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ABSTRACT 

Off-label drug use refers to using marketed drugs for indications 
that are not listed in their FDA labeling information. Such uses 
are very common and sometimes inevitable in clinical practice. 
To some extent, off-label drug uses provide a pathway for 
clinical innovation, however, they could cause serious adverse 
effects due to lacking scientific research and tests. Since 
identifying the off-label uses can provide a clue to the 
stakeholders including healthcare providers, patients, and 
medication manufacturers to further the investigation on drug 
efficacy and safety, it raises the demand for a systematic way to 
detect off-label uses. Given data contributed by health 
consumers in online health communities (OHCs), we developed 
an automated approach to detect off-label drug uses based on 
heterogeneous network mining. We constructed a 
heterogeneous healthcare network with medical entities (e.g. 
disease, drug, adverse drug reaction) mined from the text corpus, 
which involved 50 diseases, 1,297 drugs, and 185 ADRs, and 
determined 13 meta paths between the drugs and diseases.  We 
developed three metrics to represent the meta-path-based 
topological features. With the network features, we trained the 
binary classifiers built on Random Forest algorithm to recognize 
the known drug-disease associations.  The best classification 
model that used lift to measure path weights obtained F1-score 
of 0.87, based on which, we identified 1,009 candidates of off-
label drug uses and examined their potential by searching 
evidence from PubMed and FAERS.  
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1. INTRODUCTION 
Off-label drug use refers to using marketed drugs for indications 
that are not listed in their FDA labeling information. Although 
FDA currently controls which medications can be brought to the 
market, they are not able to supervise and control if the 
medications are prescribed in accordance with the approved 
labels. Off-label drug uses are very common in clinical practice. 
Up to one-fifth prescriptions are off-label, and the number is 
even higher in certain diseases (e.g. psychiatric diseases), certain 
conditions (e.g. intensive care), and special subpopulations (e.g. 
pediatric and pregnant patients) [1]. Although physicians 
prescribe off-label drugs for the benefit of patients, and off-label 
drug uses deliver effective treatment and provide a pathway for 
clinical innovation in some cases, they could cause serious 
outcomes due to lacking scientific research and tests. For 
example, morphine has never received an FDA approval for pain 
treatment in pediatric patients, but it is extensively used in 
hospitalized practice. However, the misuse or overdose of such 
narcotic can cause addiction or death, especially in children. 
As off-label drug use is inevitable to some degree, most 
healthcare related participants have the interest in gaining 
information about off-label uses in a timely manner. Healthcare 
providers and patients are concerned about the observation 
information of off-label drug uses in practice; pharmaceutical 
companies are required to provide the postmarketing 
surveillance reports of drug uses; biomedical and clinical 
researchers are interested in the novel, especially those 
successful, off-label drug uses to assess the potential benefits and 
risks [2]. Identifying the off-label drug uses could present a clue 
to the stakeholders to further the investigation on drug efficacy 
and safety.  
Despite these needs and the wide practice of off-label drug uses, 
there is no regulatory agency that monitors such uses. FDA 
Adverse Event Reporting System (FAERS) [3] contains reports 
on the adverse event and medication error of approved drugs 
and therapeutic biologic products to support the FDA’s 
postmarketing safety surveillance program, while FAERS does 
not designate the off-label uses particularly. Survey is another 
approach of detecting off-label uses from physicians but limited 
by many conditions such as the number of respondents, the 
quality and truthfulness of answers, and the cost. Therefore, the 
above factors raise the demand for a systematic way to detect 
off-label drug uses. 
In this study, we focus on developing an automated approach to 
detect off-label drug uses from the health consumer contributed 
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data. A variety of resources has been used to identify drug-
disease associations, mainly including biomedical database, 
medical literature, EHR, and clinical note, and involving medical 
entities such as protein, compound, gene, pathway, and adverse 
drug reaction (ADR). While these data sources are useful in 
detecting off-label uses, they are mainly contributed by 
healthcare professionals and researchers. None of them capture 
the information offered by health consumers or patients. 
Meanwhile, the development of Web 2.0 not only breeds the 
various online social media sites like Facebook and Twitter, but 
also fosters online health communities (OHCs) such as MedHelp, 
PatientsLikeMe, and DailyStrength. OHCs have been growing in 
popularity across the world and provide a convenient way to 
exchange health information. It has been claimed that 80% of 
adults in US and 66% of adults in Europe seek online health 
advice [4]. 72% of Internet users said they searched online for 
health information in 2011 [5]. Taking MedHelp for instance, it 
empowers over 12 million people each month to seek and offer 
healthcare information on the site, which provides huge volumes 
of timely and valuable health-related information. With data 
coming from the OHC, we detected the most common three 
medical entities involved in user-generated contents: drugs, 
diseases, and adverse drug reactions (ADRs, and constructed a 
heterogeneous healthcare network. On the heterogeneous 
network, we determined the meta paths between drugs and 
diseases and extracted the meta-path-based topological features 
that are used for training a binary classification model to 
recognize the known drug-disease pairs and to predict the 
potential off-label drug-disease relationships. 

2. RELATED WORK 
A number of studies employed research methods such as survey 
and narrative interview to identify off-label uses.  Conroy et al. 
[6] designed a prospective study to explore the use of unlicensed 
and off-label drugs in pediatric patients in European countries 
and found 39% of them involved off-label uses. Leslie & 
Rosenheck [7] investigated the off-label uses of antipsychotic 
drugs among patients who are enrolled in Medicaid by operating 
the retrospective analysis of administrative data, and found 
57.6% patients received antipsychotics for off-label indications.  
Recently, with the availability of online biomedical resources 
such as medical literature, pharmaceutical databases, electronic 
medical records (EMRs), and clinical text, a number of studies 
utilized automated methods to discover novel drug-
indication/disease relationships to identify the off-label pairs. 
Mesgarpour et al. [8] focused on generating highly sensitive 
search strategies to detect off-label related documents in 
Excerpta Medica Database (EMBASE)-a major bibliographic 
database in biomedicine. Jung et al. [9] developed a predictive 
model to detect novel off-label uses from the clinical text. By 
utilizing NCBO Annotator, they tagged the words in the corpus 
of clinical notes first, and extracted the empirical relationships 
between drugs and indications from the population level rather 
than the textual level. In total, they calculated nine measures and 
used them as features to train a SVM classifier to predict novel 
off-label drug-indication pairs. Then they added extra 16 domain 

knowledge features from two pharmaceutical databases (Medi-
Span and DrugBank) to develop a new SVM predictive model, 
and compared the performance of different feature sets [10]. In 
result, they discovered 6142 novel off-label pairs and validated 
403 of them on MEDLINE literature and FAERS reports. 
To unveil the drug-disease relationships that are critical for 
identifying off-label drug uses, previous studies have developed 
approaches based on natural language processing [11] and text 
mining [12]. Gottlieb et al. [13] calculated and ranked the 
similarity between potential drug-disease pairs with those in the 
gold standard set that they created by referring to several 
pharmaceutical databases, based on the assumption that similar 
drugs are indicated for similar diseases.  
Additionally, some studies implemented heterogeneous network-
based methods to discover novel drug-disease associations. 
Huang et al. [14] proposed a network propagation model to infer 
drug-disease associations, based on the integrated networks of 
three homogeneous networks and two heterogeneous, with the 
weights of edges assigned by knowledge from biomedical 
repositories. Chen et al. [15] also constructed a heterogeneous 
network of drug, disease, and protein, and predicted drug-
disease associations by using a random walk based algorithm. Yu 
et al. [16] created a tripartite heterogeneous network of three 
types of nodes: diseases, drugs and protein complexes, with the 
weights of edges computed on a symmetrical conditional 
probability model. Moreover, heterogeneous network-based 
approaches have also been used to discover relationships 
between some other medical entities, such as drug-drug 
interactions [17], drug-targets [18], and multi drug-pathways 
[19]. For instance, Lee et al. [20] built a large heterogeneous 
network to discover drug-drug interactions (DDIs) by involving 
drugs, proteins, genes, pathways, side effects, targets and their 
interactions into the network.  

3.    OFF-LABEL DRUG USES DETECTION 
FROM ONLINE HEALTH COMMUNITIES 
The previous studies render a promising way to unveil drug-
disease relationships by heterogeneous network-based methods, 
based on which, we proposed a systematic method to identify 
off-label drug uses by using health consumer contributed data 
from OHCs, as illustrated in Figure 1. Firstly, we collected data 
from the OHC website to create the text corpus, and extracted 
the entities of diseases, drugs, and ADRs with lexicon based 
approach. Secondly, we constructed a heterogeneous healthcare 
network that contained three types of nodes (drug, disease, 
ADR) and six types of associations (drug-drug, disease-disease, 
ADR-ADR, drug-disease, drug-ADR, disease-ADR), determined 
the meta-paths, and utilized path count methods to measure the 
weights of associations between two nodes. Thirdly, we used the 
extracted weights as the features to train an effective classifier 
that distinguished known drug-disease pairs with those 
unknown, and then identified the off-label drug uses from the 
unknown pairs. 
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Figure 1: Flow of detecting off-label drug uses from OHC 
data 

 

3.1 Dataset 
In the current age, a large number of health consumers exchange 
health information on online health communities (OHCs). 
MedHelp (www.medhelp.org), as a pioneer in OHCs, has 176 
health communities and empowers over 12 million visitors each 
month to discuss health related topics on the site. We collected 
the user generated data from MedHelp by implementing an 
automatic web crawler, with which, we retrieved all the posts 
and comments in the most popular 50 disease communities and 
obtained 70,960 threads (70,960 posts + 319,993 comments). 
Within the extracted corpus, we identified the medical entities 
(i.e. drug, disease, ADR) by utilizing a lexicon-based approach, 
which has shown its advantage to OHC data in previous studies 
[21]. Unlike the pharmaceutical databases that include multiple 
medical entities (e.g. protein, compound, and gene), OHC data 
are mostly contributed by consumers without medical 
background talking about their diseases, the drugs they take, and 
the reactions or adverse reactions they experience. Therefore, we 
only employ the above three medical entities here. 
For diseases and drugs, we utilized all their alternate names 
suggested in PharmGKB and UMLS and their abbreviations (e.g. 
OCD for Obsessive-Compulsive Disorder) to locate them, and 
tagged them with their UMLS-id. For example, the terms used to 
identify Parkinson included “parkinson” “parkinson disease” and 
“parkinson’s disease”, then all of those words were tagged with 
“C0030567”.  
However, the detection of ADR signals is more complicated than 
drugs and diseases in OHCs, because consumers use quite 
diverse and various expressions to describe the concepts and 
their adverse reactions. Thus, the standard medical lexicons 
managed by professionals are not applicable for analyzing user 
generated data. To address this problem, we resorted to 
Consumer Health Vocabulary (CHV) Wiki to create our ADR 
lexicon [21]. CHV Wiki connects the everyday expressions of 
healthcare-related topics with the professional expressions to 
bridge the communication gap between consumers and 
healthcare professionals [22]. For ADRs, it provides the preferred 
name of an ADR in UMLS and a list of its corresponding 
consumers’ expressions. For example, “anorexia” is a 
professional expression of ADR, CHV Wiki extends it to 
“appetite lost” “appetite loss” “appetite lack” “no appetite” and 
several other common expressions of health consumers. Here we 

used all the expressions suggested by CHV Wiki to identify ADR 
signals in the corpus and tagged them with their UMLS-id. In 
result, we tagged 50 diseases, 1,297 drugs, and 185 ADRs on the 
corpus.  

3.2 Heterogeneous network mining 

3.2.1 Heterogeneous network construction 
A heterogeneous network is defined as a graph consisting of 
nodes connected by links with at least two types of nodes or two 
types of links [23]. Most real-world networks are actually 
heterogeneous networks rather than homogeneous networks 
where the nodes and links are treated as the same type. Analysis 
based on homogeneous network may miss important semantic 
and schema-level information, while heterogeneous networks 
can deliver more essential, accurate and complete features, thus 
unveiling the underlying knowledge and patterns. Let N = {n1, n2, 
…, nk} be a set of nodes and L = {l1, l2, …, lm} be a set of links, then 
G = (N, L) denotes the graph. In the graph G, each node ݊௜ ∈ ܰ 
belongs to a particular type from ߛ; each link ݈௜ ∈  belongs to a ܮ
particular type from ߬, and |1 < |ߛ or |߬| > 1, and can be 
directional or non-directional. Then ீܯ ൌ ሺߛ, ߬ሻ  denotes the 
node types ߛ and link types	߬ in graph G.  
By involving the medical entities we identified from the 
MedHelp corpus, we constructed a heterogeneous network that 
contains three types of nodes (disease(D), drug(R), ADR) and six 
types of links (drug-drug, disease-disease, ADR-ADR, drug-
disease, drug-ADR, disease-ADR), as shown in Figure 2. That 
is, 	ܰ ൌ ሼ݀ଵ,… , ݀௞, ,ଵݎ … , ,௠ݎ …,ଵݎ݀ܽ , ,௡ሽݎ݀ܽ ߛ  ൌ ሼܦ, ܴ, ሽܴܦܣ , 
and ߬ ൌ ሼܮ஽ି஽, ,ோିோܮ ,஺஽ோି஺஽ோܮ ,஽ିோܮ ,஽ି஺஽ோܮ ோି஺஽ோܮ . In this 
heterogeneous network, the interactions between two nodes, ݓ൫݊௜, ௝݊൯, were built on their co-occurrence in the same thread. 
Instead of inferring if a sentence contains use-to-treat 
relationship, we measured co-mention relationships at a 
population level by using co-occurrence-based indicators. 

 
Figure 2: Heterogeneous healthcare network structure and 

meta-paths 

3.2.2 Meta Path and Path Count 
A meta path is a path defined on the network schema in the 

form of ܣଵ௅భ→ܣଶ௅మ→… ௅೗→ܣ௟ାଵ  , which composes the relations 
between nodes in the heterogeneous network. Meta path-based 
approaches could describe the meta structure of the network and 
of the paths that derived from the network. To discover all the 
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possible and reliable associations between diseases and drugs, 
we defined the topology between them using meta paths, and by 
limiting path length within three, we found 13 meta paths, as 
shown in Table 1: 

Table 1: Meta paths Length	 Meta	Path	 Path	structure	1	 D-R	 ݀௜ ௅ವషೃርۛሮ 	2	௝ݎ D-D-R	 ݀௜ ௅ವషವርۛሮ ݀௞ ௅ವషೃርۛሮ 	2	௝ݎ D-R-R	 ݀௜ ௅ವషೃርۛሮ ௞ݎ ௅ೃషೃርۛሮ 	2	௝ݎ D-ADR-R	 ݀௜ ௅ವషಲವೃርۛ ۛۛ ሮ ௞ݎ݀ܽ ௅ೃషಲವೃርۛ ۛۛ ሮ 	3	௝ݎ D-D-D-R	 ݀௜ ௅ವషವርۛሮ ݀௞ ௅ವషವርۛሮ ݀௠ ௅ವషೃርۛሮ 	3	௝ݎ D-D-R-R	 ݀௜ ௅ವషವርۛሮ ݀௞ ௅ವషೃርۛሮ ௠ݎ ௅ೃషೃርۛሮ 	3	௝ݎ D-D-ADR-R	 ݀௜ ௅ವషವርۛሮ ݀௞ ௅ವషಲವೃርۛ ۛۛ ሮ ௠ݎ݀ܽ ௅ೃషಲವೃርۛ ۛۛ ሮ 	௝3ݎ D-R-D-R	 ݀௜ ௅ವషೃርۛሮ ௞ݎ ௅ವషೃርۛሮ ݀௠ ௅ವషೃርۛሮ 	3	௝ݎ D-R-R-R	 ݀௜ ௅ವషೃርۛሮ ௞ݎ ௅ೃషೃርۛሮ ௠ݎ ௅ೃషೃርۛሮ 	3	௝ݎ D-R-ADR-R	 ݀௜ ௅ವషೃርۛሮ ௞ݎ ௅ೃషಲವೃርۛ ۛۛ ሮ ௠ݎ݀ܽ ௅ೃషಲವೃርۛ ۛۛ ሮ 	௝3ݎ D-ADR-D-R	 ݀௜ ௅ವషಲವೃርۛ ۛۛ ሮ ௞ݎ݀ܽ ௅ವషಲವೃርۛ ۛۛ ሮ ݀௠ ௅ವషೃርۛሮ 	௝3ݎ D-ADR-R-R	 ݀௜ ௅ವషಲವೃርۛ ۛۛ ሮ ௞ݎ݀ܽ ௅ೃషಲವೃርۛ ۛۛ ሮ ௠ݎ ௅ೃషೃርۛሮ 	௝3ݎ D-ADR-ADR-R	 ݀௜ ௅ವషಲವೃርۛ ۛۛ ሮ ௞ݎ݀ܽ ௅ಲವೃషಲವೃርۛ ۛۛ ۛۛ ሮ ௠ݎ݀ܽ ௅ೃషಲವೃርۛ ۛۛ ሮ ௝ݎ
 

Given the topological features determined by meta paths, the 
associations between D and R can be measured by the popular 
indicator – Path Count (PC), which counts the number of path 
instances between two objects under a given meta path, denoted 
as PCP, where P is the given meta path. Here we developed two 
metrics to reveal the associations between two objects 	݀௜ 
and	ݎ௝	ሺ݀௜ ∈ ,ܦ ௝ݎ ∈ ܴ ): given a meta path P, (1) Meta-Path-
Indicator (MPI) indicates whether there exists a path ݌ ∈ ܲ that 
associates di with rj	 ; (2) Path-Count-Indicator (PCI) counts the 
number of p that associates di with rj	. ܫܲܯ௉൫݀௜, ௝൯ݎ ൌ 	 ቊ1, ሺ∃	݌ ∈ ܲ	 ⇒ ݀௜ ௣↔ ௝ݎ ൌ 1ሻ0 ,௉൫݀௜ܫܥܲ  ௝൯ݎ ൌ෍ 1௣∈௉ , ሺ݀௜ ௣↔ ௝ݎ ൌ 1ሻ 
For example, ܫܲܯ஽ିோିோ൫݀௜, ௝൯ݎ ൌ 1 denotes there is at least a path 

in the form of ݀௜ ௅ವషೃርۛሮ ௞ݎ ௅ೃషೃርۛሮ  .	௝ that connects di with rjݎ
3.2.3 Association rule mining - lift 
In the above equations for MPI and PCI, the weights of links 
were not taken into consideration. In order to incorporate more 
network information, here we utilized association rule mining to 
measure the weights of associations and embedded the results 
into the computation of Path Count to develop a new metric.  
In association rule mining, let I = {I1, I2, …, Im} be a set of items 
and let T = {T1, T2, …, Tn} be a set of transactions, where each 
transaction is a subset of items such that Ti ⊆ I. An itemset that 
contains k items is a k-itemset; the occurrence frequency of an 
itemset is the number of transactions that contain the itemset. 
The association rule is an implication in the form of ܣ	 ⇒ B, 
where A ⊂ I, B ⊂ I and A ∩ B = ∅, which is deemed as an 
itemset. In this study, I denotes the whole set that contains 
diseases, drugs, and ADRs, or N in the heterogeneous network 

definition; T denotes the dataset of all threads and each thread 
represents a transaction; there are both 1-itemset ({D}, {R}, {ADR}) 
and 2-itemset ({D, D}, {R, R}, {ADR, ADR}, {D, R}, {D, ADR}, {R, 
ADR}) involved in our calculation. The goal is to mine and 
evaluate the associations presented in 2-itemset. 
Support is a common indicator used in association rule mining, 
defined as the percentage of transactions that contain 1-itemset 
or 2-itemset, for instance: ݐݎ݋݌݌ݑݏ	ሺ݊௜ሻ 	ൌ ,ሺ݊௜	ݐݎ݋݌݌ݑݏ								 ݏ݀ܽ݁ݎ݄ݐ	݈ܽݐ݋ݐሺ݊௜ሻݐ݊ݑ݋ܿ ௝݊ሻ 	ൌ ሺ݊௜ݐ݊ݑ݋ܿ ∪ ௝݊ሻ݈ܽݐ݋ݐ	ݏ݀ܽ݁ݎ݄ݐ  

in which, ܿݐ݊ݑ݋ሺ݊௜ሻ is the number of threads that contain target ݊௜; ܿݐ݊ݑ݋ሺ݊௜ ∪ ௝݊ሻ is the number of threads that contain both ݊௜ 
and ௝݊ ; total threads denotes the total number of threads. 
Nevertheless, for the 2-itemset, support is appropriate only when 
the co-occurrence frequency of the items is high. However, 
when consumers mention a drug, they might discuss different 
aspects of drugs, so that threads that are related to ADR only 
occupy a small portion in all the threads. To address this 
problem, another indicator lift is often used. Lift is a measure 
based on probability and reflects the division of the actual 
probability and theoretical probability. For instance, when 
measuring the strength of rule ܴ ⇒  lift not only takes ,ܴܦܣ
account of ݐݎ݋݌݌ݑݏሺܴ ∪ ሻܴܦܣ  but also the the correlation 
between 1-itemset R and 1-itemset ADR, by calculating the ratio 
of the proportion of threads containing both R and ADR above 
those expected if R and ADR are independent of each other. For a 
direct link ܣଵ ↔ ଶܣ , the equation for 
calculating	ݐݎ݋݌݌ݑݏ	ሺ݊௜, ௝݊ሻ (݊௜ ∈ ,ଵܣ ௝݊ ∈ ,ሺ݊௜ݐ݂݈݅ :ଶ) isܣ ௝݊ሻ 	ൌ 	 ,ሺ݊௜ݐݎ݋݌݌ݑݏ ௝݊ሻݐݎ݋݌݌ݑݏሺ݊௜ሻ ൈ ሺݐݎ݋݌݌ݑݏ ௝݊ሻ 
Given a meta path P in the form of ܣଵ௅భ→ܣଶ௅మ→… ௅೗→ܣ௟ାଵ, Path-Count-
Lift (PCL) ܲܮܥ௉ሺ݊ଵ, ݊௟ሻ ሺ݊ଵ ∈ …,ଵܣ , ݊௟ ∈ ,௉ሺ݊ଵܮܥܲ :௟) is calculated byܣ ݊௟ሻ ൌ ෍ ,ሺ݊ଵݐ݂݈݅ ݊ଶሻ ൈ ,ሺ݊ଶݐ݂݈݅ ݊ଷሻ ൈ …௣∈௉ൈ ,ሺ݊௟ିଵݐ݂݈݅ ݊௟ሻ , ሺ݊ଵ ௣↔ ݊௟ ൌ 1ሻ 
Taking the meta path D-D-R for instance: ܲܮܥ஽ି஽ିோ൫݀௜, ௝൯ݎ ൌ෍ ,ሺ݀௜ݐ݂݈݅ ݀௞ሻ ൈ ,൫݀௞ݐ݂݈݅ ௝൯௣∈௉ݎ , ሺ݀௜ ௣↔ ௝ݎ ൌ 1ሻ 
in which, ݀௜ ௣↔ ௝ݎ ൌ 1  denotes there is a meth path p that 

associates ݀௜ and ݎ௝ via ݀௜ ௅ವషವርۛሮ ݀௞ ௅ವషೃርۛሮ  . ௝ݎ
3.3 Classification 
In order to recognize associations between drugs and diseases 
from all the possible pairs, we developed a supervised learning 
model by training a binary classifier. The outputs of the classifier 
were ‘positive’ or ‘negative’, indicating whether the predicted 
drug-disease pair could be a known pair or not. The inputs of the 
classifier came from the meta-path-based topological features. 
For each drug-disease pair, we constructed a set of features that 
were used to predict whether this pair is possibly to be a known 
association. Under the length of three, we defined 13 meta paths 
between drugs and diseases; with MPI or PCI or PCL on each 
meta path representing a feature, it created a set of 13 features. 
As the supervised learning model required both positive and 
negative labels, we built the gold standard dataset of known 
drug-disease pairs by referring to PharmGKB and DrugBank 
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together, which suggested 2,087 known usages, and generated 
28,000 negative instances randomly out of the unobserved 
associations between 50 diseases and 1,297 drugs.  
In this work, we used a machine learning algorithm Random 
Forest as our classification method, which operates by 
constructing a multitude of decision trees that grow from 
bootstrap the training samples and outputs the labels based on 
the majority votes of the individual trees. In addition, 
considering there are much more negative instances than the 
positive in the dataset, we performed undersampling to avoid the 
imbalanced classification problem. Specifically, we divided the 
whole dataset into training (65%) and test (35%) sets firstly, then 
randomly split the negative pairs in the training set into 10 
chunks. Each chunk and the positive training instances formed a 
sub-training set, where the classifier was trained and then tested 
on the hold-out test set. 

3.4 Detection of off-label drug uses 

Off-label drug uses are actually quite common in clinical practice 
and can be widely entrenched in certain clinical conditions. The 
document of medication providers such as EHRs and clinical 
notes provide the opportunity to detect off-label drug uses in an 
automated and scalable way. Meanwhile, from the perspective of 
medication receivers, they often talk about their drug uses and 
reactions on OHCs, which provides another resource to detect 
off-label uses. If the features extracted from user generated data 
enables us to recognize the known drug usages effectively, the 
other drug-disease pairs that present similar features with the 
known pairs are possibly to be off-label practices, in other 
words, the negative pairs that are falsely classified as “positive” 
are quite potential to be the off-label drug-disease usages. 
Therefore, the goal of this step is to identify the false positive 
(FP) predictions. 

4.    EXPERIMENTAL RESULTS 

4.1 Classification results & evaluation 

Evaluation of the classifier performance could indicate the 
effectiveness and accuracy of using network-based features to 
reveal drug-disease associations, furtherly, the effectiveness of 
identifying off-label drug-disease associations via this way [10]. 
In order to investigate the performance of different meta-path-
based features, we did three experiments by using MPI, PCI, and 
PCL respectively. We trained the Random Forest classifiers on 
each sub-training set by performing 10-fold cross validation and 
evaluated the performance on the hold-out test set. Thus, we 
obtained 10 test results and took the average to represent the 
overall performance. Here, the classification performances were 
evaluated using Precision, Recall, and F1-score.  
We trained and tested the Random Forest classifier with the 
scikit-learn tool in Python package [24]. The evaluation results of 
the binary classification were shown in Table 2. It is obvious that 
using MPI to represent the meta-path features obtained the 
worst results in all the three metrics, with F1-score equaling 
0.639 in the test set. When incorporating the information about 
the number of meta paths between two objects, that is, using PCI 

to describe the meta-path features, the F1-score was improved by 
18% compared with using MPI and achieved 0.754. Furtherly, 
after embodying the weights of links in the heterogeneous 
network and using PCL for features, the F1-score was improved 
by 36% compared with MPI and 15% with PCI. Besides, we 
obtained a very high Recall of 0.969, which means that among all 
the known drug-disease usages we classified 96.9% of them 
correctly. The Precision of 0.795 indicated that 79.5% of the 
predicted “positive” drug-disease pairs were indeed known 
usages, meanwhile, the other 21.5% were falsely classified as 
“positive” from the randomly generated negative pairs and might 
be the off-label pairs we were seeking. In summary, meta-path-
based topological features have enabled us to develop successful 
supervised classification models for recognizing known drug-
disease associations. 

Table 2: Evaluation results of classification models built 
on different features 

Feature Dataset 
Random Forest 

Precision Recall 
F1 

score 

MPI 
Training 0.670 0.713 0.692 

Test 0.618 0.663 0.639 

PCI 
Training 0.817 0.791 0.804 

Test 0.763 0.745 0.754 

PCL 
Training 0.897 0.971 0.932 

Test 0.795 0.969 0.870 
 
As using PCL for features outperformed the other two indicators 
based on the evaluation results, we then applied the best trained 
classification model to the whole balanced dataset built by 
oversampling the minority class, to find all the possible off-label 
predictions. In result, we found 1,009 false-positive instances 
that might be potential candidates of off-label drug-disease 
associations, shown in Table 3. 

Table 3: classification results of using PCL features 

 
Predicted 

P N 

Actual 
P 14480 300 
N 1009 26991 

 

4.2 Validate results on PubMed and FAERS data 

As the identified off-label usages have not been included in any 
pharmaceutical databases, the popular validation way is to find 
co-mention support from medical literature and reports [10]. The 
detected 1,009 potential candidates of off-label drug uses were 
checked for positive evidence in PubMed literature and FAERS 
reports. PubMed is a free resource developed and maintained by 
the National Center for Biotechnology Information (NCBI) and 
covers the titles and abstracts of more than 26 million biomedical 
publications, which can be accessed using the Entrez 
Programming Utilies (E-utilities). FAERS is the most important 
spontaneous reporting system as well as the primary data source 
for the study and identification of ADRs in United States. In 
PubMed, we found 407 of the novel predictions that have at least 
ten articles that both the drug and the disease were mentioned in 
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the abstract; in FAERS, we only found 10 of the novel predictions 
that have at least ten reports co-annotating with both the drug 
and the disease. The reason why there was so less evidence in 
FAERS might be that: first, FAERS is designed for reporting 
adverse drug effects rather than off-label uses, therefore, if there 
is no ADR involved, people have no intension to report their 
situations to the system; second, people report ADRs 
spontaneously and voluntarily, which leads to a surprisingly low 
reporting rate because of the nature of passiveness, with a 
median of 6%; third, it usually takes FDA a long time to complete 
the whole process of collecting reports, investigating cases and 
releasing alerts, which limits the manner of timely for 
information. 

5. CONCLUSIONS 
Off-label drug uses are very common and sometimes inevitable 
in clinical practice. Although the stakeholders including 
healthcare providers, patients, researchers, and medication 
manufacturers have the interest to gain information about off-
label drug uses comprehensively and timely, there is no 
regulatory agency supervising such usages yet, which raises the 
demand for a systematic way to detect and manage off-label 
drug uses. The documents of medication providers such as EHRs 
and clinical notes provide the resource of detecting off-label uses 
and have been exploited in some previous studies, meanwhile, 
the large volumes of data coming from medication receivers also 
render the opportunity to detect off-label uses in a systematic 
and scalable way. In this study, we developed an automated way 
to detect off-label uses based on heterogeneous network mining. 
With data collected from a popular OHC - MedHelp, we 
extracted the medical entities of diseases, drugs, and ADRs with 
lexicon-based approaches and constructed a heterogeneous 
healthcare network that contained three types of nodes and six 
types of edges. On the heterogeneous network, we determined 
13 meta paths between drugs and diseases and developed three 
metrics to describe the meta-path-based topological features: 
Meta-Path-Indicator (MPI), Path-Count-Indicator (PCI), and 
Path-Count-Lift (PCL). Then we utilized these features as inputs 
for the Random Forest classifier to recognize the known drug-
disease associations from all the possible pairs. Using MPI, PCI, 
and PCL for the features respectively, we conducted three 
classification experiments, and the classification model built on 
PCL achieved the best performance with F1-score reaching 0.87. 
The results showed that meta-path-based topological features 
could enable us to develop well-performed supervised 
classification models to recognize known drug-disease 
associations, furtherly, the other drug-disease pairs that present 
similar features with those known pairs are possibly to be the 
off-label practices, or the false-positive predictions are quite 
potential to be off-label drug-disease usages. Based on this 
hypothesis, we identified 1,009 candidates of off-label drug uses 
and examined them for positive support from PubMed and 
FAERS. In result, 407 of them were found evidence from at least 
ten articles in PubMed and 10 of them were found evidence from 
at least ten reports in FAERS.  
 

6. ACKNOWLEDGEMENTS 
This work was supported in part by the National Science 
Foundation under the Grant IIS-1650531 and DIBBs-1443019. 
REFERENCES 
[1]. Wittich, C. M., Burkle, C. M., & Lanier, W. L. (2012, October). Ten common 

questions (and their answers) about off-label drug use. In Mayo Clinic 
Proceedings (Vol. 87, No. 10, pp. 982-990). Elsevier. 

[2]. Kao, J. (2016). White Paper: Pharmaceutical Regulation and Off-Label Uses. 
[3]. Questions and Answers on FDA’s Adverse Event Reporting System (FAERS). 

https://www.fda.gov/drugs/guidancecomplianceregulatoryinformation/surveillanc
e/adversedrugeffects/ 

[4]. Barry, M. M., Domegan, C., Higgins, O., & Sixsmith, J. (2011). A literature review 
on health information seeking behaviour on the web: a health consumer and 
health professional perspective. 

[5]. White, R. W., Tatonetti, N. P., Shah, N. H., Altman, R. B., & Horvitz, E. (2013). Web-
scale pharmacovigilance: listening to signals from the crowd. Journal of the 
American Medical Informatics Association, 20(3), 404-408. 

[6]. Conroy, S., Choonara, I., Impicciatore, P., Mohn, A., Arnell, H., Rane, A., ... & 
Rocchi, F. (2000). Survey of unlicensed and off label drug use in paediatric wards in 
European countries. Bmj, 320(7227), 79-82. 

[7]. Leslie, D. L., & Rosenheck, R. (2012). Off-label use of antipsychotic medications in 
Medicaid. The American journal of managed care, 18(3), e109-17. 

[8]. Mesgarpour, B., Müller, M., & Herkner, H. (2012). Search strategies to identify 
reports on “off-label” drug use in EMBASE. BMC medical research 
methodology, 12(1), 190. 

[9]. Jung, K., LePendu, P., & Shah, N. (2013). Automated detection of systematic off-
label drug use in free text of electronic medical records. AMIA Summits on 
Translational Science Proceedings, 2013, 94.  

[10]. Jung, K., LePendu, P., Chen, W. S., Iyer, S. V., Readhead, B., Dudley, J. T., & Shah, N. 
H. (2014). Automated detection of off-label drug use. PloS one, 9(2), e89324. 

[11]. Fung, K. W., Jao, C. S., & Demner-Fushman, D. (2013). Extracting drug indication 
information from structured product labels using natural language 
processing. Journal of the American Medical Informatics Association, 20(3), 482-488. 

[12]. Xu, R., & Wang, Q. (2013). Large-scale extraction of accurate drug-disease 
treatment pairs from biomedical literature for drug repurposing. BMC 
bioinformatics, 14(1), 181. 

[13]. Gottlieb, A., Stein, G. Y., Ruppin, E., & Sharan, R. (2011). PREDICT: a method for 
inferring novel drug indications with application to personalized medicine. 
Molecular systems biology, 7(1), 496. 

[14]. Huang, Y. F., Yeh, H. Y., & Soo, V. W. (2013). Inferring drug-disease associations 
from integration of chemical, genomic and phenotype data using network 
propagation. BMC medical genomics, 6(3), S4. 

[15]. Chen, X., Liu, M. X., & Yan, G. Y. (2012). Drug–target interaction prediction by 
random walk on the heterogeneous network. Molecular BioSystems, 8(7), 1970-
1978. 

[16]. Yu, L., Huang, J., Ma, Z., Zhang, J., Zou, Y., & Gao, L. (2015). Inferring drug-disease 
associations based on known protein complexes. BMC medical genomics, 8(2), S2. 

[17]. Yang, H., & Yang, C. C. (2016, October). Discovering Drug-Drug Interactions and 
Associated Adverse Drug Reactions with Triad Prediction in Heterogeneous 
Healthcare Networks. In Healthcare Informatics (ICHI), 2016 IEEE International 
Conference on (pp. 244-254). IEEE. 

[18]. Yan, X. Y., Zhang, S. W., & Zhang, S. Y. (2016). Prediction of drug–target 
interaction by label propagation with mutual interaction information derived from 
heterogeneous network. Molecular BioSystems, 12(2), 520-531. 

[19]. Soliman, T. H. A. (2014). Mining Multi Drug-Pathways via A Probabilistic 
Heterogeneous Network Multi-label Classifier. Bonfring International Journal of 
Research in Communication Engineering, 4(2), 10. 

[20]. Lee, K., Lee, S., Jeon, M., Choi, J., & Kang, J. (2012, October). Drug-drug interaction 
analysis using heterogeneous biological information network. In Bioinformatics 
and Biomedicine (BIBM), 2012 IEEE International Conference on (pp. 1-5). IEEE. 

[21]. Jiang, L., & Yang, C. C. (2015, March). Expanding Consumer Health Vocabularies 
by Learning Consumer Health Expressions from Online Health Social Media. In 
International Conference on Social Computing, Behavioral-Cultural Modeling, and 
Prediction (pp. 314-320). Springer International Publishing. 

[22]. Zeng, Q. T., & Tse, T. (2006). Exploring and developing consumer health 
vocabularies. Journal of the American Medical Informatics Association, 13(1), 24-29. 

[23]. Han, J., Sun, Y., Yan, X., & Yu, P. S. (2010, July). Mining heterogeneous information 
networks. In Tutorial at the 2010 ACM SIGKDD Conf. on Knowledge Discovery 
and Data Mining (KDD'10), Washington, DC. 

[24]. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & 
Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine 
Learning Research, 12(Oct), 2825-2830.

  

Session 16: Applications to Healthcare Processes ACM-BCB’17, August 20–23, 2017, Boston, MA, USA

454




