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ABSTRACT

Off-label drug use refers to using marketed drugs for indications
that are not listed in their FDA labeling information. Such uses
are very common and sometimes inevitable in clinical practice.
To some extent, off-label drug uses provide a pathway for
clinical innovation, however, they could cause serious adverse
effects due to lacking scientific research and tests. Since
identifying the off-label uses can provide a clue to the
stakeholders including healthcare providers, patients, and
medication manufacturers to further the investigation on drug
efficacy and safety, it raises the demand for a systematic way to
detect off-label uses. Given data contributed by health
consumers in online health communities (OHCs), we developed
an automated approach to detect off-label drug uses based on
We
heterogeneous healthcare network with medical entities (e.g.

heterogeneous  network  mining. constructed  a
disease, drug, adverse drug reaction) mined from the text corpus,
which involved 50 diseases, 1,297 drugs, and 185 ADRs, and
determined 13 meta paths between the drugs and diseases. We
developed three metrics to represent the meta-path-based
topological features. With the network features, we trained the
binary classifiers built on Random Forest algorithm to recognize
the known drug-disease associations. The best classification
model that used lift to measure path weights obtained F1-score
of 0.87, based on which, we identified 1,009 candidates of off-
label drug uses and examined their potential by searching

evidence from PubMed and FAERS.
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1. INTRODUCTION

Off-label drug use refers to using marketed drugs for indications
that are not listed in their FDA labeling information. Although
FDA currently controls which medications can be brought to the
market, they are not able to supervise and control if the
medications are prescribed in accordance with the approved
labels. Off-label drug uses are very common in clinical practice.
Up to one-fifth prescriptions are off-label, and the number is
even higher in certain diseases (e.g. psychiatric diseases), certain
conditions (e.g. intensive care), and special subpopulations (e.g.
pediatric and pregnant patients) [1]. Although physicians
prescribe off-label drugs for the benefit of patients, and off-label
drug uses deliver effective treatment and provide a pathway for
clinical innovation in some cases, they could cause serious
outcomes due to lacking scientific research and tests. For
example, morphine has never received an FDA approval for pain
treatment in pediatric patients, but it is extensively used in
hospitalized practice. However, the misuse or overdose of such
narcotic can cause addiction or death, especially in children.

As off-label drug use is inevitable to some degree, most
healthcare related participants have the interest in gaining
information about off-label uses in a timely manner. Healthcare
providers and patients are concerned about the observation
information of off-label drug uses in practice; pharmaceutical
provide the
surveillance reports of drug uses; biomedical and clinical

companies are required to postmarketing
researchers are interested in the novel, especially those
successful, off-label drug uses to assess the potential benefits and
risks [2]. Identifying the off-label drug uses could present a clue
to the stakeholders to further the investigation on drug efficacy
and safety.

Despite these needs and the wide practice of off-label drug uses,
there is no regulatory agency that monitors such uses. FDA
Adverse Event Reporting System (FAERS) [3] contains reports
on the adverse event and medication error of approved drugs
and therapeutic biologic products to support the FDA’s
postmarketing safety surveillance program, while FAERS does
not designate the off-label uses particularly. Survey is another
approach of detecting off-label uses from physicians but limited
by many conditions such as the number of respondents, the
quality and truthfulness of answers, and the cost. Therefore, the
above factors raise the demand for a systematic way to detect
off-label drug uses.

In this study, we focus on developing an automated approach to

detect off-label drug uses from the health consumer contributed
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data. A variety of resources has been used to identify drug-
disease associations, mainly including biomedical database,
medical literature, EHR, and clinical note, and involving medical
entities such as protein, compound, gene, pathway, and adverse
drug reaction (ADR). While these data sources are useful in
detecting off-label uses, they are mainly contributed by
healthcare professionals and researchers. None of them capture
the information offered by health consumers or patients.
Meanwhile, the development of Web 2.0 not only breeds the
various online social media sites like Facebook and Twitter, but
also fosters online health communities (OHCs) such as MedHelp,
PatientsLikeMe, and DailyStrength. OHCs have been growing in
popularity across the world and provide a convenient way to
exchange health information. It has been claimed that 80% of
adults in US and 66% of adults in Europe seek online health
advice [4]. 72% of Internet users said they searched online for
health information in 2011 [5]. Taking MedHelp for instance, it
empowers over 12 million people each month to seek and offer
healthcare information on the site, which provides huge volumes
of timely and valuable health-related information. With data
coming from the OHC, we detected the most common three
medical entities involved in user-generated contents: drugs,
diseases, and adverse drug reactions (ADRs, and constructed a
heterogeneous healthcare network. On the heterogeneous
network, we determined the meta paths between drugs and
diseases and extracted the meta-path-based topological features
that are used for training a binary classification model to
recognize the known drug-disease pairs and to predict the
potential off-label drug-disease relationships.

2. RELATED WORK

A number of studies employed research methods such as survey
and narrative interview to identify off-label uses. Conroy et al.
[6] designed a prospective study to explore the use of unlicensed
and off-label drugs in pediatric patients in European countries
and found 39% Leslie &
Rosenheck [7] investigated the off-label uses of antipsychotic

of them involved off-label uses.

drugs among patients who are enrolled in Medicaid by operating
the retrospective analysis of administrative data, and found
57.6% patients received antipsychotics for off-label indications.

Recently, with the availability of online biomedical resources
such as medical literature, pharmaceutical databases, electronic
medical records (EMRs), and clinical text, a number of studies
drug-
indication/disease relationships to identify the off-label pairs.

utilized automated methods to discover novel
Mesgarpour et al. [8] focused on generating highly sensitive
search strategies to detect off-label related documents in
Excerpta Medica Database (EMBASE)-a major bibliographic
database in biomedicine. Jung et al. [9] developed a predictive
model to detect novel off-label uses from the clinical text. By
utilizing NCBO Annotator, they tagged the words in the corpus
of clinical notes first, and extracted the empirical relationships
between drugs and indications from the population level rather
than the textual level. In total, they calculated nine measures and
used them as features to train a SVM classifier to predict novel

off-label drug-indication pairs. Then they added extra 16 domain
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knowledge features from two pharmaceutical databases (Medi-
Span and DrugBank) to develop a new SVM predictive model,
and compared the performance of different feature sets [10]. In
result, they discovered 6142 novel off-label pairs and validated
403 of them on MEDLINE literature and FAERS reports.

To unveil the drug-disease relationships that are critical for
identifying off-label drug uses, previous studies have developed
approaches based on natural language processing [11] and text
mining [12]. Gottlieb et al. [13] calculated and ranked the
similarity between potential drug-disease pairs with those in the
gold standard set that they created by referring to several
pharmaceutical databases, based on the assumption that similar
drugs are indicated for similar diseases.

Additionally, some studies implemented heterogeneous network-
based methods to discover novel drug-disease associations.
Huang et al. [14] proposed a network propagation model to infer
drug-disease associations, based on the integrated networks of
three homogeneous networks and two heterogeneous, with the
weights of edges assigned by knowledge from biomedical
repositories. Chen et al. [15] also constructed a heterogeneous
network of drug, disease, and protein, and predicted drug-
disease associations by using a random walk based algorithm. Yu
et al. [16] created a tripartite heterogeneous network of three
types of nodes: diseases, drugs and protein complexes, with the
weights of edges computed on a symmetrical conditional
probability model. Moreover, heterogeneous network-based
approaches have also been used to discover relationships
between some other medical entities, such as drug-drug
interactions [17], drug-targets [18], and multi drug-pathways
[19]. For instance, Lee et al. [20] built a large heterogeneous
network to discover drug-drug interactions (DDIs) by involving
drugs, proteins, genes, pathways, side effects, targets and their
interactions into the network.

3. OFF-LABEL DRUG USES DETECTION
FROM ONLINE HEALTH COMMUNITIES

The previous studies render a promising way to unveil drug-
disease relationships by heterogeneous network-based methods,
based on which, we proposed a systematic method to identify
off-label drug uses by using health consumer contributed data
from OHCs, as illustrated in Figure 1. Firstly, we collected data
from the OHC website to create the text corpus, and extracted
the entities of diseases, drugs, and ADRs with lexicon based
approach. Secondly, we constructed a heterogeneous healthcare
network that contained three types of nodes (drug, disease,
ADR) and six types of associations (drug-drug, disease-disease,
ADR-ADR, drug-disease, drug-ADR, disease-ADR), determined
the meta-paths, and utilized path count methods to measure the
weights of associations between two nodes. Thirdly, we used the
extracted weights as the features to train an effective classifier
that distinguished known drug-disease pairs with those
unknown, and then identified the off-label drug uses from the
unknown pairs.
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Figure 1: Flow of detecting off-label drug uses from OHC
data

3.1 Dataset

In the current age, a large number of health consumers exchange
health information on online health communities (OHCs).
MedHelp (www.medhelp.org), as a pioneer in OHCs, has 176
health communities and empowers over 12 million visitors each
month to discuss health related topics on the site. We collected
the user generated data from MedHelp by implementing an
automatic web crawler, with which, we retrieved all the posts
and comments in the most popular 50 disease communities and
obtained 70,960 threads (70,960 posts + 319,993 comments).
Within the extracted corpus, we identified the medical entities
(i.e. drug, disease, ADR) by utilizing a lexicon-based approach,
which has shown its advantage to OHC data in previous studies
[21]. Unlike the pharmaceutical databases that include multiple
medical entities (e.g. protein, compound, and gene), OHC data
are mostly contributed by consumers without medical
background talking about their diseases, the drugs they take, and
the reactions or adverse reactions they experience. Therefore, we
only employ the above three medical entities here.

For diseases and drugs, we utilized all their alternate names
suggested in PharmGKB and UMLS and their abbreviations (e.g.
OCD for Obsessive-Compulsive Disorder) to locate them, and
tagged them with their UMLS-id. For example, the terms used to
identify Parkinson included “parkinson” “parkinson disease” and
“parkinson’s disease”, then all of those words were tagged with
“C0030567".

However, the detection of ADR signals is more complicated than
drugs and diseases in OHCs, because consumers use quite
diverse and various expressions to describe the concepts and
their adverse reactions. Thus, the standard medical lexicons
managed by professionals are not applicable for analyzing user
generated data. To address this problem, we resorted to
Consumer Health Vocabulary (CHV) Wiki to create our ADR
lexicon [21]. CHV Wiki connects the everyday expressions of
healthcare-related topics with the professional expressions to
bridge the communication gap between consumers and
healthcare professionals [22]. For ADRs, it provides the preferred
name of an ADR in UMLS and a list of its corresponding
consumers’ expressions. For example, “anorexia” is a
professional expression of ADR, CHV Wiki extends it to
“appetite lost” “appetite loss” “appetite lack” “no appetite” and
several other common expressions of health consumers. Here we
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used all the expressions suggested by CHV Wiki to identify ADR
signals in the corpus and tagged them with their UMLS-id. In
result, we tagged 50 diseases, 1,297 drugs, and 185 ADRs on the
corpus.

3.2 Heterogeneous network mining
3.2.1 Heterogeneous network construction

A heterogeneous network is defined as a graph consisting of
nodes connected by links with at least two types of nodes or two
types of links [23]. Most real-world networks are actually
heterogeneous networks rather than homogeneous networks
where the nodes and links are treated as the same type. Analysis
based on homogeneous network may miss important semantic
and schema-level information, while heterogeneous networks
can deliver more essential, accurate and complete features, thus
unveiling the underlying knowledge and patterns. Let N = {n1, nz,
..., nk} be a set of nodes and L = {h, b, ..., Im} be a set of links, then
G = (N, L) denotes the graph. In the graph G, each node n; € N
belongs to a particular type from y; each link [; € L belongs to a
particular type fromt, and |y| > 1 or |t] > 1, and can be
directional or non-directional. Then M; = (y,t) denotes the
node types y and link types 7 in graph G.

By involving the medical entities we identified from the
MedHelp corpus, we constructed a heterogeneous network that
contains three types of nodes (disease(D), drug(R), ADR) and six
types of links (drug-drug, disease-disease, ADR-ADR, drug-
disease, drug-ADR, disease-ADR), as shown in Figure 2. That
is, N={dy,...,d, 1y, .., T, adry,...,adry}, vy ={D,R,ADR} ,
and T = {Lp_p, Lg—r, Lapr-apr: Lp-rs Lp-apr, Lr-apr - In this
heterogeneous network, the interactions between two nodes,
W(Tli, nj), were built on their co-occurrence in the same thread.
Instead of inferring if a sentence contains use-to-treat
relationship, we measured co-mention relationships at a
population level by using co-occurrence-based indicators.

Heterogeneous Healthcare Network Meta paths
0 BR(R)
B9 B aao
o o o) a o0
\\/,’-/ o \\ /,’ (D B rox R
© : o 2880
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Figure 2: Heterogeneous healthcare network structure and
meta-paths

3.2.2 Meta Path and Path Count
A meta path is a path defined on the network schema in the

form of AlL—1>AZI;2> il)AlH , which composes the relations
between nodes in the heterogeneous network. Meta path-based
approaches could describe the meta structure of the network and
of the paths that derived from the network. To discover all the
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possible and reliable associations between diseases and drugs,
we defined the topology between them using meta paths, and by
limiting path length within three, we found 13 meta paths, as
shown in Table 1:

Table 1: Meta paths

Length | Meta Path Path structure
1 D-R a4, &5,
2 | poR d; &8 d, 5
2 | DRR d; &5 &5y
2 | D-ADRR d; 225 adn, E225
3 | D-D-D-R d; &8 d, &3 d,,
3 | D-D-RR d, 88 O B,
i k m i
3 | DD-ADR-R | d; &8 dy &5 adr,, L5
Lp-r  Lp-r Lp-r
3 D-R-D-R die— 1, e d, <
J
3 | DRRR d, &5 EE L EE L
i 13 m i
3 | DRADRR | d; &5 p, 225 aar,, 225,
3 D-ADR-D-R d; &8 qip, S8 g 25
i k m J
3 | D-ADR-R-R | g E08 gy, &4, EEL
i k m i
3 D-ADR-ADR-R di Lp-aDR adrk LADR-ADR adrm LRr—aDR r}

Given the topological features determined by meta paths, the
associations between D and R can be measured by the popular
indicator — Path Count (PC), which counts the number of path
instances between two objects under a given meta path, denoted
as PCp, where Pis the given meta path. Here we developed two
metrics to reveal the associations between two objects d;
and 7; (d; € D,7; € R): given a meta path P, (1) Meta-Path-
Indicator (MPI) indicates whether there exists a path p € P that
associates d; with ry; (2) Path-Count-Indicator (PCI) counts the
number of p that associates d; with 7.

p
MPIy(d;, 1) = {1' (3pep =(>)di on=1)

PCl(dun) =) 1, S =1)
DPEP
For example, MPI,_p_r(d; ;) = 1 denotes there is at least a path

Lp_ Lg_—
in the form of d; &5 1, &5 r; that connects d; with 1.

3.2.3 Association rule mining - lift

In the above equations for MPI and PCI, the weights of links
were not taken into consideration. In order to incorporate more
network information, here we utilized association rule mining to
measure the weights of associations and embedded the results
into the computation of Path Count to develop a new metric.

In association rule mining, let I = {f, b, ..., Im} be a set of items
and let T = {T1, T2, ..., Tn} be a set of transactions, where each
transaction is a subset of items such that T; € I An itemset that
contains k items is a k-itemset; the occurrence frequency of an
itemset is the number of transactions that contain the itemset.
The association rule is an implication in the form of A = B,
where AcI Bc ] and AN B =@, which is deemed as an
itemset. In this study, I denotes the whole set that contains
diseases, drugs, and ADRs, or N in the heterogeneous network
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definition; T denotes the dataset of all threads and each thread
represents a transaction; there are both 1-itemset ({D}, {R}, {ADR})
and 2-itemset ({D, D}, {R, R}, {ADR, ADR}, {D, R}, {D, ADR}, {R,
ADR}) involved in our calculation. The goal is to mine and
evaluate the associations presented in 2-itemset.
Support is a common indicator used in association rule mining,
defined as the percentage of transactions that contain 1-itemset
or 2-itemset, for instance:

count(n;)
total threads
count(n; U nj)
total threads
in which, count(n;) is the number of threads that contain target
n;; count(n; U n;) is the number of threads that contain both n;
and n; total threads denotes the total number of threads.
Nevertheless, for the 2-itemset, support is appropriate only when
the co-occurrence frequency of the items is high. However,
when consumers mention a drug, they might discuss different
aspects of drugs, so that threads that are related to ADR only
occupy a small portion in all the threads. To address this
problem, another indicator lift is often used. Liftis a measure
based on probability and reflects the division of the actual
probability and theoretical probability. For instance, when
measuring the strength of rule R = ADR, lift not only takes
account of support(R U ADR) but also the the correlation
between 1-itemset R and 1-itemset ADR, by calculating the ratio
of the proportion of threads containing both R and ADR above
those expected if R and ADR are independent of each other. For a
direct link AL o A, , the equation for
calculating support (n;, n;) (n; € Ay, n; € Ay) is:

lift(nm)) = support(n;,n;)

support (n;) =

support (n;, n,-) =

support(n;) X support(n;)
Given a meta path Pin the form 0fA1L—1>A2L—Z> EAZH, Path-Count-
Lift (PCL) PCLp(ny,ny) (ny € Ay, ...,y € A)) is calculated by:

PCLp(ny,my) = Z lift(ny,ny) X lift(ny, ns) X ...
pepP

X Uiftn ), (n & my = 1)
Taking the meta path D-D-R for instance:

. . b
PCLyp_r(dy1y) = Z lift(dy di) x life(d ), @ 1y = 1)
pe

in which, diﬁwj =1 denotes there is a meth path p that

. . Lp-p Lp-r
associates d; and 7j via d; e d e 1; .

3.3 Classification

In order to recognize associations between drugs and diseases
from all the possible pairs, we developed a supervised learning
model by training a binary classifier. The outputs of the classifier
were ‘positive’ or ‘negative’, indicating whether the predicted
drug-disease pair could be a known pair or not. The inputs of the
classifier came from the meta-path-based topological features.
For each drug-disease pair, we constructed a set of features that
were used to predict whether this pair is possibly to be a known
association. Under the length of three, we defined 13 meta paths
between drugs and diseases; with MPI or PCI or PCL on each
meta path representing a feature, it created a set of 13 features.
As the supervised learning model required both positive and
negative labels, we built the gold standard dataset of known
drug-disease pairs by referring to PharmGKB and DrugBank
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together, which suggested 2,087 known usages, and generated
28,000 negative instances randomly out of the unobserved
associations between 50 diseases and 1,297 drugs.

In this work, we used a machine learning algorithm Random
Forest as our classification method, which operates by
constructing a multitude of decision trees that grow from
bootstrap the training samples and outputs the labels based on
the majority votes of the individual trees. In addition,
considering there are much more negative instances than the
positive in the dataset, we performed undersampling to avoid the
imbalanced classification problem. Specifically, we divided the
whole dataset into training (65%) and test (35%) sets firstly, then
randomly split the negative pairs in the training set into 10
chunks. Each chunk and the positive training instances formed a
sub-training set, where the classifier was trained and then tested
on the hold-out test set.

3.4 Detection of off-label drug uses

Off-label drug uses are actually quite common in clinical practice
and can be widely entrenched in certain clinical conditions. The
document of medication providers such as EHRs and clinical
notes provide the opportunity to detect off-label drug uses in an
automated and scalable way. Meanwhile, from the perspective of
medication receivers, they often talk about their drug uses and
reactions on OHCs, which provides another resource to detect
off-label uses. If the features extracted from user generated data
enables us to recognize the known drug usages effectively, the
other drug-disease pairs that present similar features with the
known pairs are possibly to be off-label practices, in other
words, the negative pairs that are falsely classified as “positive”
are quite potential to be the off-label drug-disease usages.
Therefore, the goal of this step is to identify the false positive
(FP) predictions.

4. EXPERIMENTAL RESULTS

4.1 Classification results & evaluation

Evaluation of the classifier performance could indicate the
effectiveness and accuracy of using network-based features to
reveal drug-disease associations, furtherly, the effectiveness of
identifying off-label drug-disease associations via this way [10].
In order to investigate the performance of different meta-path-
based features, we did three experiments by using MPI, PCIL, and
PCL respectively. We trained the Random Forest classifiers on
each sub-training set by performing 10-fold cross validation and
evaluated the performance on the hold-out test set. Thus, we
obtained 10 test results and took the average to represent the
overall performance. Here, the classification performances were
evaluated using Precision, Recall, and F1-score.

We trained and tested the Random Forest classifier with the
scikit-learn tool in Python package [24]. The evaluation results of
the binary classification were shown in Table 2. It is obvious that
using MPI to represent the meta-path features obtained the
worst results in all the three metrics, with Fl-score equaling
0.639 in the test set. When incorporating the information about
the number of meta paths between two objects, that is, using PCI
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to describe the meta-path features, the F1-score was improved by
18% compared with using MPI and achieved 0.754. Furtherly,
after embodying the weights of links in the heterogeneous
network and using PCL for features, the F1-score was improved
by 36% compared with MPI and 15% with PCL Besides, we
obtained a very high Recall of 0.969, which means that among all
the known drug-disease usages we classified 96.9% of them
correctly. The Precision of 0.795 indicated that 79.5% of the
predicted “positive” drug-disease pairs were indeed known
usages, meanwhile, the other 21.5% were falsely classified as
“positive” from the randomly generated negative pairs and might
be the off-label pairs we were seeking. In summary, meta-path-
based topological features have enabled us to develop successful
supervised classification models for recognizing known drug-
disease associations.
Table 2: Evaluation results of classification models built
on different features

Random Forest

Feature Dataset
Precision Recall F1

score
Training 0.670 0.713 0.692

MPI
Test 0.618 0.663 0.639
PCI Training 0.817 0.791 0.804
Test 0.763 0.745 0.754
PCL Training 0.897 0.971 0.932
Test 0.795 0.969 0.870

As using PCL for features outperformed the other two indicators
based on the evaluation results, we then applied the best trained
classification model to the whole balanced dataset built by
oversampling the minority class, to find all the possible off-label
predictions. In result, we found 1,009 false-positive instances
that might be potential candidates of off-label drug-disease
associations, shown in Table 3.
Table 3: classification results of using PCL features

Predicted
P N
14480 300
Actual 1009 26991

4.2 Validate results on PubMed and FAERS data

As the identified off-label usages have not been included in any
pharmaceutical databases, the popular validation way is to find
co-mention support from medical literature and reports [10]. The
detected 1,009 potential candidates of off-label drug uses were
checked for positive evidence in PubMed literature and FAERS
reports. PubMed is a free resource developed and maintained by
the National Center for Biotechnology Information (NCBI) and
covers the titles and abstracts of more than 26 million biomedical
publications, which can be accessed using the Entrez
Programming Utilies (E-utilities). FAERS is the most important
spontaneous reporting system as well as the primary data source
for the study and identification of ADRs in United States. In
PubMed, we found 407 of the novel predictions that have at least
ten articles that both the drug and the disease were mentioned in
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the abstract; in FAERS, we only found 10 of the novel predictions
that have at least ten reports co-annotating with both the drug
and the disease. The reason why there was so less evidence in
FAERS might be that: first, FAERS is designed for reporting
adverse drug effects rather than off-label uses, therefore, if there
is no ADR involved, people have no intension to report their
situations to the system; second, people report ADRs
spontaneously and voluntarily, which leads to a surprisingly low
reporting rate because of the nature of passiveness, with a
median of 6%; third, it usually takes FDA a long time to complete
the whole process of collecting reports, investigating cases and
releasing alerts, which limits the manner of timely for
information.

5. CONCLUSIONS

Off-label drug uses are very common and sometimes inevitable
in clinical practice. Although the stakeholders including
healthcare providers, patients, researchers, and medication
manufacturers have the interest to gain information about off-
label drug uses comprehensively and timely, there is no
regulatory agency supervising such usages yet, which raises the
demand for a systematic way to detect and manage off-label
drug uses. The documents of medication providers such as EHRs
and clinical notes provide the resource of detecting off-label uses
and have been exploited in some previous studies, meanwhile,
the large volumes of data coming from medication receivers also
render the opportunity to detect off-label uses in a systematic
and scalable way. In this study, we developed an automated way
to detect off-label uses based on heterogeneous network mining.
With data collected from a popular OHC - MedHelp, we
extracted the medical entities of diseases, drugs, and ADRs with
lexicon-based approaches and constructed a heterogeneous
healthcare network that contained three types of nodes and six
types of edges. On the heterogeneous network, we determined
13 meta paths between drugs and diseases and developed three
metrics to describe the meta-path-based topological features:
Meta-Path-Indicator (MPI), Path-Count-Indicator (PCI), and
Path-Count-Lift (PCL). Then we utilized these features as inputs
for the Random Forest classifier to recognize the known drug-
disease associations from all the possible pairs. Using MPI, PCI,
and PCL for the features respectively, we conducted three
classification experiments, and the classification model built on
PCL achieved the best performance with F1-score reaching 0.87.
The results showed that meta-path-based topological features
could enable us to develop well-performed supervised
models to recognize known drug-disease
associations, furtherly, the other drug-disease pairs that present
similar features with those known pairs are possibly to be the
off-label practices, or the false-positive predictions are quite
potential to be off-label drug-disease usages. Based on this
hypothesis, we identified 1,009 candidates of off-label drug uses
and examined them for positive support from PubMed and
FAERS. In result, 407 of them were found evidence from at least
ten articles in PubMed and 10 of them were found evidence from
at least ten reports in FAERS.

classification
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