�1 levels than those in the cool treatment (Table 8). 

 

"���
����� 

Life�history theory postulates trade�offs among suites of life�history traits – such as along a 

“pace�of�life” continuum – where species are arrayed along an axis from “slow” to “fast” living 

(Promislow and Harvey 1990; Wikelski and others 2003). At one end are species with slow 

growth and delayed sexual maturation, but with extended lifespan and iteroparity. On the “fast” 

end of the continuum, species exhibit fast growth, rapid reproduction, semelparity or high 

reproductive effort in relatively fewer bouts and, a short lifespan e.g., (Lemaitre and others 

2015). Extensive work has documented the reality of this continuum and the presence of 

underlying trade�offs among growth, reproduction, maintenance, and survival (e.g., (Ghalambor 

and Martin 2001; Lawson and others 2012; Lee and others 2012; Smith and others 1989); 

reviewed in (Nylin and Gotthard 1998; Schluter and others 1991). However, less research has 

focused on the genetic and evolutionary mechanisms that underlie these trade�offs (e.g., (Hendry 

and others 2004; Johnston and others 2013; Nussey 2009; Roff 2000) and even less research has 

sought to understand the physiological processes by which these trade�offs occur (Cohen and 

others 2012).  Few studies have looked at whole organism physiology, focusing on how 

allocation of resources is differentially controlled (but see (Cox and others 2010; Gangloff and 

others 2015). Many of these animal studies of the mechanisms underlying a species’ life�history 

placement on this continuum have been conducted in birds and mammals (Gaillard and others 

1989), but work in snakes and lizards has also found that they exhibit life history characteristics 

congruent with a slow�to�fast pace of life continuum (Shine and Charnov 1992; Sparkman and 
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others 2007). This pattern is frequently documented across species; however, some studies have 

documented the existence of a slow�fast continuum even within a single species among 

populations that have experienced different selective pressures over generations (e.g. Anolis 

heterodermis, (Moreno�Arias and Urbina�Cardona 2013); Thamnophis elegans, (this system); 

Sceloporus grammicus, (Pérez�Mendoza and Zúñiga�Vega 2014). It is here, where intra�specific 

variation in life�history strategies exist, that it is most fruitful to understand these polymorphisms 

in the ecomorphology framework. Specifically, when morphological and performance variation 

give rise to fitness differences among individuals, these fitness differences provide natural 

selection the basis to shape variation in population vital rates, including survivorship and 

reproduction. 

 On the morphological axis, we found that variation in body size can be accounted for by 

fixed differences between the ecotypes and interactions with thermal rearing treatment and age. 

Generally, warmer older snakes are larger than cooler younger snakes, particularly in the fast�

pace�of�life ecotype. In turn, variation in body size affects both short�term growth – a 

performance measure – (with larger snakes growing more than smaller snakes) as well as 

survival through the juvenile stage (1 to 4 yr) – a fitness measure – (with larger snakes 

experiencing higher juvenile survival). Moreover, growth itself was predictive of survival with 

slow growth (after age 1yr) predicting higher juvenile survival. In addition to growth rate, we 

considered two other performance measures: feeding and circulating IGF1. Variation among 

individuals in feeding was not related to morphological variation directly.  Generally, feeding 

was highly impacted by thermal rearing treatment, with snakes in the warmer treatment eating 

more, resulting in these animals growing more and obtaining larger body sizes.  Such 

temperature�based plasticity of feeding behavior was further impacted by ecotype, with warm L�
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fast snakes eating disproportionately more than M�slow warm animals.  In the short�term 

repeated measures growth and IGF1 experiment, feeding (grams food consumed) and growth 

were essentially interchangeable – food consumption and rearing treatment were confounded; 

animals in the warm treatment ate more and therefore grew more.  Our final performance 

measure, IGF1 plasma concentration (ng/mL), was considered over two time scales.  First, we 

analyzed 5 years of field�collected blood plasma.  Here we found a significant interaction among 

body size, ecotype, and life state (juvenile versus adult; Figure 1).  These results show that for 

adult snakes, the manner in which body size associates with IGF1 titers is ecotype�dependent: L�

fast adults have increasing IGF1 with increasing body size; M�slow adults show no dependence 

of circulating IGF1 on body size.  Our previous work has shown that whereas M�slow adults 

essentially stop growing once they reach adulthood, L�fast adults continue growing over their 

adult lifespans with ever increasing size�associated fecundity (Bronikowski and Arnold 1999; 

Sparkman and others 2007).  

Without additional data on individual growth rates, these field data cannot distinguish 

between competing functions of IGF1 among growth, reproduction, and survival in juveniles and 

adults.  Thus we undertook here a short�term common garden growth and IGF1 study in which 

we document, among other effects, a short term negative association with IGF1 and growth rates 

(see also (Reding and others 2016). This is in contrast (discussed in more detail below) to studies 

in other systems (e.g., (Lodjak and others 2017).  
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We originally envisioned IGF1 as a measure of performance that may impact survival and which 

is itself potentially influenced by body size or body condition.  Our results suggest it may be 
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more appropriate think of IGF1 as a mediator of the morphology�to�performance�to�fitness�to�

life histories causative continuum. We found that variation in IGF1 is not explained by food 

consumption per se, and negatively relates to growth preceding IGF1 measurement. Others have 

found that IGF1 responds to food and/or nutrition availability (Beckman 2011; Duncan and 

others 2015; Hetz and others 2015; Pierce and others 2005). And indeed we have hypothesized 

elsewhere that lower levels of IGF1 in M�slow snakes in the wild may be related to their 

unpredictable food availability (Robert and Bronikowski 2010). For example, in Sceloporus 

undulatus both hepatic IGF1 mRNA levels and circulating levels of IGF1 were reduced in 

response to food restriction but returned to normal levels at the cessation of food restriction 

(Duncan amd others., 2015). 

From work primarily conducted on mammals and fish, IGF1 has been shown to play an 

integral role in coordinating growth with internal and external cues (e.g. (Dantzer and Swanson 

2012; Duan 1998; Fox and others 2006). However, as the insulin/insulin�like signaling (IIS) 

system is highly conserved across vertebrate taxa, it likely is involved in integrating 

environmental cues with growth responses in additional vertebrate species as well (e.g., 

Sparkman and others, 2010, Duncan and others 2015, Dantzer and Swanson 2012, McGaugh and 

others 2015). Most investigations of IGF1 as a mediator of life�history trade�offs have focused 

on mammals (e.g., above citations and see (Lewin and others 2017)). However, unlike in 

mammals, in reptiles environmental temperature per se can affect IGF1 levels (Avila�Mendoza 

and others 2016) and has a much greater impact on growth because of their ectothermic 

physiology.  Further, most studies to date that have examined the relationship between growth 

and IGF1 have been correlative (but see (Duncan and others 2015; Lodjak and others 2017; 

Sparkman and others 2010). 
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 Food consumption is positively correlated with growth in garter snakes – both in the 

present study and in the wild. However, in the short�term, prior food consumption was not 

correlated with IGF1 levels beyond its positive association with warm rearing treatments. Yet, 

prior growth was negatively correlated with titers of IGF1. These results suggest that the effects 

of food on growth are not directly mediated through IGF1, similar to findings in the brown house 

snake (Sparkman et al. 2010) and Japanese quail (Ronning et al., 2009), but contrary to the 

findings in other species (Pierce et al., 2001, Duncan et al. 2015). It is possible that IGF1 levels 

would only respond to extreme changes in food availability; since our experimental snakes were 

offered food ad lib, there was no variation in available food to affect IGF1 levels. Another 

possible explanation could be that food affects transcription or translation of the IGF1 gene, but 

we do not see those effects manifested into circulating IGF1 protein. 

 We found a negative correlation between prior growth and titers of circulating IGF1. This 

result is opposite to the pattern found in brown house snakes (Sparkman and others 2010), great 

tits (Lodjak and others, 2014), Sceloporus lizards (Duncan and others 2015), pied flycatchers 

(Lodjak and others 2017), and spotted hyenas (Lewin and others, 2017, but note this study 

examined mass not growth), but similar to that found in meadow T. elegans in the field 

(Sparkman and others 2009, but this study was looking at size not growth). Because it is unclear 

if IGF1 levels are indicative of previous growth, we had also looked for a correlation between 

IGF1 levels and growth after the measurement time point, but no relationship existed. More 

frequent measurements of size and IGF1 could have revealed a different relationship than what 

we found. For example, in salmon, the strongest relationship between IGF1 levels and growth 

occurred within a month prior to the hormone sampling (Beckman and others 2004). 
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One key component of the insulin/insulin�like signaling system axis this study did not 

examine was localized expression of IGF1. As we only looked at circulating levels of IGF1, we 

do not know how temperature and food may have affected localized production of the hormone. 

A companion study by Reding et al. (2016) found that mRNA of IGF1 in liver and muscle was 

higher in cool animals compared to those same tissues in warm animals. These results support 

our findings of higher levels of circulating IGF1 in cool animals at our final time point, although 

Reading and others (2016) found that circulating IGF1 levels were higher in warm animals. The 

importance of paracrine and autocrine production vs. endocrine release of IGF1 is equivocal 

(e.g., (Chauvigne and others 2003; Eppler and others 2007). 
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As has been seen in snakes and other ectothermic vertebrates (Folkvord and Ottera, 1993; 

Gangloff et al. 2015; Sinervo and Adolph, 1989), initial size affects how much an individual 

grows. However, when considering growth over 4 years, the initial importance of birth size (or 

an interval’s start size) disappears as animals reach sexual maturation.  In the present study, this 

was true in both ecotypes and in both temperature treatments. Food consumption also positively 

predicted growth rate with more food consumed in the warm treatment and as animals increased 

in size (see also (Lodjak and others 2014; Sparkman and others 2010). Previous work in this 

system, including a different subset of individuals from this cohort, demonstrates that growth 

efficiency is higher in larger animals and animals in the warm rearing treatment (Gangloff and 

others 2015). Whole organism resting metabolic rate – an additional performance measure – may 

shed light on long�term versus short�term trends in our study. In both ecotypes, snakes with 

higher mass�independent resting metabolic rates had lower growth efficiency (a measure of 
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conversion of ingested food into body substance(Gangloff and others 2015). This trend of higher 

resting metabolism negatively associating with growth occurs in other reptiles as well (e.g., 

(Steyermark 2002), and is postulated to occur because animals with higher resting metabolic 

rates devote more energy to maintenance and have less energy available for growth. 

We were not able to take into consideration the maternal condition during gestation, 

which can affect initial growth and size at birth.  The amount of protein, for example, that the 

mother consumed could have affected what she deposited into the yolk. The nutritional content 

of the yolk could have contributed to neonatal growth. Any differences in growth between 

ecotypes could be influenced by maternal diet (Metcalfe and Monaghan 2001; Micke and others 

2011). Robbins et al. 2012, Sikes 1996). Notwithstanding, animals that grew fastest during their 

2
nd

 – 4
th

 years had lower probability of survival, despite that animals that started off larger had a 

higher probability of surviving their first 4 years.  Although not a topic of this study, if faster 

growers were engaged in “catch�up” growth (for example, due to cooler rearing temperatures), 

then these results would suggest a downstream cost in terms of survival (see also (Marcil�Ferland 

and others 2013; Metcalfe and Monaghan 2003; Orizaola and others 2014) reviewed in 

(Lindstrom 1999). 
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One of the elements of the morphology/performance/fitness paradigm was the calculation of 

selection gradients and thus the ability to infer whether and how selection was operating on 

specific morphological/performance traits (Arnold 1983).  Accomplished through regression 

techniques with a proxy for fitness and multiple phenotypes ((Arnold and Wade 1984a; 1984b; 

Lande and Arnold 1983), the partial regression coefficients can be interpreted as the selection 
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differentials.  On the life�history side, population demography sensitivity analyses applied to a 

Leslie or Lefkovitch matrix of vital rates can address how variation in vital rates affect 

population growth rates; how sensitive the fitness of a phenotype is to perturbations in vital rates 

(reviewed in(Caswell 2001)). At the same time, Russ Lande ((Lande 1982a; Lande 1982b) made 

explicit that these estimated sensitivities are equivalent to selection differentials. Thus, selection 

differentials should be a direct link between ecomorphology and life�history theory.  

Selection gradients vary between these fast and slow ecotypes for survival and growth in 

the pre�adult stages (Miller and others 2011). Specifically, neonatal and juvenile survival are two 

vital rates that differ between M�slow and L�fast populations in their estimates of sensitivities 

(selection gradients) and elasticities (contribution to population growth rates).  While much is 

known about the causes of neonate mortality in this system, relatively little is known about the 

juvenile stage. Yet, in M�slow populations, survival increases in the juvenile stage to levels 

equivalent to adults (ca. 0.80 probability of survival annually), whereas in L�fast populations, 

juvenile survival is much lower (ca. 0.50 probability of annual survival).  Accordingly, the 

selection gradients for juvenile survival average 0.45 in M�slow populations and 0.35 in L�fast 

populations.  Therefore we sought to better understand the sources of variation in juvenile 

survival.  Figure 6 presents the contributions to juvenile survival through morphology and 

performance, but also through environmental variation and ecotype variation which we use as a 

proxy for genetic background. Strong positive effects of body size and negative effects of growth 

on juvenile survival may buffer snakes from the negative effects of low�resource years and high 

temperature years.  The relationships among feeding behavior, hormone levels, and growth are 

more complex, with larger snakes eating more and growing more, yet having lower IGF1 plasma 

concentrations and negative association of growth with survival.  We have argued elsewhere that 
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growing maximally rather than optimally is likely very costly in this system where food 

availability is unpredictable. In M�slow habitats, any given year is only 50% likely to have 

adequate snowfall for anuran breeding in the spring (the primary prey of meadow garter snakes).  

In L�fast habitats, although fish and leeches are the primary prey, fluctuations in water level and 

shoreline vegetation provide an annually changing gauntlet that snakes must traverse to get to 

their food source.   

The results of the present study, combined with past work on the garter snakes in the 

Eagle Lake system, present a complex relationship between traits traditionally categorized as 

morphology, performance, and life history (Fig. 6). This web of mutually dependent traits belies 

simple categorization in a one�way causal path among different aspects of the phenotype. Rather, 

we see that traits feedback on each other through multiple pathways in which genetic background 

and environmental conditions interact to create distinct ecotypic syndromes at the population 

level. Importantly, our experimental results demonstrate that the hormone IGF�1 plays a central 

mediating role between body size and growth during the juvenile stage. Field observations 

complement this finding, showing that in the L�fast ecotype – where snakes grow faster and 

reach larger asymptotic sizes – plasma IGF�1 concentrations are correlated with size. 

Nonetheless, this relationship is not entirely straightforward and may shift across ontogeny, 

especially at life�history transitions when energetic allocation to growth begins to trade�off with 

allocation to reproduction. What is startling about the interdependent relationships among traits 

within individuals is that, despite this complexity, we observe rather distinct life�history ecotypes 

in these natural populations. Traits of individuals within each ecotype – including metabolic and 

energetic functions, immune capacity, hormone titres, and life�history traits – can be categorized 

on opposite ends of the fast�slow pace�of�life continuum. Thus, ecotype differentiation is an 
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emergent property of this biological system, relying not on a single causal pathway but multiple 

interwoven systems that feedback on each other, resulting in suites of correlated phenotypic traits 

adapted to local environments. 
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���
����. Scatterplots of the relationship between size (SVL in mm) and plasma IGF�1 

concentration (log10�transformed ng/mL) for each life�stage by ecotype combination in field�

caught Thamnophis elegans. Snakes were sampled from 2006�2010 at populations around Eagle 

Lake, CA, USA. Overall levels of IGF�1 varied across years (see Table 2), so values here are 

normalized with respect to year (from model of log10�transformed IGF�1 concentrations with 

year as a categorical fixed effect). The relationship between SVL and IGF�1 concentrations is 

significant for L�fast adults (R
2
 = 0.14, P < 0.001). 

 

���
���). Least�square means from the model of lifetime size (SVL in mm; see text for model 

details) for T. elegans juveniles raised in captivity, through age 4 years. Both ecotype and rearing 

treatment influenced lifetime growth. Error bars represent ± SE. 

 

���
���*. (A) Least�square means from the model of lifetime growth (SVL in mm; see text for 

model details) for T. elegans juveniles raised in captivity, from birth to age 4 years. Both ecotype 

and rearing treatment were significant factors in determining lifetime growth. (B) Least�square 

means from the model of lifetime feeding (amount consumed in g; see text for model details) for 

T. elegans juveniles raised in captivity, from birth to age 4 years. Lwarm snakes ate more than 

Lcool, Mwarm, or Mcool snakes (all adjusted pairwise comparisons significant with p < 0.01). 

Error bars for both panels represent ± SE. 

 

���
���+. Survival curves for captive�born Thamnophis elegans by treatment group within each 

sex. Plots demonstrate the significant influence of ecotype, treatment, and sex on survivorship 
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based on the semi�parametric Cox Proportional hazard model (see Table 6). Horizontal dotted 

line shows 50% survivorship. Estimates are median residual lifespans (in months) ± SE. 

 

���
���,. (A) Growth (change in SVL, mm) for captive�born T. elegans over the three intervals. 

Estimates are shown on the last day of an interval; the number of days in each interval varied: 

Interval 1 = 178 days; Interval 2 = 48 days; Interval 3 = 72 days. The significant effect of 

temperature × interval is seen in that during interval 1, warm snakes were growing fastest, 

whereas in interval 3, cooler snakes were growing fastest. The significant effect of ecotype × 

time can be in that during interval 1, L snakes were growing fastest, whereas in interval 3, cooler 

snakes were growing fastest. -./�Least�square means from the model of plasma IGF�1 

concentration (log10�transformed ng/mL). IGF�1 levels were assayed from samples collected 

from the final day of 3 intervals, with first measurement 267 days after birth. The significant 3�

way interaction of ecotype × treatment × time can be seen in the deviation of the Mcool values 

from the others, Note that Mcool animals grew fastest, and faster than other categories, during 

interval 3. Error bars for both panels represent ± SE. 

 

���
����0� The complex interplay of phenotypic traits involved in the morphology–performance–

life�history web. Black arrows represent relationships between aspects of the phenotype, with 

solid lines indicating positive relationships and dashed lines indicating negative. Solid gray 

arrows represent the direct impact of environmental characteristics on traits. Zig�zag lines show 

traits in which genetic canalization has resulted in differences between distinct life�history 

ecotypes. Traits and factors shown in bold black type are included in the present study; traits and 

factors in gray type have been established in previous studies (Bronikowski & Arnold 1999, 

Sparkman and others 2007, Miller and others 2011, Sparkman and others 2013). 
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