

Does hormonal pleiotropy shape the evolution of performance and life history traits?

Journal:	<i>Integrative and Comparative Biology</i>
Manuscript ID	ICB-2017-0086
Manuscript Type:	Symposium article
Date Submitted by the Author:	31-Mar-2017
Complete List of Authors:	Dantzer, Ben; University of Michigan, Psychology; University of Michigan, Ecology and Evolutionary Biology Swanson, Eli; University of Minnesota, Ecology, Evolution and Behavior
Keywords:	Evolutionary endocrinology, Performance, Life history, Hormonal pleiotropy, Quantitative genetics

 SCHOLARONE™
Manuscripts

1 Does hormonal pleiotropy shape the evolution of performance and life history traits?

Ben Dantzer^{a,b*}, Eli M. Swanson^c

^aDepartment of Psychology, University of Michigan, Ann Arbor, MI 48109, USA,

^bDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA

^cDepartment of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN 55108

*Corresponding author (B. Dantzer); email: dantzer@umich.edu; phone: 1-734-615-2352

Word count (including abstract, references, and figure legends): 7776

15 **Abstract**

16 Hormonal pleiotropy occurs when the concentrations of a single hormone influences the
17 expression of two phenotypes and it may have similar evolutionary consequences as genetic
18 pleiotropy. To date, most conceptual and empirical work on the putative evolutionary
19 consequences of hormonal pleiotropy has focused on identifying if the different components of
20 an endocrine axis (titer, receptor expression, etc.) that affect trait expression are themselves able
21 to evolve independently from one another. This is an important focus because if these different
22 components evolve together, the expression of two traits affected by the same hormone may be
23 yoked and evolve non-independently. Here, we first focus on methodological approaches to
24 identifying how hormonal pleiotropy could constrain the independent evolution of performance
25 and life history traits. We then focus on a similar but less studied concept about how hormonal
26 pleiotropy can constrain or facilitate adaptive phenotypic responses to selection. If the expression
27 of two traits is affected by the same hormone, the magnitude of the phenotypic response to
28 selection may be exacerbated or retarded compared to the absence of this hormonal pleiotropy.
29 We use classical concepts from quantitative genetics to discuss an approach for identifying if
30 hormonal pleiotropy has such evolutionary consequences using data collected from longitudinal
31 studies of wild animals. We develop a simple quantitative genetics model to derive predictions
32 about the conditions under which hormonal pleiotropy would constrain or facilitate the response
33 to selection. We focus on performance and life history traits and how the effects of hormonal
34 pleiotropy on the evolution of these traits depends upon the genetic correlations between the
35 hormone and traits as well as the direction and strength of selection on the two traits. Finally, we
36 review the literature for examples that have estimated these model parameters to characterize the
37 studies that have or have not found support for these model predictions.

38 **Introduction**

39 Genetic pleiotropy occurs when a single gene or locus affects two or more phenotypic
40 traits. Genetic pleiotropy has long interested evolutionary biologists because selection upon one
41 trait may cause a correlated or indirect response in other traits. As such, genetic pleiotropy may
42 facilitate or retard the phenotypic response to selection as well as influence whether two or more
43 traits evolve independently from one another (Cheverud, 1984; Falconer and Mackay, 1996;
44 Lynch and Walsh, 1998). For example, if phenotype A and phenotype B are affected by the same
45 gene but selection gradients on phenotypes A and B are opposite in sign (e.g., favoring large
46 values of phenotype A but low values of phenotype B), the optimal response to selection in each
47 trait may be constrained by selection acting on the other trait in the opposite direction.
48 Additionally, phenotypes A and B may have non-independent evolutionary trajectories if they
49 are linked together through genetic pleiotropy. Despite the theoretical possibility of genetic
50 pleiotropy shaping phenotypic evolution, a few empirical studies indicate that genetic pleiotropy
51 seems to rarely constrain the independent evolution of traits or the rate of adaptation (e.g.,
52 Agrawal and Stinchcombe, 2009; Conner et al. 2011; but see Morrissey et al., 2012).

53 Evolutionary physiologists and endocrinologists naturally have a position to play in our
54 understanding of the role of pleiotropy in phenotypic evolution because hormones often have
55 pleiotropic effects (Stearns, 1989; Ketterson and Nolan, 1992; Finch and Rose, 1995; Ketterson
56 et al., 2005) and they may act as the functional mediators of genetic pleiotropy. Hormonal
57 pleiotropy, where a single hormone affects multiple traits, has largely been studied in the context
58 of trade-offs between behavioral or life history traits (Stearns, 1989; Ketterson and Nolan, 1992;
59 Sinervo and Svensson, 1998; Ketterson et al. 2005). For example, elevated levels of the steroid
60 hormone testosterone acting as a cause of antagonistic pleiotropy between parental and mating

1
2
3 behavior (Ketterson and Nolan, 1992). More recently, the field has expanded to focus more on
4
5 the broader evolutionary implications of hormonal pleiotropy such as whether it constrains the
6
7 independent evolution of any hormonally-mediated trait (Hau, 2007; McGlothlin and Ketterson,
8
9 2008; Adkins-Regan, 2008; Ketterson et al. 2009; Dantzer and Swanson, 2012). However, unlike
10
11 genetic pleiotropy, less attention has been paid to how hormonal pleiotropy may constrain or
12
13 facilitate the phenotypic response to selection acting on two phenotypes influenced by the same
14
15 hormone (but see Ketterson et al. 2005; McGlothlin and Ketterson, 2008; Ketterson et al. 2009).
16
17
18

19
20 Our aims here are to 1) discuss the evolutionary consequences of hormonal pleiotropy
21
22 (affecting whether two traits evolve independently and influencing the phenotypic response to
23
24 selection), 2) describe the different approaches that can be used to examine whether hormonal
25
26 pleiotropy constrains the independent evolution of phenotypes, and 3) to develop a simple
27
28 quantitative genetics approach to testing whether hormonal pleiotropy constrains or facilitates
29
30 responses to selection to spur future research on this latter topic especially in studies of the
31
32 association between performance and life history traits. We introduce a simple quantitative
33
34 genetics model to illustrate how hormonal pleiotropy may influence the phenotypic response to
35
36 selection and use it to describe how data gathered from longitudinal studies of wild animals
37
38 (selection gradients on phenotypes, genetic correlations between a hormone and different
39
40 phenotypes) could be used to test some of the predictions. We then obtain estimates of these
41
42 parameters (selection gradients, genetic correlations between hormones and life history or
43
44 performance traits) from the literature to provide some indication of how often the conditions
45
46 where hormonal pleiotropy constrains or facilitates phenotypic responses to selection. Our focus
47
48 is specifically on performance and life history traits to better integrate concepts regarding the
49
50 evolutionary consequences of hormonal pleiotropy into the study of performance and life history
51
52
53
54
55
56
57
58
59
60

1
2
3 84 trade-offs. However, the approaches described could easily be transferred to the study of other
4
5 85 traits.
6
7
8 86
9
10

11 87 **Hormonal pleiotropy and the independent evolution of phenotypes**

12 88 Studies about the evolutionary consequences of hormonal pleiotropy have mostly focused
13
14 89 on identifying whether the independent evolution of two behavioral traits are constrained due to
15
16 90 the pleiotropic effects of hormones. For example, whether two traits that negatively co-vary (e.g.,
17
18 91 mating and parental behavior in male birds) exhibit such patterns because of the pleiotropic
19
20 92 effects of a hormone acting on both traits. Two specific hypotheses have been formulated about
21
22 93 the consequences of hormonal pleiotropy for the independent evolution of traits (Hau, 2007;
23
24 94 Ketterson et al., 2009; Swanson and Dantzer, 2014). Similar to genetic pleiotropy, hormonal
25
26 95 pleiotropy could constrain the independent evolution of traits whereby the optimal combination
27
28 96 of traits favored by natural selection is not expressed because a hormone elevates the expression
29
30 97 of one trait but decreases another (hypotheses labeled “evolutionary constraint”, “phenotypic
31
32 98 integration”, or “evolutionary conservation of hormone effects”: Hau, 2007; Ketterson et al.,
33
34 99 2009; Swanson and Dantzer, 2014). For example, increased testosterone levels of may reduce
35
36 100 parental behavior but elevate territorial or mating behavior in birds (Ketterson and Nolan, 1992;
37
38 101 McGlothlin et al., 2007) or increased insulin-signaling may increase growth, development, and
39
40 102 reproduction but reduce lifespan (Dantzer and Swanson, 2012; Swanson and Dantzer, 2014). On
41
42 103 the other hand, hormonal pleiotropy could facilitate adaptive phenotypic integration by enabling
43
44 104 the expression of adaptive suites of traits (Ketterson et al., 2009; Dantzer and Swanson, 2012).
45
46 105 For example, increased insulin-signaling that depresses lifespan but increases growth and
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 106 reproductive output may be an adaptive combination of traits for environments in which there is
4
5 107 high extrinsic mortality (Dantzer and Swanson, 2012).
6
7

8 108 The alternative hypothesis is that two phenotypes affected by the same hormone can
9
10 109 evolve independently from one another because the levels of a circulating hormone are not the
11
12 110 only factor determining trait expression (hypotheses labeled “evolutionary potential”,
13
14 111 “phenotypic independence”, or “no evolutionary conservation of hormone effects”: Hau, 2007;
15
16 112 Ketterson et al., 2009; Swanson and Dantzer, 2014). Instead, the many components of an
17
18 113 endocrine axis that translate into changes in the phenotypes that may be influenced by changes in
19
20 114 hormone concentrations can also affect trait expression (Adkins-Regan, 2008). This is largely an
21
22 115 issue of whether signal (hormone) production that influences trait expression can evolve
23
24 116 independently from the receptivity of the tissues also affecting trait expression (Hau, 2007). For
25
26 117 instance, increased insulin signaling or circulating testosterone levels could increase the
27
28 118 expression of morphological trait 1 but not to the same degree as morphological trait 2 because
29
30 119 trait 1 is hyper-responsive to the signal perhaps because of increased receptor expression for that
31
32 120 signal in the tissue affecting or responsible for trait 1 (Emlen et al. 2012). If the multiple
33
34 121 components of the endocrine axis can evolve independently, it is likely that any pleiotropic
35
36 122 effects of a hormone can be overcome through the evolution of differential tissue expression or
37
38 123 other mechanisms that facilitate a decoupling between the hormone concentration and
39
40 124 phenotypic expression. Consequently, even if hormonal pleiotropy exists, it does not have to
41
42 125 constrain the independent evolution of two phenotypes. Selection instead could favor individuals
43
44 126 that have enhanced sensitivity to the hormonal signal for phenotype 1 but reduced sensitivity for
45
46 127 phenotype 2. On the other hand, if the different component parts cannot evolve together, this
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 128 suggests that the two traits will be yoked due to hormonal pleiotropy, which may or may not be
4
5 129 adaptive depending upon what combination of traits selection favors.
6
7
8 130
9
10

11 131 *How to test hypotheses about consequences of hormonal pleiotropy for the independent evolution*
12
13 132 *of performance and life history traits?*

14
15 133 To address the evolutionary consequences of hormonal pleiotropy, it is crucial to address
16
17 134 whether the many components of different endocrine systems/axes evolve together or separately,
18
19 135 but how do you do this? One way is to ask whether patterns of phenotypic divergence between
20
21 136 two individuals or two species are due to differences in circulating hormone levels or some other
22
23 137 endocrine mechanism such as local differences in receptor expression. For example, hyper-
24
25 138 allometric traits may be due to increased receptor expression for growth hormones that impact
26
27 139 the growth or expression of those traits rather than a general overall increase in the hormone
28
29 140 (Warren et al. 2013). In some organisms, receptor expression can be experimentally manipulated
30
31 141 in different tissues and variation in receptor expression among different tissues affecting
32
33 142 different traits can be documented (Emlen et al., 2012). These studies where there is tissue-
34
35 143 specific variation in receptor expression and experimental manipulations in receptor activity
36
37 144 show that increases or decreases in tissue receptor expression can manipulate phenotypes
38
39 145 independently of one another would support the evolutionary potential or phenotypic
40
41 146 independence hypothesis.

42
43 147 A second useful approach is to assess what causes variation in a phenotype by measuring
44
45 148 variation in several different parts of the endocrine system rather than just circulating hormone
46
47 149 levels and assessing what factors best explain variation in the phenotype of interest. For example,
48
49 150 Rosvall et al. (2012) measured aggression in dark-eyed juncos (*Junco hyemalis*) and circulating
50
51
52
53
54
55
56
57
58
59
60

1
2
3 151 plasma testosterone levels and the abundance of androgen and aromatase receptor and estrogen
4 receptor alpha mRNA in specific areas of the avian brain thought to affect aggressive behavior.
5
6 152 They found that plasma testosterone levels were only positively associated with aggression in
7 males but not females but that in both sexes, the abundance of androgen and aromatase receptor
8 and estrogen receptor alpha receptor mRNA were positively associated with aggression.
9
10 153 Although it would be useful to assess the proportion of variation in the behavior explained by
11 each endocrine trait relative to the others, these data provide some support for the evolutionary
12 potential or phenotypic independence hypothesis. They suggest that the different components of
13 the endocrine axis (testosterone production vs. its effects on behavior through receptors) can
14 evolve independently and influence a behavioral phenotype independently.
15
16 154
17 155
18 156
19 157
20 158
21 159
22 160

23 161 A third way to test these hypotheses is to use a combination of artificial selection studies
24 162 combined with quantitative genetics, which has been used successfully for more than 20 years in
25 163 studies regarding the endocrine basis and quantitative genetics of wing polymorphisms and
26 164 dispersal phenotypes in crickets by Daphne Fairbairn, Derek Roff, Anthony Zera, and their
27 165 colleagues (e.g., Fairbairn and Yadlowski, 1997; Roff et al., 1997; Zera, 2004). These studies
28 166 show how hormone titers (juvenile hormone esterase) can respond to artificial selection acting
29 167 directly on the hormone titers themselves (Zera and Zhang, 1998; Zera et al., 1996, 1998). In
30 168 addition, they demonstrate that different components of an endocrine axis (e.g., juvenile
31 169 hormone esterase and juvenile hormone binding activity) can be phenotypically and genetically
32 170 correlated with one another (Gu and Zera, 1996), and that artificial selection acting only on
33 171 hormone titers can produce an indirect response in other components of the endocrine axis
34 172 (juvenile hormone esterase, the rate of juvenile hormone degradation, and juvenile hormone
35 173 esterase binding activity: Zera and Zhang, 1995; Zera et al., 1996, 1998). Together, these studies

1
2
3 174 emphasize that the different components of the endocrine axis (production and synthesis, binding
4 proteins, degradation enzymes) may not evolve independently of one another, which would
5
6 175 support the evolutionary constraint or phenotypic integration hypothesis because selection acting
7
8 176 on one component of the endocrine axis produces a response in other components.
9
10 177

12
13 178 Finally, a comparative approach may be used to test these two hypotheses. If the different
14 components of an endocrine system can evolve independently, we would predict that the
15
16 179 relationship between a hormone and phenotype would likely be inconsistent across species such
17
18 180 that trade-offs or co-variation between two traits would not be associated with the level of
19
20 181 circulating hormone across species but would rather be explained in species-specific manner. For
21
22 182 example, species A exhibits increased sprint speed because of higher circulating testosterone
23
24 183 levels but species B exhibits increased sprint speed because of increased androgen receptors at
25
26 184 specific muscles. In a comparative study, we found that the association between circulating
27
28 185 levels of insulin-like growth factor 1 and a major life history trade-off (growth and reproduction
29
30 186 vs. lifespan) was conserved across species though there was substantial variation in this
31
32 187 relationship (Swanson and Dantzer, 2014). This suggests that signal intensity (circulating
33
34 188 hormone levels) is a good proxy for understanding what causes variation in the phenotypes that
35
36 189 are of interest to organismal biologists but also that the circulating levels of the hormone may
37
38 190 constrain the independent evolution of traits. This comparative study would support the
39
40 191 evolutionary constraint or phenotypic integration hypothesis.
41
42 192
43
44 193
45
46 194 **Hormonal pleiotropy and phenotypic responses to selection**

47
48
49 195 The four approaches described above focus on identifying whether hormonal pleiotropy
50
51 196 causes persistent patterns of co-variation between two or more phenotypes because it constrains
52
53
54
55
56
57
58
59
60

1
2
3 197 their independent evolution. We now shift our attention towards the other possible consequence
4
5 198 of hormonal pleiotropy, how it may constrain or facilitate phenotypic responses to selection.
6
7 199 When phenotypes are correlated due to a shared underlying mechanism, whether it be a gene or
8
9 200 hormone, selection acting upon one trait may produce an indirect response in the other. For
10
11 201 example, suppose individuals with increased sprint speed and parental behavior have higher
12
13 202 reproductive success (i.e., positive selection on sprint speed and parental behavior) but the
14
15 203 magnitude of selection acting upon sprint speed is higher than on parental behavior. Increased
16
17 204 circulating testosterone levels may be associated with increased sprint speed but decreased
18
19 205 parental behavior. Positive selection acting upon sprint speed may therefore produce an indirect
20
21 206 response in parental behavior as individuals with lower parental behavior (and higher sprint
22
23 207 speed) have higher reproductive success. In the absence of other mechanisms allowing the
24
25 208 association between circulating testosterone and parental behavior to be attenuated, the optimal
26
27 209 response to selection on parental behavior is therefore constrained due to the pleiotropic effects
28
29 210 of testosterone on sprint speed. On the other hand, if increased testosterone levels were
30
31 211 associated with increases in both sprint speed and parental behavior, the response to selection on
32
33 212 either behavioral trait would be facilitated (greater than in the absence of hormonal pleiotropy).
34
35 213 To date, few empirical studies have addressed this other possible evolutionary
36
37 214 consequence of hormonal pleiotropy (but see Ketterson et al. 2005; McGlothin and Ketterson,
38
39 215 2008; Ketterson et al. 2009). This may be partly due to the lack of well-developed
40
41 216 methodological approaches in addition to the difficulty associated with collecting the data
42
43 217 necessary to examine it. To help spur future studies, we advocate one approach that uses
44
45 218 classical methods in quantitative genetics and standard selection gradient analyses to uncover
46
47 219 this possible consequence of hormonal pleiotropy (Fig. 1). We suggest this approach because
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 220 existing longitudinal individual-based studies of wild animals may be uniquely situated to test
4
5 221 how hormonal pleiotropy may affect the phenotypic response to selection. Such field studies
6
7 222 typically quantify behavioral, morphological, performance, or life history traits as well as their
8
9 223 association with fitness metrics, thereby providing the opportunity to quantify standard selection
10
11 224 gradients on those phenotypes (Lande and Arnold 1983; Morrissey et al., 2013). In addition,
12
13 225 some longitudinal studies where there is a pedigree available afford the opportunity to quantify
14
15 226 phenotypic and genetic correlations between physiological traits such as hormone levels and the
16
17 227 phenotype of interest. Longitudinal individual-based studies can therefore 1) estimate the genetic
18
19 228 covariance between a hormone measured in plasma/serum or another integrated measure of that
20
21 229 hormone (feces, urine, saliva, hair, feathers, etc.) and two or more phenotypes (such as life
22
23 229 history or performance traits) and 2) quantify selection gradients on the phenotypes of interest.
24
25
26
27
28
29 231 We developed a simple quantitative genetics model to illustrate how hormonal pleiotropy
30
31 232 could constrain or facilitate adaptive phenotypic responses to selection and how data gathered
32
33 233 from longitudinal individual-based studies could be used to test whether hormonal pleiotropy
34
35 234 constrains or facilitates adaptive responses to selection. We use *constrain* to indicate that the
36
37 235 phenotypic response to selection is not equal to the response that would be observed in absence
38
39 236 of the hormonal pleiotropy whereas *facilitate* indicates that the response to selection is increased
40
41 237 in magnitude compared to the absence of the hormonal pleiotropy. The components of this
42
43 238 model are a single hormone that is genetically correlated with two phenotypes and linear
44
45 239 selection gradients on the two phenotypes (Fig. 1), though the sign and magnitude of those
46
47 239 genetic correlations and the selection gradients can vary from -1 to 1.
48
49
50
51 240

52
53 241 After developing this model, we gathered existing data from the literature regarding the
54
55 242 strength of genetic correlations between endocrine traits and life history or performance traits
56
57
58
59
60

1
2
3 243 (Table S1) and extracted estimates of selection gradients on performance (Irshick et al. 2008)
4
5 244 and life history (Kingsolver et al. 2012) traits from recent meta-analyses. The aim here was to
6
7 245 examine how often hormonal pleiotropy might constrain or facilitate responses to selection on
8
9 246 two traits given estimated values of model components from previous studies.
10
11 247
12
13 248 **Methods**
14
15
16 249 We implemented a simple quantitative genetic model in which two phenotypic traits and
17
18 250 one hormone evolve in response to directional selection. The mechanistic effect of the hormone
19
20 on each trait is modeled by a genetic correlation between the hormone and each trait. Note that
21
22 251 we did not specify any actual mechanism underlying this genetic correlation. The two phenotypic
23
24 252 traits are thus correlated to the extent of their mutual correlation with the hormone, simulating
25
26 253 hormonal pleiotropy.
27
28
29 30

31 255 Each generation, directional selection occurs on the two phenotypic traits, not on the
32
33 256 hormone. Any changes in the hormone result from the genetic correlation with the two traits.
34
35 257 There is also a genetic correlation between the two traits resulting solely from each trait's genetic
36
37 258 correlation with the hormone. In other words, the two phenotypic traits are genetically correlated
38
39 259 due solely to each of their independent correlations with the hormone. The response to selection
40
41 260 in each trait, as well as in the hormone, is modified by these genetic correlations. Evolution in
42
43 261 this model simply followed the Breeder's equation (Eq. 1) using arbitrary initial trait values, and
44
45 262 additive genetic variance values of 0.5. G here is the G matrix, and β is a vector of selection
46
47 263 gradients.
48
49 264
50
51 265 (Eq. 1) $\Delta\bar{z} = G\beta$
52
53
54
55
56
57
58
59
60

1
2
3
4
5
266

6 We ran the model out in this case over 100 generations, and with parameters informed by
7 values from the literature. We obtained estimates of the genetic correlation between a hormone
8 and life history or performance traits from previous studies (see Table S1: Davis and Simmen
9 1997; Roff et al. 1997; Nkrumah et al. 2007; Hayhurst et al., 2009; Hoque et al. 2009;
10 Ruuskanen et al. 2016) and estimates of selection gradients on life history (95% credible
11 intervals for selection gradients on size and fecundity from Table S1 in Kingsolver et al. 2012)
12 and performance (Irschick et al. 2008) traits from recent meta-analyses. Parameters that we
13 varied included the genetic correlation between the hormone and each trait, as well as the
14 strength of selection on each trait. Results for a variety of parameters drawn from the literature
15 (see Table S1) are given in Figure 3. Models can easily be made more complex in a wide variety
16 of way. Examples include adding phenotypic covariances, using a more complex version of the
17 Breeder's equation (Eq. 2). G and β are the same here as in Eq. 1, and P is the phenotypic
18 covariance matrix. In the examples we drew from the literature, phenotypic and genetic
19 covariance matrices were not available for the same cases, so we did not use this approach.

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

$$(Eq. 2) \Delta \bar{z} = GP^{-1}\beta$$

282

283 Results

284 *General predictions about consequences of hormonal pleiotropy*

285 In our simple model to illustrate our predictions (Fig. 2), we set both the genetic
286 correlation between the hormone and performance trait at 0.5 and the selection gradient on the
287 performance trait at 1 and varied both the genetic correlation between the hormone and life
288 history trait and the selection gradient on life history trait from -1 to 1. Here, a positive genetic

1
2
3 289 correlation indicates that increases in hormone concentrations enhances the expression of the
4
5 290 trait whereas a negative genetic correlation reflects the opposite. When the genetic correlations
6
7 291 are opposite in sign, it indicates that increases in the hormone enhances the expression of one
8
9 292 trait and decreases the expression of the other (potentially causing apparent negative co-variation
10
11 293 between the two phenotypes). Positive selection gradients indicate that individuals with
12
13 294 enhanced expression of the traits have higher fitness whereas negative selection gradients
14
15 295 indicate the opposite.

16
17
18 296 This simple model (Fig. 2) illustrates that when there is strong positive selection on a
19
20 performance trait and a hormone is positively correlated with the expression of that performance
21
22 trait, the response to selection on performance may be facilitated if the life history trait is also
23
24 297 experiencing positive selection and there is a positive genetic correlation between the same
25
26 298 hormone affecting the performance trait and the life history trait (upper right part of Fig. 2). For
27
28 example, if individuals that are faster and larger have higher survival and those with higher
29
30 300 concentrations of a hormone are faster and larger, the phenotypic response to selection on
31
32 301 performance should be increased. Alternatively, under these fixed conditions for the performance
33
34 302 trait, the response to selection on performance may be facilitated if there is negative selection on
35
36 303 the life history trait and if there is a negative genetic correlation between the hormone and life
37
38 304 history trait (lower left panel in Fig. 2).

39
40 307 The response to selection on performance may be constrained if a hormone enhances the
41
42 expression of both the performance and life history traits but when there is positive selection on
43
44 308 the performance trait but negative selection on the life history trait (lower right panel in Fig. 2).
45
46 309 For example, if increases in hormone concentrations enhance both sprint speed and growth but
47
48 310 selection favors faster individuals that grow more slowly (or are smaller), the phenotypic
49
50 311 selection favors faster individuals that grow more slowly (or are smaller), the phenotypic

1
2
3 312 response to selection on sprint speed may be reduced compared to the absence of the hormonal
4
5 313 pleiotropy. Alternatively, hormonal pleiotropy may constrain the phenotypic response to
6
7 314 selection on performance when selection favors individuals with increased expression of both the
8
9 315 performance and life history traits but increases in hormone concentrations enhances expression
10
11 316 of the performance trait but decreases the expression of the life history trait. For example, if
12
13 317 selection favors individuals that exhibit higher sprint speeds and grow faster but increases in the
14
15 318 concentrations of a pleiotropic hormone increases sprint speed but decreases the expression of
16
17 319 the life history trait, the phenotypic response to selection on performance may be reduced.
18
19
20
21
22
23
24
25 320
26
27 321 *Model predictions using real estimates of genetic correlations and selection gradients*
28
29 322 We located estimates of the genetic correlation between steroid and peptide hormones
30
31 323 and life history traits such as fecundity, inter-litter interval, growth, and egg mass (range = 0.88
32
33 324 to 0.65) in addition to a few estimates for the genetic correlation with performance traits such as
34
35 325 the presence or absence of wings and food intake, (range = -0.24 to 0.9, Table S1). We used
36
37 326 these values in addition to estimates of selection on performance and life history traits in our
38
39 327 basic model (Fig. 2) to identify if the combinations of these four parameters (Fig.1) estimated
40
41 328 from studies in captive animals would overlap with areas in which the model predicted that
42
43 329 hormonal pleiotropy would constrain or facilitate phenotypic responses to selection.
44
45
46 330 Model behavior was similar to our general model (Fig. 2) where there were zones of
47
48 331 facilitation and constraint (Fig. 3). However, in this model, we fixed the genetic correlation
49
50 332 between a hormone and performance trait at -0.24 (Fig. 1A to 1C), 0.27 (Fig. 1D to 1F), or 0.9
51
52 333 (Fig. 1G to 1I), which represented the lowest, median, and highest values (Table S1). We also
53
54 334 fixed selection on the performance trait at -0.4, 0.1, or 0.4 (corresponding to strongly negative,
55
56
57
58
59
60

1
2
3 335 weakly positive, or strongly positive selection). We again allowed the genetic correlation
4
5 336 between the hormone and the life history trait and the sign and magnitude of selection on the life
6
7 337 history trait to vary from -1 to 1. The dashed boxes in each panel of Fig. 3 show the range of
8
9 338 values from the literature that estimated the genetic correlation between a life history trait and a
10
11 339 hormone (-0.88 to 0.65, Table S1) and the 95% credible intervals for estimates of selection
12
13 340 gradients on life history traits (size and fecundity, ranging from 0.051 to 0.218: Kingsolver et al.
14
15 341 2012).

19
20 342 The dashed boxes in each panel of Fig. 3 show the range of values from the literature that
21
22 343 estimated the genetic correlation between a life history trait and a hormone (-0.88 to 0.65, Table
23
24 344 S1) and the 95% credible intervals for estimates of selection gradients on life history traits (size
25
26 345 and fecundity, ranging from 0.051 to 0.218: Kingsolver et al. 2012). When viewing the area
27
28 346 inside of each of these boxes, it is notable that the only situation when there was some evidence
29
30 347 that hormonal pleiotropy would constrain the phenotypic response to selection on the life history
31
32 348 trait was when there was very weak positive selection on the performance trait ($\beta = 0.01$) and a
33
34 349 very strong genetic correlation between the hormone and the performance trait ($r_g = 0.9$, Fig.
35
36 350 3H). Here, selection favors higher expression of the performance trait (e.g., faster individuals)
37
38 351 and increases in the hormone concentration can strongly increase the expression of the
39
40 352 performance trait (Fig. 3H). When there is a strong positive genetic correlation between the same
41
42 353 hormone and the life history trait (far right of inset dashed box) and strong positive selection on
43
44 354 the life history trait (top portion of inset dashed box), the phenotypic response to selection on the
45
46 355 life history trait could be facilitated due to hormonal pleiotropy (upper right portion of the
47
48 356 dashed box inset in Fig. 3H).

1
2
3 357 When selection on the performance trait was set at -0.4 or 0.4 and the genetic correlation
4
5 358 between the hormone and the performance trait was fixed at -0.24 or 0.27 (Figs. 1A to 1F), there
6
7 359 was little evidence that the phenotypic response to selection on the life history trait would be
8
9 360 altered in light of the estimates of selection on life history traits and genetic correlations between
10
11 361 a hormone and a life history trait from the literature (i.e., little evidence of color change inside
12
13 362 each dashed box in Figs. 1A to 1F). In other words, under actual estimates of the genetic
14
15 363 correlation between a hormone and life history trait and estimates of selection gradients on life
16
17 364 history traits, these results suggest that the ability of hormonal pleiotropy to constrain the
18
19 365 phenotypic response to selection is restricted to when there is a very strong genetic correlation
20
21 366 between the same hormone and the performance trait.

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

368 Discussion

369 Our results make the following general predictions. First, if the genetic correlations
370 between the single hormone and the two traits has the same sign, the response to selection on one
371 trait will be *facilitated* due to hormonal pleiotropy when the direction of the selection on the two
372 traits is the same (e.g., area in top right of Figs. 1E, 1F, 1H, and 1I), though the magnitude of the
373 facilitation varies depending upon the strength of selection on both traits. Second, even if there is
374 positive selection on both traits, hormonal pleiotropy can *constrain* the response to selection on
375 one trait if the genetic correlation between the hormone and the two traits is opposite in sign
376 (e.g., bottom right and top left of Figs. 1G through 1I). Third, if the sign of the genetic
377 correlation between the single hormone and the two traits is the same but the sign of the selection
378 gradients on the two traits is the opposite, the phenotypic response to selection on one trait will
379 be *constrained* by selection on the other. Fourth, if the sign of the genetic correlation between the

1
2
3 380 single hormone and the two traits is opposite but the sign of the selection gradients on the two
4
5 381 traits is the same, the phenotypic response to selection on one trait will be *constrained* by
6
7 382 selection on the other.
8
9

10
11 383 We do not claim that any of these predictions are anything other than intuitive and stem
12
13 384 from basic quantitative genetic theory (Cheverud, 1984; Falconer and Mackay, 1996; Lynch and
14
15 385 Walsh, 1998). We also interpret them through a skeptical lens given the simplicity of the model
16
17 386 and the need to considerably extend it (e.g., using Eq. 2). However, we think that our proposed
18
19 387 conceptual model (Fig. 1) and the associated predictions from a simple quantitative genetics
20
21 388 model (Fig. 2) at least provide an explicit framework for new studies to address whether
22
23 389 hormonal pleiotropy (or other physiological mechanisms causing such pleiotropy) does affect the
24
25 390 phenotypic response to selection.
26
27
28

29
30 391 Despite the theoretical possibility of hormonal pleiotropy constraining or facilitating the
31
32 392 phenotypic response to selection due to its effects on other traits influenced by the same hormone
33
34 393 that are also under selection, estimates of the four parameters composing the model (Fig. 1) from
35
36 394 the literature (Table S1) suggest that these conditions are rarely met. Given that there is almost
37
38 395 always positive selection on performance (Irshick et al., 2008) and life history (e.g., size,
39
40 396 fecundity: Kingsolver et al. 2012), measuring the sign and magnitude of the genetic correlation
41
42 397 between hormones and these traits would be particularly useful to test predictions about how
43
44 398 hormonal pleiotropy constrains or facilitates phenotypic responses to selection on performance.
45
46 399 For example, selection may most frequently favor individuals with elevated sprint speeds and
47
48 400 fecundity and so knowing whether there is a positive or negative genetic correlation between a
49
50 401 single hormone and those two traits or if that correlation is very strong or very weak can help to
51
52 402 predict whether the phenotypic response to selection on either the performance or life history
53
54
55
56
57
58
59
60

1
2
3 403 trait is constrained by selection on the other. Of course, the effects of such hormonal pleiotropy
4
5 404 on constraining or retarding the phenotypic response to selection will also always be heavily
6
7 405 influenced by the strength of selection on the two traits involved.
8
9

10 406 Admittedly, our literature search may have missed some estimates of the genetic
11
12 407 correlations between hormones and life history or performance traits, though notably the range
13
14 408 for these estimates was wide for both performance and life history traits (Table S1). Despite
15
16 409 several studies estimating the heritabilities of hormone levels in wild species (Pavitt et al., Cox et
17
18 410 al., 2016), all our estimates of genetic correlations between hormones and the traits were also
19
20 411 conducted in captive populations except one study in wild nestling birds (Ruuskanen et al. 2016).
21
22 412 Notably, this latter study was estimating the genetic correlations between hormones in egg yolks
23
24 413 and egg mass (Ruuskanen et al., 2016), which are both likely to be heavily influenced by
25
26 414 maternal investment. Thus, a crucial objective to test some of the predictions about the role of
27
28 415 hormonal pleiotropy in affecting phenotypic responses to selection on any trait is to generate
29
30 416 more estimates of genetic correlations between endocrine traits and life history, performance,
31
32 417 and other phenotypes in juveniles or adults, as can be done in pedigree populations (Wilson et
33
34 418 al. 2009; Taylor et al. 2012). This is particularly needed in studies that estimate the genetic
35
36 419 correlation between a single endocrine trait (such as hormone concentrations) and both a
37
38 420 performance and life history trait in the same individuals (we found no such studies). An
39
40 421 increased number of studies estimating these genetic correlations from natural populations would
41
42 422 help to refine the predictions from our simple model by increasing the precision of our parameter
43
44 423 estimates but they may also indicate whether the genetic correlations are attenuated in natural
45
46 424 populations, which is likely given the greater degree of environment variability experienced by
47
48 425 wild animals.
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 426 Ignoring any deficits in our estimates of genetic correlations between hormones and
4 performance and life history traits, our results suggest that hormonal pleiotropy is only likely to
5 constrain or facilitate responses to selection on performance traits when there is a very strong
6 427 genetic correlation between a hormone and the performance trait (Fig. 3). For example, if
7 selection favors larger individuals with elevated bite force (i.e., positive selection on both the life
8 history and performance traits) and increased testosterone levels enhance size and bite force, the
9 428 phenotypic response to selection on bite force may be increased but only substantially when the
10 genetic correlation between bite force and testosterone is very high (such as 0.9 in Fig 3). It is
11 429 possible that this upper estimate of the genetic correlation between a hormone and a performance
12 trait (0.9) is quite rare given that this magnitude of genetic correlation would suggest that
13 430 variation in a trait was almost entirely due to the concentration of a single hormone (a seemingly
14 unlikely scenario). If increased estimates of the latter in wild populations do suggest that the
15 431 genetic correlation between hormones and life history or performance traits is typically much
16 weaker, this would further emphasize the rarity in which hormonal pleiotropy would affect the
17 432 phenotypic responses to selection.

18
19
20 441 Despite our results suggesting that hormonal pleiotropy can only facilitate or retard
21 phenotypic responses to selection under restrictive conditions, it is still possible. However, if the
22 442 pleiotropic effects of a single hormone caused strong negative co-variation between two traits,
23 443 selection should favor the evolution of mechanisms that enable the dissolution of such co-
24 variation if selection favors increases in both traits. For example, exposure to stressors during
25 444 key developmental periods could decouple any genetic correlations between physiological
26 445 characteristics such as hormone levels and performance and/or life history traits (Careau et al.,
27 446 2014). We note that our results suggest that weak genetic correlations between a hormone and
28 447
29 448
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 449 life history or performance trait does not appear to constrain the phenotypic response to
4
5 450 selection. As such, it would not be surprising to find that weak genetic correlations between
6
7 451 hormones and life history or performance traits are ubiquitous in studies of both captive and wild
8
9 452 animals.

12
13 453 Although much research is still needed to understand whether hormonal pleiotropy can
14
15 454 constrain the independent evolution of performance and life history traits (Hau, 2007; Ketterson
16
17 455 et al., 2009; Swanson and Dantzer, 2014), there is a great need to identify if hormonal pleiotropy
18
19 456 can have other evolutionary consequences. Our aim here was to provide a simple framework to
20
21 457 spur future research about how hormonal pleiotropy could affect phenotypic responses to
22
23 458 selection (see also Ketterson et al. 2005; McGlothlin and Ketterson, 2008; Ketterson et al. 2009).
24
25
26 459 We propose that acquiring four parameters (Fig. 1) using classical quantitative genetics and
27
28 460 phenotypic selection approaches can help to increase our understanding of the latter potential
29
30 461 consequence of hormonal pleiotropy. Longitudinal studies that measure performance and life
31
32 462 history traits in addition to fitness metrics from uniquely-marked individuals could be of great
33
34 463 utility here if they also measured some endocrine trait from the same individuals (Fig. 1).
35
36
37 464 Although we recognize the considerable effort to collect the data needed for this approach as
38
39 465 well as the substantial statistical power required to obtain reliable estimates of genetic
40
41 466 correlations and selection gradients, some well-established study systems may already possess
42
43 467 these data. Such studies will be particularly useful to identify whether the predictions stemming
44
45 468 from our simple model are supported and could have much broader implications in terms of
46
47 469 identifying the evolutionary consequences of pleiotropy caused by physiological mechanisms
48
49 470 beyond just endocrine traits (Finch and Rose, 1995).
50
51
52
53
54
55
56
57
58
59
60

472 **Acknowledgements**

473 We thank Simon Lailvaux and Jerry Husak for inviting us to participate in this
474 symposium and anonymous reviewers for comments on a previous version.

475
476 **Supplementary Data**

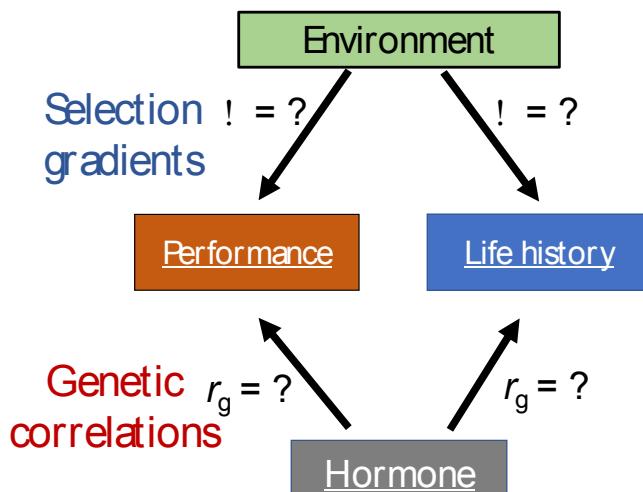
477 Supplementary data available at *ICB* online.

478
479 **Funding**

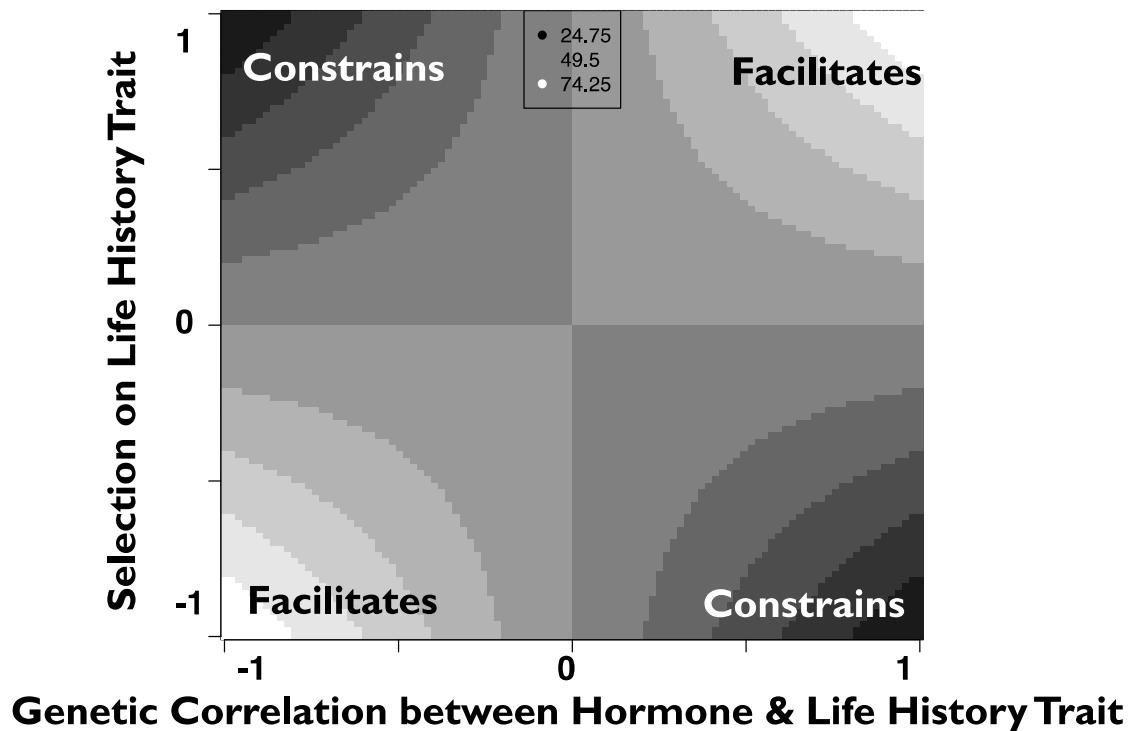
480 Our participation in this symposium was funded by the Society for Integrative and
481 Comparative Biology (Divisions of...), the US National Science Foundation IOS-XXXXXX to
482 S. Lailvaux and J. Husak, and funds from the University of Michigan (B.D).

484 **References**

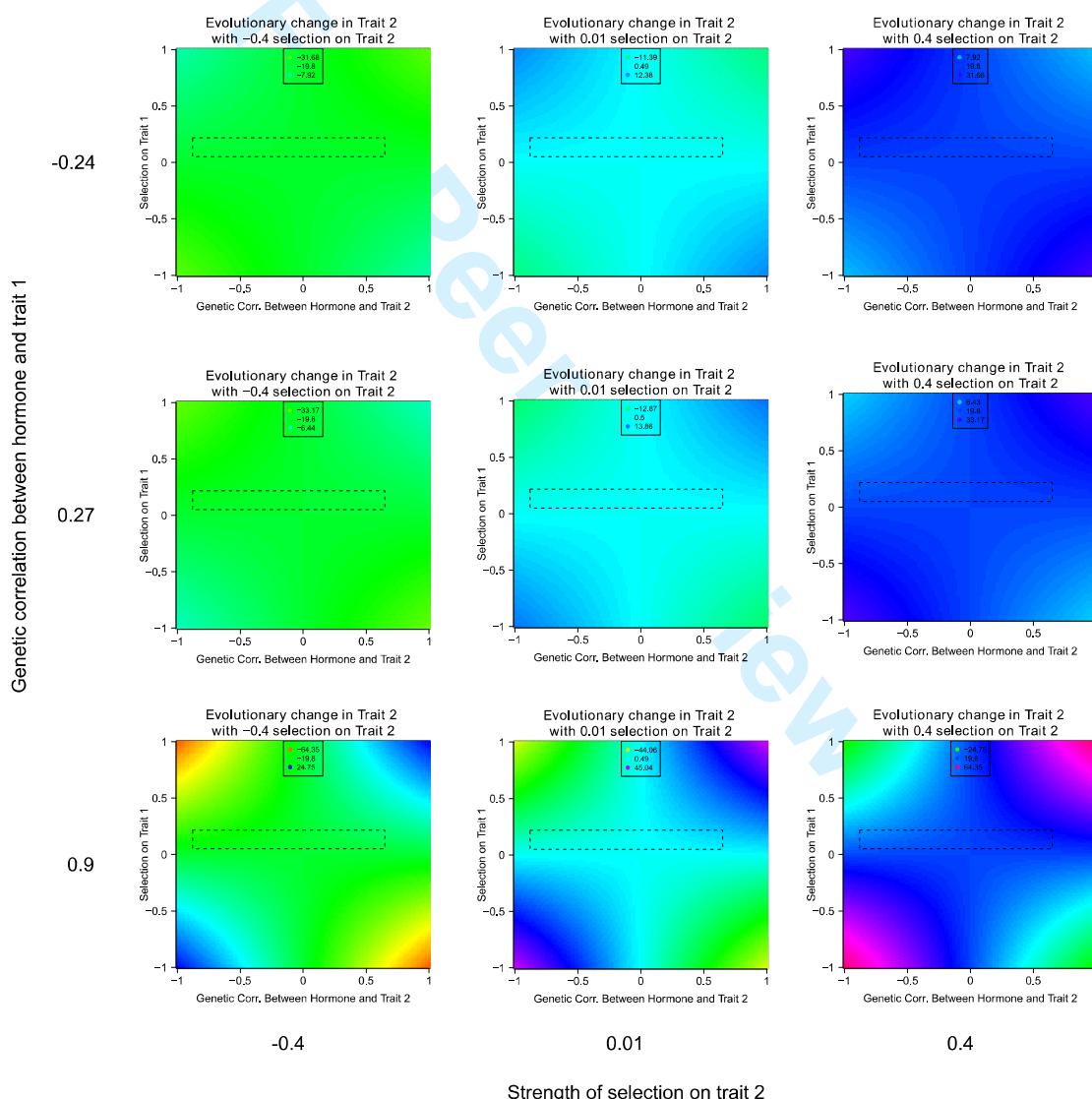
485
486 Adkins-Regan, E. 2008. Do hormonal control systems produce evolutionary inertia?
487 Phil Trans Roy Soc B 363:1599-1609.
488
489 Agrawal AF, Stinchcombe JR. 2009. How much do genetic covariances alter the rate of
490 adaptation? Proc Roy Soc B 276:1183-1191.
491
492 Careau V, Buttemer WA, Buchanan KL. 2014. Developmental stress can uncouple relationships
493 between physiology and behaviour. Biol Lett 10:20140834.
494
495 Cheverud JM. 1984. Quantitative genetics and developmental constraints on evolution by
496 selection. J Theor Biol 110:155-171.
497
498 Conner JK, Karoly K, Stewart C, Koelling VA, Sahli HF, Shaw FH. 2011. Rapid independent
499 trait evolution despite a strong pleiotropic genetic correlation. Am Nat 178:429-441.
500
501 Cox RM, McGlothlin JM, Bonier F. 2016. Hormones as mediators of phenotypic and genetic
502 integration: an evolutionary genetics approach. Integ Comp Biol 56:126-137.
503
504 Dantzer B, Swanson EM. 2012. Mediation of vertebrate life histories via insulin-like growth
505 factor-1. Biol Rev 87:414-429.
506
507 Davis ME, Simmen RCM. 1997. Genetic parameter estimates for serum insulin-like growth
508 factor I concentration and performance traits in Angus beef cattle. J Anim Sci 75:317-
509 324.
510
511 Emlen DJ, Warren IA, Johns A, Dworkin I, Lavine LC. 2012. A mechanism of extreme growth
512 and reliable signaling in sexually selected ornaments and weapons. Science 337:860-864.
513
514 Falconer DS, Mackay FC. 1996. *Introduction to Quantitative Genetics*. Longman, Harlow, UK.
515
516 Fairbairn DJ, Yadlowski DE. 1997. Coevolution of traits determining migratory tendency:
517 correlated response of a critical enzyme, juvenile hormone esterase, to selection on wing
518 morphology. J Evol Biol 10:495-513.
519
520 Finch CE, Rose MR. 1995. Hormones and the physiological architecture of life-history
521 evolution. Q Rev Biol 70:1-52.
522
523 Gu X, Zera AJ. 1996. Quantitative genetics of juvenile hormone esterase, juvenile hormone
524 binding and general esterase activity in the cricket *Gryllus assimilis*. Heredity 76:136-
525 142.
526
527 Hau M. 2007. Regulation of male traits by testosterone: implications for the evolution of
528 vertebrate life histories. BioEssays 29:133-144.
529


1
2
3 530 Hayhurst C, Flint APF, Løvendahl P, Woolliams JA, Royal MD. 2009. Genetic variation of
4 531 metabolite and hormone concentration in UK Holstein-Friesian calves and the genetic
5 532 relationship with economically important traits. *J Dairy Sci* 92:4001-4007.
6 533
7 534 Hoque MA, Katoh K, Suzuki K. 2009. Genetic associations of residual feed intake with serum
8 535 insulin-like growth factor-I and leptin concentrations, meat quality, and carcass cross-
9 536 sectional fat area ratios in Duroc pigs. *J Anim Sci* 87:3069-3075.
10 537
11 538 Irschick DJ, Meyers JJ, Husak JF, Le Gailliard J-F. 2008. How does selection operate on whole-
12 539 organism functional performance capacities? A review and synthesis. *Evol Ecol Res*
13 540 10:177-196.
14 541
15 542 Ketterson ED, Nolan V, Jr. 1992. Hormones and life histories: an integrative approach. *Am Nat*
16 543 140: S33-S62.
17 544
18 545 Ketterson ED, Nolan V, Jr., Sandell M. 2005. Testosterone in females: Mediator of adaptive
19 546 traits, constraint on sexual dimorphism, or both? *Am Nat* 166: S85-S98.
20 547
21 548 Ketterson ED, Atwell JW, McGlothlin JW. 2009. Phenotypic integration and independence:
22 549 Hormones, performance, and response to environmental change. *Integrative and*
23 550 *Comparative Biology* 49:365-379.
24 551
25 552 Kingsolver JG, Diamond SE, Siepielski AM, Carlson SM. 2012. Synthetic analyses of
26 553 phenotypic selection in natural populations: lessons, limitations and future directions.
27 554 *Evol Ecol* 26:1101-1118.
28 555
29 556 Lande R, Arnold SJ. 1983. The measurement of selection on correlated characters. *Evolution* 37:
30 557 1210-1226.
31 558
32 559 Lynch M, Walsh B. 1998. *Genetics and Analysis of Quantitative Traits*. Sinauer and Associates,
33 560 Inc. Sunderland, MA
34 561
35 562 McGlothlin JW, Ketterson ED. 2008. Hormone-mediated suites as adaptations and evolutionary
36 563 constraints. *Phil Trans Roy Soc B* 363: 1611-1620.
37 564
38 565 McGlothlin JW, Jawor JM, Ketterson ED. 2007. Natural variation in a testosterone-mediated
39 566 trade-off between mating effort and parental effort. *Am Nat* 170:864-875.
40 567
41 568 Morrissey MB, Walling CA, Wilson AJ, Pemberton JM, Clutton-Brock TH, Kruuk LEB. 2012.
42 569 Genetic analysis of life-history constraint and evolution in a wild ungulate population.
43 570 *Am Nat* 179:E97-E114.
44 571
45 572 Morrissey MB, Sakrejda K. 2013. Unification of regression-based methods for the analysis of
46 573 natural selection. *Evolution* 67:2094-2100.
47 574
48 575 Nkrumah JD, Keisler DH, Crews DH, Jr., Basarab JA, Wang Z, Li C, Price MA, Okine EK,

1
2
3 576 Moore SS. 2007. Genetic and phenotypic relationships of serum leptin concentration with
4 577 performance, efficiency of gain, and carcass merit of feedlot cattle. *J Anim Sci* 85:2147-
5 578 2155.
6 579
7 580 Pavitt AT, Walling CA, Pemberton JM, Kruuk LEB. 2014. Heritability and cross-sex genetic
8 581 correlations of early-life circulating testosterone levels in a wild mammal. *Biol Lett* 10:
9 582 20140685.
10 583
11 584 Roff DA, Stirling G, Fairbairn DJ. 1997. The evolution of threshold traits: a quantitative genetic
12 585 analysis of the physiological and life-history correlates of wing dimorphism in the sand
13 586 cricket. *Evolution* 51:1910-1919.
14 587
15 588 Rosvall KA, Bergeron Burns CM, Barske J, Goodson JL, Schlinger BA, Sengelaub DR,
16 589 Ketterson ED. 2012. Neural sensitivity of sex steroids predicts individual differences in
17 590 aggression: implications for behavioural evolution. *Proc Roy Soc B* 279:3547-3555.
18 591
19 592 Ruuskanen S, Gienapp P, Groothuis TGG, Schaper SV, Darras VM, Pereira C, de Vries B,
20 593 Visser ME. 2016. Heritable variation in maternally derived yolk androgens, thyroid
21 594 hormones and immune factors. *Heredity* 117:184-190.
22 595
23 596 Sinervo B, Svensson E. 1998. Mechanistic and selective causes of life history trade-offs and
24 597 plasticity. *Oikos* 83:432-442.
25 598
26 599 Stearns SC. 1989. Trade-offs in life-history evolution. *Func Ecol* 3:259-268.
27 600
28 601 Swanson EM, Dantzer B. 2014. Insulin-like growth factor-1 is associated with life-history
29 602 variation across Mammalia. *Proc R Soc B* 281:20132458.
30 603
31 604 Taylor RW, Boon AK, Dantzer B, Réale D, Humphries MM, Boutin S, Gorrell JC, Coltman
32 605 DW, McAdam AG. 2012. Low heritabilities, but genetic and maternal correlations
33 606 between red squirrel behaviours. *J Evol Biol* 25:614-624.
34 607
35 608 Warren IA, Gotoh H, Dworkin IM, Emlen DJ, Lavine LC. 2013. A general mechanism for
36 609 conditional expression of exaggerated sexually-selected traits *BioEssays* 35:889-899.
37 610
38 611 Wilson AJ, Réale D, Clements M, Morrissey M, Postma E, Walling C, et al. 2009. An
39 612 ecologist's guide to the animal model. *J Anim Ecol* 79:13-26.
40 613
41 614 Zera AJ. 2004. The endocrine regulation of wing polymorphism: state of the art, recent surprises,
42 615 and future directions. *Integr Comp Biol* 43:607-616.
43 616
44 617 Zera AJ, Zhang C. 1995. Direct and correlated responses to selection on hemolymph juvenile
45 618 hormone esterase activity in *Gryllus assimilis*. *Genetics* 141:1125-1134.
46 619
47 620 Zera AJ, Zhang C. 1998. Evolutionary endocrinology of juvenile hormone esterase in *Gryllus*
48 621 *assimilis*: direct and correlated responses to selection. *Genetics* 141:1125-1134.
49
50
51
52
53
54
55
56
57
58
59
60


1
2
3 622
4 623 Zera AJ, Sall J, Schwartz R. 1996. Artificial selection on JHE activity in *Gryllus assimilis*:
5 624 nature of activity differences between lines and effect on JH binding and metabolism.
6 625 Archives of Insect Biochemistry and Physiology 32:421-428.
7
8 626
9 627 Zera AJ, Sanger T, Cisper GL. 1998. Direct and correlated responses to selection on JHE activity
10 628 in adult and juvenile *Gryllus assimilis*: implications for stage-specific evolution of insect
11 629 endocrine traits. Heredity 80:300-309.
12
13 630
14 631
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review


1
2
3 632 **Figure 1.** Overview of model components to identify if hormonal pleiotropy constrains or
4 633 facilitates phenotypic responses to selection. The environment imposes selection upon
5 634 performance and life history traits where the relationship between a phenotype (performance or
6 635 life history trait, etc.) and some fitness metric can be quantified to estimate selection gradients
7 636 (β). Quantitative genetics can be used to estimate the genetic correlations (r_g) between a single
8 637 hormone and the two phenotypes. These four components make up our simple quantitative
9 638 genetics model and are obtainable from longitudinal individual-based studies of wild animals.
10 639
11
12

1
2
3 642 **Figure 2.** Hormonal pleiotropy can constrain or facilitate the response to selection depending
4 643 upon the strength and sign of the genetic correlation between the hormone and the life history
5 644 and performance traits and selection acting on each trait. Here, the model assumes that the
6 645 performance trait experiences positive selection (Irshick et al. 2008) and there is a positive
7 646 genetic correlation between the hormone and that performance trait. For example, individuals
8 647 with faster sprint speeds are more likely to survive and a hormone such as testosterone enhances
9 648 the expression of sprint speed (i.e., positive genetic correlation between testosterone and spring
10 649 speed). If the same hormone influences a life history trait, selection on performance may be
11 650 facilitated or constrained depending upon the sign and magnitude of both i) the genetic
12 651 correlation between the hormone and the life history trait and ii) the selection gradient acting on
13 652 the life history trait. For instance, if the same hormone enhances the expression of the life history
14 653 trait (positive genetic correlation between the hormone and life history trait) and there is positive
15 654 selection on the life history trait (upper right area in panel), the response to selection on
16 655 performance would be facilitated. In contrast, if increases in the hormone (testosterone) enhance
17 656 the expression of the life history trait (positive genetic correlation between the hormone and life
18 657 history trait) but there is negative selection on the life history trait (bottom right area of figure),
19 658 the response to selection on performance may be constrained. In this model, we varied both the
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 663
54 664
55
56
57
58
59
60

665 **Figure 2.** Color maps showing the magnitude of change in a performance trait after 100
666 generations of evolution. Each sub-plot has an independent x-axis that represents the genetic
667 correlation between the hormone and the life history trait, and an independent y-axis that
668 represents variation in strength of selection on the life history trait. Panels **A-C** were run with a
669 genetic correlation between the hormone and the performance trait of -0.24, d-f of 0.27, and **G-I**
670 0.9. Panels **A, D, and G** exhibit a strength of selection on the performance trait of -0.4, **B, E, and**
671 **H** of 0.01, and **C, F, and I** of 0.4. Each sub-plot has a legend showing the color for the minimum,
672 mean, and maximum value for that sub-plot, but the colors in each plot have the same meaning.
673 The dashed lines making up boxes on each plot are in the same place, and represent values for
674 these parameters from existing literature (Table S1).

677
678

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60679
680

For Peer Review

1 Table S1. List of studies that have estimated the genetic correlation between a hormone and life history or performance traits. We gathered a non-
 2 exhaustive list of those studies that have estimated the genetic correlation between a hormone or hormone derivative (Juvenile Hormone esterase) and
 3 performance and life history traits. Given the extreme rarity of studies investigating genetic correlations between hormones and performance traits,
 4 performance traits were broadly defined including the presence or absence of wings (wing polymorphism in crickets) and daily feed intake in pigs.
 5 We recognize that growth could be categorized as either a life history trait or performance trait but here we adhered to the former. Note that in some
 6 cases there are multiple estimates from the same study because the estimates were made either from the dam or sire. To generate this list, we
 7 searched Web of Science (December 2016) using a combination of keywords including “genetic correlation”, “phenotypic correlation”, “hormone”,
 8 “endocrine”, “heritability”, “quantitative genetics”, “performance”, and “life history”. We also conducted forward and backward searches using those
 9 sources we located using this initial search. The mean and SE of the genetic correlation (SE not shown if not available).
 10
 11

Taxa	Species	Hormone	Life History Trait	Performance Trait	Sex	Genetic Correlation	Reference
Insect	<i>Gryllus firmus</i>	Juvenile hormone esterase	Fecundity	-	F	-0.88 ± 0.36 [¶]	Roff et al. (1997)
	<i>Gryllus firmus</i>	Juvenile hormone esterase		-	F	-0.5 ± 0.23 [*]	Roff et al. (1997)
	<i>Gryllus firmus</i>	Juvenile hormone esterase	-	Wing polymorphism	F	0.9 ± 0.20	Roff et al. (1997)
	<i>Gryllus firmus</i>	Juvenile hormone esterase	-	Wing polymorphism	F	0.28 ± 0.44 [¶]	Roff et al. (1997)
Bird	<i>Parus major</i>	Androstenedione	Egg mass	-	F	0.65 ± 0.35	Ruuskanen et al. (2016)
	<i>Parus major</i>	Testosterone		-	F	0.33 ± 0.34	Ruuskanen et al. (2016)
	<i>Parus major</i>	Triiodothyronine		-	F	0.34 ± 0.43	Ruuskanen et al. (2016)
Mammal	<i>Sus scrofa domesticus</i>	Insulin-like growth factor 1 (IGF-1)	-	Daily feed intake	M+F	0.17 ± 0.07 [#]	Hoque et al. (2009)
	<i>Sus scrofa domesticus</i>	Insulin-like growth factor 1 (IGF-1)	-	Daily feed intake	M+F	-0.24 ± 0.08 [§]	Hoque et al. (2009)
	<i>Sus scrofa domesticus</i>	Leptin	-	Daily feed intake	M+F	0.26 ± 0.06	Hoque et al. (2009)
	<i>Bos taurus</i>	Growth hormone	Calving interval	-	F	0.64 ± 0.3	Hayhurst et al. (2009)
	<i>Bos taurus</i>	Leptin	Growth	-	M	0.05 ± 0.28	Nkrumah et al. (2007)
	<i>Bos taurus</i>	Insulin-like growth factor 1 (IGF-1)	Growth	-	M+F	-0.4	Davis and Simmen (1997)

[¶]Estimate from sire

^{*}Estimate from dam

[#]IGF-1 measured at 8 weeks

[§]IGF-1 measured when 105 kg

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

For Peer Review