

**Complex reproductive traits and whole-organism
performance**

Journal:	<i>Integrative and Comparative Biology</i>
Manuscript ID	ICB-2017-0098
Manuscript Type:	Symposium article
Date Submitted by the Author:	01-Apr-2017
Complete List of Authors:	Orr, Teri; University of Utah, Biology Garland, Jr., Theodore; University of California, Riverside, Biology
Keywords:	ecomorphology, evolutionary physiology, individual variation, performance traits, reproduction, sexual selection

SCHOLARONE™
Manuscripts

1 2 Complex reproductive traits and whole-organism performance 3 4 5 6

7 Orr, TJ¹ and T. Garland, Jr.²
8
9

10 1 Dept. of Biology, Univ. of Utah
11
12

13 2 Dept. of Biology, Univ. of California, Riverside
14
15

16 teri.orr@utah.edu
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Keywords:

ecomorphology; evolutionary physiology; individual variation; performance traits; reproduction; sexual selection

1 2 ABSTRACT 3

4 Arnold's (1983) path-analytic paradigm, considering "morphology, performance, and fitness," has been
5 elaborated in several ways. For example, current versions (e.g., Fig. 1 in Storz et al. 2015, *Am. J.*
6 *Physiol.* 309:R197-R214) recognize the level of "behavior" (including aspects of motivation) as a filter
7 between performance abilities (only measurable if motivation is maximal) and fitness components.
8 Performance abilities constrain behavior, but behavioral choices may shield performance from
9 selection. Conceptual and empirical issues remain, such as the extent to which individual variation in
10 lower-level subordinate traits (e.g., circulating hormone concentrations) might directly affect behavior,
11 growth rates, sexual maturation, etc., rather than having effects only through paths involving some
12 aspect of performance. Moreover, empirical studies have yet to encompass more than a few possible
13 paths in a given system, in part because life-history researchers rarely communicate with those focused
14 on performance. Most life-history studies ponder trade-offs associated with reproductive effort, but
15 studies of locomotor performance (e.g., maximal sprint speed) have rarely considered trade-offs with
16 reproduction. This lack of connection is surprising because both life history (e.g., clutch size) and
17 locomotor performance (e.g., locomotor stamina) traits require allocation of energy and other resources,
18 so trade-offs between these trait types may be expected. These perspectives and cultures could be
19 bridged by a focus on the ability of organisms to perform components of reproductive biology (e.g.,
20 lactation performance could be studied in animals maximally "motivated" by manipulation of litter size
21 or endocrine function). Alternatively, one could study impacts of reproduction on performance, as
22 when bats and live-bearing fishes lose maneuverability during gestation. We also consider sperm
23 performance in the context of the paradigm and illustrate that the paradigm can easily be utilized as a
24 frame-work within which to consider key aspects of sperm biology.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 2 Introduction 3

4 The concept of whole-organism performance (e.g., Bennett 1980; Huey and Stevenson 1979) and what
5 has come to be known as “the ecomorphological paradigm” (Arnold 1983; Garland and Losos 1994;
6 Lailvaux and Husak 2014) has provided biologists a framework within which to consider the integrated
7 effects of multiple levels of biological organization on how an animals interact with their environment
8 in various ways that influence Darwinian fitness. Taking the example presented in Arnold’s (1983)
9 seminal paper, one might study how individual variation in the sizes of snake jaw bones affect
10 maximal swallowing ability, which could be measured through a series of trials in the laboratory, and
11 then quantified by path analysis. If the individual snakes were then marked and released in the field,
12 then one could determine components of fitness, such as survival and reproductive success, and then
13 further apply path analysis to achieve an integrated picture of morphology, performance, and fitness
14 (Arnold 1983).

15 Over time, this framework has been refined, modified, and expanded. For example, Arnold’s
16 (1983) original model did not include behavior as an explicit or distinct level of organization, whereas
17 one of us has viewed behavior as a potentially crucial “filter” intervening between selection and
18 performance (Garland et al. 1990; Garland 1994a; 1994b; Garland and Carter 1994; Garland and Kelly
19 2006; Garland and Losos 1994). (Behavior can also be considered as a factor affecting performance
20 via brain motivation and reward pathways, but the paradigm seems most applicable when one can
21 presume that animals are maximally motivated to perform, such that motivation is a constant [100%]
22 and hence falls out of the path diagram). Other important expansions have involved the addition of
23 energetics (Arnold 1988; Careau and Garland 2012), use of the paradigm to elucidate trade-offs (e.g.,
24 Ghalambor et al. 2003; Oufiero and Garland 2007), and the placement of life history traits, such as
25 survivorship, age at first reproduction, and fecundity (e.g., Oufiero and Garland 2007; Lailvaux and
26 Husak 2014). A recent and relatively complete version of the paradigm is shown in Fig. 1 (Storz et al.
27 2015), and we use this as our taking-off point for what follows.

1
2 Despite the value of this paradigm demonstrated by various conceptual (see previous
3 paragraph) and empirical (e.g., Aerts et al. 2000; Careau and Garland 2012; Enriquez-Ur et al. 2015;
4 Garland and Losos 1994; Gomes et al. 2016; Goodman 2007; Irschick et al. 2005; Oufiero and
5 Garland 2007; Santana and Miller 2016; Scales et al. 2009; Sinervo and Calsbeek 2003; Wainwright
6 1994; Walker 2007) studies, and its continued development, it has been rarely used to evaluate
7 reproductive traits, such as litter size, gestation length or lactation performance. Here, we discuss
8 reproductive performance traits, with a focus on how they could be measured as well as how they
9 might be placed into the context of current versions of the ecomorphological paradigm. We highlight
10 the enormous value in measuring this modality (reproduction) of animal performance for evolutionary
11 biologists. For example, sperm performance has serious implications for male fitness and lactation
12 performance largely dictates offspring growth rates during early ages in mammals. We also make
13 strides to include sexual selection into the paradigm.
14
15

16 As with other performance traits, ensuring that measurement achieves “maximal” performance
17 in fully “motivated” individuals are issues facing attempts to evaluate reproductive performance traits.
18 Nevertheless, some such traits are clearly tractable but remain understudied in the context of the
19 ecomorphological paradigm. Lactation performance is one such case. Although this term has been
20 used in agriculture and is of enormous value for the dairy industry (Bell et al. 2000; Kung et al. 2000;
21 DeFran et al. 2004), it remains largely ignored in the world of ecological and evolutionary physiology,
22 except for studies in mice by two research groups (e.g., Hammond et al. 1996; Hammond and
23 Diamond 1992; 1994; Hammond and Kristan 2000; Król and Speakman, J.R., 2003; Speakman et al.
24 2001; Speakman and Król 2005).
25
26

27 For studies examining “classic” performance traits - such as maximal sprint speed -
28 reproduction is still worth considering beyond being a “nuisance” variable. Specifically, although a
29 gravid female will most likely be slower in terms of maximal sprint speed (barring changes in plastic
30 traits that could compensate for the negative effects of pregnancy: cf. Oufiero and Garland 2007), the
31
32

1 details of how her performance changes across gestation is itself an interesting and important
2 (particularly in regards to natural selection) question (Garland 1985; Garland and Else 1987; Kuo and
3 Irschick *in-prep*). One might examine the impact of reproduction itself on performance. For example,
4 gravid lizards run and jump poorly as compared with non-gravid individuals, and female bats and live-
5 bearing fishes lose maneuverability during gestation (Table 1). We simply do not know how such
6 performance traits change across the course of gestation (but see; Scales and Butler 2007). Thus,
7 despite being well-documented, changes in mass, gait, endocrine function, and metabolism associated
8 with gestation remain poorly understood in the context of their effects on whole-organism performance.
9 Such changes are sure to have important consequences for Darwinian fitness (lifetime reproductive
10 success), and can be viewed in the general contexts of constraints and trade-offs and constraints
11 (Garland 2014). However, trade-offs and selective pressures may differ between the sexes.
12

13 Including reproductive traits in studies of performance may help efforts to reveal some of the
14 many potential sex-specific types of selection on performance traits. Presuming that traits in the two
15 sexes positively genetically correlated, then sex-specific selection (including aspects of sexual
16 selection) may "pull" the phenotype of the opposite sex along and as a result may limit (or enhance)
17 the capacity and thereby performance of both sexes (see Kaliontzopoulou et al. 2015). For example, if
18 females require greater endurance to compensate for the burdens of carrying eggs or developing
19 embryos, then selection may have shaped certain aspects of their biology (for example, morphology or
20 physiology) to compensate (Veasey et al. 2001), either with respect to their baseline performance
21 abilities or plastic changes during pregnancy, including possible behavioral changes (e.g., Bauwens
22 and Thoen 1981; Brodie 1989; Downes and Bauwens 2002). Interestingly, female reproduction may
23 improve performance (McCoy et al. 1994). Similarly, because changes in body size are part of their
24 usual biology, females may also recover faster in response to mass changes relative to males (e.g., via
25 tail-loss), as seen in skinks (Chapple and Swain 2002).
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 Males and females also share genes for many traits although selection on traits may differ
2 between the sexes. Shared genes for some subordinate traits including those that affect performance
3 may lead to selection in one sex pulling along the performance of another sex. For example; females
4 may experience selection for greater endurance to escape predators while pregnant which, could lead to
5 selection on an inheritable trait (ex- oxygen binding affinity of hemoglobin or a complex trait like lung
6 capacity) and the offspring of successful females, both daughters and sons, might inherit these genes
7 leading to high endurance in not just daughters but also sons. The potential nuances of how sex-
8 specific selection (via natural or sexual selection), interact to result in unique solutions that may enable
9 or limit performance remains an area of enormous theoretical and empirical interest. The implications
10 for how reproduction might impact performance, both across evolutionary time and via phenotypic
11 plasticity, are highly deserving of additional study within the context of the ecomorphological
12 paradigm.

13 Our goal here is to more fully integrate reproductive biology and sexual selection theory with
14 the ecomorphological paradigm. After reviewing the paradigm, we discuss how this integration of
15 paradigm, reproductive biology, and sexual selection might be done, where reproductive traits fit into
16 the paradigm, and how they can be treated as aspects of performance. We also support the view that
17 the field of sexual selection might benefit from placing many traits into the ecomophology paradigm
18 (see; Husak and Fox 2008; Lailvaux et al. 2010; Lailvaux and Husak 2014; Lailvaux and Irschick
19 2006; Oufiero and Garland 2007).

21 We review cases in which the ecomorphological paradigm might intersect reproductive biology
22 and address three main questions:

23 (1) How might reproduction itself impact performance and hence fit into the ecomorphological
24 paradigm?

25 (2) What reproductive traits might be considered as performance traits and what is the utility in
26 doing so?

1 (3) What kinds of experiments might be done from the perspective of an expanded paradigm?
2
3
4
5
6

7 **Review**
8

9 ***What the paradigm is (at present)***
10

11 Consistently updated subsequent to its initial presentation as a path-model, the
12 ecomorphological paradigm (Arnold 1983; Lailvaux and Husak 2014; Storz et al. 2015) has proven
13 extremely useful for the investigation of traits in a framework that facilitates their consideration
14 relative to other levels of selection (Fig. 1 reproduced from Storz et al. 2015).
15
16

17 Most versions of the paradigm start with “**subordinate traits**.” In Fig. 1, subordinate traits are
18 on the left and are those, at lower levels of biological organization, that act together with other such
19 traits to affect or determine characteristics at higher levels of organization. For example, as above (Fig.
20
21 1) the oxygen affinity of hemoglobin might interact with maximal heart rate and various aspects of
22
23 muscle function to dictate stamina.
24
25

26 Arnold (1983) defined **performance** as a “score in some ecologically relevant activity” that
27 must be “phylogenetically interesting.” Performance is also “the ability of an individual to conduct a
28 task when maximally motivated” (Careau and Garland 2012). A good deal has been written on what
29 might be considered a performance trait, and two key issues are prevalent in the literature, the
30 aforementioned issue of achieving maximal motivation during measurements and ecological relevance
31 (i.e. “ecological performance”: Irschick 2003; Irschick and Garland 2001).
32
33

34 Taken together, multiple performance traits (abilities) constrain behavior. In other words
35 “performance abilities set an “envelope” (or “performance space”; Bennett 1989) within which
36 behavior is confined” (Careau and Garland 2012). **Behavior** can be defined as “the... actions and
37 mannerisms made by individuals, organisms, systems, or artificial entities in conjunction with
38 themselves or their environment...Conscious or subconscious, overt or covert, and voluntary or
39 involuntary.” (Wikipedia). Simply put, behavior is anything an animal does (or fails to do!).
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 Behaviors occur during all daily activities (e.g, foraging) and also allow an organism to respond
2 immediately to its environment. Some behaviors can lead directly to fitness, such as mating or
3 parental care or evasive strategies that allow escape from a predator (Fig. 1).
4

5 **Primary Fitness Components** are demographic parameters of Darwinian fitness. Such traits
6 are what most people measure as a surrogate for Darwinian fitness, but unless all of them are measured
7 fitness cannot be accurately quantified. Moreover, additional interesting reproductive traits can be
8 measured as components of the three primary fitness components, such as number of offspring sired,
9 survival of young to weaning, and attractiveness of male offspring to females. We have added several
10 such subcomponents of primary fitness (Fig. 1). Thus, the paradigm ranges from the level of the gene
11 (not shown in Fig. 1) to the cell (as part of the depicted Subordinate Traits) and eventually to
12 Darwinian fitness.
13

14 Unlike the enormous body of literature subsequent to Arnold's (1983) paper that has found
15 utility in the ecomorphological paradigm (in particular, research in the areas of ecological and
16 evolutionary physiology), the field of sexual selection has functioned largely in isolation of this
17 paradigm (but see; Husak and Fox 2008; Irschick and Garland 2001; Lailvaux and Irschick 2006;
18 Lailvaux and Husak 2014; Lailvaux et al. 2010; Oufiero and Garland 2007), likely due to lack of
19 research overlap. However, we argue that the ecomorphological paradigm may provide a beneficial
20 frame-work for the field of sexual selection, and that several traits currently the focus of sexual
21 selection research may be of interest to those in ecological and evolutionary physiology (Bennett and
22 Huey 1990; Feder et al. 1987; 2000; Garland and Carter 1994).
23

24 ***Sexual selection theory***

25 Since its inception by Darwin (1859; 1871), sexual selection has focused on the role of diverse
26 traits, both physical and behavioral, for increasing mating opportunities and thereby contributing to
27 fitness. Competition was a key factor Darwin considered when formulating his ideas of sexual
28

1 selection. Darwin's ideas regarding mating competition and sexual selection are summarized well by
2
3 Andersson (1994). "Competition is here used in a similar sense as in ecology: competition occurs
4 whenever the use of a resource (in this case, mates) by one individual makes the resource harder to
5 come by for others. This is so whether or not the rivals meet in actual contests; the only requirement is
6 that a user makes the resource less available to others. Mate choice by one sex therefore usually
7 implies (indirect) competition over mates in the other sex, even if rivals never meet each other."
8
9 (Andersson 1994 p 9).
10
11

12 In scientific research, sexual selection is usually discussed in the context of either 1) male-male
13 competition (intra-sexual selection on combat traits, ritualized behaviors, and weapons) and/or 2)
14 through female choice (inter-sexual selection on showy traits of possible mates, such as elaborate tails
15 of some birds [note that males may also choose mates by these same processes, although females are
16 usually the "choosier" sex (*sensu* Fisher 1930)]. Both processes involve selection related to
17 differences in number of mates (Andersson 1994; Darwin 1859, 1871; Kvarnemo & Simmons 2013)
18 and impact primary fitness components such as fecundity that underlie Darwinian fitness (Fig. 1).
19 Sexual selection is known to shape both primary (sex-specific traits used for reproduction, such as
20 genitalia (Arnqvist 1998; Hosken and Stockley 2004) and secondary (sex-specific traits not used for
21 actual reproduction, such as coloration) (Andersson 1994; Zuk et al. 1992) sexual characteristics.
22
23

24 Some researchers have successfully examined secondary sexual characteristics within the
25 ecomorphological paradigm to show the putative costs (or lack thereof) of such sexual traits for
26 performance (Mowles and Jepson 2015; Oufiero & Garland 2007; Sewall 2015 and others). Some
27 such studies have found a negative impact of sexually selected traits on performance (ex. fiddler crabs;
28 Allen and Leinton 2007; side-blotched lizards; Brandt 2003; and cockroaches Mowles and Jepson
29 2015), while others have not found performance costs associated with such traits (e.g., *Anolis* lizards;
30 Vanhooydnk et al. 2005 a, b). Despite the growing number of studies of sex-specific traits in the
31 context of performance and the ecomorphological paradigm this remains an uncommon area of study
32
33

1 and, many additional aspects of sexual selection remain entirely unconsidered (Table 2) in the
2 ecomorphological paradigm (but see discussions in; Irschick et al. 2007; Oufiero and Garland 2007).
3
4

5 Since the 1970s, sexual selection theory has grown to encompass not just pre-copulatory mate
6 choice but also post-copulatory processes. Post-copulatory sexual selection broadly includes the many
7 processes after mating that can result in differential fertilization success. As with pre-copulatory
8 sexual selection, post-copulatory sexual selection operates on both sexes. The primary mode of male-
9 centered post-copulatory sexual selection is “sperm competition”; which occurs when females mate
10 with multiple males whose ejaculates and associated sperm aim to out number, out swim or in some
11 other way “beat” each other to fertilize an ovum (Parker 1970; 1979). Female-centered post-
12 copulatory sexual selection on the other hand centers on processes under the broad term “cryptic
13 female choice” that females use to control fertilization for example by selectively using sperm e.g., by
14 directing sperm from certain males to the ovum while dumping sperm from other males (Eberhard
15 1996; Thornhill 1983). Because conception involves traits of both sexes, post-copulatory sexual
16 selection often results in co-evolution (antagonistic or otherwise) between male traits like the piercing
17 syringe-like genitalia of male bed-bugs and female traits like the correspondingly thicker body tissues
18 of female bed-bugs (Andersson 1994; Arnqvist & Rowe 1996; Eberhard 1996; Siva-Jothy 2006).
19
20

21 The increasing consideration of post-copulatory sexual selection has not yet included ties to the
22 ecomorphological paradigm. In particular, primary sexual traits (e.g., genitalia, gonads, gametes)
23 remain characteristics that have not been examined in the context of the paradigm. Sexual selection
24 can also lead to different types of mating systems which in turn impact allocation and life history
25 strategy differences between the sexes (see below). Thus, the expansion of the paradigm to include life
26 history traits (Lailvaux and Husak 2014; Storz et al. 2005; this issue) presents an opportunity to place
27 these traits within the paradigm.
28
29

30 For example, sexual selection theory has also included attempts to understand which sex should
31 invest in parental care and to what extent. In turn, it has been shown that parental care can lead to
32
33

1 diverse mating systems and vice-versa (Orians 1969). Such interactions between which sex is “tied” to
2 a reproductive event (with gestation being a shackle between a female and her current reproductive
3 investment that many male vertebrates entirely avoid) form the basis of the theory of parental care (e.g.,
4 who undergoes gestation, can lactate etc.). These same traits lead to differential offspring survival (Fig.
5 1, “survivorship”) (paternal care, maternal care), and thus are clearly important for Darwinian fitness.
6 We now consider how researchers might integrate the ecomorphological paradigm with reproductive
7 biology in general.
8
9
10
11
12
13
14
15
16
17
18
19
20

21 **How we might update the ecomorphological paradigm and/or reconsider what traits should be 22 emphasized**

23 ***How might reproduction impact current models?***

24 Although it is not common practice, reproductive traits can be added to current versions of the
25 ecomorphological paradigm. In many cases these reproductive traits would be depicted as arrows
26 going back from fecundity to performance (whereby such traits are usually assumed to negatively
27 impact performance) (Fig. 2). However, reproduction can also result in increased performance such as
28 in the case of male *Sceloporus* that have greater endurance while “reproductive” (seeking and courting
29 mates, defending territories) (John-Alder et al. 2009). This increase in performance is underpinned by
30 increased testosterone and corticosterone levels in these same males during this time-frame (John-
31 Alder et al. 2009).
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47 Performance changes associated with gestation are caused by various aspects of a female’s
48 physiology or morphology (i.e., subordinate traits in Fig. 1) being impacted by gestation. A few
49 examples of these changes include: an increase in body mass, greater drag, altered posture, and
50 decreases in available energy. The impacts of these changes have been documented by a series of
51 studies in a variety of taxa (Table 1). These studies demonstrate that gestation commonly negatively
52 impacts maximal sprint speed, endurance, acceleration as well as a few other performance traits.
53
54
55
56
57
58
59
60

1
2 However, this non-exhaustive summary of studies on the influence of gravidity on performance
3 indicates a taxonomic bias, with a focus on squamates. The paucity of data on mammals is especially
4 noteworthy. From a theoretical stand-point, mammals are particularly interesting in regards to
5 reproduction given the extensive time over which embryos are maintained *in-utero*. Meanwhile,
6 females continue about (most of) their usual behaviors that require various performances (e.g., running,
7 jumping, biting). Table 1 indicates that in mammals and many other taxa the nuances of how gestation
8 impacts performance remains an understudied area of comparative, ecological, and evolutionary
9 physiology.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Predictions: gestation and performance

A series of predictions can be made for the direction, magnitude, and type of change in performance as a result of gestation. First, we might predict to see gradual and relatively linear changes. Such changes may cause a decrease in performance, but this may not always be the case and instead an increase in performance might occur. For example, female Finnish endurance runners had increased performance early in pregnancy, perhaps related to haemodynamic changes (Penttinen and Erkkola 1997). In a group of German runners no change in running performance was seen until after 36 weeks of pregnancy (Bung et al. 1988). Energetic cost of locomotion of obese women across pregnancy, both during resting and walking, did not change with pregnancy (Byrne et al. 2011). Second, the impact of reproduction on performance may not be linear but instead step-wise as a pregnancy passes through key events, such as implantation and various fetal developmental milestones). Third, performance costs of gestation may be more severe in taxa with particular types of locomotion (flight vs. swimming, etc.). Fourth, as with many other traits, we might expect to see phylogenetic differences. For example, the “matrotrophy index” (defined by Reznick as “the ratio of the estimated dry mass of offspring at birth divided by the estimated dry mass of eggs at fertilization” (Reznick et al. 2007)) varies among closely related taxa but also at a clade-level (Reznick et al. 2002;

1
2 Pires et al. 2011; Pollux et al. 2014). The matrotrophy index may in turn correlate to degree of
3
4 performance loss due to gestation.
5

6
7 However, reproductive traits themselves can be considered as performance traits. They are
8
9 clearly “phylogenetically interesting” (Arnold 1983) and “ecologically relevant” (Irschick 2003;
10
11 Irschick and Garland 2001), and behaviors such as finding mates, fighting with rivals or defending
12
13 your from predators may often involve maximal motivation (Careau and Garland 2012). Thus, we
14
15 might start to place these traits themselves into the paradigm. Below we attempt this with two
16
17 reproductive traits: lactation (Fig. 3) and sperm production (Fig. 4).
18
19
20
21
22
23
24

What reproductive traits might be considered performance traits?

Lactation performance

25
26 Lactation and milk composition are important aspects of mammalian life history through their
27
28 relations with reproductive investment (Hinde et al. 2015; Millar 1975). They have been shown to
29
30 vary among species in relation to both phylogeny (Hayssen 1993; Oftedahl 1984) and ecology (Boness
31
32 and Bowen 1996; Skibiel et al. 2013). We argue that lactation is also a performance trait that can be
33
34 conceptualized in the context of the ecomorphological paradigm (Fig. 3).
35
36
37
38

39
40 We are not the first to suggest that lactation is a performance trait. In the dairy sciences,
41
42 lactation performance is already a commonly discussed concept defined as “peak yield and
43
44 persistence” (Husv  th 2011). Furthermore, much is known about the genetics and subordinate traits
45
46 underlying lactation performance, including the influences of such hormones as oxytocin and cortisol.
47
48 Lactation performance is demonstrably dependant upon nutrition, hormones, and mammary gland
49
50 morphology (Fig. 3). All these traits interact with such life history traits as parity, age, and even the
51
52 sex of current and previous offspring (Hayes et al. 2010; Hinde et al. 2009; 2015; Lucy et al. 1993).
53
54
55

56
57 To measure “maximal lactation performance,” as for other aspects of whole-organism
58
59 performance in the ecomorphological paradigm, it would be necessary to maximally motivate females.
60

1
2 In principle, this could be done in several ways, including adding pups (Hammond and Diamond 1992),
3 changing the duration of lactation/weaning (Hammond and Diamond 1994), and shaving lactating
4 females to increase heat loss and hence avoid possible overheating (Król et al. 2007). Furthermore,
5 hormones associated with lactation (e.g., oxytocin) provide an easy and well-understood way to
6 manipulate milk let down.
7
8

9 Another way forward in studies of lactation performance would be to utilize pre-existing
10 "model" systems. For lactation, this would certainly include dairy cattle, which have been selectively
11 bred for lactation performance for centuries (ex- 6000-5000 BC in Asia; Evershed et al. 2008).
12 Specifically, the Holstein breed holds the current records for highest lactation performance (Hasheider
13 2011).
14

15 The data-rich papers on dairy cattle reveal much about the relationships between lactation
16 performance and other levels of the ecomorphological paradigm. Lactation performance is predicted
17 by parity, age, temperature, diet, sex of offspring, and a mother's condition (health) (Hayes et al. 2010;
18 Hinde et al. 2009; 2015; Lucy et al. 1993). Further relationships that can be added to the paradigm
19 include epigenetics (e.g., DNA methylation that affects gene expression) and complex clusters of
20 functional genes associated with metabolism (e.g., signal transduction, peroxisome proliferator-
21 activated receptors, immune and inflammatory processes and cell death) (Loor 2010).
22
23

44 45 ***Gamete production and performance***

46 Gametes can be viewed as haploid organisms (Reinhard 2015). Gametes much like viruses
47 may not meet the usual criteria of a "whole organism" as commonly considered in the context of
48 "whole organism performance." However, if one is to take classic definitions of performance more
49 broadly they would be left with a demonstrably useful theoretical framework within which to
50 investigate an important biological trait: gamete performance. Gametes are essential for sexual
51 reproduction and thereby major effectors of Darwinian fitness, but to our knowledge they remain
52
53
54
55
56
57
58
59
60

unconsidered in the context of the ecomorphological paradigm. We suggest that gamete production is logically viewed as a whole-organism performance trait influenced by subordinate traits. Like lactation, it is also “ecologically relevant” and “phylogenetically interesting” (Arnold 1983). Gamete performance could be quantified as total number of gametes over a distinct period of time (e.g., month, season or life-span) as well as gamete quality.

Sperm performance

We are not alone in questioning traditional consideration of gametes as “whole-organism” as evidenced by the recent exciting paper discussion “sperm ecology” (Reinhard 2015). Examination of gamete specific metrics in this context would allow researchers to measure aspects of these cells that may approximate quality. The ecomorphological paradigm can provide a theoretical framework currently lacking in the field of sexual selection that would allow for the consideration of sperm traits across levels of organization and relative to traits leading to Darwinian fitness (see; Fitzpatrick and Lüpold 2014). Furthermore, when considered as such (a performance trait) gamete performance is easily conceptualized within the paradigm (Fig. 4).

What metrics are we talking about when we say sperm or gamete performance? Many spermatozoa and ejaculate traits have been quantified (especially in the fields of reproductive medicine and animal science) and found to be key for fertilization. Such traits are sperm velocity, linearity of swimming path, fertilization capability (often related to amount or type of acrosomal enzymes), aging rate (e.g., longevity; Firman et al. 2015), as well as many other traits (Fitzpatrick and Lüpold 2014).

Furthermore, trade-offs are known to occur between these sperm traits (which can also be placed in the model) (see; Garland 2014 for discussions of trade-offs Lailvaux and Husak 2014 and other papers in this issue for further discussion of the placement of trade-offs in the paradigm). Returning to sperm, one well-known trade-off occurs between sperm speed and longevity (Fitzpatrick and Lüpold 2014), and this trade-off may have very important implications for sperm competition,

1 particularly in the context of female sperm storage (Orr and Brennan 2015). Finally, although we have
2 focused on spermatozoa in the context of the paradigm it is evident that female gametes (eggs) could
3 similarly be considered in this frame-work.
4
5
6
7
8
9
10

11 **What experiments might be done using an updated model?**

12

13 An interesting aspect of considering reproductive performance traits within the context of the
14 ecomorphological paradigm is that few studies on classic performance traits have examined natural
15 changes in performance across time (as discussed in the context of seasons by Irschick et al. 2006).
16 The nature of reproduction is highly transitive in most organisms, and thus would require measuring
17 seasonal variation in performance or considering repeatability of performance. Although it is clear that
18 gestation can impact classic performance traits, disentangling the specifics of exactly how gestation
19 impacts performance would require longitudinal data.
20
21
22
23
24
25
26
27
28
29
30
31
32

33 **Concluding Remarks**

34

35 Most life-history studies focus on trade-offs associated with reproductive effort, but studies of
36 locomotor performance (e.g., maximal sprint speed) have rarely considered trade-offs with
37 reproduction. Here we have shown the value of integrating these areas, in particular reproductive traits
38 with the ecomorphological paradigm. Given limited space, we have focused on just a few of the many
39 possible areas within which the paradigm might be applied to the consideration of reproductive
40 characteristics, as well as to traits evolving via sexual selection. We have provided two examples (Figs.
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 59 60)
49 50 51 52 53 54 55 56 57 58 59 59 60) as to how these other traits may integrate with the paradigm; lactation performance and gamete
50 51 52 53 54 55 56 57 58 59 59 60 (sperm) performance. In both cases, subordinate traits as well as fitness components relating to
51 52 53 54 55 56 57 58 59 59 60 reproductive performance (lactation performance or gamete performance) are evident from the path
52 53 54 55 56 57 58 59 59 60 diagram outlined by the ecomorphological paradigm.

1 Reproductive traits, such as gestation, can also impact “classic” performance traits, such as
2 sprint speed (Table 1). The implications of this type of effect are of substantial theoretical interest, as
3 they may present a playing field for male- versus female- focused selection to operate and may set
4 metabolic ceilings. Thus, investigations into this nexus of performance and reproductive state can
5 advance our understanding of the physiological limits to performance. To this end, we have outlined
6 one such study that could be done to evaluate changes in performance due to gestation (i.e., the effects
7 of a progressing pregnancy on maximal sprint speed). We suggest that longitudinal studies are needed
8 to tease apart the “whole-organism” impact of pregnancy on performance.
9

10 We believe the utility of the ecomorphological paradigm far exceeds the traits it has been used
11 to consider thus far. In particular, the field of sexual selection may benefit from the use of this trusted
12 and useful paradigm (Table 2), whereas those who measure “classic” performance traits may gain
13 much by evaluating crucial additional aspects of biology, namely reproduction.
14

15 Acknowledgements

16 We thank Simon Lailvaux and Jerry Husak for inspiration and organizing the symposium.
17 Chi-Yun Kuo, Denise Dearing, Tom Eiting, and Casey Gilman offered insightful conversations.
18

19 Citations

20 Aerts P, Van Damme R, Vanhooydonck B, Zaaf A, Herrel A. 2000. Lizard locomotion: how
21 morphology meets ecology. *Netherlands J Zool* 50:261-277.
22 Allen BJ, Levinton JS. 2007. Costs of bearing a sexually selected ornamental weapon in a fiddler
23 crab. *Func Ecol* 21:154-161.
24 Andersson MB. 1994. Sexual selection. Princeton University Press, 1994.
25 Arnold SJ. 1983. Morphology, performance and fitness. *American Zoologist* 23:347-361.
26

1 Arnqvist G. 1998. Comparative evidence for the evolution of genitalia by sexual
2 selection. *Nature* 393:784-786

3

4 Arnqvist G, Rowe L. 2013. Sexual conflict. Princeton University Press.

5

6 Bauwens D, Thoen C. 1981. Escape tactics and vulnerability to predation associated with reproduction
7 in the lizard *Lacerta vivipara*. *J Anim Ecol* 50:733–743.

8

9 Bell AW, Burhans WS, Overton TR. 2000. Protein nutrition in late pregnancy, maternal protein
10 reserves and lactation performance in dairy cows. *Proc Nutr Soc* 59:119-126.

11

12 Bennett AF. 1980. The thermal dependence of lizard behaviour. *Animal Behav* 28:752–762.

13

14 Bennett AF. 1989. Integrated studies of locomotor performance. In: Wake DB, Roth G, editors.
15

16 Complex organismal functions: Integration and evolution in vertebrates. John Wiley & Sons, Ltd. p.
17 191–202.

18

19 Bennett AF, Huey RB. 1990. Studying the evolution of physiological performance. *Oxford Surv Evol
20 Biol* 7:251-284.

21

22 Blair HT, Jenkinson CMC, Peterson SW, Kenyon PR, Van der Linden DS, Davenport LC, Mackenzie
23 DDS, Morris ST, Firth EC. 2010. Dam and granddam feeding during pregnancy in sheep affects milk
24 supply in offspring and reproductive performance in grand-offspring. *J Anim Sci* 88:E40-E50.

25

26 Boness DJ, Bowen WD. 1996. The evolution of maternal care in pinnipeds. *Biosci* 46:645-654.

27

28 Brandt Y. 2003. Lizard threat display handicaps endurance. *Proc R Soc Lond B: Biol Sci* 270:1061-
29 1068.

30

31 Brodie III ED. 1989. Behavioral modification as a means of reducing the cost of reproduction. *Am Nat*
32 134:225–238.

33

34 Bung P, Späthling L, Huch R, Huch A. 1988. Performance training in pregnancy. Report of respiratory
35 and cardiovascular physiologic changes in a pregnant high-performance athlete in comparison with a
36 sample of normal pregnant patients. *Geburtshilfe und Frauenheilkunde* 48:500-511.

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1 Byrne NM, Groves AM, McIntyre HD, Callaway LK, BAMBINO group. 2011. Changes in resting and
2 walking energy expenditure and walking speed during pregnancy in obese women. Am J Clinic Nutr
3 94:819-830.

4

5 Sinervo B, Calsbeek R. 2003. Physiological epistasis, ontogenetic conflict and natural selection on
6 physiology and life history. Integr Comp Biol 43:419–430.

7

8 Careau V, Garland T Jr. 2012. Performance, personality, and energetics: correlation, causation, and
9 mechanism. Phys Bioch Zool 85:543-571.

10

11 Chapple DG, Swain R. 2002. Effect of caudal autotomy on locomotor performance in a viviparous
12 skink, *Niveoscincus metallicus*. Func Ecol 16:817-825.

13

14 Darwin C. 1859. On the Origin of the Species by Natural Selection. 3rd Edition, W. Clowes and Sons,
15 London.

16

17 Darwin C. 1883. The Descent of Man. 1871. Appleton and Company, New York.

18

19 DeFrain JM, Hippen AR, Kalscheur KF, Jardon PW. 2004. Feeding glycerol to transition dairy cows:
20 effects on blood metabolites and lactation performance. J Dairy Sci 87:4195-4206.

21

22 Downes S, Bauwens D. 2002. Does reproductive state affect a lizard's behavior toward predator
23 chemical cues? Behav Ecol Sociobiol 52:444–450.

24

25 Eberhard WG. 1996. Female control: sexual selection by cryptic female choice. Princeton University
26 Press.

27

28 Enriquez-Urzelai U, Montori A, Llorente GA, Kaliontzopoulou A. 2015. Locomotor mode and the
29 evolution of the hindlimb in western Mediterranean anurans. Evol Biol 42:199-209.

30

31 Evershed RP, Payne S, Sherratt AG, Copley MS, Coolidge J, Urem-Kotsu D, Kotsakis K, Özdoğan M,
32 Özdoğan AE, Nieuwenhuyse O, Akkermans PM. 2008. Earliest date for milk use in the Near East
33 and southeastern Europe linked to cattle herding. Nature 455:528-531.

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1 Feder ME. 1987. New directions in ecological physiology: conclusion. In: Feder ME, Bennett AF,
2 Burggren W, Huey RB, editors. *New directions in ecological physiology*. Cambridge University
3 Press, Cambridge, U.K. p. 347–351.

4 Feder ME, Bennett AF, Huey RB. 2000. Evolutionary physiology. *Ann Rev Ecol Syst* 31:315–341.

5 Firman RC, Young FJ, Rowe DC, Duong HT, Gasparini C. 2015. Sexual rest and post - meiotic sperm
6 ageing in house mice. *J Evol Biol* 28:1373–1382.

7 Fisher RA 1930. *The genetical theory of natural selection*. Oxford University Press, Oxford.

8 Fitzpatrick JL, Lüpold S. 2014. Sexual selection and the evolution of sperm quality. *Molecular Human
9 Repro* 20:1180-1189.

10 Garland T, Jr. 1985. Ontogenetic and individual variation in size, shape and speed in the Australian
11 agamid lizard *Amphibolurus nuchalis*. *J Zool* 207:425–439.

12 Garland T, Jr. 2014. Trade-offs. *Curr Biol* 24:R60-R61.

13 Garland T, Jr, Else PL. 1987. Seasonal, sexual, and individual variation in endurance and activity
14 metabolism in lizards. *Am J Phys-Reg, Int Comp Phy* 252:R439-R449.

15 Garland T, Jr, Losos JB. 1994. Ecological morphology of locomotor performance in squamate reptiles.
16 Ecological morphology: integrative organismal biology, pp.240-302.

17 Garland T, Jr, Bennett AF, Daniels CB. 1990. Heritability of locomotor performance and its correlates
18 in a natural population. *Experientia* 46:530–533.

19 Garland T, Jr. 1994a. Quantitative genetics of locomotor behavior and physiology in a garter snake. In:
20 Boake CRB, editor. *Quantitative genetic studies of behavioral evolution*. Chicago: University of
21 Chicago Press. p. 251–277.

22 Garland T, Jr. 1994b. Phylogenetic analyses of lizard endurance capacity in relation to body size and
23 body temperature. In: Vitt LJ, Pianka ER, editors. *Lizard ecology: historical and experimental
24 perspectives*. Princeton University Press, Princeton, N.J. p. 237–259.

1 Garland T, Jr, Carter PA. 1994. Evolutionary physiology. *Ann Rev Physiol* 56:579-621.

2

3 Garland T, Jr, Kelly SA. 2006. Phenotypic plasticity and experimental evolution. *J Exp Biol* 209:2344-

4 2361.

5

6 Ghalambor CK, Reznick DN, Walker JA. 2004. Constraints on adaptive evolution: the functional

7 trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy

8 (*Poecilia reticulata*). *Am Nat* 164:38-50.

9

10 Gomes V, Carretero MA, Kaliontzopoulou A. 2016. The relevance of morphology for habitat use and

11 locomotion in two species of wall lizards. *Acta Oecologica* 70:87-95.

12

13 Goodman BA. 2007. Divergent morphologies, performance, and escape behaviour in two tropical

14 rock - using lizards (Reptilia: Scincidae). *Biol J Linn Soc* 91:85-98.

15

16 Hammond KA, Diamond J. 1992. An experimental test for a ceiling on sustained metabolic rate in

17 lactating mice. *Physiol Zool* 65:952-977.

18

19 Hammond KA, Diamond J. 1994. Limits to dietary nutrient intake and intestinal nutrient uptake in

20 lactating mice. *Physiol Zool* 67:282-303.

21

22 Hammond KA, Lloyd KC, Diamond J. 1996. Is mammary output capacity limiting to lactational

23 performance in mice? *J Exp Biol* 199:337-349.

24

25 Hammond KA, Kristan DM. 2000. Responses to lactation and cold exposure by deer mice

26 (*Peromyscus maniculatus*). *Physiol Biochem Zool* 73:547-556.

27

28 Hasheider P. 2011. The Family Cow Handbook: A Guide to Keeping a Milk Cow. Voyageur Press Inc.

29

30 Hassiotou F, Geddes D. 2013. Anatomy of the human mammary gland: Current status of knowledge.

31 Clin Anat 26:29-48.

32

33 Hayes BJ, Pryce J, Chamberlain AJ, Bowman PJ, Goddard ME. 2010. Genetic architecture of complex

34 traits and accuracy of genomic prediction: coat colour, milk-fat percentage, and type in Holstein

35 cattle as contrasting model traits. *PLoS Genet* 6:p.e1001139.

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1
2 Hayssen V. 1993. Empirical and theoretical constraints on the evolution of lactation. *J Dairy*
3
4 *Sci* 76:3213-3233.
5
6 Hinde K, Power ML, Oftedal OT. 2009. Rhesus macaque milk: magnitude, sources, and consequences
7
8 of individual variation over lactation. *Am J Phys Anthro* 138:48-157.
9
10 Hinde K, Skibiel AL, Foster AB, Del Rosso L, Mendoza SP, Capitanio JP. 2014. Cortisol in mother's
11
12 milk across lactation reflects maternal life history and predicts infant temperament. *Behav*
13
14 *Ecol* :p.aru186.
15
16 Hosken DJ, Stockley P. 2004. Sexual selection and genital evolution. *Trends Ecol Evolt* 19:87-93.
17
18 Huey RB, Stevenson RD. 1979. Integrating thermal physiology and ecology of ectotherms: a
19
20 discussion of approaches. *Am Zool* :357-366.
21
22 Husak JF, Fox SF. 2008. Sexual selection on locomotor performance. *Evol Ecol Res* 10: 213–228.
23
24 Husváth F. 2011. Physiological and reproductive aspects of animal production. Debrecen University,
25
26 University of West Hungary, Pannon University.
27
28 Ilcol YO, Hizli ZB, Ozkan T. 2006. Leptin concentration in breast milk and its relationship to duration
29
30 of lactation and hormonal status. *Int Breastfeed J* 1:21.
31
32 Immler S, Moore HD, Breed WG, Birkhead TR. 2007. By hook or by crook? Morphometry,
33
34 competition and cooperation in rodent sperm. *PLoS one* 2:p.e170.
35
36 Irschick DJ. 2003. Measuring performance in nature: implications for studies of fitness within
37
38 populations. *Int Comp Biol* 43:396-407.
39
40 Irschick DJ, Garland T, Jr. 2001. Integrating function and ecology in studies of adaptation:
41
42 investigations of locomotor capacity as a model system. *Ann Rev Ecol Syst* 32:367-396.
43
44 Irschick DJ, Herrel A, Vanhooydonck B, Damme RV. 2007. A functional approach to sexual
45
46 selection. *Func Ecol* 21:621-626.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 Irschick DJ, VanHooydonck B, Herrel A, Meyers JAY. 2005. Intraspecific correlations among
2 morphology, performance and habitat use within a green anole lizard (*Anolis carolinensis*)
3 population. Biol J Linn Soc 85:211-221.

4 Irschick DJ, Ramos M, Buckley C, Elstrott J, Carlisle E, Lailvaux SP, Bloch N, Herrel A,
5 Vanhooydonck B. 2006. Are morphology–performance relationships invariant across different
6 seasons? A test with the green anole lizard (*Anolis carolinensis*). Oikos 114:49-59.

7 John-Alder HB, Cox RM, Haenel GJ, Smith LC. 2009. Hormones, performance and fitness: Natural
8 history and endocrine experiments on a lizard (*Sceloporus undulatus*). Int Comp Biol 49:393–407.

9 Kaliontzopoulou A, Carretero MA, Adams DC. 2015. Ecomorphological variation in male and female
10 wall lizards and the macroevolution of sexual dimorphism in relation to habitat use. J Evol Biol
11 28:80-94.

12 Król E, Murphy M, Speakman JR. 2007. Limits to sustained energy intake. X. Effects of fur removal
13 on reproductive performance in laboratory mice. J Exp Biol 210:4233-4243.

14 Król E, Speakman JR. 2003. Limits to sustained energy intake VI. Energetics of lactation in laboratory
15 mice at thermoneutrality. J Exp Biol 206:4255-4266.

16 Kung L, Treacher RJ, Nauman GA, Smagala AM, Endres KM, Cohen MA. 2000. The effect of
17 treating forages with fibrolytic enzymes on its nutritive value and lactation performance of dairy
18 cows. J Dairy Sci 83:115-122.

19 Kuo CY, Irschick DJ. *in-prep*. Locomotor impairment from foraging and reproduction: trade-offs and
20 compensation mechanisms in animals.

21 Kvarnemo C, Simmons LW. 2013. Polyandry as a mediator of sexual selection before and after mating.
22 Phil. Trans R Soc B 368:p.20120042.

23 Lailvaux SP, Husak JF. 2014. The life history of whole-organism performance. Q Rev Biol 89:285-318.

24 Lailvaux SP, Irschick DJ. 2006. A functional perspective on sexual selection: insights and future
25 prospects. Anim Behav 72:263–273.

1
2 Lailvaux SP, Hall MD, Brooks RC. 2010. Performance is no proxy for genetic quality: trade - offs
3
4 between locomotion, attractiveness, and life history in crickets. *Ecology* 91:1530-1537.
5
6 Loor JJ. 2010. Genomics of metabolic adaptations in the peripartal cow. *Animal* 4:1110–1139.
7
8 Lucy MC, Hauser SD, Eppard PJ, Krivi GG, Clark JH, Bauman D, Collier RJ. 1993. Variants of
9 somatotropin in cattle: gene frequencies in major dairy breeds and associated milk production. *Dom
10 Anim Endocrinol* 10:325-333.
11
12 McCoy JK, Fox SF, Baird TA. 1994. Geographic variation in sexual dimorphism in the collared lizard,
13
14 *Crotaphytus collaris* (Sauria: Crotaphytidae). *Southwest Nat* :328-335.
15
16 Millar JS. 1975. Tactics of energy partitioning in breeding *Peromyscus*. *Can J Zool* 53:967-976.
17
18 Mowles SL, Jepson NM. 2015. Physiological costs of repetitive courtship displays in cockroaches
19 handicap locomotor performance. *PloS One* 10:p.e0143664.
20
21 Oftedal OT. 1984. Milk composition, milk yield and energy output at peak lactation: a comparative
22
23 review. In: Peaker M, Vernon RG, Knight CH, editors. *Physiological strategies in lactation: the*
24
25 proceedings of a symposium held at the Zoological Society of London. London: Academic Press.
26
27 Orians GH. 1969. On the evolution of mating systems in birds and mammals. *Am Nat* 103: 589-603.
28
29 Orr TJ, Brennan PL. 2015. Sperm storage: distinguishing selective processes and evaluating
30
31 criteria. *Trends Ecol Evol* 30:261-272.
32
33 Oufiero CE, Garland Jr, T. 2007. Evaluating performance costs of sexually selected traits. *Func Ecol*
34
35 21:676-689.
36
37 Parker GA. 1970. Sperm competition and its evolutionary consequences in the insects. *Biol Rev*
38
39 45:525-567.
40
41 Parker GA. 1979. Sexual selection and sexual conflict. In: Blum MS, Blum NA, editors. *Sexual
42 selection and reproductive competition in insects*. Academic Press. p.123-166.
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1 Pawluski JL, Walker SK, Galea LA. 2006. Reproductive experience differentially affects spatial
2 reference and working memory performance in the mother. *Horm Behav* 49:143-149.
3

4 Penttinen J, Erkkola R. 1997. Pregnancy in endurance athletes. *Scandinavian J Med Sci Sports* 7:226-
5 228.
6

7 Pires MN, Bassar RD, McBride KE, Regus JU, Garland T, Jr, Reznick DN. 2011. Why do placentas
8 evolve? An evaluation of the life-history facilitation hypothesis in the fish genus *Poeciliopsis*. *Func*
9 *Ecol* 25:757-768.
10

11 Pollar BJA, Meredith RW, Springer MS, Garland T, Jr, Reznick DN. 2014. The evolution of the
12 placenta drives a shift in sexual selection in livebearing fish. *Nature* 513:233-236.
13

14 Puri D, Dhawan J, Mishra RK. 2010. The paternal hidden agenda: epigenetic inheritance through
15 sperm chromatin. *Epigenetics* 5:386-391.
16

17 Reinhardt K, Dobler R, Abbott J. 2015. An ecology of sperm: sperm diversification by natural
18 selection. *Ann Rev Ecol Evol Syst* 46:435-459.
19

20 Reznick DN, Mateos M, Springer MS. 2002. Independent origins and rapid evolution of the placenta in
21 the fish genus *Poeciliopsis*. *Science* 298:1018-1020.
22

23 Reznick D, Meredith R, Collette BB. 2007. Independent evolution of complex life history adaptations
24 in two families of fishes, live - bearing halfbeaks (Zenarchopteridae, Beloniformes) and Poeciliidae
25 (Cyprinodontiformes). *Evolution* 61:2570-2583.
26

27 Santana SE, Miller KE. 2016. Extreme postnatal scaling in bat feeding performance: a view of
28 ecomorphology from ontogenetic and macroevolutionary perspectives. *Int Comp Biol* 56:459-468.
29

30 Scales J, Butler M. 2007. Are powerful females powerful enough? Acceleration in gravid green
31 iguanas (*Iguana iguana*). *Int Comp Biol* 47:285-294.
32

33 Scales JA, King AA, Butler MA. 2009. Running for your life or running for your dinner: what drives
34 fiber-type evolution in lizard locomotor muscles? *Am Nat* 173:543-553.
35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1
2 Sewall KB. 2015. Androgen receptor expression could contribute to the honesty of a sexual signal and
3
4 be the basis of species differences in courtship displays. *Func Ecol* 29:1111-1113.
5
6 Singh K, Erdman RA, Swanson KM, Molenaar AJ, Maqbool NJ, Wheeler TT, Arias JA, Quinn-Walsh
7
8 EC, Stelwagen K. 2010. Epigenetic regulation of milk production in dairy cows. *J Mamm Gland Biol*
9
10 Neoplas 15:101-112.
11
12 Singh K, Molenaar AJ, Swanson KM, Gudex B, Arias JA, Erdman RA, Stelwagen K. 2012.
13
14 Epigenetics: a possible role in acute and transgenerational regulation of dairy cow milk production.
15
16 *Animal: Int J Anim Biosci* 6:375.
17
18
19 Siva-Jothy MT. 2006. Trauma, disease and collateral damage: conflict in cimicids. *Philosophical Trans R Soc Lond B: Biol Sci.* 361:269-275.
20
21 Skibiel AL, Downing LM, Orr TJ, Hood WR. 2013. The evolution of the nutrient composition of
22
23 mammalian milks. *J Anim Ecol* 82:1254-1264.
24
25 Speakman JR, Król E. 2005. Limits to sustained energy intake IX: a review of hypotheses. *J Comp Phys B* 175:375-394.
26
27
28 Speakman JR, Gidney A, Bett J, Mitchell IP, Johnson MS. 2001. Limits to sustained energy intake. *J Exp Biol* 204:1957-1965.
29
30
31 Storz JF, Bridgham JT, Kelly SA, Garland T, Jr. 2015. Genetic approaches in comparative and
32
33 evolutionary physiology. *American Journal of Physiology-Regulatory, Integr Comp Physiol*
34
35 309:R197-R214.
36
37
38 Sullivan EC, Hinde K, Mendoza SP, Capitanio JP. 2011. Cortisol concentrations in the milk of rhesus
39
40 monkey mothers are associated with confident temperament in sons, but not daughters. *Devel Psychobiol* 53:96-104.
41
42
43
44
45
46
47
48
49
50
51
52
53
54 Thornhill R. 1983. Cryptic female choice and its implications in the scorpionfly *Harpobittacus*
55
56 *nigriceps*. *Am Nat* 122:765-788.
57
58
59
60

1
2 Vanhooydonck B, Herrel AY, Van Damme R, Irschick DJ. 2005a. Does dewlap size predict male bite
3
4 performance in Jamaican *Anolis* lizards? *Func Ecol* 19:38-42.
5
6 Vanhooydonck B, Herrel AY, Van Damme R, Meyers JJ, Irschick DJ. 2005. The relationship between
7
8 dewlap size and performance changes with age and sex in a green anole (*Anolis carolinensis*) lizard
9 population. *Behav Ecol Sociobiol* 59:157-165.
10
11
12
13
14 Wainwright PC. 1994. Functional morphology as a tool in ecological research. In: Wainwright PC,
15
16 Reilly SM, editors. *Ecological morphology: integrative organismal biology*. University of Chicago
17
18 Press, Chicago, pp.42-59
19
20 Zuk M, Ligon JD, Thornhill R. 1992. Effects of experimental manipulation of male secondary sex
21
22 characters on female mate preference in red jungle fowl. *Anim Behav* 44:999-1006.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure Captions

Fig. 1. Path diagram modified (with permission) from Storz et al. (2015), illustrating proposed relationships across several levels of biological organization and leading ultimately to Darwinian fitness. Here we have added several subcomponents of primary fitness components (bulleted), which are primarily life history traits. Following the convention of path diagrams, arrows indicate relationships as either: putatively causal (single-headed) or correlative (double-headed). See text for further explanation.

Fig. 2. Modified from Storz et al. 2015 (used with permission) to illustrate the impact of fecundity (in this case having developing embryos inside the body or as in some males carrying developing embryos on the dorsum). Fecundity includes such subcomponents as pup size, litter size, and number of litters per year. The state of being gravid can affect physiology beyond the direct changes due to mass loading. Gravidity is known to influence many aspects of physiology, for example through altering the hormonal milieu, which in turn impacts behaviors and motivation for locomotor performance (see text). As in Fig. 1, arrows indicate relationships as either: causal (single-headed) or correlative (double-headed).

Fig 3. A modified version of Storz et al. 2015 (used with permission), illustrating some of the known relationships between female mammalian reproduction, in particular lactation performance and a variety of other traits. The goals here are to illustrate how lactation might be placed into the ecomorphological paradigm and to show a few known relationships across levels of organization. As in both Fig. 1 and 2, arrows indicate relationships as either: causal (single-headed) or correlative (double-headed). Not illustrated are the effects of parity on future performance (ex. second time moms do not need the same hormonal priming to initiate maternal behaviors associated with nursing (Pawluski et al. 2006) and have larger mammary glands (Hassiotou and Geddes 2013). Also not

1 depicted is the effect of corticosterone or leptin in milk that can change the development of pups and
2 their own subsequent lactation performance (Hinde et al. 2014; Ilcol et al. 2006; Sullivan et al. 2011).
3
4 Epigenetic relationships, including via DNA methylation, are also known to influence the milk
5 production of daughters (Blair et al. 2010; Singh et al. 2010; 2012).
6
7
8
9
10
11
12
13
14
15

16 **Fig 4.** A modified version of Storz et al. 2015 Fig. 1 (used with permission), illustrating how sperm
17 biology and associated male traits can be conceptualized within the context of the ecomorphological
18 paradigm. Epigenetic transmission has been noted for sperm in mice (Puri et al. 2010), but is not
19 depicted here. Sperm “behavior” here includes movement by spermatozoa (e.g., via microtubules or
20 pseudopod extension), remaining “still” while in storage (Orr and Brennan 2015), the formation of
21 “sperm trains” where multiple sperm interact to move within the female’s reproductive tract (Immler et
22 al. 2007), and directed motion to certain areas through chemotaxis. As in figures above, arrows
23 indicate relationships as either causal (single-headed) or correlative (double-headed).
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2 **Table 1.** Studies that have been done to understand the impact of being gravid on whole-organism performance
3
4 (citations in Appendix 1).

	Organism	Traits impacted by gravity/pregnancy	Notes*	Reference
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Invertebrates	Funnel-web spiders	↓ speed in mated females*	Pruitt and Troupe 2010
		Common striped scorpion	↓ speed (84%) Refusal to run in 65% of females*	Shaffer and Formanowicz 1996.
		Giant water-bugs	↓ speed while carrying eggs (on back)*	Kight et al. 1995
Fishes	Guppies	↓ Fast-start swimming		Ghalambor et al. 2004
	Dwarf seahorses	↑ specific metabolic rate when gravid (10-52%) *	males	Masonjones 2001
	Mosquitofish	↓ U_{crit} (likely due to aerobic changes), No Δ in swimming kinematics, ↓ escape speed*	Escape speed is only impacted in older females not younger females (Belk and Tuckfield 2010)	Plaut 2002, Belk and Tuckfield 2010
	Amphibian	Spotted salamanders	↓ burst swimming speed	Finkler et al. 2003
Squamates	Garden skinks	↓ speed		Shine 2003
	Northern red-throated skinks	↓ speed, 23-33%	Independent of relative clutch size.	Goodman 2006
	Common/viviparous lizard	↓ sprint speed		Van Damme et al. 1989
	Northern Death Adder	↓ speed, 30% slower	Independent of clutch size.	Webb 2004
	Skinks (various)	↓ speed		Shine 1980
	Broadhead skink	↓ speed, 25% slower ↓ endurance, 50% slower		Cooper et al. 1990
	Flying lizards (<i>Draco</i>)	UNK but compensatory sexual size dimorphism		Shine et al. 1998
	Side-blotched lizards	↓ endurance		Miles et al. 2000; Zani et al. 2008
	Green iguanas	Likely force-limited in direction of motion, compensation noted (200% ↑ in vertical power)	Musculoskeletal changes noted in females may lead to evolution of sexual size dimorphism.	Scales and Butler 2007
	Western fence lizards	↓ sprint speed 20-45%	Population differences in performance ↓.	Sinervo et al. 1991
56 57 58 59 60	Garter snakes	↓ speed ↓ endurance		Seigel et al. 1987
	Tiger water snakes	↓ swim speed,* ↓ time swimming,	Decrease in swimming speed was	Aubret et al. 2005

1		No Δ in sprint swimming speed	associated with litter mass.	
2				
3				
4				
5		Seim-aquatic snake (<i>Seminatrix pygaea</i>)	\downarrow crawling speed, \downarrow swimming speed	\downarrow related to reproductive investment in some habitats.
6				Winne and Hopkins 2006
7				
8		Water snakes	\downarrow growth, survival	Brown and Weatherhead 1997
9				
10		Birds (Starlings)	\downarrow speed and angle of ascent	Lee et al. 1996
11				
12		Blue tits	\downarrow speed, 20%	Kullberg et al. 2002
13				
14		Zebra finches	\downarrow take off speed	Independent of body mass.
15				Veasey et al. 2001
16	Mammals	Bottlenosed dolphins	\downarrow maximum swim speed, 62-44% decrease*	May not be maximally motivated. Swimming after a reward/toy.
17				Noren et al. 2011
18				
19		Humans	\uparrow running “performance”	Exact “performance” unclear, highly trained athletes may not extend to females in other conditions
20				Penttinen and Erkkola 1997
21				
22				
23		Humans	No Δ in metabolic cost of locomotion (walking)*	Study done on obese women, may not extend to other body conditions.
24				Byrne et al. 2011
25				
26				
27				
28				

1
2 **Table 2.** Suggested relationships between established parameters of the ecomorphological paradigm
3 and areas of reproductive biology and sexual selection that could be placed into the paradigm.
4
5

Ecomorphology Paradigm Category	1' sexually selected characteristics	2' sexually selected characteristics	Other fundamental aspects of reproduction
Subordinate traits			
Physiology	Endocrinology, Spermatogenesis, Oogenesis		Gamete osmoregulation
Biochemical	Composition of the ejaculate (proteins, pH), Ovarian fluids (proteins, pH)	Pheromones	Other aspects of reproductive endocrinology
Morphology	Spermatozoa, Ova, Genital morphology	Dimorphic feathers, fins, pigments, structures for producing courtship sounds	Uterus, placenta, mammary glands (Fig. 3)
Performance	Gamete “performance” including sperm swimming, gamete production (Fig. 4), percent normal, ovum viability, selective implantation, Sperm capacitation production (Fig. 4), Egg production, ovulation	Sperm competition, Cryptic female choice	Lactation (Fig. 3), implantation or any other aspect of pregnancy
Behavior	Mating Sperm (Fig. 4) and egg “behaviors” for example sperm “cooperation” through formation of trains (Immler et al. 2007)	Male-male competition Courting and mate choice, Obtaining copulations	
Primary Fitness			
Survivorship	Sperm storage		Parental care including nursing and other behaviors (Fig. 3)
Fecundity	Sperm (Fig. 4) and egg interactions		

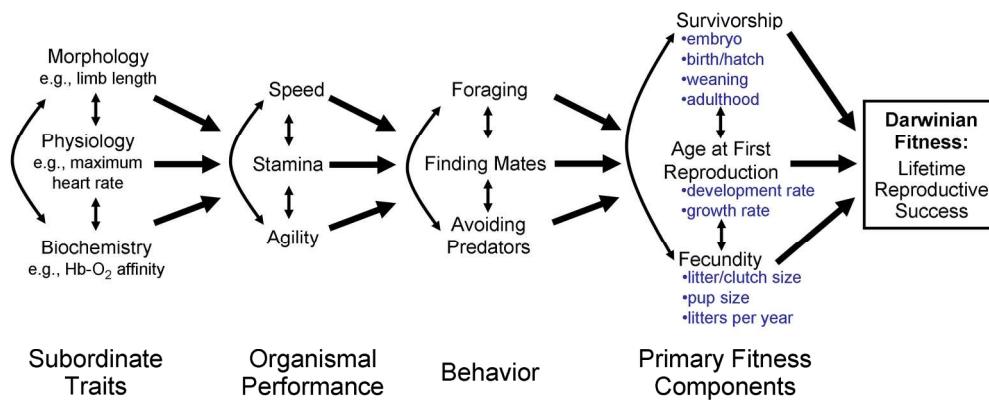


Fig. 1. Path diagram modified (with permission) from Storz et al. (2015), illustrating proposed relationships across several levels of biological organization and leading ultimately to Darwinian fitness. Here we have added several subcomponents of primary fitness components (bulleted), which are primarily life history traits. Following the convention of path diagrams, arrows indicate relationships as either: putatively causal (single-headed) or correlative (double-headed). See text for further explanation.

190x142mm (300 x 300 DPI)

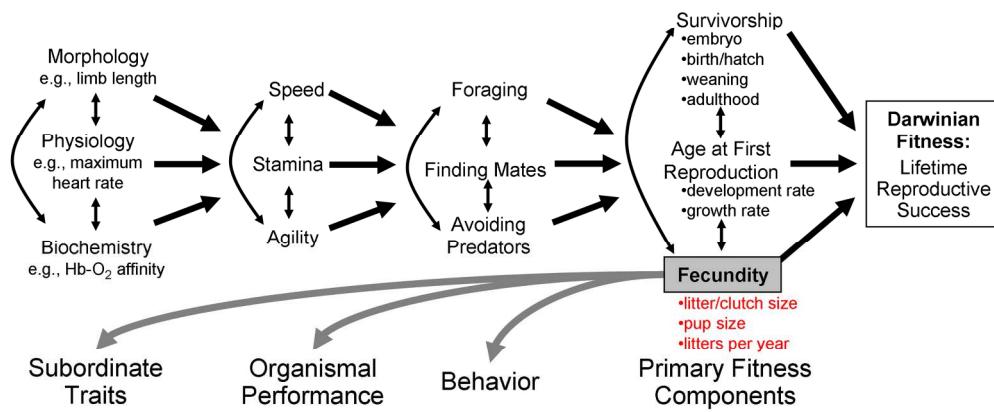


Fig. 2. Modified from Storz et al. 2015 (used with permission) to illustrate the impact of fecundity (in this case having developing embryos inside the body or as in some males carrying developing embryos on the dorsum). Fecundity includes such subcomponents as pup size, litter size, and number of litters per year. The state of being gravid can affect physiology beyond the direct changes due to mass loading. Gravidity is known to influence many aspects of physiology, for example through altering the hormonal milieu, which in turn impacts behaviors and motivation for locomotor performance (see text). As in Fig. 1, arrows indicate relationships as either: causal (single-headed) or correlative (double-headed).

190x142mm (300 x 300 DPI)

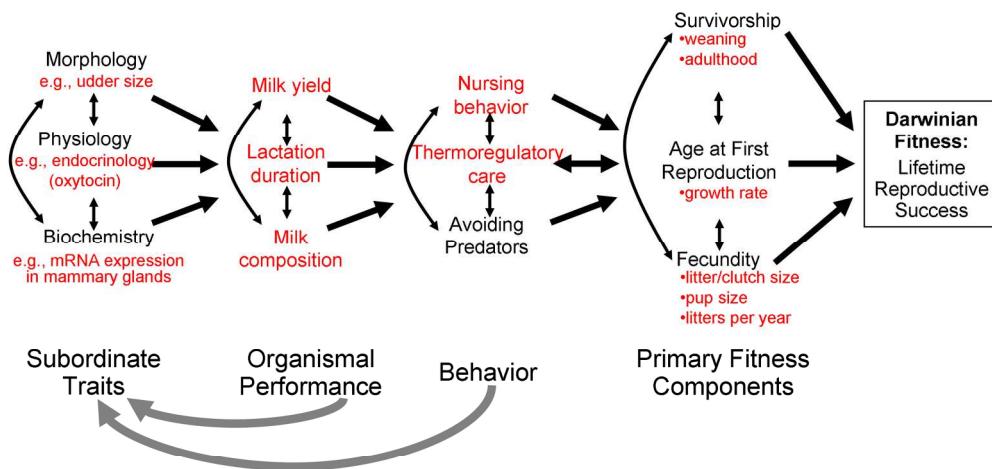


Fig 3. A modified version of Storz et al. 2015 (used with permission), illustrating some of the known relationships between female mammalian reproduction, in particular lactation performance and a variety of other traits. The goals here are to illustrate how lactation might be placed into the ecomorphological paradigm and to show a few known relationships across levels of organization. As in both Fig. 1 and 2, arrows indicate relationships as either: causal (single-headed) or correlative (double-headed). Not illustrated are the effects of parity on future performance (ex. second time moms do not need the same hormonal priming to initiate maternal behaviors associated with nursing (Pawluski et al. 2006) and have larger mammary glands (Hassiotou and Geddes 2013). Also not depicted is the effect of corticosterone or leptin in milk that can change the development of pups and their own subsequent lactation performance (Hinde et al. 2014; Ilcol et al. 2006; Sullivan et al. 2011). Epigenetic relationships, including via DNA methylation, are also known to influence the milk production of daughters (Blair et al. 2010; Singh et al. 2010; 2012).

190x142mm (300 x 300 DPI)

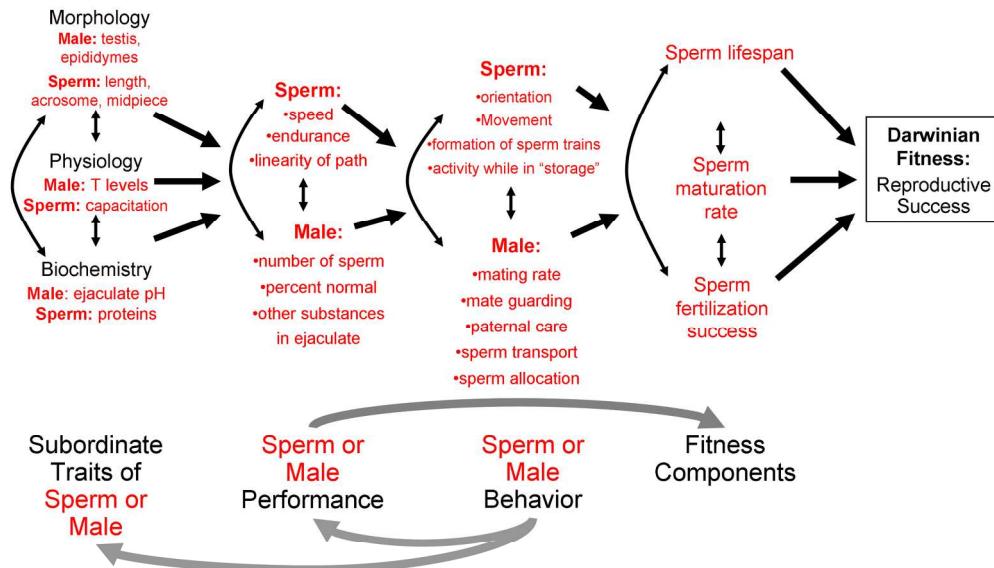


Fig 4. A modified version of Storz et al. 2015 Fig. 1 (used with permission), illustrating how sperm biology and associated male traits can be conceptualized within the context of the ecomorphological paradigm. Epigenetic transmission has been noted for sperm in mice (Puri et al. 2010), but is not depicted here. Sperm "behavior" here includes movement by spermatozoa (e.g., via microtubules or pseudopod extension), remaining "still" while in storage (Orr and Brennan 2015), the formation of "sperm trains" where multiple sperm interact to move within the female's reproductive tract (Immler et al. 2007), and directed motion to certain areas through chemotaxis. As in figures above, arrows indicate relationships as either causal (single-headed) or correlative (double-headed).

190x142mm (300 x 300 DPI)

1
2
3 **Orr and Garland, Appendix 1**
45 **Table 1 citations (not cited in paper).**
67
8 Aubret F, Bonnet X, Maumelat S. 2005. Tail loss, body condition and swimming performances in tiger
9 snakes, *Notechis ater occidentalis*. *J Exp Zool Part A: Ecol Genetics Phys* 303:894-903.
10
11 Belk MC, Tuckfield RC. 2010. Changing costs of reproduction: age - based differences in reproductive
12 allocation and escape performance in a livebearing fish. *Oikos* 119:163-169.
13
14 Brown, G. P. and P. J. Weatherhead. 1997. Effects of reproduction on survival and growth of female
15 northern water snakes, *Nerodia sipedon*. *Can. J. Zool* 75:424-432.
16
17 Cooper WE, Vitt LJ, Hedges R, Huey RB. 1990. Locomotor impairment and defense in gravid lizards
18 (*Eumeces laticeps*): behavioral shift in activity may offset costs of reproduction in an active forager.
19
20 *Behav Ecol Sociobiol* 27:153-157.
21
22 Finkler MS, Sugalski MT, Claussen DL. 2003. Sex-related differences in metabolic rate and locomotor
23 performance in breeding spotted salamanders (*Ambystoma maculatum*). *Copeia* 2003:pp.887-893.
24
25 Goodman BA. 2006. Costs of reproduction in a tropical invariant - clutch producing lizard (*Carlia*
26
27 *rubrigularis*). *J Zool* 270:236-243.
28
29 Kight SL, Sprague J, Kruse KC, Johnson L. 1995. Are egg-bearing male water bugs, *Belostoma*
30
31 *flumineum* Say (Hemiptera: Belostomatidae), impaired swimmers? *J Kansas Entomol Soc* :468-470.
32
33 Kullberg C, Houston DC, Metcalfe NB. 2002. Impaired flight ability—a cost of reproduction in female
34 blue tits. *Behav Ecol* 13:75-579.
35
36 Lee SJ, Witter MS, Cuthill IC, Goldsmith AR. 1996. Reduction in escape performance as a cost of
37 reproduction in gravid starlings, *Sturnus vulgaris*. *Proc R Soc Lond B: Biol Sci* 263:619-623.
38
39 Masonjones HD. 2001. The effect of social context and reproductive status on the metabolic rates of
40 dwarf seahorses (*Hippocampus zosterae*). *Comp Biochem Phys Part A: Mol Int Phys* 129:541-555.
41
42 Miles DB, Sinervo B, Frankino WA. 2000. Reproductive burden, locomotor performance, and the cost of
43 reproduction in free ranging lizards. *Evolution* 54:1386-1395.
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Noren SR, Redfern JV, Edwards EF. 2011. Pregnancy is a drag: hydrodynamics, kinematics and
4 performance in pre-and post-parturition bottlenose dolphins (*Tursiops truncatus*). *J Exp Biol* 214:4151-
5 4159.
6
7 Plaut I. 2002. Does pregnancy affect swimming performance of female Mosquitofish, *Gambusia affinis*?
8 *Func Ecol* 16:290-295.
9
10 Pruitt JN, Troupe JE. 2010. The effect of reproductive status and situation on locomotor performance and
11 anti - predator strategies in a funnel - web spider. *J Zool* 281:39-45.
12
13 Shaffer LR, Formanowicz DR Jr. 1996. A cost of viviparity and parental care in scorpions: reduced sprint
14 speed and behavioural compensation. *Anim Behav* 51:1017-1024.
15
16 Shine R. 1980. "Costs" of reproduction in reptiles. *Oecologia* 26:92-100.
17
18 Shine R, Keogh S, Doughty P, Giragossyan H. 1998. Costs of reproduction and the evolution of sexual
19 dimorphism in a 'flying lizard' *Draco melanopogon* (Agamidae). *J Zool* 246:203-213.
20
21 Shine R. 2003. Effects of pregnancy on locomotor performance: an experimental study on lizards.
22
23 *Oecologia* 136:450-456.
24
25 Seigel RA, Huggins MM, Ford NB. 1987. Reduction in locomotor ability as a cost of reproduction in
26 gravid snakes. *Oecologia* 73:481-485.
27
28 Sinervo B, Hedges R, Adolph SC. 1991. Decreased sprint speed as a cost of reproduction in the lizard
29 *Sceloporus occidentalis*: variation among populations. *J Exp Biol* 155:323-336.
30
31 Van Damme R, Bauwens D, Verheyen RF. 1989. Effect of relative clutch mass on sprint speed in the
32 lizard *Lacerta vivipara*. *J Herpetol* 23:459-461.
33
34 Veasey JS, Houston DC, Metcalfe NB. 2001. A hidden cost of reproduction: the trade - off between
35 clutch size and escape take - off speed in female zebra finches. *J Anim Ecol* 70:20-24.
36
37 Walker JA. 2007. A general model of functional constraints on phenotypic evolution. *Am Nat* 170: 681-
38 689.

1
2
3 Webb JK. 2004. Pregnancy decreases swimming performance of female northern death adders
4
5 (*Acanthophis praelongus*). *Copeia* 2004:357-363.
6
7 Winne CT, Hopkins WA. 2006. Influence of sex and reproductive condition on terrestrial and aquatic
8
9 locomotor performance in the semi - aquatic snake *Seminatrix pygaea*. *Func Ecol* 20:054-1061.
10
11 Zani PA, Neuhaus RA, Jones TD, Milgrom JE. 2008. Effects of reproductive burden on endurance
12
13 performance in side-blotched lizards (*Uta stansburiana*). *J Herpetol* 42:76-81.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review