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Synopsis

All animals experience performance trade-offs as they complete tasks such as capturing prey,
defending territories, acquiring mates, and escaping predators. Why then, is it so hard to detect
performance trade-offs at the whole-organismal level? Why do we sometimes even obtain
positive correlations between two performance traits that are predicted to be negatively
associated? Here we explore two plausible explanations. First, most analyses are based on
individual maximal values (i.e., personal best), which could introduce a bias in the correlation
estimates. Second, phenotypic correlations alone may be poor indicators of a trade-off when
contrasting processes occur at the among- vs. within-individual levels. One such scenario is the
“big houses big cars” model developed in life-history theory to explain the existence of
“uberfleas” that are superior in all regards (because they acquire more resources than others). We
highlight that the exact opposite scenario might occur for performance trade-offs, where among-
individual trade-offs may be masked by within-individual changes in physical condition. One of
the best ways to test the alternative scenarios is to collect repeated pairs of performance traits and
analyse them using multivariate mixed models (MMMs). MMM s allow straightforward and
simultaneous examination of trait correlations at the among- and within-individual levels. We
use a simple simulation tool (SQuID package in R) to create a population of Krakens, a mythical
giant squid-like sea creature whose morphology generates a performance trade-off between
swimming speed and ability to sink ships. The simulations showed that using individual
maximum values introduces a bias that is particularly severe when individuals differ in the
number of repeated samples (7,1). Finally, we show how MMMs can help detect performance
(or any other type of) trade-offs and offer additional insights. We hope researchers will adopt

MMMs when exploring trade-offs in whole-animal performances.
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1

2

2 53  Why are whole-organism performance trade-offs so hard to detect?

5

6 54  The concept of trade-offs is key to many research fields such as evolutionary biology,

7

8 55  physiology, behavioral ecology, and functional morphology (Agrawal and others 2010; Garland
9

1(1) 56  2014). Performance trade-offs occur when characteristics that enhance one aspect of

12

13 57  performance necessarily decrease another type of performance. For example, greater proportions
14

12 58  of slow-twitch oxidative muscle fibers should enhance stamina, whereas more fast-twitch

17

18 59  glycolytic fibers would facilitate sprinting abilities (Dohm and others 1996; Garland 1988; Sorci
20 60 and others 1995). The mechanistic bases of many performance trade-offs are well described and
22 61  accepted (Esbjornsson and others 1993; Komi 1984; Wilson and James 2004; Wilson and others
25 62  2004). Yet evidence for their existence at the whole-animal level is far from convincing (Ford
27 63  and Shuttlesworth 1986; Garland 1988; Garland and Else 1987; Herrel and Bonneaud 2012;

64  Huey and others 1990; Jayne and Bennett 1990; Sorci and others 1995; Tsuji and others 1989;

32 65  Wilson and others 2002). Many studies exploring trade-offs at the whole-animal level find that

g‘s'r 66  high performers in one task are also high performers in other tasks, or find no trade-off between
gg 67  tasks at all (Garland and Else 1987; Huey and others 1990; Jayne and Bennett 1990; Tsuji and

39 68  others 1989). Given the intuitive physiological basis of many performance trade-offs, the paucity
41 69  of studies showing them in whole animals is puzzling.

44 70

46 71  Among-individual variation in “quality”

48 72 Van Damme and others (2002) and Wilson and others (2014) have suggested that individual

51 73 variation in overall “quality” can mask within-individual trade-offs in performance. Because

23 74  individuals vary in health, physical fitness, nutrition, developmental stage or genetics, some

75  individuals perform better or worse across all types of performance tasks than others. This means
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that when researchers try to understand intra-individual functional trade-offs using inter-
individual variation in performance, then trade-offs that do occur within individuals can be
masked by among-individual variation in overall “quality” (Lailvaux and Kasumovic 2011).
Previous studies have shown that correcting for quality can reveal functional trade-offs between
motor tasks such as speed, power, and endurance that would otherwise be missed (Van Damme
and others 2002; Wilson and others 2014). However, how to how to unambiguously define and

account for quality remains controversial (Walker and Caddigan 2015).

Uberfleas and the “big houses big cars” scenario

The pattern described above is essentially the same as the classic Y-model of life-history
evolution in which inter-individual variation in acquisition can mask allocation trade-offs (van
Noordwijk and de Jong 1986). In other words, some individuals can circumvent an apparent
trade-off in allocation of resources by acquiring more resources. Reznick and others (2000)
referred to this situation as the “big houses big cars” scenario: because the resources available for
families to spend on both a house and a car are finite, the more a family spends on their car then
the less they have available for their house (vice versa). However, some families can have both
big houses and flashy cars if they have more resources (money) available to them. It is quite easy
to see how this situation could apply to animals. For example, limits to energy stores and/or
maternal abdominal volume (e.g., Du and others 2005) can yield a trade-off between egg size
and number (Roff 1992; Stearns 1992). However, some female “uberfleas” (superior in all
regards) may be able to lay many large eggs because they are able to obtain more energy and
nutrients and have larger abdominal volume than “unterfleas” (inferior in all regards) (Reznick

and others 2000). In such a scenario (Fig. 1A), the relative amount of variance in allocation vs.

http://mc.manuscriptcentral.com/icbiol
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1

2

2 99  acquisition will dictate whether egg size and number are correlated negatively (i.e., trade-off
5

6 100 revealed) or positively (inverse of a trade-off) at the phenotypic level (Fig. 1A).

7

8 101

9

1(1) 102  Trade-offs within energy budget

12

13 103  One implication of the “big houses big cars” scenario is that studies based at a single level of

15 104  variation — or those aggregating repeated measures to reduce the hierarchical nature of the data
18 105  and facilitate statistical analysis — may fail to detect an association between two traits even when
20 106 they are connected through processes occurring at different levels and cancelling each other out
22 997 (Dingemanse and Dochtermann 2013; Downs and Dochtermann 2014). This situation is

o5 108 illustrated by a recent re-analysis of data in humans, where individuals differed in their total

27 109 energy intake, but nevertheless had to allocate energy to maintenance vs. locomotor activity (Fig.
110 2, taken from Careau (2017)). Westerterp and others (1992) collected data on sedentary men and
32 111  women between the ages of 28—41 years old as they followed a training program to run a half

34 112 marathon (four sessions per week, increasing running time to 10-30 min, 20-60 min and 30-90
37 113 min per training session after 8, 20 and 40 weeks respectively). Westerterp and others (1992)

39 114  quantified energy intake (self-reported) and basal metabolic rate (respirometry) on four

41 115  occasions for each individual. Reanalysis of this dataset using multivariate mixed models

44 116 revealed that while surplus energy intake and basal metabolic rate tended to be positively

46 117  correlated at the among-individual level, there was a negative correlation at the within-individual
48 118 level (Fig. 2).

51 119
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Reverse scenario: trade-offs at the among-individual level

In general, it is intuitive to think of allocation trade-offs as processes occurring within
individuals. In the case of performance trade-offs, however, one may expect situations in which
trade-offs occur among individuals (Fig. 1B). For example, if individuals consistently differ in
many morphological (e.g., gear ratio) and physiological (muscle fiber types) traits that enhance
their performance in certain tasks (e.g., speed) while hindering performance in others (e.g.,
endurance), then the trade-off should be apparent at the among-individual level (Fig. 1B). We
may also intuitively expect that within-individual changes in general physical condition will
simultaneously affect all performance traits, thus generating positive correlations among
performance traits within individuals (Fig. 1B). Although this scenario is the exact opposite as
the “big houses big cars” scenario, we argue it is equally likely in the case of performance trade-

offs. We refer to this scenario as the “sink or swim” scenario (explained below).

How to detect trade-offs?

When contrasting processes occur at the among- vs. within-individuals, how should one go about
verifying the presence of a trade-off? To ensure one does not miss out on information regarding
the alternative “big houses big cars” (Fig. 1A) and “sink or swim” (Fig. 1B) scenarios, we
suggest the best strategy is to use multivariate mixed models (MMMs). Otherwise, it is likely
that the calculated phenotypic correlation (7p) will be a poor indicator of the presence of trade-
offs (Fig. 3). We argue that the use of rps calculated on individual maximum values — rather than
using MMMs — is one of the reasons that whole-animal performance trade-offs are rarely

detected, and even spurious positive correlations are sometimes obtained.

Simulating a performance trade-off in a legendary sea monster

http://mc.manuscriptcentral.com/icbiol
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1

2

2 144  We used the SQuID package in R (Allegue and others 2017) to simulate a population of 100
5

6 145  individual organisms that experience a trade-off between two performance traits. We used the
7

g 146  legendary giant squids known as Krakens (https://en.wikipedia.org/wiki/Kraken) for our

10

11 147  simulation. Krakens are mythical creatures, which live off the coast of Norway, made famous in
13 148  various fictional works that depict them attacking ships at sea. Let us for a moment imagine that
15 149  Krakens experience a trade-off between swimming speed and their ability to sink a ship and

18 150  swallow all the seamen (hence the “sink or swim” scenario). We expect this trade-off is related
20 151  to anindividual’s size and shape; such that slimmer squids can swim faster while bulkier squids
22 152  can overpower ships. This trade-off occurs at the among-individual level as depicted by the black
o5 153  dots and lines in Fig. 3A. Moreover, we simulated a positive relationship between speed and

27 154  strength occurring within individuals, as depicted by thin lines in Fig. 3A. This positive

155  relationship occurring within individuals could be due to correlated plasticity as function of

32 156  variation in an unknown factor (e.g., temperature, age, and training). Now imagine we can only
34 157  catch a Kraken once in its lifetime to obtain a single measure of speed and strength for each

37 158  individual (n4ia=1). Only a single measure per animal would yield a random sample like in Fig.
39 159 3B, in which the phenotypic correlation (7p) is not significantly different from zero even at

41 160  N=100. This is because the rp reflects a mixture of the processes occurring at the among- and

44 161 within-individual levels (like in Fig. 1B).

46 162

163  Phenotypic correlations based on average values

51 164  Had one access to all 20 repeated measures of performances for each Kraken, how should one go
93 165  about verifying if there is a trade-off as simulated? One easy solution is to calculate 7p based on

166  the individual mean values, which has the advantage of facilitating statistical analysis by

http://mc.manuscriptcentral.com/icbiol
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reducing the hierarchical nature of the data. Although this approach proves effective at detecting
the trade-off (Fig. 3C), the rp based on individual mean values tend to be attenuated (i.e., biased
toward zero). As pointed out by Head and others (2012), it has been known since Spearman
(1904) that attenuation is proportional to within-individual variance (as in here) and

measurement error (assumed to be 5% here).

Phenotypic correlations based on maximum values

An alternative approach to analysing the data would be to select the best performance for each
individual among the 20 measurement trials and then calculate 7p on the resulting 100 “personal
best” samples. However, due to the undesirable properties of the sampling distribution of
extreme values (Head and others 2012), maximum values can actually conceal performance
trade-offs (Fig. 3D). Surprisingly still, retaining individual maximum values is common practice

in studies of organismal performance (Adolph and Pickering 2008).

Multivariate mixed models to the rescue

To obtain an unbiased estimate of the strength of the “sink or swim” trade-off in Krakens, we
need to quantify the among-individual correlation (7i,q) separately from the within-individual (or
residual) correlation (r,). Whenever two traits are repeatedly measured for a set of individuals,
we can estimate ri,g and 7, in one step using MMMs (Dingemanse and Dochtermann 2013).
MMMs are now relatively easy to learn thanks to several “how to” papers (Dingemanse and
Dochtermann 2013; Roche and others 2017) and widely available software like ASReml (Butler

and others 2009), SAS, and the R package MCMCglmm (Hadfield 2010). Using a MMM we

http://mc.manuscriptcentral.com/icbiol
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189  successfully detected the trade-off as indicated by the negative ri,g (-0.41+0.09), which is close
190  to the simulated value of -0.5.

191

O©oOoO~NOOOPRWN -

10 192  Implications of a within-individual correlation

193  We generated a positive 7, by simulating an environmental gradient that simultaneously affected
15 194  both speed and strength, and assumed the environmental factor was unknown. Such a factor

17 195  could be temperature, for example, as it could positively affect both speed and strength. Another
oo 196  factor could be age (Krakens can live up to 100 years and become terrible sea creatures as they
22 197  grow and get both faster and stronger). By modelling random intercepts only, individual

24 198 (co)variation in plasticity ended up in the 7, (Brommer 2013a), which was 0.43+0.02. To fully
o7 199  capture the among-individual correlation in phenotypic plasticity of speed and strength, we must
29 200 run a bivariate random regression model [see Careau and others (2014) for a recent application
201  ofthis method for detecting correlated thermal sensitivities]. A bivariate random regression

34 202  model would capture correlated plasticity and model it separately from the residuals, which

36 203  should yield a r, close to zero (unless there is correlated measurement error). Note that changes
204  in performance in response to training is a form of phenotypic plasticity, such that correlated

41 205 plasticity would describe a very likely situation in which two or more performance traits increase

43 206  in response to training.

207
49 208 Magnitude of bias using individual maximum performance
51 209 To make a more convincing case against using maximum values — and a more convincing case
54 210  forusing MMMs — we simulated 100 populations of Krakens and tested the 3 methods on each

56 211  population (MMMs, using individual means, and using individual maxima). Moreover, we tested

http://mc.manuscriptcentral.com/icbiol
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each method with all 20 repeated measures per individual (equal n4i,) and once again after we
deleted a randomly varying number of observations for each individual (unequal 7¢sia1). As
expected, MMMs were not sensitive to variable nyi, (Fig. 4). Although mean values yield
acceptable rps in most populations when 7, Was equal, there was a clear bias when 7y, Was
unequal among individuals (Fig. 4). Finally, there was a clear bias when using individual

maximum values, which was especially severe when 7y, is variable among individuals (Fig. 4).

Conclusions

We hope researchers studying performance trade-offs will heed the call made by Adolph and
colleagues (Adolph and Hardin 2007; Adolph and Pickering 2008; Head and others 2012), as our
simulation exemplifies the magnitude of the bias introduced by using sample maxima. Still, the
correction factor developed by Adolph and Hardin (2007) may yield a biaised ri,q because it
assumes that 7, is zero (Dingemanse and others 2012). As shown by Downs and Dochtermann
(2014), this correction factor of Adolph and Hardin (2007) can result in an underestimation of
ring When there is a positive 7, (as in the case in our simulation of speed and strength in Krakens).
Thus, researchers should pay greater attention to processes occuring at the within-individual
level, such as correlated phenotypic plasticity and correlated measurement error. In the presence
of a significant 7, then random regression models can be used to separate potential individual
differences in plasticity from the residuals (Brommer 2013a; 2013b). Most importantly,
partitionnig performance trade-offs at the within- and among-individual levels is required to
discern between scenarios like those occuring in mythical organisms like uberfleas (“big houses
big cars”; Fig. 1A) and Krakens (“sink or swim”; Fig. 1B). Finally, we note that while using

MMMs to estimate ri,g and 7, is informative in its own right, it is only the first step towards

10
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identifying genetic and environmental associations among performance traits through larger-

scale quantitative genetics studies (e.g., Dohm and others 1996; Garland 1988).
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Fig. 1. Schematic representations of trade-offs and facilitation processes simultaneously
occurring at the among- vs within-individual levels. (A) the classic “big houses big cars”
scenario (Reznick and others 2000; van Noordwijk and de Jong 1986) where individuals differ in
the amount of resources (energy, time, or space) that they allocate to competing demands (egg
size vs. quantity). Repeated pairs of measurements on each individual are represented by dots
connected by a line. Thus, some female uberfleas appear to always have more resources than
others, but on any given reproduction event they nevertheless face the same quantity vs. quality
trade-off. Whenever acquisition and allocation processes respectively occur at the among- and
within-individual levels, the relative amount of among- vs. within-individual variance in the two
traits (i.e., their geometric mean repeatability) will dictate whether the resulting phenotypic
correlation will be positive (panel a;) or negative (panel a,). (B) Another scenario where
individuals consistently differ in morphology (e.g., gear ratio) or physiology (e.g., muscle fiber
type) such that, on average, strong individuals are slower. However, whenever individuals train
to increase their overall physical condition, their performance is enhanced for both strength and
speed. Such a situation would yield a negative correlation at the among-individual level (trade-
off), but a positive correlation at the within-individual level (training effect), as in the simulated
population of Krakens (see Fig. 3 and 4). Because Krakens face a trade-off between swimming
speed and the ability to sink ships, we refer to this scenario as the “sink or swim” scenario. Note
that Wilson and others (2014) applied the “big houses big cars” scenario (A) to performance
trade-offs, suggesting that among-individual differences in “quality” can mask within-individual
trade-offs. Here we suggest that the “sink or swim” scenario (B) is equally likely to apply to
performance trade-offs (i.e., that among-individual differences in trade-offs can be masked
within-individual changes in condition). Multivariate mixed models can be used to test these
alternative scenarios and quantify the relative importance of the acquisition vs. allocation
processes (see Fig. 2 for an example).
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A Energy budget B Energy budget C Among- and within-individual
of many wild in most modern adult correlations between surplus
animals (arbitrary non-reproductive energy (mostly activity) and BMR
proportions) humans (data from Westerterp et al. 1992)
Activity a
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Fig. 2. Trade-offs among and within energy budgets. (A) Representation of the total energy
intake of most wild animals as the sum of the energy invested in locomotor activity,
reproduction, growth, thermoregulation, digestion (thermic effect of food; TEF), and basal
metabolic rate (BMR). BMR represent the minimum amount of energy required for the
functioning (e.g., breathing) and the maintenance (e.g., tissue turnover) of maintain vital
systems. Proportions are arbitrary and can change depending on the age, season, and life-history
stage of animals. Any source of energy expenditure above BMR can be grouped into the “surplus
energy”. (B) Energy budget in most modern non-reproductive adult humans, in which there are
no cost of growth and reproduction. The cost of thermoregulation is assumed to be negligible
(people wearing appropriate clothing at room temperature do not have any extra energy
expenditure to maintain body temperature). In this simplified energy budget, a large proportion
(~60%) is taken BMR and most of the surplus energy is devoted to activity. (C) Among- and
within-individual correlations between surplus energy and BMR in 12 and 11 adult men
(triangles) and women (circles) measured 4 times each during a long-term training program in
preparation for running a half marathon [data from Westerterp and others (1992) and figure taken
from Careau (2017)]. BMR and surplus energy are shown as residuals (open symbols) from
multiple regression models including several fixed effects (testing sequence, age, sex, body
mass, and fat mass). Solid symbols indicate the mean residual values for each individual, and the
thick black line illustrates the positive among-individual relationship. Thin lines show separate
linear regression for each individual, thus illustrating the within-individual relationship. A
bivariate mixed model applied to these data revealed a positive among-individual correlation
(0.49+0.27; P =0.113) and a negative within-individual correlation (-0.324+0.11; P = 0.007),
providing support for a “big houses big cars” scenario depicted in Fig 1A.
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Fig. 3. Trade-off between swimming speed vs. ship-sinking performance in a simulated
population of N=100 Krakens (sea monsters of giant size dwelling off the Norwegian sea).
(A) Each legendary giant squid was sampled 20 times (7i,=20) for speed and strength, which
were part of trade-off at the among-individual level because of morphological differences (a
slender body is good for swimming speed, but a wider body confers strength needed to sink
ships). Black dots indicate mean values for each individual and the thick line illustrates the
negative among-individual correlation (7i,q; simulated value = -0.5). Thin lines show separate
linear regression for each individual, thus illustrating the facilitation effects occurring through
within-individual correlated phenotypic plasticity in response to an unknow factor (e.g.,
temperature, age, or training). (B) After randomly sampling each Kraken once (N=100; nyia=1),
the phenotypic correlation (7p) shows no relationship at all and can vary wildly depending on the
random sampling of the original dataset in A. Phenotypic correlations (rp) calculated using (C)
individual mean (same as black dots in A) and (D) individual maximum values. This figure
shows how interesting contrasting processes can go undetected when 7, is low (B) and using
individual maximum values (D). The data was simulated using SQuID package in R (Allegue
and others 2017).
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Fig. 4. Attenuated and biased correlations, or not. We used the SQuID package in R (Allegue
and others 2017) to simulate 100 populations of Krakens like in Fig. 3 in which there is a
negative among-individual correlation of -0.5 (dashed line). For each population, we calculated
correlations using the full dataset (equal nyi,) and again after deleting a randomly different
number of observations for each individual (variable ni,). We first calculated the among-
individual correlation (7i,q) using a multivariate random mixed model (MMM) in which the
among- and within-individual (co)variances were properly modelled. Although the MMM is not
sensitive to variable ni,, it 1S not the case for phenotypic correlations (7p) estimated using
individual mean and maximum values. Indeed, individual mean values yield relatively unbiased
rps when nyiy 1S equal, but the 7ps become slightly biased when 7y, 1s variable among
individuals. The bias is clearly worst when using individual maximum values. For equal 7y, we
successfully detected the trade-off in only ~50% of populations (with N=100, P < 0.05 for all
|rp[>0.197, dotted line). The bias with individual maxima is much more severe when 7y, 18
variable among individuals — only a few of the negative rps were significant and even positive
rps are obtained.
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