

Introduction to the symposium: Integrative Life-History of Whole-Organism Performance

Journal:	<i>Integrative and Comparative Biology</i>
Manuscript ID	ICB-2017-0118.R1
Manuscript Type:	Symposium Introduction
Date Submitted by the Author:	n/a
Complete List of Authors:	Lailvaux, Simon ; University of New Orleans, Husak, Jerry; University of St Thomas, Biology
Keywords:	locomotion, life-history, energetics, performance, evolution, trade-offs

SCHOLARONE™
Manuscripts

review

Introduction to the symposium: Integrative Life-History of Whole-Organism Performance

Simon P. Lailvaux¹ and Jerry F. Husak²

¹Department of Biological Sciences, The University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA.

²Department of Biology, University of St. Thomas, 2115 Summit Avenue, St Paul, MN 55105

Corresponding author:

Simon Lailvaux

Department of Biological Sciences

University of New Orleans

2000 Lakeshore Drive, New Orleans, LA 70148

USA

Email: slailvaux@gmail.com

Phone: 504 280 6740

Keywords: locomotion, life-history, energetics, evolution, performance, trade-off

Abstract

A strong case can be made for whole-organism performance traits (i.e. dynamic, ecologically relevant traits whose expression is shaped by underlying morphological factors) as being the ultimate integrative traits. This is not only because they capture the output of multiple lower levels of biological organization, but also because they are directly relevant to individual fitness in multiple ecological contexts, and are in many cases important proximate determinants of survival and/or reproductive success. But although many ecological and evolutionary phenomena can be examined through the lens of performance (and vice-versa), performance research has been surprisingly slow to incorporate concepts from the large and important field of life-history evolution. Such a synthesis is important, because shifts in resource allocation strategies can have implications for these highly ecologically relevant, functional traits, whose expression may trade-off against fecundity, immune function, or longevity, amongst other key life-history traits. The papers in this symposium showcase many of the ways in which life-history strategies can have direct consequences for the expression, maintenance, and evolution of whole-organism performance (and at least one case where they may not). By approaching the issue of life-history trade-offs from a number of diverse perspectives, this symposium reveals the scope for future explicit integration of life-history techniques with those of whole-organism performance studies for a more complete understanding of multivariate phenotypic evolution.

1 2 3 Introduction 4 5

6 The study of whole-organism performance has a long and venerable history in integrative biology.
7 Perhaps surprisingly though, it wasn't always as integrative as it currently is. Although Bartholomew
8 (1958) realized almost 60 years ago that locomotor performance abilities provide a clear and
9 measurable link between integrated physiological capacities and Darwinian fitness , it was another
10 25 years before Arnold (1983) formalized this link as the influential ecomorphological paradigm,
11 giving researchers a statistical roadmap for linking organisms' morphology, performance, and
12 ultimately fitness . At more or less the same time, researchers with interests in both animal function
13 and evolution had begun to combine the two in creative ways, bringing to bear insights and
14 approaches from each field on the other and pioneering the area of research that became known as
15 evolutionary physiology (reviewed in Bennett and Huey 1990; Garland and Carter 1994; Feder et al.
16 2000). Much of the modern study of whole-organism performance has its roots in this vibrant and
17 fertile period of intellectual expansion and integration, and the leaders of evolutionary physiology
18 developed methods and conceptual frameworks for understanding the evolutionary ecology of
19 performance in particular that remain ubiquitous and relevant today.
20
21

22 Evolutionary physiologists showed early and often (and many times subsequently) that
23 performance traits are intimately involved in evolutionary processes. Studies focussing on the
24 variation (e.g. Huey and Dunham 1987; Huey et al. 1990), heritability (e.g. Tsuji et al. 1989; Sorci et
25 al. 1995), and selective aspects (e.g. Swallow et al. 1998; Le Galliard et al. 2004; Miles 2004; Husak et
26 al. 2006) of whole-organism performance, as well as the broader comparative implications of
27 performance evolution (Losos 1990; Irschick and Losos 1998; Collar and Wainwright 2006), appeared
28 prominently in the literature. By the mid-to-late 2000s, the assimilation of performance studies
29 under the broad umbrella of natural (reviewed in Irschick et al. 2007; Irschick et al. 2008) and sexual
30 selection (reviewed in Lailvaux and Irschick 2006; Husak and Fox 2008) appeared complete (but see
31 Husak and Lailvaux 2014; Husak 2016). However, there is at least one important field of evolutionary
32 biology that historically has received far less attention from students of whole-organism
33 performance research: life-history evolution.
34
35

36 Although certainly not ignored by performance researchers [and despite being identified
37 previously as an important area for integration into evolutionary physiology (Feder et al. 2000)],
38 work on life history has not featured as prominently in the whole-organism performance literature
39 as one might expect given the centrality of life-history trade-offs in shaping the integrated
40 organismal phenotype (Ghalambor et al. 2003; Oufiero and Garland 2007). This is curious, given that
41 locomotor performance is a key component of one of the most important empirical life-history
42

1
2
3 evolution studies ever conducted: the long-term study of Trinidadian guppies by David Reznick and
4 his many collaborators (Ghalambor et al. 2004; Reznick et al. 2004). This work, as well as an ever-
5 growing literature of other studies in taxa ranging from insects (Lailvaux et al. 2010; Okada et al.
6 2011; Reaney and Knell 2015) to lizards (Clobert et al. 2000; Lailvaux et al. 2012; Husak et al. 2015),
7 and birds (Veasey et al. 2001) (but less so mammals; Orr and Garland 2017), shows without question
8 that whole-organism performance traits are also life-history traits, and thus subject to trade-offs
9 with other traits with which performance shares a pool of acquired energetic resources (reviewed in
10 Lailvaux and Husak 2014) or that are otherwise linked to performance via mechanisms such as
11 hormonal pleiotropy (Flatt et al. 2005) or negative genetic correlations (Lande 1982; Sgro and
12 Hoffmann 2004).
13
14

15 The recognition of whole-organism performance traits as life-history traits has several
16 important and, in our opinion, under-appreciated implications for how those traits will respond to
17 selection imposed either on performance itself, or on other traits that are linked directly or indirectly
18 to performance (Lailvaux and Husak 2014). While some of those implications can be addressed
19 ultimately through the application of methods suited to understanding multivariate evolutionary
20 trajectories (see Lailvaux et al. 2010; Husak et al. 2013 for examples), just as important are the
21 proximate mechanisms and consequences of trade-offs between performance and other
22 components of the integrated organismal phenotype, about which we still have a great deal to learn.
23 Indeed, many questions regarding the multivariate and plastic nature of performance remain
24 unanswered, such as why expected morphology->performance relationships and trade-offs are
25 sometimes not found; how environmental factors such as dietary quality and the social milieu affect
26 performance and life-history trade-offs through both ontogeny and adulthood (and ultimately
27 influence aging); which physiological pathways specifically are involved in performance trade-offs
28 with other life-history traits, as well as how phenotypic ‘priorities’ are mechanistically established;
29 and how can we predict which species and traits will be especially prone to life-history trade-offs
30 involving whole-organism performance?
31
32

33 We organized this symposium as a proactive attempt to stimulate thinking on these and
34 related questions involving performance life-history. To this end, we invited a diverse group of
35 scientists employing a variety of approaches, systems, and study organisms to consider topics
36 spanning all aspects of both the ecomorphological paradigm and life-history evolution. In the first,
37 Lailvaux and Husak (2017) conduct comparative analyses across 72 mammal taxa to test whether
38 mammal species that spend relatively more energetic resources on reproduction – i.e. those on the
39 “fast” end of the “slow-fast” life-history continuum – are forced to spend relatively less on
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 locomotion. Predicting such trade-offs, however, requires often fine-grained understanding of the
4 costs of both performance and life-history traits that performance might potentially trade-off
5 against. Husak and Lailvaux (2017) consider ways of assessing these costs, and show using a
6 comparative life-history dataset on phrynosomatid lizards that costs can differ significantly among
7 different performance traits. They also borrow from animal signalling theory to define different
8 types of costs that performance may incur, including development costs (incurred before the
9 performance trait is used), production costs (incurred while the performance trait is being used), and
10 maintenance costs (incurred after development, but not while in use). Measuring costs at such a fine
11 scale may allow better prediction and detection of trade-offs. Smith and French (2017) illustrate this
12 point well by showing that how individuals invest in traits is rarely simple or straightforward. Many
13 assume that immune responses and the energy invested to produce them should always be
14 maximized, but this is not necessarily the case. Other traits, such as performance, may better
15 enhance survival and fitness in certain conditions than maintaining the ability to produce the
16 greatest possible immune response. Bonneaud et al. (2017) build on this theme by arguing that
17 more tolerant individuals in a population - that is, those that minimize negative effects of pathogens
18 - may be able to avoid some costs associated with the infection. This is a different scenario than
19 considering simple investment strategies, and instead illuminates the importance of considering
20 attributes of both the host individuals and the pathogens.

21
22
23
24
25
26
27
28
29
30
31
32
33 Various types of performance traits may themselves trade-off amongst each other, yet
34 detecting trade-offs among the multivariate performance phenotype is a challenge. Careau and
35 Wilson (2017) use a simulation approach to show that the sampling distributions of maximum
36 performance traits are such that among-individual trade-offs in such traits are often masked by
37 within-individual variation; however, those trade-offs can be recovered through the use of
38 multivariate mixed-models (MMMs). This study demonstrates the utility of MMMs for
39 understanding performance trade-offs and echoes earlier calls to move away from measuring only
40 maximum performance (Adolph and Hardin 2007; Adolph and Pickering 2008). Staying with the
41 theme of relationships among suites of traits, Dantzer and Swanson (2017) review the concept of
42 *hormonal pleiotropy* (whereby a given hormone affects, and thus links, multiple traits) and consider
43 how the nature of the pleiotropic relationship might constrain or facilitate the evolution of each of
44 those phenotypes. To do so, they construct a simple quantitative genetic model and predict the
45 conditions under which the selection and the response to selection might be equivalent or at odds
46 based on genetic correlations between hormones, performance traits, and life-history traits drawn
47 from the literature. Hormones are also the focus of Kilvitis et al. (2017), who argue that
48 epigenetically-mediated plasticity in the regulation of glucocorticoids could adaptively regulate
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 performance during expansion into novel environments. Epigenetics represents a novel frontier for
4 both performance and life-history, and the *epigenetic potential* defined in this paper is an exciting
5 and relevant concept in this regard.
6
7

8 Although range expansion is one option available to many animal taxa, certain species are
9 constrained in their mobility. For those with relatively immobile juvenile stages in particular, shifting
10 resource allocation in response to environmental cues is often a useful strategy. However, Jaumann
11 & Snell-Rood (2017) show that the caterpillars of cabbage white butterflies do not respond to
12 increased conspecific juvenile or adult density, and exhibit neither increased fecundity nor higher
13 levels of conspecific avoidance behaviour under higher density conditions. This suggestion that life-
14 history strategies can in some cases be relatively inflexible is an important counterpoint to
15 adaptationist research programs, and a reminder of the constraints on both proximate and ultimate
16 drivers of evolutionary trajectories.
17
18

19 The variety of topics considered in the symposium challenges what one might consider to be
20 a performance trait. Orr and Garland (2017) argue that researchers have been relatively limited in
21 their view of performance, focusing primarily on dynamic performance traits, such as sprinting and
22 biting, but have paid much less attention to other types of performance. Lactation performance and
23 sperm performance traits are likely important to fitness in a variety of taxa, and both traits are
24 energetically costly. Thus, investigators need to think more broadly about the multivariate
25 performance phenotype, but also more creatively and inclusively about what is considered under
26 the purview of “performance”. Finally, Addis et al (2017) promote a similar perspective on “non-
27 traditional” performance traits, and conduct a rigorous investigation into intraspecific variation in
28 life-history strategies in *Thamnophis elegans* garter snakes. This study shows that insulin like-growth
29 factor-1 (IGF-1) likely mediates the intraspecific link between ecomorphology and life-history, and
30 thus connects earlier work on the interspecific IGF-1-facilitated mammalian fast-slow life-history
31 continuum (e.g. Swanson and Dantzer 2014) directly to the classic ecomorphological paradigm in an
32 ectotherm species. That connection is made explicit through the estimation of selection differentials.
33
34

35 The diversity of approaches and topics highlighted here illustrate both the scope of an
36 integrated performance/life-history perspective on animal function, and the breadth of
37 opportunities for applying that perspective to the end goal of developing a comprehensive
38 understanding of phenotypic evolution. Such an understanding can be achieved only by embracing
39 an integrative and multivariate view of organismal function, and these papers collectively constitute
40 an exciting implementation of this approach.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Acknowledgements

We thank all the symposium participants for their contributions and discussions on these topics.

Funding

The symposium “Integrative Life-History of Whole-Organism Performance” took place at the 2017 meeting of the Society for Integrative and Comparative Biology in New Orleans, and was funded by the SICB divisions of DAB, DCB, DEC, DEDE, DEE, DNB, and DVM; the National Science Foundation (grant # IOS-1637160 to Simon Lailvaux and Jerry Husak); and by the Company of Biologists (EA1233) to Simon Lailvaux and Jerry Husak.

References

Addis, E. A., E. Gangloff, M. G. Palacios, K. E. Carr, and A. M. Bronikowski. 2017. Merging “morphology/performance/fitness” and life-history theories: an empirical assessment in the Eagle Lake Garter Snake Research Project. *Integrative and Comparative Biology*.

Adolph, S. C. and J. Hardin. 2007. Estimating phenotypic correlations: correcting for bias due to intraindividual variability. *Functional Ecology* 21:178-184.

Adolph, S. C. and T. Pickering. 2008. Estimating maximum performance: effects of intraindividual variation. *Journal of Experimental Biology* 211:1336-1343.

Arnold, S. J. 1983. Morphology, performance, and function. *American Zoology* 23:347-361.

Bartholomew, G. A. 1958. The role of physiology in the distribution of vertebrates. Pp. 81-95 in C. L. Hubbs, ed. *Zoogeography*. American Association for the Advancement of Science, Washington D.C.

Bennett, A. F. and R. B. Huey. 1990. Studying the evolution of physiological performance. Pp. 251-284 in D. J. Futuyma, and J. Antonovics, eds. *Oxford Surveys in Evolutionary Biology*. Oxford University Press, Oxford.

Bonneaud, C., I. Sepil, L. Wilfert, and R. Calsbeek. 2017. Plasmodium infections in natural populations of *Anolis sagrei* reflect tolerance rather than susceptibility. *Integrative and Comparative Biology*.

Careau, V. and R. Wilson. 2017. Of uberfleas and krakens: detecting trade-offs using mixed models. *Integrative and Comparative Biology*.

Clobert, J., A. Oppiger, G. Sorci, B. Ernande, J. G. Swallow, and T. Garland. 2000. Trade-offs in phenotypic traits: endurance at birth, growth, survival, predation and susceptibility to parasitism in a lizard, *Lacerta vivipara*. *Functional Ecology* 14:675-684.

Collar, D. C. and P. C. Wainwright. 2006. Discordance between morphological and mechanical diversity in the feeding mechanism of centrarchid fishes. *Evolution* 60:2575-2584.

Dantzer, B. and E. Swanson. 2017. Does hormonal pleiotropy shape the evolution of performance and life-history traits? *Integrative and Comparative Biology*.

Feder, M. E., A. F. Bennett, and R. B. Huey. 2000. Evolutionary physiology. *Annu. Rev. Ecol. Syst.* 31:315-341.

Flatt, T., M. Tu, and M. Tatar. 2005. Hormonal pleiotropy and the juvenile hormone regulation of *Drosophila* development and life-history. *BioEssays* 27:999-1010.

Garland, T. and P. A. Carter. 1994. Evolutionary Physiology. *Annual Review of Physiology* 56:579-621.

Ghalambor, C. K., D. N. Reznick, and J. A. Walker. 2004. Constraints on adaptive evolution: the functional trade-off between reproduction and fast-start swimming performance in the Trinidadian guppy (*Poecilia reticulata*). *The American Naturalist* 164:38-50.

Ghalambor, C. K., J. A. Walker, and D. N. Reznick. 2003. Multi-trait selection, adaptation, and constraints on the evolution of burst swimming performance. *Integrative and Comparative Biology* 43:431-438.

Huey, R. B. and A. E. Dunham. 1987. Repeatability of locomotor performance in natural populations of the lizard *Sceloporus merriami*. *Evolution* 41:116-1120.

Huey, R. B., A. E. Dunham, K. L. Overall, and R. A. Newman. 1990. Variation in locomotor performance in demographically known populations of the lizard *Sceloporus merriami*. *Physiol. Zool.* 63:845-872.

Husak, J. F. 2016. Measuring selection on physiology in the wild and manipulating phenotypes (in terrestrial nonhuman vertebrates). *Compr. Physiol.* 6:63-85.

Husak, J. F. and S. F. Fox. 2008. Sexual selection on locomotor performance. *Evolutionary Ecology Research* 10:213-228.

Husak, J. F., S. F. Fox, M. B. Lovorn, and R. A. Van Den Bussche. 2006. Faster lizards sire more offspring: Sexual selection on whole-animal performance. *Evolution* 60:2122-2130.

Husak, J. F., A. R. Keith, and B. N. Wittry. 2015. Making Olympic lizards: the effects of specialised exercise training on performance. *Journal of Experimental Biology* 218:899-906.

Husak, J. F. and S. P. Lailvaux. 2014. An evolutionary perspective on conflict and compensation in physiological and functional traits. *Curr. Zool.* 60:755-767.

Husak, J. F. and S. P. Lailvaux. 2017. How do we measure the cost of whole-organism performance traits? *Integrative and Comparative Biology*.

Husak, J. F., G. Ribak, R. H. Baker, G. Rivera, G. S. Wilkinson, and J. G. Swallow. 2013. Effects of ornamentation and phylogeny on the evolution of wing shape in stalk-eyed flies (Diopsidae). *Journal of Evolutionary Biology* 26:1281-1293.

Irschick, D., J. K. Bailey, J. A. Schweitzer, J. F. Husak, and J. J. Meyers. 2007. New directions for studying selection in nature: studies of performance and communities. *Physiological and Biochemical Zoology* 80:557-567.

Irschick, D. J. and J. B. Losos. 1998. A comparative analysis of the ecological significance of maximal locomotor performance in Caribbean *Anolis* lizards. *Evolution* 52:219-226.

Irschick, D. J., J. J. Meyers, J. F. Husak, and J. Le Galliard. 2008. How does selection operate on whole-organism functional performance capacities? A review and synthesis. *Evolutionary Ecology Research* 10:177-196.

Jaumann, S. and E. Snell-Rood. 2017. Butterflies do not alter conspecific avoidance in response to variation in density. *Integrative and Comparative Biology*.

Kilvitis, H., H. Hanson, A. Schrey, and L. Martin. 2017. Epigenetic potential as a mechanism of phenotypic plasticity in vertebrate range expansion. *Integrative and Comparative Biology*.

Lailvaux, S. P., R. L. Gilbert, and J. R. Edwards. 2012. A performance-based cost to honest signalling in male green anole lizards (*Anolis carolinensis*). *Proceedings of the Royal Society B-Biological Sciences* 279:2841-2848.

Lailvaux, S. P., M. D. Hall, and R. C. Brooks. 2010. Performance is no proxy for genetic quality: trade-offs between locomotion, attractiveness, and life history in crickets. *Ecology* 91:1530-1537.

Lailvaux, S. P. and J. F. Husak. 2014. The life-history of whole-organism performance. *Q. Rev. Biol.* 89:285-318.

Lailvaux, S. P. and J. F. Husak. 2017. Predicting life-history trade-offs with whole-organism performance. *Integrative and Comparative Biology*.

Lailvaux, S. P. and D. J. Irschick. 2006. A functional perspective on sexual selection: insights and future prospects. *Animal Behaviour* 72:263-273.

Lande, R. 1982. A quantitative genetic theory of life-history evolution. *Ecology* 63:607-615.

1
2
3 Le Galliard, J., J. Clobert, and R. Ferrière. 2004. Physical performance and darwinian fitness in lizards.
4 Nature 432:502-505.
5 Losos, J. B. 1990. Ecomorphology, performance capability, and scaling of West Indian Anolis lizards:
6 an evolutionary analysis. Ecol. Monogr. 60:369-388.
7 Miles, D. B. 2004. The race goes to the swift: fitness consequences of variation in sprint performance
8 in juvenile lizards. Evolutionary Ecology Research 6:63-75.
9 Okada, K., M. Katsuki, Y. Okada, and T. Miyatake. 2011. Immature performance linked with
10 exaggeration of a sexually selected trait in an armed beetle. Journal of Evolutionary Biology
11 24:1737-1743.
12 Orr, T. and T. Garland. 2017. Complex reproductive traits and whole-organism performance.
13 Integrative and Comparative Biology.
14 Oufiero, C. E. and T. Garland. 2007. Evaluating performance costs of sexually selected traits.
15 Functional Ecology 21:676-689.
16 Reaney, L. T. and R. J. Knell. 2015. Building a beetle: how larval environment leads to adult
17 performance in a horned beetle. Plos One 10:14.
18 Reznick, D. N., M. J. Bryant, D. Roff, C. K. Ghalambor, and D. E. Ghalambor. 2004. Effect of extrinsic
19 mortality on the evolution of senescence in guppies. Nature 431:1095-1099.
20 Sgro, C. M. and A. A. Hoffmann. 2004. Genetic correlations, tradeoffs and environmental variation.
21 Heredity 93:241-248.
22 Smith, G. and S. French. 2017. Physiological trade-offs in lizards: costs for individuals and
23 populations. Integrative and Comparative Biology.
24 Sorci, G., J. G. Swallow, T. Garland, and J. Clobert. 1995. Quantitative genetics of locomotor speed
25 and endurance in the lizard *Lacerta vivipera*. Physiol. Zool. 68:698-720.
26 Swallow, J. G., P. A. Carter, and T. Garland. 1998. Artificial selection for increased wheel-running
27 behavior in house mice. Behavior Genetics 28:227-237.
28 Swanson, E. M. and B. Dantzer. 2014. Insulin-like growth factor-1 is associated with life-history
29 variation across Mammalia. Proceedings of the Royal Society B-Biological Sciences 281:7.
30 Tsuji, J. S., R. B. Huey, F. H. Van Berkum, T. Garland, and R. G. Shaw. 1989. Locomotor performance
31 of hatchling fence lizards (*Sceloporus occidentalis*): quantitative genetics and morphometric
32 correlates. Evolutionary Ecology 3:240-252.
33 Veasey, J. S., D. C. Houston, and N. B. Metcalfe. 2001. A hidden cost of reproduction: the trade-off
34 between clutch size and escape take-off speed in female zebra finches. J. Anim. Ecol. 70:20-
35 24.
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60